
Beyond Transitional Probabilities:

Human Learners Impose a Parsimony Bias in Statistical Word Segmentation

Michael C. Frank

mcfrank@mit.edu
Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology

Inbal Arnon

inbal.arnon@manchester.ac.uk
Department of Linguistics
University of Manchester

Harry Tily

hjt@stanford.edu
Department of Linguistics

Stanford University

Sharon Goldwater

sgwater@inf.ac.uk
School of Informatics

University of Edinburgh

Abstract

Human infants and adults are able to segment coherent se-
quences from unsegmented strings of auditory stimuli after
only a short exposure, an ability thought to be linked to early
language acquisition. Although some research has hypothe-
sized that learners succeed in these tasks by computing tran-
sitional probabilities between syllables, current experimen-
tal results do not differentiate between a range of models of
different computations that learners could perform. We cre-
ated a set of stimuli that was consistent with two different
lexicons—one consisting of two-syllable words and one of
three-syllable words—but where transition probabilities would
not lead learners to segment sentences consistently according
to either lexicon. Participants’ responses formed a distribution
over possible segmentations that included consistent segmen-
tations into both two- and three-syllable words, suggesting that
learners do not use pure transitional probabilities to segment
but instead impose a bias towards parsimony on the lexicons
they learn.
Keywords: Word segmentation; statistical learning; computa-
tional modeling.

Introduction

Human adults, infants, and even members of other species
have the ability to identify statistically coherent sequences in
unsegmented streams of stimuli after only a very short ex-
posure (Saffran, Aslin, & Newport, 1996; Saffran, Newport,
& Aslin, 1996; Hauser, Newport, & Aslin, 2001). This seg-
mentation ability is extremely robust, operates across a wide
range of modalities (Conway & Christiansen, 2005), and has
been hypothesized to play an important role in early language
acquisition (Kuhl, 2004). Nevertheless, relatively little is
known about the computations underlying statistical segmen-
tation.

In one influential study, Saffran, Newport, and Aslin
(1996) exposed participants to a simple artificial language
which consisted of six trisyllabic words concatenated to-
gether to form a continuous speech steam. After only a few
minutes of exposure, participants were able to distinguish
words in this language from strings that did not occur with
the same frequency. They speculated that participants could
succeed by computing syllable-to-syllable transitional proba-
bilities (TPs) and segmenting the speech stream at local min-
ima in TP.

There are many possible computations by which learn-
ers could extract coherent units from the statistical structure

of the speech stream, however. Lexicon-based learners like
PARSER (Perruchet & Vinter, 1998) and Bayesian lexical
models (Brent, 1999; Goldwater, Griffiths, & Johnson, 2009)
have also been proposed as possible models of segmentation.
Though these models differ on several dimensions, all assume
that learners attempt to learn a consistent lexicon—a set of
word forms that is combined to form the training sequence—
and they do this by preferring small lexicons composed of
frequent, short words.

Two previous studies have examined whether this kind of
model could provide a good fit to human learning perfor-
mance. The first contrasted recognition of sub-parts of the
words from a speech stream and found that PARSER, like hu-
man learners, failed to discriminate sub-parts of words after
training (Giroux & Rey, 2009). The second study found that
a parsimony-biased chunk-finding model better accounted for
human performance across a range of experiments in the vi-
sual domain than a purely associative model (Orbán, Fiser,
Aslin, & Lengyel, 2008). Thus, both of these studies sug-
gest that human learners do not simply represent association
probabilities in statistical learning.

Our current study asks what kinds of learning biases op-
erate in statistical learning. Our study makes use of a novel
language whose transition statistics support not just one but a
range of possible coherent segmentations: training data could
be interpreted as a sequence of sentences of six words from
a lexicon of two-syllable words or a sequence of sentences
of four words from a lexicon of three-syllable words (where
all words appeared with approximately the same frequency).
TPs for a single sentence in this language are shown in Fig-
ure 1. A learner using pure TPs to segment the language
would not recover either lexicon but would instead either
segment the language into sets of six-syllable words or else
segment inconsistently into a mix of two- and three-syllable
words. Thus, our language was designed to test whether hu-
man learners would learn more parsimonious lexicons than
those implied by pure transition statistics.

Experiment 1 validates two methodological innovations:
a web-based interface for data collection and a dependent
measure which directly evaluates participants’ word segmen-
tation judgments. Experiment 2 uses these methods to test
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Figure 1: Average transitional probabilities between syllables
in an ambiguous language from Experiment 2.

participants’ segmentation judgments in the ambiguous lan-
guage discussed above. We compare the distribution of par-
ticipants’ segmentations to the performance of two compu-
tational models—a standard TP model and a Bayesian model
that looks for a parsimonious lexicon—and conclude that par-
ticipants’ judgments reflect the operation of a parsimony bias.

Experiment 1

The first condition of Experiment 1 compares web-based
data on a segmentation task to previously-collected lab data
(Frank, Goldwater, Griffiths, & Tenenbaum, under review) on
a standard 2 alternative forced choice (2AFC) test trial. The
second condition evaluates a new measure of segmentation:
explicit segmentation decisions. We developed a graphical
paradigm in which participants heard a sentence, saw it tran-
scribed on the screen, and were asked to click between syl-
lables to indicate where they thought the boundaries between
words were.

Methods

Participants Forty eight separate HITs (opportunities for a
participant to work) were posted on Amazon’s Mechanical
Turk web-based crowd-sourcing platform. We received 40
HITS from distinct individuals. Participants were paid $1 for
participating.

Stimuli For each condition, we constructed 16 distinct lan-
guages to be heard by different participants (to avoid item
effects caused by phonological similarity of words). These
languages each had a lexicon of six words (2 x two syllables,
2 x three syllables, 2 x four syllables). Words were created
by randomly concatenating the syllables ba, bi, da, du, ti, tu,
ka, ki, la, lu, gi, gu, pa, pi, va, vu, zi, and zu. Stimuli were
synthesized using MBROLA (Dutoit, Pagel, Pierret, Bataille,
& Vrecken, 1996) at a constant pitch of 100Hz with 25ms
consonants and 225ms vowels. Sentences were generated by
randomly concatenating words into strings of four words with
no repetitions. All words had frequencies of 300 in the result-
ing corpus of 75 sentences.

For the 2AFC condition, part-word test stimuli (Saffran,
Newport, & Aslin, 1996) were created by concatenating the
first syllable of each word with the remaining syllables of
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Figure 2: Average percent correct is plotted by subject for
in-lab participants from Frank et al. (under review) and Me-
chanical Turk participants from the 2AFC condition of Ex-
periment 1. Each point is an individual participant, bars show
the mean, and the dashed line represents chance.

another word; this created distractors which appeared in the
training corpus with lower frequency than the words. For the
segmentation condition, we generated 10 extra sentences ac-
cording to the same uniform frequency distribution and lexi-
con as the training corpus.

Procedures After selecting our HIT, our Adobe Flash in-
terface tested that participants’ sound was on and that they
were able to understand our instructions by asking them to
listen to a simple English word and enter it correctly. Par-
ticipants were then instructed that they would listen to a set
of sentences from a made-up language and then be tested on
what they had learned. In order to hear each sentence during
training, participants clicked a button marked “next.”

In the test phase of the 2AFC condition, participants heard
24 pairs consisting of a word and a length-matched part-word
and clicked a button for each to indicate which one sounded
more like the language they just heard. In the segmentation
condition, participants were asked to click on the breaks be-
tween words in a graphic display of a sentence. They per-
formed one practice trial on an English sentence presented
in this way (“In di an go ril las ne ver eat ba na nas”) and
prevented from continuing until they segmented it correctly.
They then segmented 10 test sentences. Sentences were pre-
sented with each syllable separate. Each sentence was played
once at the beginning of a trial, and below the sentence was a
button that offered the option of hearing the sentence again.

Results and Discussion

In the 2AFC condition (N=24), we found that participants
were above chance in their mean accuracy, taken as a group
(t(23) = 5.92, p < .0001). Results are plotted together with
data from an identical condition of Frank et al. (under re-
view) (Experiment 2, 300 words exposure), collected from
a group of participants in the lab (Figure 2). Mean perfor-
mance was slightly lower for the Internet-based Turk par-
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Figure 3: Token precision, recall, and F-score are plotted for
individual participants in the segmentation response condi-
tion of Experiment 1. Points represent individual participants
for each measure. Bars show means and dashed lines show
permutation baselines.

ticipants (M=66% compared with M=71%) but not signifi-
cantly so (Welch two-sample t-test for unequal sample sizes,
t(21.21) =−.92, p = .37). Participants completing the learn-
ing task on their own computer via the Internet were able to
perform at levels comparable to participants in an isolated
room in a psychology laboratory.

In the segmentation condition (N=16), we could not ana-
lyze participants’ percent correct judgments as in the 2AFC
condition. Instead, we evaluated two aspects of performance.
First, we asked about the correctness of the boundaries par-
ticipants placed: whether these decisions corresponded to
the correct segmentation (boundary performance). Second,
we asked about whether each word in the sentence was seg-
mented correctly at its boundaries (token performance).

We computed hits (correctly placed boundaries or correctly
segmented tokens), misses (missed boundaries or tokens that
were not segmented appropriately), and false-alarms (extra
boundaries or incorrect tokens that were segmented). Pre-
cision captures the proportion of boundaries that were placed
correctly and is computed as hits / (hits + false-alarms), while
recall captures the total proportion of correct boundaries that
were identified and is computed as hits / (hits + misses). We
combined these into an F-score, a commonly used metric that
is the harmonic mean of precision and recall (Goldwater et
al., 2009).

Figure 3 shows token precision, recall, and F-score for par-
ticipants in the segmentation condition. We calculated an em-
pirical baseline for each measure via permutation: we repeat-
edly shuffled each participant’s boundary decisions within
each sentence at random and computed the same measures
over it, then took the mean for each. We then used these
empirical baselines to test whether participants were above
chance in this condition and found that they were for both
measures (boundary performance: one sample t-test for pre-
cision, t(15) = 5.23, p = .0001; recall, t(15) = 6.79, p <
.0001; F-score, t(15) = 8.75, p < .0001, token performance:

t(15) = 3.63, p = .002; recall, t(15) = 2.71, p < .01; F-score,
t(15) = 3.41, p < .004), though boundary performance was
better than token performance. Participants were able to un-
derstand the segmentation task and link the regularities they
extracted from the exposure corpus to the response format.

Experiment 2

We made use of the two methodological innovations from
Experiment 1—Internet data collection and explicit segmen-
tation judgments—to ask about participants’ responses to a
language where TP did not reveal the possible lexicons of
two- or three-syllable words. Instead, pure TPs predicted that
participants would often segment the language into words of
six-syllables and would rarely segment into words of two or
three syllables. Our next experiment tests these predictions.

Methods

Participants Two-hundred and three separate experimental
HITs were posted on Amazon Mechanical Turk. We received
119 HITs from distinct individuals who made segmentation
decisions on every trial. Participants were paid $0.50 for par-
ticipating. An addition 145 HITs in the test-only control con-
dition were posted at $0.25 each; we received 102 HITs from
distinct individuals who made segmentation decisions.

Stimuli Languages were generated using two parallel vo-
cabularies, one of eight two-syllable words and one of six
three-syllable words. These vocabularies were designed to
allow overlapping segmentations where the presence of a cer-
tain word from one vocabulary did not always indicate the
presence of the same set of words from the other. For ex-
ample, if the three-syllable vocabulary contained ABC, the
two-syllable vocabulary would contain at least either AB and
two words beginning C, or BC and two words ending A. Sen-
tences of 12 syllables were generated by choosing syllables
one at a time from the set that made the sentence to the current
point compatible with both vocabularies. At each point, syl-
lables were chosen from a distribution over this set, weighted
inversely to the frequency with which they had been chosen
to follow the previous syllable in all sentences so far. The
resulting sentences displayed probabilistic word-to-word de-
pendencies, much as one would expect in natural language
due to the syntactic relationships between words, but in no
languages were there pairs of words from either vocabulary
which always appeared together. We generated 30 distinct
languages and synthesized them as in Experiment 1. Each
language contained 25 sentences for training and 10 test sen-
tences, sampled from the same distribution. Sentence presen-
tation order was random.

Procedures Procedures were identical to the segmentation
condition of Experiment 1. Participants in the test-only con-
trol condition received no training sentences.

Results and Discussion

Participants produced a wide range of segmentations, from
those which segmented every three syllables to those which
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Figure 4: Twenty four participants in Experiment 2, uniformly sampled along the dimension of 2-segmentation F-score. Plots
show average probability of placing a boundary at each location in a sentence. Top left shows three-segmenters (three peaks sep-
arating four three-syllable plateaus), while bottom right shows two-segmenters (five peaks separating six two-syllable plateaus).

segmented every two syllables. Sample responses are shown
in Figure 4. While there was an overall trend towards 2-
consistent segmentations, a wide variety of segmentations
were observed. Contrary to the predictions of the TP account,
there were almost no segmentations into words of six sylla-
bles and there were a considerable number of segmentations
into words of two and three syllables.

We evaluated participants’ performance on the same mea-
sures used in Experiment 1: precision, recall, and F-score for
both boundaries and tokens. Rather than using a single cor-
rect segmentation, we calculated these measures for both the
2-syllable lexicon and the 3-syllable lexicon (Figure 5), show-
ing the distribution of responses on the continuum between a
perfect 2-segmentation and a perfect 3-segmentation.

One possible alternative explanation of our finding could
be that learners have a bias towards segmenting consistently
(e.g., because of the trochaic, bisyllabic structure of English)
even without taking into account the structure of the lan-
guages they heard. However, results from the first trial of
the test-only condition had a very different distribution than
those who underwent training (Figure 5). Without training,
performance was similar to a randomized baseline in which
participants’ judgments for each sentence were shuffled ran-
domly. Although there was some learning during test for
participants in the test-only condition, there was very little
change in the distribution of responses during test for those
participants who underwent training.

Our results are inconsistent with the hypothesis that partic-
ipants segmented on the basis of TPs. Instead, the distribu-
tion of participants’ responses shows a bias towards segmen-
tations that were consistent with a more parsimonious lexicon
than that produced by segmenting at low transition probabili-
ties.

Models

To formalize the intuitions motivating Experiment 2, we eval-
uated a TP model and a lexicon-finding model on the exper-
imental stimuli. We then evaluated the segmentations pro-

duced by these models on the same criteria that we used for
the human participants.

Transitional probability model

For each language, we calculated TP for each pair of sylla-
bles that appeared in the training portion of the corpus. We
computed TP as P(s2|s1) = C(s1,s2)/∑s�∈S C(s1,s�) where
C(s1,s2) refers to the count of instances of the string s1s2.

Earlier proposals for TP models called for segmenting at
local minima in TP (Saffran, Newport, & Aslin, 1996). How-
ever, this method produces only a single possible segmen-
tation for a given sentence and provides no plausible expla-
nation for how participants could have given such different
responses for such similar languages. Thus, we chose to con-
vert the TPs for test sentences into decision boundaries via
a simple threshold operation: we inserted a boundary in a
test sentence every time TP was below a threshold value in
that sentence. Rather than picking a single threshold value,
we assumed that participants might have a range of threshold
values and that this range might explain the variation between
participants we observed. Therefore we created a separate
segmentation for each language for each threshold value from
zero to one at an interval of .1.

Lexical model

We also ran the unigram Bayesian Lexical model described in
Goldwater et al. (2009). This model is a probabilistic model
which uses Bayesian inference to search the space of segmen-
tations of the training corpus, evaluating each segmentation
on the parsimony of the lexicon that would have created it.
The structure of the model makes a segmentation more prob-
able when it results in fewer, shorter lexical items (though
also when the segmentation itself contains fewer word tokens,
which leads to a trade-off).

As in the TP model, it was important to investigate the
range of segmentations that were available under this model.
When we ran a standard Markov-chain monte carlo algorithm
using the parameter set from previous simulations, we found
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Figure 5: Participant and model token F-scores for Experiment 2. Three-syllable token F-scores are plotted by their two-syllable
token F-scores. Each dot represents a single participant or a single model run.

Table 1: Kullback-Leibler divergence between the distribu-
tion of human experimental data and other data.

Model Token F Boundary F
Test-only condition 4.01 3.45
Random baseline 7.26 9.45
Lexical model 2.07 3.16

Transitional probability 4.62 3.72

that it converged to a segmentation that preferred a lexicon of
three-syllable words. In order to investigate a broader range
of segmentations, we manipulated the temperature of infer-
ence in the model by exponentiating posterior probabilities
at a range of values. (This manipulation is a standard tech-
nique for allowing sampling algorithms to explore a hypoth-
esis space more broadly, rather than converging to the single
highest-probability answer.) With slightly higher tempera-
tures, our sampler explored a broad range of possible seg-
mentations. We report results for temperature = 2 although
results for a temperature of 3 were comparable.

Results and Discussion

Results for both models are shown in Figure 5, bottom. The
transitional probability model failed to capture the spread of

Table 2: Log probability of consistent segmentations under
the Lexical model.

Syllables per word Log probability
6 -594.28
4 -932.92
3 -530.62
2 -697.07
1 -1127.20
unsegmented -1907.20

human results: nearly all segmentations it found were compa-
rable in F-score for 2- and 3-segmentation, and no segmenta-
tion was over an F-score of .5 on either measure. The Lexical
model came closer to capturing the distribution of responses,
though it was not as effective at finding 2-segmentations
as the human participants, suggesting a possible role for a
trochaic bias. Unlike the TP model, however, its probabil-
ity landscape was truly multi-modal, finding relatively high
probability segmentations with 2, 3, and 6 syllables per word
(Table 2).

We measured the differences between the distributions
of responses across human participants and models using
Kullback-Leibler divergence—an information-theoretic mea-
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sure of the difference between a true distribution and an ap-
proximation of that distribution—to quantify the number of
bits between distributions (MacKay, 2003). In order to con-
vert sets of observations into smooth distributions, we con-
volved them with a Gaussian kernel with a constant kernel
width. This manipulation produced a smooth density which
could be effectively compared using KL divergence.1 Results
are shown in Table 1. The Lexical model showed the lowest
divergence from the human response distribution, while the
TP model was closer to the empirical baseline in its diver-
gence from the human distribution.

General Discussion

We presented two studies of statistical word segmentation.
The first study introduced two methodological innovations,
web-based data collection and explicit segmentation judg-
ments. We used these new methods in the second study
to test whether human learners faithfully learned the transi-
tional probabilities of an ambiguous language or whether they
gave a segmentation that was more consistent with one of the
two possible lexicons that generated the training corpus. We
found that the distribution of participants’ responses was not
consistent with the distribution of segmentations produced by
segmenting according to a TP model. Thus, our results pro-
vide evidence that human learners do not simply encode tran-
sitional or associative statistics but instead impose some kind
of bias on what they learn.

This bias could be either a bias for consistent word lengths
or for a parsimonious lexicon. A model which searched for
lexicons with small lexicons consisting of highly frequent,
short words produced a distribution similar to that produced
by the human learners. Nonetheless, the Lexical model pre-
ferred a lexicon with three-syllable words, unlike human
learners who preferred to segment into two-syllable words;
and the Lexical model assigned a high probability to a seg-
mentation into two words of six syllables each, while partic-
ipants rarely produced this segmentation. Frank et al. (under
review) found that models with memory limitations provided
a better fit to human performance, suggesting that one possi-
ble explanation for these differences is the increased difficulty
for human learners of remembering longer words.

The language used in Experiment 2 has a number of limita-
tions. First, unlike recent studies (Frank et al., under review;
Giroux & Rey, 2009), the competing lexicons we used in this
study were composed of words of homogenous length, lead-
ing to stimuli that could be perceived as isochronous. Second,
the size of the lexicons was relatively small and the restric-
tions on sentences were tight, leading to a small number of
possible sentences. Our ongoing work attempts to address
both of these issues.

1Because both the TP model and the Lexical model produced
a significant number of segmentations that failed to place any
boundaries—for the TP model this was due to extreme threshold
values, and for the Lexical model this was due to convergence is-
sues in the online sampler we used—we excluded all model runs
that failed to make any segmentation decisions.

Results in the statistical learning literature have rightly
been interpreted as showing that human learners are sen-
sitive to associative and transitional statistics in their envi-
ronment. But these interpretations should not be confused
with the conclusion that learners compute these particular—
or any—transition statistics. Instead, future research on sta-
tistical learning should attempt to characterize both human
learning biases and the computations that give rise to them.
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