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Language is used to communicate ideas. Ideas are mental tools for coping with
a complex and uncertain world. Thus human conceptual structures should be
key to language meaning, and probability—the mathematics of uncertainty—
should be indispensable for describing both language and thought. Indeed,
probabilistic models are enormously useful in modeling human cognition (Ten-
enbaum et al., 2011) and aspects of natural language (Bod et al., 2003; Chater
et al., 2006). With a few early exceptions (e.g. Adams, 1975; Cohen, 1999b),
probabilistic tools have only recently been used in natural language semantics
and pragmatics. In this chapter we synthesize several of these modeling ad-
vances, exploring a formal model of interpretation grounded, via lexical se-
mantics and pragmatic inference, in conceptual structure.

Flexible human cognition is derived in large part from our ability to ima-
gine possibilities (or possible worlds). A rich set of concepts, intuitive theories,
and other mental representations support imagining and reasoning about pos-
sible worlds—together we will call these the conceptual lexicon. We posit that
this collection of concepts also forms the set of primitive elements available for
lexical semantics: word meanings can be built from the pieces of conceptual
structure. Larger semantic structures are then built from word meanings by
composition, ultimately resulting in a sentence meaning which is a phrase in
the “language of thought” provided by the conceptual lexicon. This expres-
sion is truth-functional in that it takes on a Boolean value for each imagined
world, and it can thus be used as the basis for belief updating. However,
the connection between cognition, semantics, and belief is not direct: because
language must flexibly adapt to the context of communication, the connec-
tion between lexical representation and interpreted meaning is mediated by
pragmatic inference.

A draft chapter for the Wiley-Blackwell Handbook of Contemporary Semantics —
second edition, edited by Shalom Lappin and Chris Fox. This draft formatted on
25th June 2014.
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2 Noah D. Goodman and Daniel Lassiter

There are a number of challenges to formalizing this view of language:
How can we formalize the conceptual lexicon to describe generation of possible
worlds? How can we appropriately connect lexical meaning to this conceptual
lexicon? How, within this system, do sentence meanings act as constraints on
possible worlds? How does composition within language relate to composition
within world knowledge? How does context a↵ect meanings? How is pragmatic
interpretation related to literal meaning?

In this chapter we sketch an answer to these questions, illustrating the
use of probabilistic techniques in natural language pragmatics and semantics
with a concrete formal model. This model is not meant to exhaust the space
of possible probabilistic models—indeed, many extensions are immediately
apparent—but rather to show that a probabilistic framework for natural lan-
guage is possible and productive. Our approach is similar in spirit to cognit-
ive semantics (Jackendo↵, 1983; Lako↵, 1987; Cruse, 2000; Taylor, 2003), in
that we attempt to ground semantics in mental representation. However, we
draw on the highly successful tools of Bayesian cognitive science to formal-
ize these ideas. Similarly, our approach draws heavily on the progress made
in formal model-theoretic semantics (Lewis, 1970; Montague, 1973; Gamut,
1991; Heim & Kratzer, 1998; Steedman, 2001), borrowing insights about how
syntax drives semantic composition, but we compose elements of stochastic
logics rather than deterministic ones. Finally, like game-theoretic approaches
(Benz et al., 2005; Franke, 2009), we place an emphasis on the the refinement
of meaning through interactional, pragmatic reasoning.

In section 1 we provide background on probabilistic modeling and stochastic
�-calculus, and introduce a running example scenario: the game of tug-of-war.
In section 2 we provide a model of literal interpretation of natural language
utterances and describe a formal fragment of English suitable for our running
scenario. Using this fragment we illustrate the emergence of non-monotonic
e↵ects in interpretation and the interaction of ambiguity with background
knowledge. In section 3 we describe pragmatic interpretation of meaning as
probabilistic reasoning about an informative speaker, who reasons about a
literal listener. This extended notion of interpretation predicts a variety of
implicatures and connects to recent quantitative experimental results. In sec-
tion 4 we discuss the role of semantic indices in this framework and show that
binding these indices at the pragmatic level allows us to deal with several
issues in context-sensitivity of meaning, such as the interpretation of scalar
adjectives. We conclude with general comments about the role of uncertainty
in pragmatics and semantics.
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Probabilistic Semantics and Pragmatics 3

1 Probabilistic models of commonsense reasoning

Uncertainty is a key property of the world we live in. Thus we should expect
reasoning with uncertainty to be a key operation of our cognition. At the same
time our world is built from a complex web of causal and other structures,
so we expect structure within our representations of uncertainty. Structured
knowledge of an uncertain world can be naturally captured by generative

models, which make it possible to flexibly imagine (simulate) possible worlds
in proportion to their likelihood. In this section, we first introduce the basic
operations for dealing with uncertainty—degrees of belief and probabilistic
conditioning. We then introduce formal tools for adding compositional struc-
ture to these models—the stochastic �-calculus—and demonstrate how these
tools let us build generative models of the world and capture commonsense
reasoning. In later sections, we demonstrate how these tools can be used to
provide new insights into issues in natural language semantics and pragmatics.

Probability is fundamentally a system for manipulating degrees of belief.
The probability1 of a proposition is simply a real number between 0 and
1 describing an agent’s degree of belief in that proposition. More generally,
a probability distribution over a random variable A is an assignment of a
probability P (A=a) to each of a set of exhaustive and mutually exclusive
outcomes a, such that

P
a P (A=a) = 1. The joint probability P (A=a,B=b),

of two random variable values is the degree of belief we assign to the pro-
position that both A=a and B=b. From a joint probability distribution,
P (A=a,B=b), we can recover the marginal probability distribution on A:
P (A=a) =

P
b P (A=a,B=b).

The fundamental operation for incorporating new information, or assump-
tions, into prior beliefs is probabilistic conditioning. This operation takes us
from the prior probability of A, P (A), to the posterior probability of A given
proposition B, written P (A|B). Conditional probability can be defined, fol-
lowing Kolmogorov (1933), by:

P (A|B) =
P (A,B)

P (B)
(1)

This unassuming definition is the basis for much recent progress in modeling
human reasoning (e.g. Oaksford & Chater, 2007; Gri�ths et al., 2008; Chater
& Oaksford, 2008; Tenenbaum et al., 2011). By modeling uncertain beliefs in
probabilistic terms, we can understand reasoning as probabilistic conditioning.
In particular, imagine a person who is trying to establish which hypothesis
H 2 {h

1

, . . . , hm} best explains a situation, and does so on the basis of a

1 In describing the mathematics of probabilities we will presume that we are dealing
with probabilities over discrete domains. Almost everything we say applies equally
well to probability densities, and more generally probability measures, but the
mathematics becomes more subtle in ways that would distract from our main
objectives.
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4 Noah D. Goodman and Daniel Lassiter

series of observations {oi}Ni=1

. We can describe this inference as the conditional
probability:

P (H|o
1

, . . . , oN ) =
P (H)P (o

1

, . . . , oN |H)

P (o
1

, . . . , oN )
. (2)

This useful equality is called Bayes’ rule; it follows immediately from the defin-
ition in equation 1. If we additionally assume that the observations provide no
information about each other beyond what they provide about the hypothesis,
that is they are conditionally independent, then P (oi|oj , H) = P (oi|H) for all
i 6= j. It follows that:

P (H|o
1

, . . . , oN ) = P (H)P (o1|H)···P (oN |H)

P (o1)···P (oN |o1,...,oN�1)
(3)

= P (H)P (o1|H)···P (oN |H)P
H0 P (o1|H0

)P (H0
)···

P
H0 P (oN |H0

)P (H0|o1,...,oN�1)
. (4)

From this it is a simple calculation to verify that we can perform the condi-
tioning operation sequentially rather than all at once: the a posteriori degree
of belief given observations o

1

, . . . , oi becomes the a priori degree of belief
for incorporating observation oi+1

. Thus, when we are justified in making this
conditional independence assumption, understanding the impact of a sequence
of observations reduces to understanding the impact of each one separately.
Later we will make use of this idea to reduce the meaning of a stream of
utterances to the meanings of the individual utterances.

1.1 Stochastic �-Calculus and Church

Probability as described so far provides a notation for manipulating degrees
of belief, but requires that the underlying probability distributions be spe-
cified separately. Frequently we wish to describe complex knowledge involving
relations among many non-independent propositions or variables, and this
requires describing complex joint distributions. We could write down a prob-
ability for each combination of variables directly, but this quickly becomes
unmanageable—for instance, a model with n binary variables requires 2n � 1
probabilities. The situation is parallel to deductive reasoning in classical logic
via truth tables (extensional models ascribing possibility to entire worlds),
which requires a table with 2n rows for a model with n atomic propositions;
this is sound, but opaque and ine�cient. Propositional logic provides struc-
tured means to construct and reason about knowledge, but is still too coarse
to capture many patterns of interest. First- and higher-order logics, such as
�-calculus, provide a fine-grained language for describing and reasoning about
(deterministic) knowledge. The stochastic �-calculus (SLC) provides a formal,
compositional language for describing probabilities about complex sets of in-
terrelated beliefs.

At its core SLC simply extends the (deterministic) �-calculus (Barendregt,
1985; Hindley & Seldin, 1986) with an expression type (L�R), indicating ran-
dom choice between the sub-expressions L and R, and an additional reduction
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Probabilistic Semantics and Pragmatics 5

rule that reduces such a choice expression to its left or right sub-expression
with equal probability. A sequence of standard and random-choice reductions
results in a new expression and some such expressions are in normal form
(i.e. irreducible in the same sense as in �-calculus); unlike �-calculus, the nor-
mal form is not unique. The reduction process can be viewed as a distribution
over reduction sequences, and the subset which terminate in a normal-form
expression induces a (sub-)distribution over normal-form expressions: SLC ex-
pressions denote (sub-)distributions over completely reduced SLC expressions.
It can be shown that this system can represent any computable distribution
(see for example Ramsey & Pfe↵er, 2002; Freer & Roy, 2012).

The SLC thus provides a fine-grained compositional system for specifying
probability distributions. We will use it as the core representational system for
conceptual structure, for natural language meanings, and (at a meta-level) for
specifying the architecture of language understanding. However, while SLC is
simple and universal, it can be cumbersome to work with directly. Goodman
et al. (2008a) introduce Church, an enriched SLC that can be realized as a
probabilistic programming language—parallel to the way that the program-
ming language LISP is an enriched �-calculus. In later sections we will use
Church to actually specify our models of language and thought. Church starts
with the pure subset of Scheme (which is itself essentially �-calculus enriched
with primitive data types, operators, and useful syntax) and extends it with
elementary random primitives (ERPs), the inference function query, and the
memoization function mem. We must take some time to describe these key, but
somewhat technical, pieces of Church before turning back to model construc-
tion. Further details and examples of using Church for cognitive modeling can
be found at http://probmods.org. In what follows we will assume passing
familiarity with the Polish notation used in LISP-family languages (fully par-
enthesized and operator initial), and will occasionally build on ideas from pro-
gramming languages—Abelson & Sussman (1983) is an excellent background
on these ideas.

Rather than restricting to the � operation of uniform random choice
(which is su�cient, but results in extremely cumbersome representations),
Church includes an interface for adding elementary random primitives (ERPs).
These are procedures that return random values; a sequence of evaluations of
such an ERP procedure is assumed to result in independent identically dis-
tributed (i.i.d.) values. Common ERPs include flip (i.e. Bernoulli), uniform,
and gaussian. While the ERPs themselves yield i.i.d. sequences, it is straight-
forward to construct Church procedures using ERPs that do not. For instance
((� (bias) (� () (flip bias))) (uniform 0 1)) creates a function that “flips a coin”
of a specific but unknown bias. Multiple calls to the function will result in a
sequence of values which are not i.i.d., because they jointly depend on the
unknown bias. This illustrates how more complex distributions can be built
by combining simple ones.

To represent conditional probabilities in SLC and Church we introduce
the query function. Unlike simpler representations (such as Bayes nets) where
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6 Noah D. Goodman and Daniel Lassiter

conditioning is an operation that happens to a model from the outside, query

can be defined within the SLC itself as an ordinary function. One way to
do this is via rejection sampling. Imagine we have a distribution represented
by the function with no arguments thunk, and a predicate on return values
condition. We can represent the conditional distribution of return values from
thunk that satisfy condition by:

(define conditional
(� ()

(define val (thunk))
(if (condition val) val (conditional))))

where we have used a stochastic recursion (conveniently specified by the
named define) to build a conditional. Conceptually this recursion samples
from thunk until a value is returned that satisfies condition; it is straightforward
to show that the distribution over return values from this procedure is exactly
the ratio used to define conditional probability in equation 1 (when both are
defined). That is, the conditional procedure samples from the conditional distri-
bution that could be notated P ((thunk)=val|(condition val)=True). For parsimony,
Church uses a special syntax, query, to specify such conditionals:

(query
... definitions...
qexpr
condition)

where ...definitions... is a list of definitions, qexpr is the expression of interest
whose value we want, and condition is a condition expression that must return
true. This syntax is internally transformed into a thunk and predicate that
can be used in the rejection sampling procedure:

(define thunk (� () ... definitions... (list condition qexpr)))
(define predicate (� (val) (equal? true (first val))))

Rejection sampling can be taken as the definition of the query interface, but it
is very important to note that other implementations that approximate the
same distribution can be used and will often be more e�cient. For instance, see
Wingate et al. (2011) for alternative implementations of query. In this chapter
we are concerned with the computational (or competence) level of description
and so need not worry about the implementation of query in any detail.

Memoization is a higher-order function that upgrades a stochastic func-
tion to have persistent randomness—a memoized function is evaluated fully
the first time it is called with given arguments, but thereafter returns this
“stored” value. For instance (equal? (flip) (flip)) will be true with probability
0.5, but if we define a memoized flip, (define memflip (mem flip)), then (equal?

(memflip) (memflip)) will always be true. This property is convenient for repres-
enting probabilistic dependencies between beliefs that rely on common proper-
ties, for instance the strengths and genders of people in a game (as illustrated
below). For instance, memoizing a function gender which maps individuals to
their gender will ensure that gender is a stable property, even if it is not known
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in advance what a given individual’s gender is (or, in e↵ect, which possible
world is actual).2

In Church, as in most LISP-like languages, source code is a first-class data
type: it is represented by lists. The quote operator tells the evaluation process
to treat a list as a literal list of symbols, rather than evaluating it: (flip) results
in a random value true or false, while '(flip) results in the list (flip) as a value.
For us this will be important because we can “reverse” the process by calling
the eval function on a piece of reified code. For instance, (eval '(flip)) results in
a random value true or false again. Usefully for us, evaluation triggered by eval

happens in the local context with any bound variables in scope. For instance:

(define expression '(flip bias))
(define foo ((� (bias) (� (e) (eval e))) (uniform 0 1)))
(foo expression)

In this snippet the variable bias is not in scope at the top level where expression

is defined, but it is in scope where expression is evaluated, inside the function
bound to foo. For the natural language architecture described below this allows
utterances to be evaluated in the local context of comprehension. For powerful
applications of these ideas in natural language semantics see Shan (2010).

Church is a dynamically typed language: values have types, but expres-
sions don’t have fixed types that can be determined a priori. One consequence
of dynamic typing for a probabilistic language is that expressions may take on
a distribution of di↵erent types. For instance, the expression (if (flip) 1 true)

will be an integer half the time and Boolean the other half. This has inter-
esting implications for natural language, where we require consistent dynamic
types but have no particular reason to require deterministically assigned static
types. For simplicity (and utility below) we assume that when an operator is
applied to values outside of its domain, for instance (+ 1 'a), it returns a spe-
cial value error which is itself outside the domain of all operators, except the
equality operator eq?. By allowing eq? to test for error we permit very simple
error handling, and allow query (which relies on a simple equality test to decide
whether to “keep going”) to filter out mis-typed sub-computations.

1.2 Commonsense knowledge

In this chapter we use sets of stochastic functions in Church to specify the
intuitive knowledge—or theory—that a person has about the world. To illus-
trate this idea we now describe an example, the tug-of-war game, which we will
use later in the chapter as the non-linguistic conceptual basis of a semantics

2 A technical, but important, subtlety concerns the “location” where a memoized
random choice is created: should it be at the first use, the second, ...? In order to
avoid an artificial symmetry breaking (and for technical reasons), the semantics
of memoization is defined so that all random values that may be returned by a
memoized function are created when the memoized function is created, not where
it is called.
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8 Noah D. Goodman and Daniel Lassiter

and pragmatics for a small fragment of English. Tug-of-war is a simple game
in which two teams pull on either side of a rope; the team that pulls hardest
will win. Our intuitive knowledge of this domain (and indeed most similar
team games) rests on a set of interrelated concepts: players, teams, strength,
matches, winners, etc. We now sketch a simple realization of these concepts
in Church. To start, each player has some traits, strength and gender, that
may influence each other and his or her contribution to the game.

(define gender (mem (� (p) (if (flip) 'male 'female))))
(define gender-mean-strength (mem (� (g) (gaussian 0 2))))
(define strength

(mem (� (p) (gaussian (gender-mean-strength (gender p)) 1))))

We have defined the strength of a person as a mixture model : strength depends
on a latent class, gender, through the (a priori unknown) gender means. Note
that we are able to describe the properties of people (strength, gender) without
needing to specify the people—instead we assume that each person is repres-
ented by a unique symbol, using memoized functions from these symbols to
properties to create the properties of a person only when needed (but then hold
those properties persistently). In particular, the person argument, p, is never
used in the function gender, but it matters because the function is memoized—a
gender will be persistently associated to each person even though the distri-
bution of genders doesn’t depend on the person. We will exploit this pattern
often below. We are now already in a position to make useful inferences. We
could, for instance observe the strengths and genders of several players, and
then Pat’s strength but not gender, and ask for the latter:

(query
(define gender (mem (� (p) (if (flip) 'male 'female))))
(define gender-mean-strength (mem (� (g) (gaussian 0 2))))
(define strength

(mem (� (p) (gaussian (gender-mean-strength (gender p)) 1))))

(gender 'Pat)

(and (equal? (gender 'Bob) 'male) (= (strength 'Bob) -1.1)
(equal? (gender 'Jane) 'female) (= (strength 'Jane) 0.5)
(equal? (gender 'Jim) 'male) (= (strength 'Jim) -0.3)
(= (strength 'Pat) 0.7)))

The result of this query is that Pat is more likely to be female than male
(probability .63). This is because the observed males are weaker than Jane,
the observed female, and so a strong player such as Pat is likely to be female
as well.

In the game of tug-of-war players are on teams:

(define players '(Bob Jim Mary Sue Bill Evan Sally Tim Pat Jane Dan Kate))
(define teams '(team1 team2 ... team10))

(define team-size (uniform-draw '(1 2 3 4 5 6)))
(define players-on-team (mem (� (team) (draw-n team-size players))))

Here the draw-n ERP draws uniformly but without replacement from a list.
(For simplicity we draw players on each team independently, allowing players
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to potentially be on multiple teams.) In addition to players and teams, we
have matches: events that have two teams and a winner. The winner depends
on how hard each team is pulling, which depends on how hard each team
member is pulling.

(define teams-in-match (mem (� (match) (draw-n 2 teams))))
(define players-in-match (� (match) (apply append (map players-on-team

(teams-in-match match)))))
(define pulling (mem (� (player match)

(+ (strength player) (gaussian 0 0.5)))))
(define team-pulling (mem (� (team match)

(sum (map (� (p) (pulling p match)) (players-on-team team))))))
(define (winner match)

(define teamA (first (teams-in-match match)))
(define teamB (second (teams-in-match match)))
(if (> (team-pulling teamA) (team-pulling teamB)) teamA teamB))

Notice that the team pulling is simply the sum of how hard each member is
pulling; each player pulls with their intrinsic strength, plus or minus a random
amount that indicates their e↵ort on this match.

(define players '(Bob Jim Mary Sue Bill Evan Sally Tim Pat Jane Dan Kate))
(define teams '(team1 team2 ... team10))
(define matches '(match1 match2 match3 match4))
(define individuals (append players teams matches))

(define gender (mem (� (p) (if (flip) 'male 'female))))
(define gender-mean-strength (mem (� (g) (gaussian 0 2))))
(define strength (mem (� (p) (gaussian (gender-mean-strength (gender p))

1))))

(define team-size (uniform-draw '(1 2 3 4 5 6)))
(define players-on-team (mem (� (team) (draw-n team-size players))))

(define teams-in-match (mem (� (match) (draw-n 2 teams))))
(define players-in-match (� (match) (apply append (map players-on-team

(teams-in-match match)))))
(define pulling (mem (� (player match) (+ (strength player) (gaussian 0

0.5)))))
(define team-pulling (mem (� (team match)

(sum (map (� (p) (pulling p match)) (players-on-team team))))))
(define (winner match)

(let ([ teamA (first (teams-in-match match))]
[teamB (second (teams-in-match match))])

(if (> (team-pulling teamA match) (team-pulling teamB match))
teamA
teamB)))

Figure 1. The collected Church definitions forming our simple intuitive theory (or
conceptual lexicon) for the tug-of-war domain.

The intuitive theory, or conceptual lexicon of functions, for the tug-of-war
domain is given altogether in Figure 1. A conceptual lexicon like this one
describes generative knowledge about the world—interrelated concepts that
can be used to describe the causal story of how various observations come
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to be. We can use this knowledge to reason from observations to predictions
or latent states by conditioning (i.e. query). Let us illustrate how a generative
model is used to capture key patterns of reasoning. Imagine that Jane is
playing Bob in match 1; we can infer Jane’s strength before observing the
outcome of this match:

(query
... ToW theory...
(strength 'Jane) ;; variable of interest
(and ;; conditioning expression

(equal? (players-on-team 'team1) '(Jane))
(equal? (players-on-team 'team2) '(Bob))
(equal? (teams-in-match 'match1) '(team1 team2))))

In this and all that follows ...ToW theory... is an abbreviation for the definitions
in Figure 1. The result of this inference is simply the prior belief about Jane’s
strength: a distribution with mean 0 (Figure 2). Now imagine that Jane wins
this match:

(query
... ToW theory...
(strength 'Jane) ;; variable of interest
(and ;; conditioning expression

(equal? (players-on-team 'team1) '(Jane))
(equal? (players-on-team 'team2) '(Bob))
(equal? (teams-in-match 'match1) '(team1 team2))
(equal? (winner 'match1) 'team1)))

If we evaluate this query we find that Jane is inferred to be relatively strong:
her mean strength after observing this match is around 0.7, higher than her
a priori mean strength of 0.0.

Figure 2. An example of explaining away. Lines show the distribution on Jane’s
inferred strength after (a) no observations; (b) observing that Jane beat Bob, whose
strength is unknown; (c) learning that Bob is very weak, with strength -8. (d)
learning that Jane and Bob are di↵erent genders

However, imagine that we then learned that Bob is a weak player:

(query
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... ToW theory...
(strength 'Jane) ;; variable of interest
(and ;; conditioning expression

(equal? (players-on-team 'team1) '(Jane))
(equal? (players-on-team 'team2) '(Bob))
(equal? (teams-in-match 'match1) '(team1 team2))
(equal? (winner 'match1) 'team1)
(= (strength 'Bob) -8.0)))

This additional evidence has a complex e↵ect: we know that Bob is weak, and
this provides evidence that the mean strength of his gender is low; if Jane is
the same gender, she is also likely weak, though stronger than Bob, who she
beat; if Jane is of the other gender, then we gain little information about her.
The distribution over Jane’s strength is bimodal because of the uncertainty
about whether she has the same gender as Bob. If we knew that Jane and
Bob were of di↵erent genders then information about the strength of Bob’s
gender would not a↵ect our estimate about Jane:

(query
... ToW theory...
(strength 'Jane) ;; variable of interest
(and ;; conditioning expression

(equal? (players-on-team 'team1) '(Jane))
(equal? (players-on-team 'team2) '(Bob))
(equal? (teams-in-match 'match1) '(team1 team2))
(equal? (winner 'match1) 'team1)
(= (strength 'Bob) -8.0)
(equal? (gender 'Bob) 'male)
(equal? (gender 'Jane) 'female)))

Now we have very little evidence about Jane’s strength: the inferred mean
strength from this query goes back to (almost) 0, because we gain no in-
formation via gender mean strengths, and Jane beating Bob provides little
information given that Bob is very weak. This is an example of explaining
away (Pearl, 1988): the assumption that Bob is weak has explained the ob-
servation that Jane beat Bob, which otherwise would have provided evidence
that Jane is strong. Explaining away is characterized by a priori independ-
ent variables (such as Jane and Bob’s strengths) becoming coupled together
by an observation (such as the outcome of match 1). Another way of saying
this is that our knowledge of the world, the generative model, can have a sig-
nificant amount of modularity; our inferences after making observations will
generally not be modular in this way. Instead, complex patterns of influence
can couple together disparate pieces of the model. In the above example we
also have an example of screening o↵ : the observation that Bob and Jane
are of di↵erent genders renders information about Bob’s (gender’s) strength
uninformative about Jane’s. Screening o↵ describes the situation when two
variables that were a priori dependent become independent after an obser-
vation (in some sense the opposite of explaining away). Notice that in this
example we have gone through a non-monotonic reasoning sequence: Our de-
gree of belief that Jane is strong went up from the first piece of evidence,
down below the prior from the second, and then back up from the third.
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Such complex, non-monotonic patterns of reasoning are extremely common
in probabilistic inference over structured models.

There are a number of other patterns of reasoning that are common res-
ults of probabilistic inference over structured models, including Occam’s razor
(complexity of hypotheses is automatically penalized), transfer learning (an
inductive bias learned from one domain constrains interpretation of evidence
in a new domain), and the blessing of abstraction (abstract knowledge can be
learned faster than concrete knowledge). These will be less important in what
follows, but we note that they are potentially important for the question of lan-
guage learning—when we view learning as an inference, the dynamics of prob-
abilistic inference come to bear on the learning problem. For detailed examples
of these patterns, using Church representation, see http://probmods.org.

1.3 Possible worlds

We have illustrated how a collection of Church functions—an intuitive theory—
describes knowledge about the world. In fact, an intuitive theory can be in-
terpreted as describing a probability distribution over possible worlds. To see
this, first assume that all the (stochastic) functions of the intuitive theory
are memoized.3 Then the value of any expression is determined by the val-
ues of those functions called (on corresponding inputs) while evaluating the
expression; any expression is assigned a value if we have the values of all the
functions on all possible inputs. A possible world then, can be represented by
a complete assignment of values to function-argument pairs, and a distribu-
tion over worlds is defined by the return-value probabilities of the functions,
as specified by the intuitive theory.

We do not need to actually compute the values of all function-argument
pairs in order to evaluate a specific expression, though. Most evaluations will
involve just a fraction of the potentially infinite number of assignments needed
to make a complete world. Instead, Church evaluation constructs only a partial
representation of a possible world containing the minimal information needed
to evaluate a given expression: the values of function applications that are
actually reached during evaluation. Such a “partial world” can be interpreted
as a set of possible worlds, and its probability is the sum of the probabilities
of the worlds in this set. Fortunately this intractable sum is equal to the
product of the probabilities of the choices made to determine the partial world:
the partial world is independent of any function values not reached during
evaluation, hence marginalizing these values is the same as ignoring them.

In this way, we can represent a distribution over all possible worlds im-

plicitly, while explicitly constructing only partial worlds large enough to be
relevant to a given query, ignoring irrelevant random values. The fact that

3 If not all stochastic functions are memoized, very similar reasoning goes through:
now each function is associated with an infinite number of return values, indi-
viduated by call order or position.
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infinite sets of possible worlds are involved in a possible worlds semantics
has sometimes been considered a barrier to the psychological plausibility of
this approach. Implementing a possible worlds semantics via a probabilistic
programming language may help defuse this concern: a small, finite subset
of random choices will be constructed to reason about most queries; the re-
maining infinitude, while mathematically present, can be ignored because the
query is statistically independent of them.
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14 Noah D. Goodman and Daniel Lassiter

2 Meaning as condition

Following a productive tradition in semantics (Stalnaker, 1978; Lewis, 1979;
Heim, 1982, etc.), we view the basic function of language understanding as
belief update: moving from a prior belief distribution over worlds (or situ-
ations) to a posterior belief distribution given the literal meaning of a sen-
tence. Probabilistic conditioning (or query) is a very general way to describe
updating of degrees of belief. Any transition from distribution P

before

to dis-
tribution P

after

can be written as multiplying by a non-negative, real-valued
function and then renormalizing, provided P

before

is non-zero whenever P
after

is.4 From this observation it is easy to show that any belief update which
preserves impossibility can be written as the result of conditioning on some
(stochastic) predicate. Note that conditioning in this way is the natural ana-
logue of the conception of belief update as intersection familiar from dynamic
semantics.

Assume for now that each sentence provides information which is logically
independent of other sentences given the state of the world (which may include
discourse properties). From this it follows, parallel to the discussion of multiple
observations as sequential conditioning above, that a sequence of sentences can
be treated as sequentially updating beliefs by conditioning—so we can focus
on the literal meaning of a single sentence. This independence assumption
can be seen as the most basic and important compositionality assumption,
which allows language understanding to proceed incrementally by utterance.
(When we add pragmatic inference, in section 3, this independence assumption
will be weakened, but it remains essential to the basic semantic function of
utterances.)

How does an utterance specify which belief update to perform? We form-
alize the literal listener as:

(define (literal-listener utterance QUD)
(query

... theory...
(eval QUD)
(eval (meaning utterance))))

This function specifies the posterior distribution over answers to the Ques-
tion Under Discussion (QUD) given that the literal meaning of the utterance is
true.5 Notice that the prior distribution for the literal listener is specified by a
conceptual lexicon—the ...theory...—and the QUD will be evaluated in the local
environment where all functions defined by this theory are in scope. That is,

4 For infinite spaces we would need a more general condition on the measurability
of the belief update.

5 QUD theories have considerable motivation in semantics and pragmatics: see
Ginzburg 1995; Van Kuppevelt 1995; Roberts 2012; Beaver & Clark 2008 among
many others. For us, the key feature of the QUD is that it denotes a partition of W
that is naturally interpreted as the random variable of immediate interest in the
conversation.
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the question of interest is determined by the expression QUD while its answer is
determined by the value of this expression in the local context of reasoning by
the literal listener: the value of (eval QUD). (For a description of the eval operator
see section 1.1 above.) Hence the semantic e↵ect of an utterance is a function
from QUDs to posteriors, rather than directly a posterior over worlds. Using the
QUD in this way has two beneficial consequences. First, it limits the holism of
belief update, triggering representation of only the information that is needed
to capture the information conveyed by a sentence about the question of cur-
rent interest. Second, when we construct a speaker model the QUD will be used
to capture a pressure to be informative about the topic of current interest, as
opposed to global informativity about potentially irrelevant topics.

2.1 Composition

The meaning function is a stochastic mapping from strings (surface forms) to
Church expressions (logical forms, which may include functions defined in
...theory...). Many theories of syntactic and semantic composition could be
used to provide this mapping. For concreteness, we consider a simple system
in which a string is recursively split into left and right portions, and the
meanings of these portions are combined with a random combinator. The
first step is to check whether the utterance is syntactically atomic, and if so
look it up in the lexicon:

(define (meaning utterance)
(if (lexical-item? utterance)

(lexicon utterance)
(compose utterance)))

Here the predicate lexical-item? determines if the (remaining) utterance is a
single lexical item (entry in the lexicon), if so it is looked up with the lexicon

function. This provides the base case for the recursion in the compose function,
which randomly splits non-atomic strings, computes their meanings, and com-
bines them into a list:

(define (compose utterance)
(define subs (random-split utterance))
(list (meaning (first subs)) (meaning (second subs))))

The function random-split takes a string and returns the list of two substrings
that result from splitting at a random position in the length of the string.6

Overall, the meaning function is a stochastic mapping from strings to Church
expressions. In literal-listener we eval the representation constructed by meaning

6 While it is beyond the scope of this chapter, a su�cient syntactic system would
require language-specific biases that favor certain splits or compositions on non-
semantic grounds. For instance, lexical items and type shifters could be augmen-
ted with word-order restrictions, and conditioning on sentence meaning could be
extended to enforce syntactic well-formedness as well (along the lines of Steedman
2001). Here we will assume that such a system is in place and proceed to compute
sample derivations.
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16 Noah D. Goodman and Daniel Lassiter

in the same environment as the QUD. Because we have formed a list of the sub-
meanings, evaluation will result in forward application of the left sub-meaning
to the right. Many di↵erent meanings can get constructed and evaluated in this
way, and many of them will be mis-typed. Critically, if type errors are inter-
preted as the non-true value error (as described in section 1.1), then mis-typed
compositions will not satisfy the condition of the query in the literal-listener

function—though many ill-typed compositions can be generated by meaning,
they will be eliminated from the posterior, leaving only well-typed interpret-
ations.

To understand what the literal-listener does overall, consider rejection
sampling: we evaluate both the QUD and meaning expressions, constructing
whatever intermediate expressions are required; if the meaning expression has
value true, then we return the value of QUD, otherwise we try again. Random
choices made to construct and evaluate the meaning will be reasoned about
jointly with world states while interpreting the utterance; the complexity of
interpretation is thus an interaction between the domain theory, the meaning
function, and the lexicon.

2.2 Random type shifting

The above definition for meaning always results in composition by forward ap-
plication. This is too limited to generate potential meanings for many sen-
tences. For instance “Bob runs” requires a backward application to apply
the meaning of “runs” to that of “Bob”. We extend the possible composition
methods by allowing the insertion of type-shifting operators.

(define (meaning utterance)
(if (lexical-item? utterance)

(lexicon utterance)
(shift (compose utterance))))

(define (shift m)
(if (flip)

m
(list (uniform-draw type-shifters) (shift m))))

(define type-shifters '(L G AR1 AR2 ...))

Each intermediate meaning will be shifted zero or more times by a randomly
chosen type-shifter; because the number of shifts is determined by a stochastic
recursion, fewer shifts are a priori more likely. Each lexical item thus has the
potential to be interpreted in any of an infinite number of (static) types,
but the probability of associating an item with an interpretation in some type
declines exponentially with the the number of type-raising operations required
to construct this interpretation. The use of a stochastic recursion to generate
type ambiguities thus automatically enforces the preference for interpretation
in lower types, a feature which is often stipulated in discussions of type-shifting
(Partee & Rooth, 1983; Partee, 1987).

We choose a small set of type shifters which is su�cient for the examples
of this chapter:
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• L: (� (x) (� (y) (y x)))

• G: (� (x) (� (y) (� (z) (x (y z)))))

• AR1: (� (f) (� (x) (� (y) (x (� (z) ((f z) y))))))

• AR2: (� (f) (� (x) (� (y) (y (� (z) ((f x) z))))))

Among other ways they can be used, the shifter L enables backward applic-
ation and G enables forward composition. For instance, Bob runs has an
additional possible meaning ((L 'Bob) runs) which applies the meanings of runs
to that of Bob, as required.

Type shifters AR1 and AR2 allow flexible quantifier scope as described in
Hendriks (1993); Barker (2005). (The specific formulation here follows Barker,
2005, pp.453↵.) We explore the ramifications of the di↵erent possible scopes
in section 2.5. This treatment of quantifier scope is convenient, but others
could be implemented by complicating the syntactic or semantic mechanisms
in various ways: see e.g. May (1977); Steedman (2012).

2.3 Interpreting English in Church: the Lexicon

Natural language utterances are interpreted as Church expressions by the
meaning function. The stochastic �-calculus (implemented in Church) thus func-
tions as our intermediate language, just as the ordinary, simply-typed �-
calculus functions as an intermediate translation language in the fragment
of English given by Montague (1973). A key di↵erence, however, is that the
intermediate level is not merely a convenience as in Montague’s approach.
Conceptual representations and world knowledge are also represented in this
language as Church function definitions. The use of a common language to
represent linguistic and non-linguistic information allows lexical semantics to
be grounded in conceptual structure, leading to intricate interactions between
these two types of knowledge. In this section we continue our running tug-
of-war example, now specifying a lexicon mapping english words to Church
expressions for communicating about this domain.

We abbreviate the denotations of expressions (meaning ↵) as [[↵]]. The
simplest case is the interpretation of a name as a Church symbol, which serves
as the unique mental token for some object or individual (the name-bearer).

• [[Bob]]: 'Bob

• [[Team 1 ]]: 'team1

• [[Match 1 ]]: 'match1

• ...

Interpreted in this way names are directly referential since they are interpreted
using the same symbol in every situation, regardless of inferences made during
interpretation.

A one-place predicate such as player or man is interpreted as a function
from individuals to truth-values. Note that these denotations are grounded
in aspects of the non-linguistic conceptual model, such as players, matches, and
gender.
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18 Noah D. Goodman and Daniel Lassiter

• [[player ]]: (� (x) (element? x players))

• [[team]]: (� (x) (element? x teams))

• [[match]]: (� (x) (element? x matches))

• [[man]]: (� (x) (equal? (gender x) 'male))

• [[woman]]: (� (x) (equal? (gender x) 'female))

Similarly, transitive verbs such as won denote two-place predicates. (We sim-
plify throughout by ignoring tense.)

• [[won]]: (� (match) (� (x) (equal? x (winner match))))

• [[played in]]: (� (match) (� (x) (or (element? x (teams-in-match match)) (element? x (players-in-match

match)))))

• [[is on]]: (� (team) (� (x) (element? x (players-on-team team))))

Intensionality is implicit in these definitions because the denotations of
English expressions can refer to stochastic functions in the intuitive theory.
Thus predicates pick out functions from individuals to truth-values in any
world, but the specific function that they pick out in a world can depend on
random choices (e.g., values of flip) that are made in the process of construct-
ing the world. For instance, player is true of the same individuals in every
world, because players is a fixed list (see Figure 1) and element? is the determin-
istic membership function. On the other hand, man denotes a predicate which
will be a priori true of a given individual (say, 'Bob) in 50% of worlds—because
the memoized stochastic function gender returns 'male 50% of the time when it
is called with a new argument.

For simplicity, in the few places in our examples where plurals are required,
we treat them as denoting lists of individuals. In particular, in a phrase like
Team 1 and Team 2, the conjunction of NPs forms a list:

• [[and ]] = (� (x) (� (y) (list x y)))

Compare this to the set-based account of plurals described in Scha & Winter
2014 (this volume). To allow distributive properties (those which require
atomic individuals as arguments) to apply to such collections we include a
type-shifting operator (in type-shifters, see section 2.2) that universally quan-
tifies the property over the list:

• DIST: (� (V) (� (s) (all (map V s))))

For instance, Bob and Jim played in Match 1 can be interpreted by shifting
the property [[played in Match 1 ]] to a predicate on lists (though the order of
elements in the list will not matter).

We can generally adopt standard meanings for functional vocabulary, such
as quantifiers.

• [[every ]]: (� (P) (� (Q) (= (size P) (size (intersect P Q)))))

• [[some]]: (� (P) (� (Q) (< 0 (size (intersect P Q)))))

• [[no]]: (� (P) (� (Q) (= 0 (size (intersect P Q)))))

• [[most ]]: (� (P) (� (Q) (< (size P) (* 2 (size (intersect P Q))))))
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For simplicity we have written the quantifiers in terms of set size; the size

function can be defined in terms of the domain of individuals as (� (S) (length

(filter S individuals))).7

We treat gradable adjectives as denoting functions from individuals to
degrees (Bartsch & Vennemann, 1973; Kennedy, 1997, 2007). Antonym pairs
such as weak/strong are related by scale reversal.

• [[strong ]]: (� (x) (strength x))

• [[weak ]]: (� (x) (- 0 (strength x)))

This denotation will require an operator to bind the degree in any sentence
interpretation. In the case of the relative and superlative forms this operator
will be indicated by the corresponding morpheme. For instance, the superlat-
ive morpheme -est is defined so that strongest player will denote a property
that is true of an individual when that individual’s strength is equal to the
maximum strength of all players:8

• [[-est ]]: (� (A) (� (N) (� (x) (= (A x) (max-prop A N)))))

For positive form sentences, such as Bob is strong, we will employ a type
shifting operator which introduces a degree threshold to bind the degree—see
section 4.

2.4 Example interpretations

To illustrate how a (literal) listener interprets a sequence of utterances, we
consider a variant of our explaining-away example from the previous section.
For each of the following utterances we give one expression that could be
returned from meaning (usually the simplest well-typed one); we also show each
meaning after simplifying the compositions.

• Utterance 1: Jane is on Team 1.

meaning: ((L 'Jane) (� (team) (� (x) (element? x (players-on-team team))) 'team1))

simplified: (element? 'Jane (players-on-team 'team1))

• Utterance 2: Bob is on Team 2.

meaning: ((L 'Bob) (� (team) (� (x) (element? x (players-on-team team))) 'team2))

simplified: (element? 'Bob (players-on-team 'team2))

• Utterance 3: Team 1 and Team 2 played in Match 1.

meaning: ((L ((L 'team 1) ((� (x) (� (y) (list x y))) 'team2))) (DIST ((� (match) (�

(x) (element? x (teams-in-match match)))) 'match1)))

simplified: (all (map (� (x) (element? x (teams-in-match 'match1)))) '(team1 team2))

7 In the examples below, we assume for simplicity that many function words, for
example is and the, are semantically vacuous, i.e., that they denote identity func-
tions.

8 The set operator max-prop implicitly quantifies over the domain of discourse, simil-
arly to size. It can be defined as (lambda (A N) (max (map A (filter N individuals)))).
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• Utterance 4: Team 1 won Match 1.

meaning: ((L 'team1) ((� (match) (� (x) (equal? x (winner match)))) 'match1))

simplified: (equal? 'team1 (winner 'match1))

The literal listener conditions on each of these meanings in turn, updating
her posterior belief distribution. In the absence of pragmatic reasoning (see
below), this is equivalent to conditioning on the conjunction of the meanings
of each utterance—essentially as in dynamic semantics (Heim, 1992; Veltman,
1996). Jane’s inferred strength (i.e. the posterior on (strength 'Jane)) increases
substantially relative to the uninformed prior (see Figure 3).

Suppose, however, the speaker continues with the utterance:

• Utterance 5: Bob is the weakest player.

meaning: ((L 'Bob) (((L (� (x) (- (strength x)))) (� (A) (� (N) (� (x) (= (A x) (max-prop

A N)))))) (� (x) (element? x players))))

simplified: (= (- (strength 'Bob)) (max (� (x) (- (strength x))) (� (x) (element?

x players))))

This expression will be true if and only if Bob’s strength is the smallest of any
player. Conditioning on this proposition about Bob, we find that the inferred
distribution of Jane’s strength decreases toward the prior (see Figure 3)—
Jane’s performance is explained away. Note, however, that this non-monotonic
e↵ect comes about not by directly observing a low value for the strength of
Bob and information about his gender, as in our earlier example, but by con-
ditioning on the truth of an utterance which does not entail any precise value
of Bob’s strength. That is, because there is uncertainty about the strengths
of all players, in principle Bob could be the weakest player even if he is quite
strong, as long as all the other players are strong as well. However, the other
players are most likely to be about average strength, and hence Bob is partic-
ularly weak; conditioning on Utterance 5 thus lowers Bob’s expected strength
and adjusts Jane’s strength accordingly.

2.5 Ambiguity

The meaning function is stochastic, and will often associate utterances with
several well-typed meanings. Ambiguities can arise due to any of the following:

• Syntactic: random-split can generate di↵erent syntactic structures for an ut-
terance. If more than one of these structures is interpretable (using the
type-shifting operators available), the literal listener will entertain inter-
pretations with di↵erent syntactic structures.

• Compositional: Holding the syntactic structure fixed, insertion of di↵erent
(and di↵erent numbers of) type-shifting operators by shift may lead to
well-typed outputs. This can lead, for example, to ambiguities of quantifier
scope and in whether a pronoun is bound or free.
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Figure 3. A linguistic example of explaining away, demonstrating that the literal
listener makes non-monotonic inferences about the answer to the QUD “How strong
is Jane?” given the utterances described in the main text. Lines show the probability
density of answers to this QUD after (a) utterances 1-3; (b) utterances 1-4; (c)
utterances 1-5.

• Lexical: the lexicon function may be stochastic, returning di↵erent options
for a single item, or words may have intrinsically stochastic meanings. (The
former can always be converted to the latter.)

In the literal interpretation model we have given above, literal-listener, these
sources of linguistic ambiguity will interact with the interpreter’s beliefs about
the world. That is, the query implies a joint inference of sentence meaning and
world, given that the meaning is true of the world. When a sentence is ambigu-
ous in any of the above ways, the listener will favor plausible interpretations
over implausible ones, because the interpreter’s model of the world is more
likely to generate scenarios which make the sentence true.

For example, consider the utterance “Most players played in some match”.
Two (simplest, well-typed) interpretations are possible. We give an intuitive
paraphrase and the meanings for each (leaving the leaving lexical items in
place to expose the compositional structure):

• Subject wide scope:
“For most players x, there was a match y such that x played in y.”
((L ([[Most ]] [[players]])) ((AR2 (AR1 [[played in]])) ([[some]] [[match]])))

• Object wide scope:
“For some match y, most players played in y.”
((L ([[Most ]] [[players]])) ((AR1 (AR2 [[played in]])) ([[some]] [[match]])))

Both readings equally a priori probable, since the meaning function draws type-
shifters uniformly at random. However, if one reading is more likely to be true,
given background knowledge, it will be preferred. This means that we can
influence the meaning used, and the degree to which each meaning influences
the listener’s posterior beliefs, by manipulating relevant world knowledge.

To illustrate the e↵ect of background knowledge on choice of meaning,
imagine varying the number of matches played in our tug-of-war example.
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Recall (see Figure 1) that all teams are of size team-size, which varies across
worlds and can be anywhere from 1 to 6 players, with equal probability. If the
number of matches is large (say we (define matches '(match1 ... match10))), then the
subject-wide scope reading can be true even if team-size is small: it could easily
happen that most players played in one or another of ten matches even if each
team has only one or two players. In contrast, the object-wide scope reading,
which requires most players on a single match, can be true only if teams are
large enough (i.e. team-size is � 4, so that more than half of the players are
in each match). The literal-listener jointly infers team-size and the reading of
the utterance, assuming the utterance is true; because of the asymmetry in
when the two readings will be true, there will be a preference for the subject-
wide reading if the number of matches is large—it is more often true. If the
number of matches is small, however, the asymmetry between readings will
be decreased. Suppose that only one match was played (i.e. (define matches

'(match1))), then both readings can be true only if the team size is large. The
listener will thus infer that team-size� 4 and the two readings of the utterance
are equally probable. Figure 4, left panel, shows the strength of each reading
as the number of matches varies from 1 to 10, with the number of teams fixed
to 10. The right panel shows the mean inferred team size as the number of
matches varies, for each reading and for the marginal. Our model of language
understanding as joint inference thus predicts that the resolution of quantifier
scope ambiguities will be highly sensitive to background information.

Figure 4. The probability of the listener interpreting the utterance Most players
played in some match according to the two possible quantifier scope configurations
depends in intricate ways on the interpreter’s beliefs and observations about the
number of matches and the number of players on each team (left). This, in turn, in-
fluences the total information conveyed by the utterance (right). For this simulation
there were 10 teams.

More generally, an ambiguous utterance may be resolved di↵erently, and
lead to rather di↵erent belief update e↵ects, depending on the plausibility of
the various interpretations given background knowledge. Psycholinguistic re-
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search suggests that background information has exactly this kind of graded
e↵ect on ambiguity resolution (see, for example, Crain & Steedman, 1985; Alt-
mann & Steedman, 1988; Spivey et al., 2002). In a probabilistic framework,
preferences over alternative interpretations vary continuously between the ex-
tremes of assigning equal probability to multiple interpretations and assigning
probability 1 to a single interpretation. This is true whether the ambiguity is
syntactic, compositional, or lexical in origin.

2.6 Compositionality

It should be clear that compositionality has played a key role in our model of
language interpretation thus far. It has in fact played several key roles: Church
expressions are built from simpler expressions, sequences of utterances are
interpreted by sequential conditioning, the meaning function composes Church
expressions to form sentence meanings. There are thus several, interlocking
“directions” of compositionality at work, and they result in interactions that
could appear non-compositional if only one direction was considered. Let us
focus on two: compositionality of world knowledge and compositionality of
linguistic meaning.

Compositionality of world knowledge refers to the way that we use SLC
to build distributions over possible worlds, not by directly assigning probabil-
ities to all possible expressions, but by an evaluation process that recursively
samples values for sub-expressions. That is, we have a compositional language
for specifying generative models of the world. Compositionality of linguistic
meaning refers to the way that conditions on worlds are built up from sim-
pler pieces (via the meaning function and evaluation of the meaning). This is
the standard approach to meaning composition in truth-conditional semantics.
Interpreted meaning—the posterior distribution arrived at by literal-listener—
is not immediately compositional along either world knowledge or linguistic
structure. Instead it arises from the interaction of these two factors. The glue
between these two structures is the intuitive theory; it defines the conceptual
language for imagining particular situations, and the primitive vocabulary for
semantic meaning.

An alternative approach to compositional probabilistic semantics would
be to let each linguistic expression denote a distribution or probability dir-
ectly, and build the linguistic interpretation by composing them. This appears
attractive: it is more direct and simpler (and does not rely on complex gen-
erative knowledge of the world). How would we compose these distributions?
For instance take “Jack is strong and Bob is strong”. If “Jack is strong” has
probability 0.2 and “Bob is strong” has probability 0.3, what is the probability
of the whole sentence? A natural approach would be to multiply the two prob-
abilities. However this implies that their strengths are independent—which is
intuitively unlikely: for instance, if Jack and Bob are both men, then learning
that Jack is strong suggests than men are strong, which suggests that Bill is
strong. A more productive strategy is the one we have taken: world knowledge
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specifies a joint distribution on the strength of Bob and Jack (by first sampling
the prototypical strength of men, then sampling the strength of each), and the
sentence imposes a constraint on this distribution (that each man’s strength
exceeds a threshold). The sentence denotes not a world probability simpliciter,
but a constraint on worlds which is built compositionally.

2.7 Extensions and related work

The central elements of probabilistic language understanding as described
above are: grounding lexical meaning into a probabilistic generative model of
the world, taking sentence meanings as conditions on worlds (built by com-
posing lexical meanings), and treating interpretation as joint probabilistic in-
ference of the world state and the sentence meaning conditioned on the truth
of the sentence. It should be clear that this leaves open many extensions and
alternative formulations. For instance, varying the method of linguistic com-
position, adding static types that influence interpretation, and including other
sources of uncertainty such as a noisy acoustic channel are all straightforward
avenues to explore.

There are several related approaches that have been discussed in previous
work. Much previous work in probabilistic semantics has a strong focus on
vagueness and degree semantics: see e.g. Edgington 1997; Frazee & Beaver
2010; Lassiter 2011, discussed further in section 4 below and in Lassiter 2014
(this volume). There are also well-known probabilistic semantic theories of
isolated phenomena such as conditionals (Adams, 1975; Edgington, 1995, and
many more) and generics (Cohen, 1999a,b). We have taken inspiration from
these approaches, but we take the strong view that probabilities belong at the
foundation of an architecture for language understanding, rather than treating
it as a special-purpose tool for the analysis of specific phenomena.

In Fuzzy Semantics (Zadeh, 1971; Lako↵, 1973; Hersh & Caramazza, 1976,
etc.) propositions are mapped to real values that represent degrees of truth,
similar to probabilities. Classical fuzzy semantics relies on strong independ-
ence assumptions to enable direct composition of fuzzy truth values. This
amounts to a separation of uncertainty from language and non-linguistic
sources. In contrast, we have emphasized the interplay of linguistic inter-
pretation and world knowledge: the probability of a sentence is not defined
separate from the joint-inference interpretation, removing the need to define
composition directly on probabilities.

A somewhat di↵erent approach, based on type theory with records, is de-
scribed by Cooper et al. (2014). Cooper et al.’s project revises numerous basic
assumptions of model-theoretic semantics, with the goals of better explaining
semantic learning and “pervasive gradience of semantic properties.” The work
described here takes a more conservative approach, by enriching the stand-
ard framework while preserving most basic principles. As we have shown, this
gives rise to gradience; we have not addressed learning, but there is an extens-
ive literature on probabilistic learning of structured representations similar to
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those required by our architecture: see e.g. Goodman et al. 2008b; Piantadosi
et al. 2008, 2012; Tenenbaum et al. 2011. It may be, however, that stronger
types than we have employed will be necessary to capture subtleties of syn-
tax and facilitate learning. Future work will hopefully clarify the relationship
between the two approaches, revealing which di↵erences are notational and
which are empirically and theoretically significant.
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3 Pragmatic interpretation

The literal-listener described above treats utterances as true information about
the world, updating her beliefs accordingly. In real language understanding,
however, utterances are taken as speech acts that inform the listener indirectly
by conveying a speaker’s intention. In this section we describe a version of
the Rational Speech Acts model (Goodman & Stuhlmüller, 2013; Frank &
Goodman, 2012), in which a sophisticated listener reasons about the intention
of an informative speaker.

First, imagine a speaker who wishes to convey that the question under
discussion (QUD) has a particular answer (i.e. value). This can be viewed as an
inference: what utterance is most likely to lead the (literal) listener to the
correct interpretation?

(define (speaker val QUD)
(query

(define utterance (language-prior))
utterance
(equal? val (literal-listener utterance QUD))))

The language-prior forms the a priori (non-contextual and non-semantic) dis-
tribution over linguistic forms, which may be modeled with a probabilistic
context free grammar or similar model. This prior inserts a cost for each ut-
terance: using a less likely utterance will be dispreferred a priori. Notice that
this speaker conditions on a single sample from literal-listener having the cor-
rect val for the QUD—that is, he conditions on the literal-listener “guessing”
the right value. Since the listener may sometimes accidentally guess the right
value, even when the utterance is not the most informative one, the speaker
will sometimes choose sub-optimal utterances. We can moderate this behavior
by adjusting the tendency of the listener to guess the most likely value:

(define (speaker val QUD)
(query

(define utterance (language-prior))
utterance
(equal? val ((power literal-listener alpha) utterance QUD) )))

Here we have used a higher-order function power that raises the return distri-
bution of the input function to a power (and renormalizes). When the power
alpha is large the resulting distribution will mostly sample the maximum of
the underlying distribution—in our case the listener that speaker imagines will
mostly sample the most likely val.

Writing the distribution implied by the speaker function explicitly can be
clarifying:

P (ut|val, QUD) / P (ut)Plistener(val|ut, QUD)↵ (5)

/ e↵ ln(Plistener(val|ut,QUD))+ln(P (ut)) (6)
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Thus, the speaker function describes a speaker who chooses utterances using
a soft-max rule P (utt) / e↵U(utt) (Luce, 1959; Sutton & Barto, 1998). Here
the utility U(utt) is given by the sum of

• the informativity of utt about the QUD, formalized as negative surprisal of
the intended value: ln(Plistener(val|ut, QUD)),

• a cost term ln(P (utt)), which depends on the language prior.

Utterance cost plausibly depends on factors such as length, frequency, and
articulatory e↵ort, but the formulation here is noncommittal about precisely
which linguistic and non-linguistic factors are relevant.

A more sophisticated, pragmatic, listener can now be modeled as a
Bayesian agent updating her belief about the value of the question under
discussion given the observation that the speaker has bothered to make a
particular speech act:

(define (listener utterance QUD)
(query

... theory...
(define val (eval QUD))
val
(equal? utterance (speaker val QUD))))

Notice that the prior over val comes from evaluating the QUD expression given
the theory, and the posterior comes from updating this prior given that the
speaker has chosen utterance to convey val.

The force of this model comes from the ability to call the query function
within itself (Stuhlmueller & Goodman, 2013)—each query models the in-
ference made by one (imagined) communicator, and together they capture
sophisticated pragmatic reasoning. Several observations are worth making:
First, alternative utterances will enter into the computation in sampling (or
determining the probability of) the actual utterance from speaker. Similarly,
alternative values are considered in the listener functions. Second, the notion
of informativity captured in the speaker model is not simply information trans-
mitted by utterance, but is new information conveyed to the listener about the
QUD. Information which is not new to the listener or which is not relevant to
the QUD will not contribute to the speaker’s utility.

3.1 Quantity implicatures

We illustrate by considering quantity implicatures: take as an example the
sentence “Jane played in some match”. This entails that Jane did not play in
zero matches. In many contexts, it would also be taken to suggest that Jane
did not play in all of the matches. However, there are many good reasons for
thinking that the latter inference is not part of the basic, literal meaning of
the sentence (Grice, 1989; Geurts, 2010). Why then does it arise? Quantity
implicatures follow in our model due to the pragmatic listener’s use of “coun-
terfactual” reasoning to help reconstruct the speaker’s intended message from
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his observed utterance choice. Suppose that the QUD is “How many matches
did Jane play in?” (interpreted as [[the number of matches Jane played in]]).
The listener considers di↵erent answers to this question by simulating partial
worlds that vary in how many matches Jane played in and considering what
the speaker would have said for each case. If Jane played in every match, then
“Jane played in every match” would be used by the speaker more often than
“Jane played in some match”. This is because the speaker model favors more
informative utterances, and the former is more informative: a literal speaker
will guess the correct answer more often after hearing “Jane played in every
match”. Since the speaker in fact chose the less informative utterance in this
case, the listener infers that some precondition for the stronger utterance’s
use—e.g., its truth—is probably not fulfilled.

For example, suppose that it is common knowledge that teams have four
players, and that three matches were played. The speaker knows exactly who
played and how many times, and utters “Jane played in some match”. How
many matches did she play in? The speaker distribution is shown in Figure 5.
If Jane played in zero matches, the probability that the speaker will use either
utterance is zero (instead the speaker will utter “Jane played in no match”).
If she played in one or two matches, the probability that the speaker will utter
“Jane played in some match” is non-zero, but the probability that the speaker
will utter “Jane played in every match” is still zero. However, the situation
changes dramatically if Jane in fact played in all the matches: now the speaker
prefers the more informative utterance “Jane played in every match”.

Figure 5. Normalized probability that the speaker will utter “Jane played in no/-
some/every match” in each situation, generated by reasoning about which utterance
will most e↵ectively bring the literal listener to select the correct answer to the QUD
“How many matches did Jane play in?”. (The parameter alpha is set to 5.)

The pragmatic listener still does not know how many matches Jane played
in but can reason about the speaker’s utterance choice. If the correct answer
were 3 the speaker would probably not have chosen “some”, because the literal
listener is much less likely to choose the answer 3 if the utterance is “some”
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Figure 6. Interpretation of “Jane played in some match” by the literal and prag-
matic listeners, assuming that the only relevant alternatives are “Jane played in
no/every match”. While the literal listener (left pane) assigns a moderate probab-
ility to the “all” situation given this utterance, the pragmatic listener (right pane)
assigns this situation a very low probability. The di↵erence is due to the fact that
the pragmatic listener reasons about the utterance choices of the speaker (Figure
5 above), taking into account that the speaker is more likely to say “every” than
“some” if “every” is true.

as opposed to “every”. The listener can thus conclude that the correct an-
swer probably is not 3. Figure 6 shows the predictions for both the literal
and pragmatic listener; notice that the interpretation of “some” di↵ers only
minimally from the prior for the literal listener, but is strengthened for the
pragmatic listener. Thus, our model yields a broadly Gricean explanation of
quantity implicature. Instead of stipulating rules of conversation, the content
of Grice’s Maxim of Quantity falls out of the recursive pragmatic reasoning
process whenever it is reasonable to assume that the speakers is making an
e↵ort to be informative. (For related formal reconstructions of Gricean reas-
oning about quantity implicature, see Franke 2009; Vogel et al. 2013.)

3.2 Extensions and related work

The simple Rational Speech Acts (RSA) framework sketched above has been
fruitfully extended and applied to a number of phenomena in pragmatic un-
derstanding; many other extensions suggest themselves, but have not yet been
explored. In Frank & Goodman 2012 the RSA model was applied to explain
the results of simple reference games in which a speaker attempted to com-
municate one of a set of objects to a listener by using a simple property to
describe it (e.g. blue or square). Here the intuitive theory can be seen as simply
a prior distribution, (define ref (ref-prior objects)) over which object is the ref-
erent in the current trial, the QUD is simply ref, and the properties have their
standard extensions. By measuring the ref-prior empirically Frank & Good-
man (2012) were able to predict the speaker and listener judgements with
high quantitative accuracy (correlation around 0.99).
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In Goodman & Stuhlmüller 2013 the RSA framework was extended to take
into account the speaker’s belief state. In this case the speaker should choose
an utterance based on its expected informativity under the speaker’s belief
distribution. (Or, equivalently, the speaker’s utility is the negative Kullback-
Leibler divergence of the listener’s posterior beliefs from the speaker’s.) This
extended model makes the interesting prediction that listeners should not
draw strong quantity implicatures from utterances by speakers who are not
known to be informed about the question of interest (cf. Sauerland, 2004;
Russell, 2006). The experiments in Goodman & Stuhlmüller (2013) show that
this is the case, and the quantitative predictions of the model are borne out.

As a final example of extensions to the RSA framework, the QUD itself can
be an object of inference. If the pragmatic listener is unsure what topic the
speaker is addressing, as must often be the case, then she should jointly infer
the QUD and its val under the assumption that the speaker chose an utterance
to be informative about the topic (whatever that happens to be). This simple
extension can lead to striking predictions. In Kao et al. (2014); Kao et al.

such QUD inference was shown to give rise to non-literal interpretations: hyper-
bolic and metaphoric usage. While the literal listener will draw an incorrect
inference about the state of the world from an utterance such as “I waited
a million hours”, the speaker only cares if this results in correct information
about the QUD; the pragmatic listener knows this, and hence interprets the ut-
terance as only conveying information about the QUD. If the QUD is inferred to be
a non-standard aspect of the world, such as whether the speaker is irritated,
then the utterance will convey only information about this aspect and not
the (false) literal meaning of the utterance: the speaker waited longer than
expected and is irritated about it.

The RSA approach shares elements with a number of other formal ap-
proaches to pragmatics. It is most similar to game theoretic approaches to
pragmatics. In particular to approaches that treat pragmatic inference as it-
erated reasoning, such as the Iterated Best Response (IBR) model (Franke,
2009; Benz et al., 2005). The IBR model represents speakers and listeners
recursively reasoning about each other, as in the RSA model. The two main
di↵erences are that IBR specifies unbounded recursion between speaker and
listener, while RSA as presented here specifies one level, and the IBR spe-
cifies that optimal actions are chosen, rather than soft-max decisions. Neither
of these di↵erences is critical to either framework. We view it as an empir-
ical question whether speakers maximize or soft-maximize and what level of
recursive reasoning people actually display in language understanding.
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4 Semantic indices

In formal semantics sentence meanings are often treated as intensions: func-
tions from semantic indices to truth functions (Lewis, 1970, 1980; Montague,
1973). The semantic theory has little or nothing to say about how these in-
dices are set, except that they matter and usually depend in some way on
context. We have already seen that a probabilistic theory of pragmatic inter-
pretation can be used to describe and predict certain e↵ects of context and
background knowledge on interpretation. Can we similarly use probabilistic
tools to describe the ways that semantic indices are set based on context?
We must first decide how semantic indices should enter into the probabilistic
framework presented above (where we have so far treated meanings simply as
truth functions). The simplest assumption is that they are random variables
that occur (unbound) in the meaning expression and are reasoned about by
the literal listener:

(define (literal-listener utterance QUD)
(query

... theory...
(define index (index-prior))
(define val (eval QUD))
val
(eval (meaning utterance))))

Here we assume that the meaning may contain an unbound occurrence of index
which is then bound during interpretation by the (define index ...) definition.
Because there is now a joint inference over val and index, the index will tend
to be set such that the utterance is most likely to be true.

Consider the case of gradable adjectives like strong. In section 2.3 we have
defined [[strong ]] = (� (x) (strength x)); to form a property from the adjective in
a positive form sentence like Bob is strong, we must bind the degree returned
from strength in some way. A simple way to do this is to add a type-shifter
that introduces a free threshold variable ✓—see, for example, Kennedy 2007
and Lassiter 2014 (this volume). We extend the set of type shifters that can
be inserted by shift (see section 2.2) with:

• POS: (� (A) (� (x) (>= (A x) ✓)))

In this denotation the variable ✓ is a free index that will be bound during inter-
pretation as above. Now consider possible denotations that can be generated
by meaning.

• [[Bob is strong ]]=('Bob (� (x) (strength x)))

• [[Bob is strong ]]=((L 'Bob) (� (x) (strength x)))

• [[Bob is strong ]]=((L 'Bob) (POS (� (x) (strength x))))

The first of these returns error because 'Bob is not a function; the second
applies strength to 'Bob and returns a degree. Both of these meanings will be re-
moved in the query of literal-listener because their values will never equal true.
The third meaning tests whether Bob is stronger than a threshold variable and
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returns a Boolean—it is the simplest well-typed meaning. With this meaning
the utterance “Bob is strong” (with QUD “How strong is Bob?”) would be inter-
preted by the literal listener (after simplification, and assuming for simplicity
a domain of -100 to 100 for the threshold) via:

(query
... theory...
(define ✓ (uniform -100 100))
(define val (strength 'Bob))
val
(>= (strength 'Bob) ✓))

Figure 7 shows the prior (marginal) distributions over ✓ and Bob’s strength,
and the corresponding posterior distributions after hearing “Bob is strong”.
The free threshold variable has been influenced by the utterance: it changes
from a uniform prior to a posterior that is maximum at the bottom of its
domain and gradually falls form there—this makes the utterance likely to be
true. However, this gives the wrong interpretation of Bob is strong. Intuitively,
the listener ought to adjust her estimate of Bob’s strength to a fairly high
value, relative to the prior. Because the threshold is likely very low, the listener
instead learns very little about the variable of interest from the utterance: the
posterior distribution on Bob’s strength is almost the same as the prior.

Figure 7. The literal listener’s interpretation of an utterance containing a free
threshold variable ✓, assuming an uninformative prior on this variable. This listener’s
exclusive preference for true interpretations leads to a tendency to select extremely
low values of ✓ (“degree posterior”). As a result the utterance conveys little inform-
ation about the variable of interest: the strength posterior is barely di↵erent from
the prior.

What is missing is the pressure to adjust ✓ so that the sentence is not
only true, but also informative. Simply including the informative speaker and
pragmatic listener models as defined above is not enough: without additional
changes the index variables will be fixed by the literal listener with no prag-
matic pressures. Instead, we lift the index variables to the pragmatic level.
Imagine a pragmatic listener who believes that the index variable has a value
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that she happens not to know, but which is otherwise common knowledge (i.e.
known by the speaker, who assumes it is known by the listener):

(define (listener utterance QUD)
(query

... theory...
(define index (index-prior))
(define val (eval QUD))
val
(equal? utterance (speaker val QUD index))))

(define (speaker val QUD index)
(query

(define utterance (language-prior))
utterance
(equal? val (literal-listener utterance QUD index))))

(define (literal-listener utterance QUD index)
(query

... theory...
(define val (eval QUD))
val
(eval (meaning utterance))))

In most ways this is a very small change to the model, but it has important
consequences. At a high level, index variables will now be set in such a way
that they both make the utterance likely to be true and likely to be prag-
matically useful (informative, relevant, etc); the tradeo↵ between these two
factors results in significant contextual flexibility of the interpreted meaning.

Figure 8. The pragmatic listener’s interpretation of an utterance such as “Bob is
strong,” containing a free threshold variable ✓ that has been lifted to the pragmatic
level. Joint inference of the degree and the threshold leads to a “significantly greater
than expected” meaning. (We assume that the possible utterances are to say nothing
(cost 0) and “Bob is strong/weak” (cost 6), and alpha= 5, as before.)

In the case of the adjective strong, Figure 8, the listener’s posterior es-
timate of strength is shifted significantly upward from the prior, with mean
at roughly one standard deviation above the prior mean (though the exact
distribution depends on parameter choices). Hence strong is interpreted as
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meaning “significantly stronger than average”, but does not require maximal
strength (most informative) or permit any strength (most often true). This
model of gradable adjective interpretation (which was introduced in Lassiter
& Goodman 2013) has a number of appealing properties. For instance, the
precise interpretation is sensitive to the prior probability distribution on an-
swers to the QUD. We thus predict that gradable adjective interpretation
should display considerable sensitivity to background knowledge. This is in-
deed the case, as for example in the di↵erent interpretations of “strong boy”,
“strong football player”, “strong wall”, and so forth. Prior expectations about
the degree to which objects in a reference class have some property frequently
plays a considerable role in determining the interpretation of adjectives. This
account also predicts that vagueness should be a pervasive feature of adjective
interpretation, as discussed below. See Lassiter & Goodman 2013 for detailed
discussion of these features.

We can motivate from this example a general treatment of semantic in-
dices: lift each index into the pragmatic inference of listener, passing them
down to speaker and on to literal-listener, allowing them to bind free variables
in the literal meaning. As above all indices will be reasoned over jointly with
world states. Any index that occurs in a potential meaning of an alternative
utterance must be lifted in this way, to be available to the literal-listener. If we
wish to avoid listing each index individually, we can modify the above treat-
ment with an additional indirection: For instance by introducing a memoized
function index that maps variable names to (random) values appropriate for
their types.

4.1 Vagueness and indeterminate boundaries

Probabilistic models of the type described here make it possible to maintain
the attractive formal precision of model-theoretic semantics while also mak-
ing room for vagueness and indeterminate boundaries in both word meanings
and psychological categories. There is considerable evidence from both psy-
chological (e.g. Rosch, 1978; Murphy, 2002; Hampton, 2007) and linguistic
(Taylor, 2003) research that a lack of sharp boundaries is a pervasive features
of concept and word usage. Linguistic indeterminacy and vagueness can be
understood as uncertainty about the precise interpretation of expressions in
context. As discussed in section 2.5, uncertainty can enter from a number of
sources in constructing meaning from an utterance; to those we can now add
uncertainty that comes from a free index variable in the meaning, which is
resolved at either the literal or pragmatic listener levels. Each source of un-
certainty about the meaning leads to an opportunity for context-sensitivity
in interpretation. These sources of context-sensitivity predict a number of
important features of vagueness. We illustrate this by discussing how key fea-
tures of vagueness in adjective interpretation are predicted by our treatment of
gradable adjectives, above. For more discussion of vagueness and an overview
of theories see Lassiter 2014 (this volume).
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Borderline cases. While the underlying semantics of Bill is strong yields
a definite boundary, introduced to the meaning by POS, there is posterior
uncertainty over the value of this threshold. Hence, an individual whose degree
of strength falls in the middle of the posterior distribution (see Figure 8)
will be a borderline case of strong. In the example above, an individual with
strength 3 will have a roughly equal chance of counting as strong and as not
strong.

Tolerance principles. Suppose Bill has strength 4.5 and Mary has
strength 4.4. It would be odd for someone to confidently agree to the claim
that Bill is strong, but to deny confidently that Mary is strong. Our model
explains this intuition: when two individuals’ strength are separated by a
small gap, the posterior probability that the threshold falls in this gap is very
small—hence it is very rarely the case that one counts as strong and the other
does not. Indeed, this could happen only if the posterior distribution over
strength had a sharp discontinuity, which in turn would imply that the prior
had an abrupt boundary (Lassiter & Goodman, 2013).

The sorites paradox. The following is an instance of a famous puzzle:

• Bill is strong.
• A person who is slightly less strong than a strong person is also strong.
• Therefore, everyone is strong, no matter how weak.

People generally find the premises plausible, but the conclusion (which follows
logically by induction) not at all plausible. Evidently something is wrong with
the second premise, but what?

Our probabilistic approach, built as it is upon a bivalent logic, requires that
the conclusion is true in a given world if the premises are true. However, if the
second premise is interpreted as universally quantified it will rarely be true: if
there are enough individuals, there will be two separated by a small amount,
but on either side of the threshold. Yet this answer—that the second premise
is in fact false in most relevant situations—does not explain the psychological
aspect of the puzzle (Gra↵, 2000): people express high confidence in the second
premise.

Lassiter & Goodman (2013) argue that the second premise is not inter-
preted in a simple universally quantified way, but is evaluated probabilistically
as a conditional: given that person x (of a priori unknown strength) is strong,
form the posterior distribution over ✓ as above; under this distribution what is
the probability that a person with strength slightly smaller is strong, i.e. the
probability that (- (strength x) ✏)> ✓.9 This probability depends on the prior
distribution, but for reasonably gradual priors and fairly small gaps ✏ it will
be quite high. Figure 4.1 shows the probability of the inductive premise as
a function of the gap for the setup used before. This account builds on pre-
vious probabilistic approaches to the vagueness and the sorites (Borel, 1907;

9 An extension to the linguistic fragment described above would be necessary to
derive this interpretation formally. One approach would be to treat the relative
clause an embedded query.

Page: 35 job: Goodman-HCS-final macro: handbook.cls date/time: 25-Jun-2014/8:41



36 Noah D. Goodman and Daniel Lassiter

Black, 1937; Edgington, 1997; Lawry, 2008; Frazee & Beaver, 2010; Égré,
2011; Lassiter, 2011; Sutton, 2013), but is the first to o↵er a specific account
of why vague adjectives should have context-sensitive probabilistic interpret-
ations, and of how the distribution is determined in a particular context of
utterance.

Figure 9. With prior distributions and parameters as above, the probability of the
second premise of the sorites paradox is close to 1 when the inductive gap is small,
but decreases as the size of the gap increases.

4.2 Extensions and related work

Another interpretation of the above modeling approach (indeed, the original
interpretation, introduced in Bergen et al. (2012)) is as the result of lexical un-
certainty : each index represents a lingering uncertainty about word meaning
in context which the listener must incorporate in the interpretation process.10

This interpretation is appealing in that it connects naturally to language ac-
quisition and change (Smith et al., 2013). For instance, upon hearing a new
word a learner would initially treat its meaning as underdetermined—in e↵ect,
as an index variable ranging over all expressions of the appropriate type—and
infer its meaning on each usage from contextual cues. Over time the prior over
this ‘index’ would tighten until only the correct meaning remained, and no
contextual flexibility was left. A di�culty with the lexical uncertainty inter-
pretation is explaining why certain aspects of a word’s meaning are so much
more flexible than others and why this appears to be regular across words of a
given type. The free-index interpretation accounts for this naturally because
the dimensions of flexibility are explicitly represented as unbound variables
in lexical entries or in type shifters used in the compositional construction of
meaning. A more structured (e.g. hierarchical) notion of lexical uncertainty
may be able to reconcile these interpretations, which are essentially equivalent.

10 Note that lexical uncertainty is a form of lexical ambiguity, but is the special form
in which the choice of ambiguous form is lifted to the pragmatic listener.
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The use of lifted semantic indices, or lexical uncertainty, can account for a
number of puzzling facts about language use beyond those considered above.
The original motivation for introducing these ideas (Bergen et al., 2012) was
to explain the Division of Pragmatic Labor (Horn, 1984) : why are (un)marked
meanings assigned to (un)marked utterances, even when the utterances have
the same literal semantics? The basic RSA framework cannot explain this
phenomena. If however we assume that the meanings can each be refined to
more precise meanings, the correct alignment between utterances and inter-
pretations is achieved.

An important question is raised by this section: which, if any, ambiguities
or under-specifications in meaning are resolved at the literal listener level, and
which are lifted to the pragmatic listener? This choice has subtle but import-
ant consequences for interpretation, as illustrated above for scalar adjectives,
but it is empirical question that must be examined for many more cases before
we are in a position to generalize.
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5 Conclusion

In this chapter we have illustrated the use of probabilistic modeling to study
natural language semantics and pragmatics. We have described how stochastic
�-calculus, as implemented in Church, provides compositional tools for prob-
abilistic modeling. These tools helped us to explicate the relationship between
linguistic meaning, background knowledge, and interpretation.

On the one hand we have argued that uncertainty, formalized via prob-
ability, is a key organizing principle throughout language and cognition. On
the other hand we have argued, by example, that we must still build de-
tailed models of natural language architecture and structure. The system we
have described here provides important new formalizations of how context
and background knowledge a↵ect language interpretation—an area in which
formal semantics has been largely silent. Yet the enterprise of formal semantics
has been tremendously successful, providing insightful analyses of many phe-
nomena of sentence meaning. Because compositional semantics plays approx-
imately its traditional role within our architecture, many of the theoretical
structures and specific analyses will be maintained. Indeed, seen one way, our
probabilistic approach merely augments traditional formalizations with a the-
ory of interpretation in context—one that makes good on many promissory
notes from the traditional approaches.

There are several types of uncertainty and several roles for uncertainty in
the architecture we have described. While the fundamental mechanisms for
representing and updating beliefs are the same for discrete variables (such as
those that lead to scope ambiguity for quantifiers) and continuous variables
(such as the threshold variable we used to interpret scalar adjectives in the
positive form), there are likely to be phenomenological di↵erences as well as
similarities. For instance, continuous variables lend themselves to borderline
cases in a way that discrete variables don’t, while both support graded judge-
ments. Similarly, the point at which a random variable is resolved—within
the literal listener, in the pragmatic listener, or both—can have profound
e↵ects on its role in language understanding. Variables restricted to the lit-
eral listener show plausibility but not informativity e↵ects; variables in the
pragmatic listener that are not indices show informativity but limited context
sensitivity; etc. Overall then, uniform mechanisms of uncertainty can lead to
heterogeneous phenomenology of language understanding, depending on the
structure of the language understanding model.

In the architecture we have described, uncertainty is pervasive through
all aspects of language understanding. Pervasive uncertainty leads to com-
plex interactions that can be described by joint inference of the many random
choices involved in understanding. Joint inference in turn leads to a great
deal of flexibility, from non-monotonic e↵ects such as explaining away (sec-
tion 2), through ambiguous compositional structure (section 2.5) and prag-
matic strengthening (section 3), to vagueness and context-specificity of indices
(section 4). It is particularly important to note that even when the archi-
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tecture specification is relatively modular, for instance separate specification
of world knowledge (the ...theory...) and meaning interpretation (the meaning

function), the inferential e↵ects in sentence interpretation will have complex,
bi-directional interactions (as in the interaction of background knowledge and
quantifier scope ambiguity in section 2). That is, language understanding is
analyzable but not modular.
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