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Review
Boolean relations, such as and, or, and not, are a funda-
mental way to create new concepts out of old. Classic
psychological studies showed that such concepts dif-
fered in how difficult they were to learn, but did not
explain the source of these differences. Recent theories
have reinvigorated the field with explanations ranging
from the complexity of minimal descriptions of a con-
cept to the relative invariance of its different instances.
We review these theories and argue that the simplest
explanation – the number of mental models required to
represent a concept – provides a powerful account.
However, no existing theory explains the process in
full, such as how individuals spontaneously describe
concepts.

Introduction
Many everyday concepts combine existing elements using
Boolean relations: a ‘cousin’ is a child of an uncle or aunt,
and ‘beer’ is an alcoholic beverage usually made from
malted cereal grain and flavored with hops, and brewed
by slow fermentation. Laws and technical concepts also
depend on Boolean relations: in baseball, a ‘ball’ is a pitch
that does not enter the strike zone and is not struck at by
the batter. Likewise, most of the diagnostic criteria in the
Diagnostic and Statistic Manual of Mental Disorders
(DSM-IV-TR) [1] rely on Boolean relations. What are Bool-
ean relations, however? The nineteenth century English
logician George Boole used them in his eponymous algebra
to form new sets (or, as he wrote, ‘classes’) out of old, and
they consist of relations corresponding to and (intersec-
tion), or (union), not (complement), and those further rela-
tions that can be defined in terms of them [2]. They have
been applied to many domains, from the design of electron-
ic circuits to the axiomatization of the probability calculus,
which Boole anticipated in also interpreting his formulas
as numerical probabilities.

A longstanding goal for cognitive psychology is to un-
derstand how people acquire, represent, and use concepts.
The pioneering studies examined Boolean concepts, that is,
those defined solely in terms of Boolean relations of such
properties as color, size, and shape. They showed that
concepts depending on and are easier to learn than those
depending on or [3–5]. Neisser and Weene [6] proposed
that the difficulty of acquiring a Boolean concept depends
on the length of its ‘minimal descriptions’, that is, the
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shortest Boolean descriptions of all and only its instances.
This account, however, did not explain a puzzling finding –
the robust trend in difficulty observed by Shepard, Hov-
land, and Jenkins [7] over six different Boolean concepts
(Box 1). We refer to this phenomenon as the ‘Shepard
trend’.

Research on Boolean concepts waned after the mid-
1960s, leaving the Shepard trend unexplained, as psychol-
ogists turned to prototypes [8–12], exemplars of concepts,
namely, their instances [13,14], and the role of theoretical
knowledge in their acquisition [15,16]. Yet, Boolean rela-
tions play a role even in prototypes. A prototypical dog is
one that has all the attributes in a set of defaults: it has
four legs, and a tail, and it barks, etc. Recently, psychologists
have renewed their study of Boolean concepts and have
developed better accounts of their acquisition. The goal
of unifying these accounts with a broader understanding
of cognition has pulled theorists in different directions –
towards algorithmic explanations of attention and working
memory, and towards explanations of reasoning.

Recent accounts of the Shepard trend
Early attempts to explain the trend [6,17–20] (but cf. [21])
were not as successful as recent theories. One such recent
theory is ALCOVE, a three-layer feed-forward connection-
ist network [22], which was developed from earlier exem-
plar theories [13,14]. It represents individual exemplars as
points in a multi-dimensional space. Another such theory
is SUSTAIN, a connectionist network that represents
concepts as clusters akin to prototypes in a multi-dimen-
sional space [23]. The number of clusters predicts the
difficulty of acquiring concepts, including those in the
Shepard trend. However, these connectionist networks
are not superior to alternative theories based on very
different mechanisms. For example, RULEX represents
Boolean concepts as combinations of rules and their excep-
tions [24]. It requires less memory than ALCOVE and it
predicts the difficulty of learning concepts from the number
of variables and the number of exceptions that it needs to
store. Latterly, theorists have built on exemplar theories to
develop accounts based on rules in first-order logic that are
acquired according to Bayesian probabilities [25]. All these
theories predict the Shepard trend. It is a useful initial
benchmark, but it fails to discriminate among rival
accounts.

The field needed a larger body of robust results, and
Feldman [26] provided them for the acquisition of a battery
of 76 Boolean concepts, which were instantiated as, ‘amoe-
bas’ defined by binary properties, such as shape, size, and
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Box 1. The Shepard et al. [7] task and its principal results

Shepard, Hovland, and Jenkins [7] investigated the acquisition of

six different sorts of concept based on three binary variables. Each

concept had four instances and four non-instances in the eight

possibilities. Figure I presents the six concepts: each dimension

represents a binary variable and the instances of the six concepts

are shown as black blobs (see also Table 1). In one study, the

instances were geometrical shapes; in another study, they were

everyday objects. In some conditions, the variables concerned a

single entity, such as its shape, size, and color. In other conditions,

they concerned separate entities. In the first study, the instances

and non-instances of each concept were presented sequentially and

participants at first guessed whether or not a particular entity was

an instance and gradually acquired the concept. In the two

subsequent studies, the instances and non-instances were pre-

sented simultaneously and identified as such at the beginning of

the task. The participants had to remember the concept and to

formulate a rule for it. The experiments also varied the nature of the

responses: the stimuli were variously classified as in ‘A’ and ‘B’

groups, ‘plus’ and ‘minus’ groups, ‘1’ and ‘2’ groups, and so on. The

dependent variables included the number of errors during learning,

latencies, and, where relevant, the accuracy of the participants’

descriptions.

Despite all of the differences in method, the results were highly

consistent, and showed the following partial trend from easiest to

hardest: I < II < III, IV, V < VI. This trend in difficulty has been

replicated many times (e.g., [55–57]).

(i) (ii) (iii)

(iv) (v) (vi)
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Figure I. Examples of the six sorts of concept used by Shepard et al. [7]. The

black blobs represent the instances of the concepts.
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shading. His data did not replicate the precise Shepard
trend, but they provide a powerful challenge to theories.
We refer to them as the ‘Feldman dataset’. His research
[26,27] and other studies [28–32] revived interest in con-
cepts.

Minimal complexity
There are infinitely many descriptions of the same Boolean
concept, but most contain redundant clauses. For instance,
the following two descriptions describe the same concept:

(a and b) or (a and not b) or (not a and b)
and:

(a or b)

The first is in ‘disjunctive normal form’ and the second is
a minimal description, that is, no shorter description of the
concept is possible. Feldman proposed that the length of
minimal descriptions should predict the difficulty of learn-
ing concepts [26]. However, because a and b is easier than a
or b, he made a further ‘parity’ assumption: concepts with
fewer instances than non-instances should be easier to
learn than those with fewer non-instance than instances
(cf. [6,7]). The resulting theory appeared to account for the
Shepard trend and for just over 50% of the variance in the
Feldman dataset. These results seemed to be a major
advance; but there were problems. The descriptions in
[26], as several authors pointed out [33–36], were not truly
minimal, whereas the correct minimal descriptions make
much less successful predictions. Likewise, no good reason
exists for restricting minimal descriptions to not, and, and
or. Why not allow or else (exclusive disjunctions)? But, if
they are allowed, the predictions are much less successful.
The process for constructing minimal descriptions is too
complex to be psychologically plausible, no good evidence
existed to show that participants construct them, and, as
we report below, they seldom do construct them. Feldman’s
theory explained an impressive amount of variance, but
it left room for improvement, in part because ‘parity’
explained almost 20% of the variance. Hence, there has
been a recent flurry of theorizing, to which we now turn.

Current theories
Feldman devised a new theory of algebraic complexity, in
which Boolean concepts are decomposed into a set of
simpler underlying formulas [37]. Consider, for example,
the concept with the following instances, where ‘:’ denotes
the absence of a property:
: a : b : c
: a : b c
a : b : c
a : b c
These instances can be decomposed into the conjunc-

tion (the Cartesian product) of the alternatives: : a : b, a
: b with the alternatives : c, c. A weighted average of
the complexity of these underlying components, which
depends on the number of variables in them (akin to their
minimal complexity), yields the concept’s overall algebraic
complexity. There are advantages in decomposition [38]
and in the general goal of simplicity [39–41]. Feldman’s
theory copes not just with binary variables, but also with
variables that have multiple values. But, its computations
are complex, and its accounts for what is computed rather
than how it is computed. Nevertheless, its single parame-
ter accounts for approximately 50% of the variance in the
Feldman dataset.

Vigo [42] developed a theory of Boolean concepts in
terms of the degree to which their instances are similar
to one another, that is, their structural invariance. The
computation also takes into account the number of
instances in a concept, because the fewer they are, the
easier the concept should be to acquire. The structural
complexity of a concept is therefore inversely proportional
to its degree of invariance and directly proportional to its
cardinality. The computations underlying this theory are
also complex and it too gives no account of mental process-
es. Yet, once again, the fit of this theory is impressive,
129



Box 2. The simplification of models of concepts

The process of simplifying mental models of the instances of

concepts is implemented in a computer program written in LISP. It

takes descriptions of Boolean concepts as input, and outputs a set of

simplified models that represent the concept [33]. It works by

eliminating irrelevant variables. Consider the following instances of

the symptoms of a disease, where ‘:’ denotes the absence of a

symptom:

Fever Headache Rash

Fever : Headache Rash

Here, ‘fever’ and ‘rash’ occur with both with and without

‘headache’, and so this variable is irrelevant to the concept. Any

case in which both fever and rash occur is an instance of the disease

whether or not the patient has a headache. The models are

accordingly simplified to:

Fever Rash

The burden on working memory is alleviated, because the

concept is transformed from two models to one.

In other cases, more radical simplifications occur. Consider

concept I from Shepard’s six concepts [8]:

Fever Headache Rash

Fever Headache : Rash

Fever : Headache Rash

Fever : Headache : Rash

The variables of ‘headache’ and ‘rash’ can be eliminated, because

all four pairs of their possible joint values occur together with

‘fever’, and so the result is:

Fever

For some concepts, successive simplifications can be made – for

example, concept III from Shepard et al. [7] is:

Fever : Headache Rash

Fever : Headache : Rash

: Fever Headache Rash

: Fever Headache : Rash

When ‘fever’ and ‘: headache’ co-occur, the variable concerning

‘rash’ is irrelevant, and can be eliminated to yield:

Fever : Headache

: Fever Headache Rash

: Fever Headache : Rash

When ‘: fever’ and ‘headache’ co-occur, the variable concerning

‘rash’ is again irrelevant, and can be eliminated to yield:

Fever : Headache

: Fever Headache

When alternative simplifications of the same concept are possible,

the computer program searches for and returns a simplification with

the fewest number of models.
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accounting for approximately 42% of the variance in the
Feldman dataset.

Both algebraic complexity and structural invariance
account for the Feldman data set better than either
ALCOVE [22] or SUSTAIN [23] does. And no simple
way exists to extend RULEX [24] to predict the Feldman
dataset. Yet, neither algebraic complexity nor structural
invariance accounts for the mental representation of
concepts or for the processes underlying their acquisition
– the computations of complexity and invariance are
likely to be beyond most individuals. Hence, we turn to
a theory that aims to explain mental representations and
processes.

The model theory of concepts
The theory of mental models presupposes that the mind is
neither a logical nor a probabilistic device. It makes simu-
lations. The theory applies to reasoning in general and it
postulates that reasoners try to envisage the possibilities
to which premises refer and draw conclusions that hold in
them [43,44]. As the theory predicts, the more models of
possibilities that individuals have to represent, the harder
an inference is (e.g., [45]). The instances of a Boolean
concept can each be represented in a mental model. How-
ever, as individuals acquire the concept, they can reduce
the number of these models, by eliminating those variables
that are irrelevant given the values of other variables [33].
Box 2 describes this idea in detail.

The number of models of a concept that results from the
elimination of irrelevant variables predicts the difficulty
of acquiring the concept. Current evidence gives the theo-
ry a slight edge over rival accounts. Table 1 summarizes
its predictions and those of minimal descriptions, alge-
braic complexity, and structural complexity for the She-
pard trend. The model theory predicts these results
approximately as well as do rival theories. However, for
the Feldman dataset, the number of mental models
accounts for 57% of the variance in the difficulty of acquir-
ing them, which is an improvement of approximately 8%
more than algebraic complexity [37] and of 15% more than
structural invariance [42]. Nevertheless, when models
and algebraic complexity were entered into a regression
as simultaneous predictors of accuracy, both accounted for
unique variance, revealing that algebraic complexity may
be capturing something that models do not, and vice versa
[33].

Descriptions of concepts
Studies of concept acquisition vary in methodological
details, but a common thread is that the participants’ task
is to identify the instances and non-instances of concepts.
Performance is objective and easy to quantify, but it can be
less revealing than participants’ descriptions of concepts.
With few exceptions [7], this task has not been used for
Boolean concepts. However, when participants had to
acquire concepts defined in terms of the positions of three
switches that controlled a light, their descriptions of the
concepts revealed several striking phenomena [33]:
� Only 2% of descriptions were minimal Boolean descrip-

tions and the correct minimal descriptions failed to
predict the difficulty of the task.
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� The majority of descriptions were in the form of
disjunctions, which is in accord with representations
in the form of alternative mental models.

� Many descriptions used language outside the scope of
Boolean relations, as illustrated in these uses of other
relations, quantifiers, and numbers:

The light will go on when switches one and two are in
the same position.

If all of the switches are turned to the right, the light
will be off, otherwise it is on.

If the sum of the switches turned to the right is more
than two, the light will be on.

A second experiment replicated these phenomena, and
showed that language outside Boolean relations can make
an otherwise difficult problem easy. Every theory predicts
that the following concept should be difficult, but this
description shows why it was easy:



Box 3. Conceptual illusions

A corollary of the principle of truth for concepts is that mental

models represent only the instances of a concept and that for each

instance they represent only those properties, or their absence, that

the description ascribes to the instance [54]. As an example,

consider this description of a concept:

It’s red and it’s square, or else it’s red

The mental models of the concept are as follows:

Red Square (the first clause of the disjunction is true)

Red (the second clause of the disjunction is true)

Given the description of the concept, most participants listed

these two instances [54]. However, they were wrong, and wrong

about other problems, because mental models represent only what

is true. Fully explicit models also represent what is false. When the

first clause of the disjunction is true, there is one possible instance:

Red Square

but the force of or else is that in this case the second clause is false –

it isn’t red – and so the first clause must be false (and the second

clause true):

Red : Square

A crucial feature of such concepts is that the mental models

contain a model of an ‘illusory’ instance, one that does not

correspond to a real instance. Individuals err on such concepts,

even those that do not depend on or else, but they perform

accurately on control problems with similar descriptions, similar

numbers of models, but no models of illusory instances [54,58].

The model theory postulates that the interpretation of relations

can be modulated by semantics and knowledge. Studies of

deductive reasoning have corroborated such effects in several

domains [59–61]. One effect is to block the construction of a model,

and so an experiment on concepts [54] used contents that should

have this effect on illusory models, such as:

It’s red and it’s green, or else it’s red.

Individuals know that the first clause cannot be true (assuming

uniform colors), and so the second clause is true. There is

accordingly only one possibility:

Red : Green

An experiment showed that the original materials elicited illusory

instances, whereas modulated materials of this sort elicited reliably

more correct instances [54].

Table 1. The instances of the six Shepard et al. [7] concepts in Figure 1, their simplified mental models [33], correct minimal
descriptions revised from [26], algebraic complexity [37], and structural complexity [42]. (‘:’ denotes the absence of a property.)

Concept

number

Instances of the

concept

Simplified mental

models

Minimal descriptions Algebraic

complexity

Structural

complexity

I : a b c

: a b : c

: a : b c

: a : b : c

: a not a (1) -0.50 1.66

II a b c

a b : c

: a : b c

: a : b : c

a b

: a : b

(a and b) or (not a and not b) (4) 0.00 2.00

III a : b c

: a b : c

: a : b c

: a : b : c

: a : c

: b c

(not a and not c) or (not b and c) (4) 0.00 2.14

IV a : b : c

: a b : c

: a : b c

: a : b : c

: a b : c

: a : b c

: b : c

(not c or (not a and not b)) and (not a or not b) (5) 0.00 2.14

V a b c

: a b : c

: a : b c

: a : b : c

a b c

: a b : c

: a : b

(not a and not (b and c)) or (a and (b and c)) (6) 0.50 2.34

VI a b : c

a : b c

: a b c

: a : b : c

a b : c

a : b c

: a b c

: a : b : c

(a and ((not b and c) or (b and not c))) or

(not a and ((not b and not c) or (b and c))) (10)

2.00 4.00
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The light comes on in all cases when the switches are all on
or all off.

No existing theory provides an adequate account of how
individuals spontaneously describe concepts. Kemp [46]
attempts to characterize the complete space of possible
sorts of concepts, and he takes objects, properties, and
relations as primitives, and first-order logic as the lan-
guage to represent concepts. (First-order logic allows quan-
tified variables to range only over entities, as opposed to
their properties.) The primitives combined in different
ways yield different sorts of concept. However, like earlier
theories [26,40], his account postulates that the difficulty of
acquiring a concept depends on the length of its minimal
description in the representation language. Logic provides
an account of the mapping of models into descriptions
using quantifiers and relations, but so too does set theory.
And set theory, which underlies Boole’s algebra, has the
advantage that it captures all quantifiers in a unified way,
as Montague showed [47], including such quantifiers as
‘more than half the electorate’, which cannot be defined
with the quantifiers of first-order logic [48]. However, as
Boole realized, a quantified assertion states a relation
between sets [2]. This treatment accommodates all quan-
tifiers and it is how quantifiers are represented according
to the model theory [49].

Models are similar to logical descriptions of concepts in
disjunctive normal form (see above). So, is there a crucial
phenomenon that corroborates the model theory? Indeed,
there is such a phenomenon, and it occurs when individu-
als interpret descriptions of concepts. The model theory
postulates a principle of truth: mental models represent
what is true, not what is false. The principle reduces the
load on working memory, but it has an unexpected conse-
quence discovered only from the theory’s computer imple-
mentation [50]. It predicts the occurrence of systematic
131



Box 4. Current problems and questions for future research

� Sets of a fixed number of mental models are not necessarily

equally easy to acquire. The ease of decomposing models into

conjunctions of their components probably correlates with

algebraic complexity [37]. The distance apart of models in

conceptual space – perhaps using their Levenshtein distances

[62] (but cf. [63,64]) – probably correlates inversely with invariance

[42]. So, could a rapprochement among current theories explain

the unaccounted variance (approximately 50%) in Boolean con-

cept acquisition?

� Boolean relations do not exhaust the machinery for building new

concepts out of old. How is their acquisition integrated with

learning other sorts of relation that also underlie many concepts

[65–70], and learning those concepts, such as ‘elevator’ and

‘steam engine’, that seem likely to depend on mental simulations?

� The relative difficulty of acquiring concepts appears to change

from those based on the presence or absence of visual properties

[7,26] to those based on switch positions [33]. What are the critical

variables underlying these differences? Do they explain the

discrepancies from the Shepard trend?

� Many concepts, perhaps most, are acquired from descriptions and

so the interpretation and formulation of such descriptions are a

major part of any theory of concepts. How can individuals’

spontaneous use of quantifiers and other non-Boolean expres-

sions best be accounted for? And under what conditions are such

expressions most likely to be generated? How much do they

depend on similarities in the way different variables that define a

concept are instantiated?

� The revival in the study of Boolean concepts is due to a theory

about their simplest possible descriptions [26]. The model theory

suggests instead that the crucial variable is the simplest possible

set of models of a Boolean concept. Does the simplest description

have a role to play in an expanded linguistic account that includes

quantifiers and numbers?

� Classic studies [3] investigated the role of strategies in concept

acquisition, and they are important in reasoning (e.g., [71]). What

role do they and order of presentation (e.g., [72]) play in Boolean

concept acquisition?

� A computer system that acquires novel concepts calls for explicit

theories of many processes, including attention, memory, and the

sort of machinery in the model theory. How can such a theory be

best integrated within accounts of working memory (cf. [73–75]),

communicative efficiency [76], and a general mental architecture,

such as Anderson’s ACT-R [77,78]?
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fallacies, which are compelling enough to be cognitive
illusions. They have been corroborated in deductions
[51], evaluations of the consistency of sets of assertions
[52], and reasoning of many other sorts [53]. Illusory
concepts also occur [54], and they are described in Box
3. No other existing theory of Boolean concepts predicts
their occurrence.

Concluding remarks
After a hiatus, and thanks to the work of Feldman [26] and
others, the study of Boolean concept acquisition is flourish-
ing. Several recent theories have predicted with some
success the difficulty of learning concepts. They include
accounts based on the minimal descriptions of concepts
[26,46], the decomposition of their formulas into conjunc-
tive components [37], the assessment of the degree to
which the instances of a concept are invariant [42], and
the simplification of their exemplars into more parsimoni-
ous mental models [33,54]. As authors of the model theory,
we believe that it has four main advantages over alterna-
tive accounts:
132
� It is simple enough to give a plausible account both of
mental representation of concepts and of the mental
processes underlying their acquisition.

� It provides a better account than other theories of the
acquisition of the 76 concepts in Feldman’s dataset [26].

� It predicts two novel phenomena (Box 3).
� Its basis in simulation and set theory allows it to

generalize to concepts based on relations, including
temporal and causal ones, and to all sorts of quantifiers.

Nonetheless, we concede that it leaves much unaccount-
ed for, and Box 4 summarizes the main lacunae and goals
for future research.
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