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The Richness of Distributional Cues to Word Boundaries
in Speech to Young Children

Gaja Jarosz and J. Alex Johnson
Department of Linguistics, Yale University

This study is a systematic analysis of the information content of a wide range of distributional cues
to word boundaries, individually and in combination, in naturally occurring child-directed speech
across three languages (English, Polish, and Turkish). The paper presents a series of statistical anal-
yses examining the relative predictive strength of these cues, the overlap in the information about
word boundaries they contain, and the variability in their relative strengths and interactions across
the languages. We find that the information content of individual distributional cues is not constant
across languages, with relative reliability of cues varying across languages and with individual cues
providing much less information in Polish and Turkish than in English. However, we also find that
when these cues are combined, the cumulative information content of a diverse array of distributional
cues provides a significant source of information about word boundaries across all three languages.

INTRODUCTION

One of the first language learning tasks infants must solve is the segmentation of fluent speech into
individual words. The speech signal is a continuous stream that does not reliably contain pauses
or other language-independent cues to word boundaries. Nevertheless, based on exposure to the
ambient language, infants are able to use a variety of acoustic and statistical cues to extract words
from fluent speech by the time they are one year old. In particular, experimental work has shown
that infants are capable of using phonotactics (Mattys & Jusczyk, 2001; Mattys, Jusczyk, Luce,
& Morgan, 1999), prosody (Jusczyk, Houston, & Newsome, 1999; Mattys et al., 1999; Myers
et al., 1996; Saffran, Newport, & Aslin, 1996; Thiessen & Saffran, 2004), allophony (Jusczyk,
Hohne, & Bauman, 1999), coarticulation (Johnson & Jusczyk, 2001), and statistical regularities
(Saffran, Aslin, & Newport, 1996; Saffran et al., 1996) to segment fluent speech. Since the work
of Saffran et al. (1996), research on infant speech segmentation has documented the abilities of
infants to use a variety of statistical regularities in the speech signal to segment fluent speech
(Jusczyk et al., 1999; Pelucchi, Hay, & Saffran, 2009a; Thiessen & Saffran, 2003; Weiss, Gerfen,
& Mitchel, 2010). These distributional cues include transitional probabilities as well as related
statistics calculated over sequences of units at various levels of linguistic representation such as
phonemes or syllables.
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Room 204, P.O. Box 208366, New Haven, CT 06520-8366, USA. E-mail: gaja.jarosz@yale.edu
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2 JAROSZ AND JOHNSON

Although distributional cues have played a prominent role in experimental work with infants,
the extent to which distributional cues provide reliable information about word boundaries in
spontaneous child-directed speech remains controversial. Based on corpus analyses of child-
directed speech, some authors have argued that distributional cues provide sufficient information
for building an initial lexicon (Swingley, 2005), while others have argued that distributional
cues are unreliable and that accurate segmentation requires strategies relying on principles or
constraints derived from Universal Grammar (Gambell & Yang, 2006; Yang, 2004). Results of
computational modeling work raise further questions about the reliability of distributional cues.
Specifically, state-of-art segmentation models make limited use of the kinds of distributional
cues explored in the experimental literature, relying primarily on other sources of information
(Batchelder, 2002; Blanchard, Heinz, & Golinkoff, 2010; Brent, 1999; Goldwater, Griffiths, &
Johnson, 2009; Johnson, 2008b; Liang & Klein, 2009; Venkataraman, 2001). Additionally, with
a few notable exceptions (Batchelder, 2002; Blanchard et al., 2010; Fleck, 2008), many mod-
els have been developed and tested only on individual languages, usually English. Performance
on languages besides English has generally been markedly worse. To better understand the
role that distributional cues play in infant speech segmentation across languages, it is crucial
to determine how the availability of distributional information in spontaneous speech varies
cross-linguistically.

The primary goal of the present work is to contribute to the debate regarding the availability
of distributional cues in naturally occurring speech to young children by examining interactions
of multiple cues across multiple languages. We use the term “distributional cues” broadly to
include any statistical regularities at the phonological level, such as regularities in relative stress
and consonant phonotactics, not just regularities of syllable or phoneme sequences. We examine
the extent to which distributional cues of the sort explored in the experimental literature are able
to predict word boundaries in child-directed speech across three languages (English, Polish, and
Turkish). All the cues we consider are statistics that can be associated with positions between
adjacent phonemes in a corpus of transcribed speech. Crucially, as in the experimental studies,
the distributional cues we consider are statistics that can be readily calculated from transcripts
of continuous speech without prior knowledge of word boundaries. We investigate the reliability
and the variation in the relative strengths of a variety of sequential statistics calculated at several
levels of linguistic representation across the three languages. Much experimental work has inves-
tigated the effects that the presence of multiple cues to word boundaries has on infant speech
segmentation (Johnson & Jusczyk, 2001; Mattys, 2004; Mattys et al., 1999; Mattys, White, &
Melhorn, 2005; Morgan & Saffran, 1995; Thiessen & Saffran, 2003, 2004). However, the extent
to which multiple coinciding cues to word boundaries exist in the primary language data and
the extent to which distinct cues capture complementary information are unclear. Accordingly, a
central focus of the present study is to determine the extent to which distinct cues reflect com-
plementary information about word boundaries by examining the interaction of multiple cues in
spontaneous spoken language.

In sum, the goals of the present study are to examine the availability and richness of
distributional cues to word boundaries in naturally occurring child-directed speech as well as
the variability in the interaction and strengths of these cues across languages. We approach these
questions by systematically analyzing the predictive power of a large set of distributional cues
to word boundaries individually and in combination in child-directed speech across the three
languages. Specifically, in a series of statistical analyses, we use logistic regression modeling
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THE RICHNESS OF DISTRIBUTIONAL CUES 3

to predict word boundaries on the basis of various distributional cues. Our analyses investigate
how much information about word boundaries could in principle be extracted by learners with
no prior knowledge of word boundaries. Our findings indicate that distributional cues are a rich
source of information about word boundaries across languages when the combined contribution
of many diverse cues is considered. Although there is overlap in information across cues, there is
also a significant amount of complementary information available when cues are combined. Our
results suggest that computational models of segmentation have yet to fully utilize the cumulative
information available via the array of distributional cues. We also find that cue reliability across
languages is variable and reflects the phonological structures of the languages.

DISTRIBUTIONAL CUES TO WORD BOUNDARIES IN SPONTANEOUS SPEECH

As discussed above, experimental findings demonstrate that infants are capable of relying on a
variety of distributional cues, alone or in combination, for word segmentation. Most of these
results have been obtained on the basis of exposure to artificial languages carefully constructed
to contain the particular regularities in question while controlling for other factors. The comple-
mentary questions investigated in the present work are whether the sorts of regularities used in
these experiments are present in spontaneous speech to young children and how they vary and
interact across languages.

One way to measure the availability of various sources of information in naturally occurring
child-directed speech is by applying computational models of word segmentation to such data.
Although there is much literature on computational approaches to word segmentation, modeling
work can be divided into two main approaches: boundary-finding models that focus on iden-
tifying word boundaries and lexicon-building models that involve the learning of a lexicon of
words together with the segmentation of the input corpus (for similar discussion, see Daland &
Pierrehumbert, 2011; Frank, Goldwater, Griffiths, & Tenenbaum, 2010). There are many impor-
tant differences between models within these broad classes (for extensive discussion see, e.g.,
Brent, 1999; Goldwater et al., 2009). However, the distinction between these approaches most
relevant to the present goals is that boundary-finding approaches rely exclusively on distributional
cues similar to those explored in behavioral studies, while lexicon-building approaches necessar-
ily rely on additional information and biases associated with extracting a lexicon from the speech
input. As a result, performance of existing boundary-finding models provides the best estimate of
the information content of distributional cues because performance of lexicon-building models
reflects additional learner biases and information sources.

The poor performance of certain boundary-finding models has lead some authors to con-
clude that distributional cues are an unreliable source of information about word boundaries
and that learning must rely on principles of Universal Grammar (Gambell & Yang, 2006; Yang,
2004). Specifically, Yang and Gambell tested the segmentation strategy suggested by Saffran
et al. (1996), placing word boundaries between adjacent syllables whose transitional probabil-
ities were lower than the transitional probabilities of surrounding syllable transitions. When
applied to transcribed English child-directed speech, this strategy correctly identified just 23%
of the target words and just 42% of the words predicted by the model were actual words.1 Some

1The performance measures reported in this section correspond to precision (accuracy) and recall (completeness),
respectively, (or their harmonic mean, f-score) calculated over word tokens; these measures are defined in equation (2).
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4 JAROSZ AND JOHNSON

models relying on statistical regularities perform better, especially when they rely on multiple
distributional cues (Aslin, Woodward, LaMendola, & Bever, 1996; Cairns, Shillcock, Chater, &
Levy, 1997; Christiansen, Allen, & Seidenberg, 1998; Daland & Pierrehumbert, 2011; Swingley,
2005; Xanthos, 2004). For example, Christiansen et al. (1998) found that a simple recurrent net-
work (Elman, 1990) relying on several kinds of sequential statistics correctly identified about 43%
of the target words and posited actual words about 45% of the time. Brent (1999) tested several
boundary-finding strategies using distributional cues and found somewhat higher performance,
in the range of 45–55%, on spontaneous child-directed speech in English.

However, even this performance does not rival the performance of state-of-the-art lexicon-
building segmentation models (Batchelder, 2002; Blanchard et al., 2010; Brent, 1999; Fleck,
2008; Goldwater et al., 2009; Johnson, 2008b; Johnson & Goldwater, 2009; Liang & Klein, 2009;
Monaghan & Christiansen, 2010; Venkataraman, 2001). Testing on the same corpus as Brent
(1999), Johnson and Goldwater (2009) report the highest unsupervised segmentation performance
to date (around 88). Earlier segmentation results relying on similar generative models also per-
form well above the distributional models discussed above (Batchelder, 2002; Blanchard et al.,
2010; Brent, 1999; Goldwater et al., 2009; Johnson, 2008b; Liang & Klein, 2009; Venkataraman,
2001). For example, the algorithm proposed by Brent (1999) correctly identifies about 69% of the
target words and predicts actual words about 67% of the time (Goldwater et al., 2009). As already
mentioned, these models all involve the learning of a lexicon of words together with the segmen-
tation of the input corpus.2 From a computational perspective, this lexicon-building approach
has clear advantages over purely boundary-finding approaches relying on distributional cues.
A lexicon-building learner is able to rely directly on the regularities created by the concatenations
of a fixed number of strings (words) in order to extract those strings that recur most regularly and
are most likely to be words. Also, as the learner’s lexicon grows, the learner can rely increas-
ingly on lexical knowledge in segmenting novel utterances, resulting in improved segmentation
over time. However, it is unclear how much of the lexicon-building models’ performance can be
attributed to distributional cues. While these models certainly rely on distributional regularities
to identify viable lexical entries (some more directly than others), the lexicon-building process
is also guided by other biases, especially preferences for a lexicon with fewer or shorter words.
The lexicon-building strategy and additional biases of the learner thus obscure the relative impor-
tance of distributional cues. Indeed, the significant difference in performance between the earliest
lexicon-building approaches and the best boundary-finding approaches suggests that it is lexical
knowledge, along with the corresponding learning biases, that is responsible for the performance
gain. In sum, despite the success of lexicon-building models, the additional information employed
by these learners makes it difficult to evaluate the relative contribution of distributional cues to
their performance.

Thus, prior computational modeling work raises questions about the availability and effective-
ness of distributional cues to word boundaries in spontaneous child-directed speech. Comparing
the performance of existing computational models of word segmentation reveals that models
relying primarily on distributional cues perform poorly compared to state-of-the-art segmenta-
tion models, which do not rely primarily on distributional cues. Analyses of the information

2The model proposed by Fleck (2008) relies on learning extended sequences of word endings and beginnings rather
than full-fledged words.
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THE RICHNESS OF DISTRIBUTIONAL CUES 5

content of distributional cues employing supervised techniques yield higher performance than
the boundary-finding models discussed above. For example, supervised performance for one kind
of distributional cue (the diphone probability, probability of a word boundary falling between
two phonemes) on child-directed speech in English is around 70% (Christiansen, Onnis, &
Hockema, 2009; Daland & Pierrehumbert, 2011; Hockema, 2006; see also Cairns et al., 1997).
See Daland and Pierrehumbert (2011) for an unsupervised model based on diphone probabili-
ties. Performance of supervised models with access to word boundaries during learning provides
an upper bound on the model’s performance. So while these results suggest unsupervised
distributional learners may yet be able to extract more information from distributional cues, this
upper bound for distributional cues based on diphone probabilities is still substantially lower than
performance of (unsupervised) state-of-the-art lexicon-building models.

Despite this clear pattern of results, there are a number of reasons to suspect that existing
models do not reflect the full potential of distributional sources of information. First, the experi-
mental results reviewed above have shown that infants are sensitive to a rich set of distributional
cues at various levels of linguistic structure, yet many models, including the supervised anal-
yses of the input discussed above, have investigated the segmentation capacities of individual
cues. Boundary-predicting models that do rely on multiple distributional cues perform better
than similar models relying on single cues (Aslin et al., 1996; Christiansen et al., 1998; Swingley,
2005; Xanthos, 2004), suggesting that multiple cues can combine productively to provide addi-
tional information. However, even these results do not necessarily represent the full potential of
distributional information because, like all formal models of acquisition, these models must make
specific assumptions about how cues are calculated and used by the learner. Also, these models
consider at most a handful of distributional cues so it is possible that incorporating a richer set of
cues or combining cues differently could provide more information. Furthermore, while state-of-
the-art models perform very well on English, performance of the same models on child-directed
speech in other languages is less impressive. For example, performance of several state-of-the-art
models on child directed speech in Sesotho is between 40% and 55% (Blanchard et al., 2010;
Johnson, 2008a). Thus, information sources that work well in English are not as reliable in other
languages. Nevertheless, children do learn to segment successfully in other languages, which
suggests they may be relying on additional cues or combinations of cues.

These considerations motivate the present study, which is a systematic examination of the
availability of rich distributional cues to word boundaries in spontaneous child-directed speech
across languages. In contrast to the unsupervised models discussed above, the goal here is not to
model the process by which children segment speech. Rather, the goal is a complementary one,
aiming to estimate how much information about word boundaries can in principle be extracted
from the speech signal using distributional cues alone. In this respect, the approach pursued here
provides a more direct measure of the reliability of distributional cues: it does not presuppose a
particular segmentation strategy but instead relies on standard statistical techniques to identify
the best way to extract information from each cue (or combination thereof). As a result, in addi-
tion to addressing the theoretical debate concerning the availability of distributional cues in the
signal, our analyses also examine how a learner could combine distributional cues in order to cap-
ture maximal information, identifying avenues for further modeling work. Thus, our approach is
comparable to the supervised analyses discussed above, except our primary focus is on the infor-
mation content of multiple cues and how their strengths and interactions vary across languages.
Our approach is to consider a large and varied array of possible distributional cues and let the
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6 JAROSZ AND JOHNSON

fitting process select the best way of using the cues in each language in order to determine their
potential.

The remainder of the paper is organized as follows. The following section introduces our basic
methodology and data, including the use of logistic regression for evaluating the informativeness
of cues (and cue combinations) for word segmentation. We then present the set of distributional
cues we investigate. Next, we present a series of four statistical analyses examining this set of
distributional cues. Finally, we present general discussion and conclusions.

GENERAL METHOD

This section presents an overview of the methodology and describes the data and its transcription.

Evaluating Distributional Cues Using Logistic Regression

The analyses discussed below rely on logistic regression to evaluate the capacities of a variety
of distributional cues, individually and in combination, in predicting word boundaries. Logistic
regression is a standard statistical approach for binary classification (see, e.g., Hastie, Tibshirani,
& Friedman, 2009). It is a generalized linear model that is used to predict the probability of some
event Y in terms of the logistic of the weighted sum of independent variables Xi, as shown in (1).

Logistic Regression Curve: p(Y) = 1

1 + e−(β0+β1X1+β2X2+···+βkXk)
(1)

The coefficients β i of the model are fitted so as to maximize data likelihood. All the regressions
presented here are performed using the statistical computing package R (R Development Core
Team, 2008).

Each position between consecutive phonemes in a transcribed corpus of speech either cor-
responds to a word boundary or not. It is possible to use this binary variable as the dependent
variable in a logistic regression model in order to evaluate the capacity of various indepen-
dent variables at predicting word boundaries. In the present study the independent variables are
distributional cues calculated at the corresponding positions in the corpus. For instance, in one
of the analyses we examine a logistic regression model that predicts the probability of a word
boundary at each position in the corpus based on the bigram transitional probabilities between
the two phonemes on either side of that position. Given the bigram transitional probabilities for
all the positions in the corpus and the binary vector that indicates for each position whether it is
a boundary or not, logistic regression maps the values of the bigram statistic to a probability of
a boundary occurring in a way that best fits the data. In this case, low bigram transitional proba-
bilities get mapped to high likelihoods of boundary occurrence since boundaries are more likely
where the two phonemes on either side of the position are unlikely to occur together in connected
speech. A major advantage of logistic regression, however, is that it straightforwardly extends to
the case when there are multiple distributional cues. In this case, the fitting process determines
each cue’s association with word boundaries (positive or negative) and the relative weight each
of the distributional cues should receive to best fit the data.
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THE RICHNESS OF DISTRIBUTIONAL CUES 7

Evaluating Segmentation Performance

A fitted logistic regression model can be analyzed in various ways in order to determine how
much information the independent variables capture. Our primary objective in the present work
is to quantify the predictive content of different cues in such a way that their predictiveness can
be compared across cues and languages. A secondary consideration is using a meaningful mea-
sure that can be related to previous work. We are able to meet both these goals by using the fitted
regression models to predict word boundaries and evaluating the goodness of the resulting predic-
tions. Specifically, in the analyses below we use fitted logistic regression models to predict word
boundaries given some threshold of probability, and then we evaluate the resulting predictions
using the standard f-score measure, which provides a measure of a model’s ability to differentiate
between boundaries and nonboundaries.

F-score is a standard measure used for evaluating performance of computational models, and
it results in a value between 0 and 1, often expressed as a percentage. It is the harmonic mean of
precision, which penalizes false positives, and recall, which penalizes false negatives. Precision
and recall are also known as accuracy and completeness, respectively. The three measures are
defined below in (2).

Evaluation Metrics (2)

a. precision = # true positives

# true positivies + # false positive

b. recall = # true positives

# true positivies + # false negatives

c. f -score = 2∗precision∗recall

precision + recall

The f-scores of fitted regression models can be used to compare the predictiveness of
distributional cues and their combinations within and across languages. They can also be com-
pared to the performance of existing computational models of word segmentation. To facilitate
comparison with the modeling work reviewed above, we report f-scores calculated over whole
word tokens. This means a true positive corresponds to the correct segmentation of an entire
word and is counted only when both word boundaries are correctly identified and no spurious
boundaries are posited word-internally.

Before continuing, it is important to understand several properties of these logistic regres-
sion analyses. As shown above in (1), regression modeling assumes that cues combine additively
via linear combination. Combination of cues by weighted sum is a simple and powerful way to
model interactions, but it does mean that our analyses cannot extract information that requires
more complex cue interactions. Thus, it is important to keep in mind that our analyses may still
underestimate the information content of distributional cues. Since we are interested in the poten-
tial predictiveness of distributional cues infants could readily extract from connected speech, the
cues themselves are calculated from transcriptions without word boundaries. However, in order to
evaluate the predictiveness of a cue or cue combination, the logistic regression models in the first
three analyses are fitted using word boundaries. This approach thus provides an estimate of the
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8 JAROSZ AND JOHNSON

potential information content of distributional cues, estimating an upper-bound for segmentation
based on a linear combination of distributional cues. It measures how much information about
word boundaries in principle could be extracted by such a distributional learner. In Analysis 4,
we show how weighting of cues could be accomplished without access to word boundaries.

The Data and Participants

The analyses discussed below are conducted on transcribed, child-directed speech in English,
Polish, and Turkish. These three languages were chosen because they differ along a number of
dimensions of potential relevance to word segmentation. A major goal of this work is to exam-
ine differences in the availability and strength of distributional cues to word boundaries across
languages, and the differences between these languages enable an evaluation of the effect that
such differences make for the effectiveness of distributional cues to word boundaries in word
segmentation.

The three languages represent a range of morphological richness and syllable complexity.
While English is rather impoverished morphologically, Turkish is an agglutinative language, with
complex words formed via the combination of many, easily separable morphemes, each con-
veying particular meaning or information. Polish is a highly inflected language with a complex
system of inflectional morphology that marks words’ grammatical functions with fused mor-
phemes expressing multiple pieces of information. Since both morphological boundaries and
word boundaries influence phonotactics, it is possible that richer morphology may influence
the effectiveness of distributional cues to word boundaries. With respect to syllable complex-
ity, Turkish syllables are the simplest, followed by English, then by Polish. Syllable complexity
corresponds to more permissive consonant cluster combinatorics, which may also influence the
effectiveness of distributional cues to word boundaries. The languages also vary with respect
to the regularity of word-level stress, which is highly regular in Polish but less so in the other
two languages. Since experimental work has shown that stress patterns guide infants’ segmen-
tation strategies (Jusczyk et al., 1999; Mattys et al., 1999; Saffran et al., 1996), it is useful to
examine the effectiveness of cues based on sequential stress regularities in languages with dif-
ferent degrees of stress regularity. Finally, the languages differ with respect to the presence of
certain phonological dependencies. Specifically, Polish and Turkish exhibit voicing assimilation
and vowel harmony, respectively, which are absent from English. Polish voicing assimilation
affects sequences of obstruent consonants (consonants formed by obstructing airflow, such as [s
z t d p b]), and causes these sequences to be pronounced with consistent voicing throughout, even
when these sequences fall across word boundaries (Gussmann, 1992). The domain of Turkish
vowel harmony, in contrast, is the word and causes suffixes to alternate such that they match root
vowels in frontness and rounding (Clements & Sezer, 1982). These dependencies may likewise
influence the predictiveness of different distributional cues to word boundaries.

All the child-directed speech is extracted from corpora that are available from the CHILDES
database in the form of orthographic transcripts (MacWhinney & Snow, 1985). The English
data are extracted from the Bernstein-Ratner corpus (Bernstein-Ratner, 1987) and consist of
spontaneous speech to nine children, ages ranging between 13 and 23 months. Transcriptions
of the Bernstein-Ratner corpus have been used for the evaluation of a number of segmenta-
tion models (Batchelder, 2002; Bernstein-Ratner, 1987; Blanchard et al., 2010; Brent, 1999;
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THE RICHNESS OF DISTRIBUTIONAL CUES 9

Brent & Cartwright, 1996; Goldwater et al., 2009; Johnson, 2008b; Johnson & Goldwater, 2009;
Venkataraman, 2001), and we use it for consistency with previous work. The Turkish data (Slobin,
1982) consist of spontaneous speech to 33 children from 24 months to 56 months of age. Finally,
the Polish data (Weist, Wysocka, Witkowska-Stadnik, Buczowska, & Konieczna, 1984) consist
of spontaneous speech to four children aged 19 months to 38 months. These corpora cover the
youngest age ranges available for child-directed speech in Polish and Turkish, but the age ranges
are nonetheless somewhat higher than for the English data. It is not clear what effects the dif-
ferences in age ranges may have on the effectiveness of distributional cues to word boundaries,
and this should be investigated in further work. Regardless of the age ranges, the data from each
language reflects the phonological structure and general properties of spontaneous, child-directed
speech in that language.

Data Transcription and Coding

The orthographic transcripts of child-directed speech were phonemically transcribed in order to
arrive at an approximation of the speech signal to which the children were exposed. All phone-
mic transcripts were created automatically by replacing each orthographic word with its standard
pronunciation, as described below. We aimed to be as consistent as possible in the transcription
choices across the languages—for all languages we represented all segments, including complex
segments like diphthongs, long vowels, and affricates, using single characters. Our automatic
transcription methods were determined by the availability of phonetic dictionaries and similar
resources for each of the languages. For all languages we used the orthographic word bound-
aries to represent word boundaries in the phonemic transcripts and the utterances coded in the
transcriptions to identify utterance boundaries.

Brent (1999) created phonemic transcriptions of the Bernstein-Ratner English corpus, which
was used to evaluate several segmentation models (Batchelder, 2002; Bernstein-Ratner, 1987;
Blanchard et al., 2010; Brent, 1999; Brent & Cartwright, 1996; Goldwater et al., 2009; Johnson,
2008b; Johnson & Goldwater, 2009; Venkataraman, 2001). Brent removed disfluencies, non-
words, and utterances not directed at the children. All remaining words were broadly transcribed
using a phonemic dictionary. We were unable to use Brent’s transcriptions directly because we
are interested in examining word level stress as a distributional cue, and Brent’s transcriptions
do not include stress. To facilitate comparison with previous work, we wanted to remain as close
as possible to Brent’s transcriptions, however. We therefore used his orthographic transcripts but
transcribed the words using the English phonetic transcriptions in CELEX, which encode stress
(Baayen, Piepenbrock, & Van Rijn, 1993). We discarded utterances that included words not found
in CELEX, resulting in a loss of less than 3% of utterances. Thus, other than the transcription
differences, our English corpus is very close to the corpus used in previous work. The various
characteristics of the resulting English corpus are summarized in the second column of Table 1.

For the Polish data, the utterances spoken by parents and grandparents were extracted and
processed further (Weist orthographic transcriptions only include utterances directed at the
children). We discarded utterances containing nonwords or disfluencies (marked with ‘@’ in
the transcriptions) as well as incomplete or interrupted utterances (marked with ‘+’ in the
transcriptions). The resulting utterances were automatically phonemicized, which can be reliably
done based on the highly phonemic orthography. Each grapheme or digraph was translated into
the phoneme corresponding to its standard pronunciation in the given context. Additionally, the
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10 JAROSZ AND JOHNSON

TABLE 1
Characteristics of Phonemically Transcribed Child-Directed Speech

English Polish Turkish

Tokens
Utterances 9,498 9,361 10,160
Words 32,106 34,125 33,492
Clusters 46,585 66,969 82,899
Phonemes 94,730 140,138 168,839

Types
Words 1,198 5,040 2,516
Clusters 916 1618 425
Phonemes 47 38 38

Average Lengths
Words per utterance 3.38 3.65 3.30
Phonemes per utterance 9.97 14.97 16.62
Phonemes per word 2.95 4.11 5.04
Phonemes per cluster 1.24 1.23 1.16

phonemic transcripts were processed further to implement final devoicing and regressive voicing
assimilation (Gussmann, 1992). Specifically, the voicing of all clusters of consecutive obstruent
consonants within utterances was made to match the voicing of the final consonant of the clus-
ter, and any word-final obstruents or clusters not followed by a consonant in the next word were
made voiceless. As discussed above, this feature of Polish phonology may influence the effec-
tiveness of distributional cues to word boundaries since voicing assimilation applies both within
and across word boundaries. Finally, we were also interested in investigating stress as a cue to
word boundaries. Polish lexical stress is very regular so we assigned lexical stress automatically
by placing primary stress on the penultimate syllable (ultimate syllable in the case of a monosyl-
labic word) and placing secondary stresses left-to-right starting with the first syllable (Rubach &
Booij, 1985). This automatic stress assignment misses some exceptional stress patterns; however,
due to its regularity, it can provide an upper-bound on the effectiveness of stress as a cue to word
boundaries in languages, such as Polish, with predominantly regular stress. Characteristics of the
resulting corpus are summarized in the third column of Table 1.

In the Turkish corpus there were very few utterances (about 400) spoken by the primary care-
takers; most of the child-directed speech was spoken by the experimenters. Therefore, for this
data, we extracted the utterances spoken by both caretakers and experimenters for further pro-
cessing. These orthographically transcribed utterances were automatically phonemicized using
a full-scale finite-state implementation of Turkish phonology and morphology developed by
Oflazer and Inkelas (2006). Their system provides a pronunciation of each word based on the
SAMPA standard and relies on a full morphological analysis, which is essential for the cor-
rect placement of primary stress. We replaced the SAMPA multi-character transcriptions of long
vowels and affricates with (unique) single characters in order to be consistent with the other two
languages. The system does not encode secondary stress, the existence of which is controversial
in Turkish (Oflazer & Inkelas, 2006). Any utterances containing a word that could not be phone-
micized by the finite-state system were discarded, resulting in a loss of 27.5% of the utterances.
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THE RICHNESS OF DISTRIBUTIONAL CUES 11

These utterances were eliminated largely because they contained nonwords, disfluencies, or mis-
spellings. However, this still left a slightly larger set of utterances than either the English or Polish
data, as shown in Table 1.

As shown in Table 1, the corpora are comparable with respect to the number of utterances and
word tokens they contain. A number of interesting differences of potential significance to word
segmentation performance across the languages are notable. While the number of word tokens
across languages is comparable, the number of word types varies dramatically. This likely reflects
the morphological complexity of the language, with more types corresponding to richer morphol-
ogy. Also, while the three languages have a similar average number of words per utterance, the
word lengths themselves vary, which may also reflect morphological complexity to some extent.
Finally, the number of distinct cluster types (word-internal sequences of consonants) is an indi-
cator of syllable complexity, with more types reflecting a more permissive system of consonant
cluster phonotactics.

DISTRIBUTIONAL CUES AND PARAMETERS

In the analyses below, we examine a large set of distributional cues. In order to facilitate discus-
sion and analysis, the cues are categorized according to their placement (setting) along a number
of dimensions (parameters). Each individual cue reflects a combination of settings of these param-
eters. Although this set of cues is by no means an exhaustive list of possible distributional cues to
word boundaries, we have included cues that vary across multiple dimensions in order to capture
a range of distributional information. Specifically, we examine cues that vary between several
levels of representation (level), several different kinds of statistics (statistic), and forward or
backward calculation of the statistics (direction), where applicable. The final parameter deter-
mines whether the actual value of the statistic is used or whether the value is defined in relation
to those that surround it in the transcript (relation). For each of these parameters, we consider
a range of settings, guided by the kinds of distributional cues that have been tested in previous
experimental and computational studies. A summary with examples for each of the cue parameter
settings can be found in Table 2.

The first parameter according to which we organize the set of cues refers to the level of rep-
resentation over which statistics are calculated. In prior experimental and computational work,
statistical dependencies have been calculated at various levels, including the phoneme (see Mattys
& Jusczyk, 2001, and Brent, 1999, for examples). At the phoneme (P) level, cues are simply cal-
culated over the entire sequence of phoneme and utterance boundary symbols, and the values of
the statistics are then associated with each position. Distributional cues to word boundaries can
also be found across nonadjacent vowels and nonadjacent consonants (Newport & Aslin, 2004).
We therefore include both consonant (C) and vowel (V) levels in our set. Vowel level cues are
calculated on a version of the corpus with all consonants removed. In order to associate cues
that reference only vowels with all positions in the original corpus, we simply repeat the same
value for all positions between two vowels. For example, in a sequence such as V1C1C2C3V2, the
vowel-level bigram probability of V2 given V1 would be associated with each of the four posi-
tions between V1 and V2. Thus, vowel level cues alone are incapable of distinguishing among
the positions between two consecutive vowels, but they may still distinguish among positions
in different vocalic contexts. Such coarse-grained cues may provide valuable information when
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12 JAROSZ AND JOHNSON

TABLE 2
Cue Parameters and Settings with Examples for Two Contexts

Level
Example Combination

(Lev × Stat × Dir × Rel)
[jusi_mi] “you see
me” stress: [2 2 1]

[hiæsks_mi] “he asks me”
stress: [1 2 1]

P (phoneme) P × T × F × Curr Pr( [m] | [si] ) Pr( [m] | [ks] )
V (vowel) V × T × F × Curr Pr( [i] | [ui] ) Pr( [i] | [iæ] )
C (consonant) C × T × F × Curr Pr( [m] | [js] ) Pr( [m] | [ks] )
S (stress) S × T × F × Curr Pr( 1 | 22) Pr( 1 | 12)
CL (cluster) (CL ×) #CL × F × Curr Pr(# | []) Pr(# | [sks])

Statistic
B (bigram) P × B × F × Curr Pr( [m] | [i] ) Pr( [m] | [s] )
T (trigram) P × T × F × Curr Pr( [m] | [si] ) Pr( [m] | [ks] )
M (mutual

information)
P × M × F × Curr MI( [m], [i] ) MI( [m], [s] )

#B (# bigram) P × #B × F × Curr Pr(# | [i] ) Pr(# | [s] )
#T (# trigram) P × #T × F × Curr Pr(# | [si] ) Pr(# | [ks] )
#CL (cluster) (CL ×) #CL × F × Curr Pr(# | [] ) Pr(# | [sks] )
#|CL| (cluster

length)
(CL ×) #|CL| × F × Curr Pr(# | 0) Pr(# | 3)

Direction
F (forward) P × T × F × Curr Pr( [m] | [si] ) Pr( [m] | [ks] )
B (backward) P × T × B × Curr Pr( [i] | [mi] ) Pr( [s] | [mi] )

Relation
Curr P × B × F × Curr Pr( [m] | [i] ) Pr( [m] | [s] )
Next P × B × F × Next Pr( [i] | [m] ) Pr( [i] | [m] )
Diff P × B × F × Diff Pr( [i] | [s] ) - Pr( [m] | [i] ) Pr( [s] | [k] ) - Pr( [m] | [s] )
Rank P × B × F × Rank rank of Pr( [m] | [i] ) vs. Pr

( [i] | [m] ) & Pr( [i] | [s])
rank of Pr( [m] | [s] ) vs. Pr

([s] | [k] ) & Pr( [i] | [m] )

considered in conjunction with finer-grained cues. The calculation of consonant level cues is anal-
ogous and involves repeating the value of the statistic across any intervening vowels. We focus our
investigation on cues that could be extracted from the input data without prior language-specific
knowledge. Therefore, we do not consider a syllable level since the relationship between syllable
boundaries and word boundaries must be learned on a language-particular basis. Nonetheless,
the consonant and vowel level cues capture some of the same sorts of long-distance dependencies
that syllable level cues would. In particular, vowel-to-vowel dependencies are syllable-to-syllable
dependencies that reference just the nuclei of syllables. We also examine stress (S) level cues,
which are calculated just like vowel level cues except that calculations are made over degrees of
stress (0, 1, or 2 in English and Polish, and 0 or 1 in Turkish) rather than distinct vowels. This
allows statistical regularities in relative stress to be used in a language-independent fashion, just
like statistical regularities referencing other units of sound structure.

Another parameter according to which we organize the set of cues refers to the kind of statistic
being calculated. Although the most prominent statistics in the experimental literature are bigram
transitional probabilities, both trigram transitional probabilities (Aslin et al., 1996; Blanchard
et al., 2010; Cairns et al., 1997) and mutual information (Brent, 1999) have been explored in the
computational literature. All three measures are defined in (3)
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THE RICHNESS OF DISTRIBUTIONAL CUES 13

Statistics (3)

a. Bigram: Pr(y|x) = Pr(xy)
/

Pr(x)

b. Trigram: Pr(z|xy) = Pr(xyz)
/

Pr(xy)

c. Mutual Information: MI(x, y) = log
(
Pr(x, y)

/
Pr(x) Pr(y)

)

Since we define cues at various levels, we use the term “unit” to refer to the individual elements,
such as phonemes or stress levels, over which cues are calculated. Trigram transitional proba-
bilities measure the probability of a unit given the two preceding elements and therefore capture
somewhat longer distance statistical relationships, while mutual information provides a symmet-
ric measure of the co-dependence between two adjacent elements. We calculate all statistics using
their relative frequency estimates. Transitional probabilities can be used in one of two ways for
segmentation. One approach is to posit boundaries at positions of low probability where adja-
cent units are not statistically cohesive (Brent, 1999; Cairns et al., 1997; Elman, 1990). We call
this approach “unit-predicting” since the calculation of the cue references the unit following
the position in question. Another approach, which we call “boundary-predicting,” posits bound-
aries at positions where the following symbol is likely to be an utterance boundary ‘#’ (Allen
& Christiansen, 1996; Aslin et al., 1996; Brent, 1999; Christiansen et al., 1998). We explore
both of these approaches for bigrams and trigrams. In sum, we examine mutual information (M),
unit-predicting bigrams (B), boundary-predicting bigrams (#B), unit-predicting trigrams (T), and
boundary-predicting trigrams (#T).

In addition to these four basic levels and five types of statistics, we also define a parameter
setting that is best understood as a combination of level and statistic type. The combination of
consonant level and trigram statistics captures some nonadjacent dependencies between conso-
nants, but these statistics only capture dependencies up to a fixed distance. In order to capture
longer-distance dependencies within consonant clusters, we define a setting we refer to as clus-
ter (CL). This setting allows some of the same consonant cluster dependencies as captured by
syllables to be reflected in our set of cues. The intuition behind the cluster setting is that the
probability of a boundary occurring at different positions within a consonant cluster may depend
on the sequence of consonants preceding it and may reflect the appropriateness of treating that
sequence as a syllable coda. Accordingly, we define one cluster statistic (#CL) as the bigram
probability of an utterance boundary, given the entire sequence of consonants (up to a vowel or
another utterance boundary) preceding it.3 Like bigrams and trigrams, the cluster statistic mea-
sures the probability of one unit (here, an utterance boundary), given others. But unlike bigrams
and trigrams, the length of the unit that predicts the utterance boundary is not fixed. It varies
depending upon the number of adjacent consonants at a given position. We define a second clus-
ter statistic (#|CL|) as the bigram probability of ‘#’ given the length of the preceding cluster, a
(small) nonnegative integer.

Table 2 shows cue examples for two different contexts. Since the cluster settings incorporate
a level of representation and a type of statistic, they are listed under both parameters and are
discussed with respect to both parameters throughout the analyses. However, with respect to cue

3In our implementation, the cluster statistic distinguishes sequences of consonants following vowels from sequences
following ‘#’, and thus has access to whether or not a given cluster occurs at the beginning of an utterance.
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14 JAROSZ AND JOHNSON

parameter combinatorics, clusters do not vary along the level and statistic parameters—they are
a fixed combination of level and statistic. Thus, there are 22 combinations of settings along the
level and statistic parameters: two cluster settings plus 20 combinations of the four basic levels
and five types of statistics.

The next parameter according to which we organize the set of cues refers to the direction in
which the cues are calculated. Since most of the statistics described above are directional (with
the exception of mutual information, which is symmetric4), they can be calculated such that the
predicted element follows the conditioning element(s) in the speech stream (forward: F) or such
that the predicted element precedes the conditioning element(s) in the speech stream (backward:
B). Although the vast majority of previous experimental and computational work on segmenta-
tion examines forward transitional probabilities, many of the statistical dependencies used in the
artificial languages are consistent with backward transitional probabilities (Pelucchi et al., 2009a;
Pelucchi, Hay, & Saffran, 2009b; Perruchet & Desaulty, 2008). We are aware of one prior cor-
pus analysis that examined the usefulness of backward transitional probabilities for segmentation
(Swingley, 1999). Recently, there has been a surge of interest in backward transitional probabil-
ities with studies showing that both adults (Perruchet & Desaulty, 2008) and infants (Pelucchi
et al., 2009a) are able to segment artificial speech using only backward bigrams. Work on adult
speech production has also found effects of backward transitional probabilities (see, e.g., Bell
et al., 2003). We therefore include Direction as a parameter to examine the relative information
content of cues calculated in both directions across languages.

Finally, the last parameter we consider refers to the relationship between a cue’s value and
the values associated with neighboring positions (relation). In addition to examining the pre-
dictiveness of the value of each statistic at a given position (Curr), as explored in a number
of computational studies (Cairns et al., 1997; Christiansen et al., 1998; Elman, 1990), we con-
sider several relationships. We examine the possibility that the value at the subsequent position is
indicative of the current position’s likelihood of being a boundary (Next). The intuition behind
this manipulation is that neighboring positions’ low probability of being a boundary may be pre-
dictive of the current position’s high probability of being a boundary and vice-versa, since words
tend to be longer than one phoneme. Following previous work, we also examine the predictive-
ness of “peaks” and “dips” in the statistics relative to the values of the surrounding units’ statistics
(Adriaans & Kager, 2010; Brent, 1999; Gambell & Yang, 2006; Saffran et al., 1996; Yang, 2004).
We include one relative cue setting that calculates the difference between the current value and
the previous value (Diff), and another that calculates a ranking of the current value relative to
its two neighbors (Rank). The Rank setting permits precisely the kind of segmentation strategy
suggested by Saffran et al. (1996) to be considered in the analyses below, while the Diff variant
provides an alternative relational statistic, one that allows a more gradient relational measure.

Altogether, we examine 22 combinations of Level and Statistic, four settings along the
Relation dimension, and two Directions. This results in 176 distributional cues, as summarized
in Table 2.

4While mutual information is symmetric, we calculate it in both directions because in our implementation Direction
also controls what is calculated across utterance boundaries. In the forward direction, positions corresponding to utterance
boundaries are associated with statistics that refer to the final units in the utterance followed by #, while in the backward
direction utterance boundaries are associated with # followed by the initial units of the utterance.
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THE RICHNESS OF DISTRIBUTIONAL CUES 15

Analyses

The following sections present four analyses examining the informativeness of the
176 distributional cues defined above individually and in combination, within and across lan-
guages. Analysis 1 examines the predictiveness of each of the 176 cues individually and compares
the cues’ performance across languages. Analysis 2 explores the degree to which information
from multiple cues can be productively integrated by examining segmentation performance rely-
ing on successively larger sets of cues. In Analysis 3 we investigate whether the set of cue
parameter settings defined above can be reduced without affecting segmentation performance.
As discussed earlier, these logistic regression analyses use word boundaries to find the best way
to extract information from these cues. In Analysis 4, we present an initial exploration of how
such a weighting could be accomplished without access to word boundaries.

ANALYSIS 1

In the first analysis, we examine the amount of information contained within individual cues in
each of the languages, comparing cues across languages and to one another.

Method

For each cue in each language, we fit a regression model, use that regression model to predict
boundaries in the corpus, and evaluate the f-score of that predicted segmentation. The fitted
regression model generates a probability of a word boundary at each position in the corpus.
We use this probability to categorically decide between boundary and nonboundary. Since our
goal is to determine the amount of information captured by the cues, we choose the threshold
of probability that maximizes the f-score for each cue. This method of thresholding captures the
amount of information that could in principle be extracted from each cue. An alternative method,
placing a boundary whenever the regression model predicts a boundary with at least 0.5 proba-
bility, would underestimate the information content of weak cues. This is because the probability
of word boundaries is well below 0.5 in all three languages, and the curves of many weak cues
that nevertheless capture information are flat, never rising above 0.5.

In order to avoid overfitting of the regression models, we perform two-fold cross-validation.
We divide the corpus into two halves, use one half to fit the regression model and choose the
threshold, and then use that regression model and threshold to predict boundaries on the other
half. We do this separately for each half and then calculate the f-score over the combined seg-
mentations. Furthermore, in order to check the robustness of the f-scores, we perform simple
bootstrapping on a portion of the cues as described below (Efron & Tibshirani, 1993). This
involves taking a random sample (the same size as the original data) with replacement from
the original data, fitting models to data from the sample, and then evaluating the resulting models
and thresholds on the original data.

Also, to determine whether the cues contain any information whatsoever, we determine a
baseline to which the performance of the cues for each language can be compared. Following
Brent (1999), we implemented a baseline that randomly places n word boundaries in each cor-
pus, where n is the actual number of word boundaries in that corpus. The baseline thus relies on
language-specific knowledge, namely the actual proportion of word boundaries, but also assigns
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16 JAROSZ AND JOHNSON

the locations of these boundaries randomly. Due to the randomness, we repeated the random
assignment of boundaries 1,000 times for each language to determine the average f-scores of the
baseline. The f-scores of this baseline calculated over word tokens are 12.2%, 8.5%, and 6.5%
for English, Polish, and Turkish, respectively.

Results

Figure 1 shows the cross-validated f-scores of all the cues in each language (in descending order
of f-score) as well as the baselines for each language. This makes it easy to see the range of
f-scores attained within each language and the proportion of cues performing above the thresh-
old. Overall performance in English is highest, with the best cues reaching 68.9%. In Polish the
f-scores reach 39.3%, and in Turkish they reach 39.5%. Thus, the languages show marked dif-
ferences with respect to the performance of their best individual cues, with substantially higher
performance in English. Figure 1 also shows, however, that there are a substantial number of cues
within each language whose cross-validated f-scores fall above baseline. Using simple bootstrap-
ping to confirm the robustness of above-baseline performance,5 we found the number of cues
performing above baseline to be 73 in English, 80 in Polish, and 74 in Turkish. Also, 99 of the
cues were above baseline in one or more languages. Thus, a substantial number of cues capture
important information about word boundaries within and across languages.

We also examined cue performance to determine whether cue performance is generally con-
sistent across languages, that is, whether the same cues tend to perform well across languages.
In general, cue performance is consistent across languages. The correlation in f-scores between
English and Polish is 89.3, 78.1 between English and Turkish, and 83.2 between Turkish and
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English Baseline
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FIGURE 1 Sorted word token f-scores of individual cues vs. baselines.

5To determine consistency we ran 100 bootstrap samples for all cues within 10% of their baselines (counting only
those that fell above their baseline on all runs). Cues 10% or more above baseline were also counted as consistent.
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THE RICHNESS OF DISTRIBUTIONAL CUES 17

Polish. Despite this overall consistency, there are significant differences in cue performance
across languages. For example, the top-performing cue in English (the rank of the boundary-
predicting backwards phoneme-level trigram probability) achieves f-scores of only 28.6% in
Polish and 20.1% in Turkish.

Table 3 provides a more systematic comparison of how the languages vary with respect to
which cues capture the most information. Table 3 shows f-scores of the highest performing cues
for each of the parameter settings for each language, making it possible to compare performance
of the best individual cues across settings and across languages.6 This also makes it possible
to determine whether there are informative cues at each of the parameter settings. Table 3 also
shows the results of simple bootstrapping for each of these cues, which reveals that the f-scores
are robust, with most f-scores varying little across the 100 bootstrap samples (standard deviations
less than 0.1%). With a few exceptions, the bootstrapping thus indicates that f-score differences
between the best cues for various parameter settings are meaningful. With the exception of vowel-
level cues in English, the top cues for each parameter setting score above their respective baselines
in each language, showing that some information about word boundaries is available for each

TABLE 3
Max Word Token F-scores (Bootstrap μ, σ ) of Individual Cues by Parameter Setting

English Polish Turkish

Level
P 68.9 (68.9, 0) CL 39.3 (39.5, 0.02) P 39.5 (39.1, 0.09)
CL 61.7 (61.5, .35) P 35.7 (35.7, 0.03) CL 25.1 (25.1, 0)
C 30.8 (30.8, 0) S 16.5 (16.5, 0) C 14.4 (14.4, 0.13)
S 17.3 (17.3, 0) C 14.2 (14.2, 0) V 11.6 (11.9, 0.03)
V 14.5 (9.5, .70) V 9.7 (9.4, 0.23) S 9.4 (9.4, 0)

Direction
B 68.9 (68.9, 0) B 39.3 (39.5, 0.02) B 39.5 (39.1, 0.09)
F 62.8 (62.8, 0) F 27.9 (27.6, 0.48) F 33.6 (34.1, 0.93)

Relation
Rank 68.9 (68.9, 0) Diff 39.3 (39.5, 0.02) Diff 39.5 (39.1, 0.09)
Diff 67.4 (67.3, 0.13) Curr 37.8 (37.8, 0.009) Curr 35.6 (35.6, 0.005)
Curr 61.6 (61.6, 0.11) Rank 28.6 (28.6, 0) Rank 21.9 (21.9, 0)
Next 49.3 (49.3, .08) Next 23.9 (24.1, 0.56) Next 21.6 (21.9, 0.89)

Statistic
#T 68.9 (68.9, 0) #CL 39.3 (39.5, 0.02) #T 39.5 (39.1, 0.09)
#CL 61.7 (61.5, .35) #T 35.7 (35.7, 0.03) B 33.6 (34.1, 0.93)
M 56.8 (56.8, 0) T 27.9 (27.6, 0.48) T 33.4 (33.6, 0.42)
#|CL| 54.0 (54.0, 0) #|CL| 26.9 (26.0, 0.97) M 29.8 (30.1, 0.34)
#B 48.3 (48.3, 0) #B 25.8 (25.8, 0) #CL 25.1 (25.1, 0)
T 47.6 (47.6, 0) M 25.5 (25.5, 0) #|CL| 21.0 (21.0, 0)
B 43.5 (43.5, 0) B 24.2 (24.2, 0) #B 17.8 (17.6, 0.49)

Grey shading indicates parameter settings whose bootstrap f-score range overlaps with the f-score range of
neighboring cues (shaded light grey).

6Our focus is on best-performing cues, but see TABLE 5 (Appendix) for average f-scores within parameter settings.
See first author’s website (http://pantheon.yale.edu/~gjs42) for complete results of Analysis 1 and 2.
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18 JAROSZ AND JOHNSON

parameter setting across languages. In other words, all the parameter settings we consider contain
reliable information about word boundaries in at least one language.

In addition, Table 3 shows there are notable differences in relative performance across the lan-
guages. The top cues at the level parameter show the greatest range of f-scores, indicating that
the level of representation is crucial for choosing the most informative cues. Furthermore, the
languages differ with respect to the relative informativeness of cues at the various levels in a way
that reflects their phonological structures. For example, while vowel level cues are least informa-
tive and close to or at baseline in English and Polish, they provide reliable information in Turkish.
In fact, the 45th best individual cue in Turkish is a vowel-level cue, although these cues are at an
inherent disadvantage due to their inability to distinguish among positions between consecutive
vowels. The informativeness of vowel level cues in Turkish likely reflects the regularities created
by the system of vowel harmony in Turkish. Stress level cues, which share the same disadvantage,
fare better relative to cues in Polish than in the other languages, likely reflecting the regularity
of lexical stress in the Polish corpus. Also, it is noteworthy that in the language with the largest
consonant cluster inventory, Polish, cluster level cues are the most informative kinds of cues.

Discussion

These analyses have established several key facts. First, the best performing cues have cross-
validated f-scores of 68.9%, 39.3%, and 39.5% in English, Polish, and Turkish, respectively.
These figures estimate how much information could in principle be extracted by distributional
learners relying on individual cues. The results for English confirm the supervised perfor-
mance discussed above based on diphone probabilities and also demonstrate that this level of
performance can be achieved with minimal reliance on words boundaries. In particular, whereas
the supervised diphone approaches fit one parameter for each phoneme pair (depending on the
number of phonemes, this can be up to 6,241 parameters) based on statistics calculated from
a segmented corpus, in our approach word boundaries are used only to set one parameter, the
weight of the cue in the regression model—the cues themselves are estimated from an unseg-
mented corpus. The analysis also establishes significantly lower maximal f-scores of around 40%
for child-directed speech in Polish and Turkish. No previous work examines segmentation perfor-
mance on Turkish or Polish child-directed speech. Although our set of 176 cues is by no means
exhaustive, these results strongly suggest that successful segmentation must involve more than
singleton distributional cues.

One of the most interesting empirical findings of this analysis is that the top cues in all three
languages are calculated in the backwards direction. This is notable considering that most pre-
vious work, both experimental and computational, relies on forward calculation of sequential
statistics. As discussed earlier, our investigation of backwards statistics parallels recent exper-
imental results showing that humans can use backwards bigrams to segment speech (Pelucchi
et al., 2009a; Perruchet & Desaulty, 2008). There is also related work showing an important role
of backwards predictability effects in adult production (Bell et al., 2003; Jaeger & Kidd, 2008).
Together with these results, our finding that backwards statistics are a highly informative cue to
word boundaries across languages motivates further examination of infants’ abilities to segment
speech based on backwards cues defined at various levels of representation.

A major novel contribution of this analysis, however, is in establishing that there is reli-
able distributional information present across a vast and diverse set of distributional cues across
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THE RICHNESS OF DISTRIBUTIONAL CUES 19

languages. A substantial number of cues (99) perform above the baselines in one or more lan-
guages, and these high-performing cues are varied, with reliable distributional cues present at
all the parameter settings. These results complement experimental findings showing infants’ sen-
sitivities to a wide array of distributional regularities. However, our results also highlight the
variation in reliability of cues. While the sources of information are rich and varied in all lan-
guages, the relative informativeness of cues depends on the language. These results also indicate
that the precise way in which distributional cues are formulated is crucial and has major conse-
quences for the amount of information that can be extracted from distributional sources in any
particular language. They imply that if learners are to make the most of distributional sources of
information, they will need to be sensitive to the relative reliabilities of different cues in order to
identify the most reliable cues in the ambient language.

ANALYSIS 2

Analysis 1 showed that information about word boundaries is available in a rich set of
distributional cues cross-linguistically. However, it is not clear to what extent the information
captured by distinct cues overlaps. In particular, do different cues contain mutually redundant
information or is the information content of different cues largely complementary? Analysis
2 investigates this question by examining the cumulative information content of multiple cues.

Method

In this analysis, we perform a step-wise multiple logistic regression for each language. This is
a cumulative procedure that adds cues one-by-one to a multiple regression model until all cues
are included in the full model. During each iteration, the procedure considers each of the unused
cues by fitting multiple logistic regression models that include each of them plus the accumulated
cues that were selected on earlier iterations. It selects and adds the cue that improves likelihood
the most to the current model. This procedure is not optimal (in the sense that each iteration is
not guaranteed to contain the set of cues that captures maximal information); however, it pro-
vides a good approximation of how the incorporation of additional cues affects the cumulative
information content.

After the addition of each cue, the f-score of the resulting regression model is evaluated using
two-fold cross validation, as in Analysis 1. That is, a regression model with the current set of
cues is fitted for each half of the data and used to predict boundaries on the other half of the data.
For these boundary predictions we simply use a fixed threshold of .5 for all cues.7 The f-score
is calculated on the basis of the predicted segmentations for both halves. Also as in Analysis 1,
we confirm the reliability of the f-scores by performing simple bootstrapping on the full models
incorporating all cues.

7The multiple regression models quickly yield strong enough predictions to obviate oracle selection of thresholds.
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20 JAROSZ AND JOHNSON

Results

The results are summarized in Figure 2. As cues are added, the f-scores increase dramatically at
first, then more slowly, and finally plateau. Overall, multiple regressions in each of the languages
dramatically improve upon the performance of the best individual cues. In English the f-scores
increase from 68.9% to 90.8%, in Polish from 39.3% to 81.2%, and in Turkish from 39.5% to
78.7%. Validated performance based on 100 bootstrap samples indicates that the f-scores of the
complete models are robust, with average f-scores of 91.6%, 81.7%, 80.9% and standard devia-
tions of 0.12%, 0.11%, and 0.23% for English, Polish, and Turkish, respectively.8 Furthermore,
a large number of cues are needed before the f-scores of the full models are reached. In English,
the plateau is reached after roughly 65 cues, in Polish after roughly 115 cues, and in Turkish after
roughly 85 cues.

Additionally, although the complete results of these multiple regressions are too cumbersome
to present in full, we would like to make several observations. In Analysis 1 we saw that the
best vowel level cue in Turkish was ranked 45th. In the step-wise multiple regression analysis,
however, a vowel level cue is the third cue to be added to the model. Thus, after just two cues
had been included in the model, a vowel level cue was found to contain the most non-redundant
additional information. Similarly, in Polish, the top stress level cue was ranked 44th individually,
but a stress level cue was the second cue to be added to the multiple regression model. These
results underscore the relative importance of vowel level and stress level cues in the Turkish and
Polish data, respectively. Perhaps more importantly they illustrate that the information content
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FIGURE 2 Word token f-score change during step-wise multiple regres-
sion.

8The bootstrap f-scores for multiple regression models (see also results of Analysis 3) are often slightly above the
cross-validated f-scores. The cross-validation, by splitting the data in half for train and test, provides a stricter evaluation
because the two sets of data represent speech of different speakers. Slight differences can be expected since previous
results show variation in performance for different speakers (Monaghan & Christiansen, 2010).
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THE RICHNESS OF DISTRIBUTIONAL CUES 21

of cues depends crucially on what other information is also available: cues that appear weak
individually may nonetheless capture substantial non-redundant information.

In sum, a large portion of the distributional cues examined here capture distinct, non-redundant
information. This is evidenced by the dramatic increase in f-score of the full models as compared
to top performing individual cues and the large number of cues needed to reach the f-score of
the full models. Further, these analyses show that information content of cues is conditional on
availability of information from other cues: consideration of the utility of a cue in isolation is
a misleading measure of its relative contribution in a richer context because strong cues can be
largely redundant with other strong cues.

Discussion

The main result of this analysis is that the cumulative information content of the set
of distributional cues is substantial and well beyond the performance of individual cues.
Distributional cues are not entirely redundant: they can be combined to yield significant gains in
information about word boundaries. The word token f-score of around 90% for English is above
previously reported f-scores based on supervised analyses of distributional cues, and shows that
in principle there is enough rich distributional information for segmentation performance compa-
rable to that of state-of-the-art lexicon-building approaches. The extent to which this rich source
of information can be harnessed without relying on an oracle to set the cue weights is an open
question, but this result provides reason to be optimistic about this possibility. The word token
f-scores of around 80% for Polish and Turkish provide even stronger evidence for the cumulative
information content of distributional cues since these represent an increase from around 40% for
individual cues. This dramatic increase is significant because it illustrates weaker cues can pro-
ductively combine to help narrow the gap in performance between languages. This suggests that
part of the key to explaining how successful segmentation occurs across languages may lie in
learning strategies that incorporate information from a wide array of distributional cues. It should
be reiterated that the regression models assume information from multiple cues is combined via
weighted sum and therefore estimate an upper-bound for learners under this assumption. It is pos-
sible that even more distributional information could be extracted using more powerful models.

ANALYSIS 3

The results of Analysis 2 also suggest that a large number of cues are needed in order to extract
all the available distributional information. Analysis 3 addresses this question from another
perspective by asking whether it is possible to reduce the number of parameter settings with-
out sacrificing performance. Analysis 3 also explores how the conditional information content of
distributional cues varies across languages and how it differs from the unconditional performance
examined in Analysis 1.

Method

The analysis presented in this section is a systematic examination of the contribution of vari-
ous parameter settings to overall segmentation performance. In this analysis we use step-wise

D
ow

nl
oa

de
d 

by
 [

T
he

 U
C

 I
rv

in
e 

L
ib

ra
ri

es
] 

at
 1

4:
26

 0
6 

Fe
br

ua
ry

 2
01

3 



22 JAROSZ AND JOHNSON

multiple regression performed over the sets of cues associated with each parameter setting. For
each parameter, we iteratively add in the set of cues (corresponding to a parameter setting) that
improves model fit most until all parameter settings have been included. For example, for the
level parameter, we consider a series of five increasingly richer models to which at each itera-
tion all the cues calculated at a particular level of representation are added, until cues from all
levels have been included. For every iteration, we evaluate the performance of the models using
two-fold cross validation and perform simple bootstrapping to determine the robustness of the
resulting f-scores.

In addition to examining the necessity of parameter settings, this analysis provides a system-
atic evaluation of how information content of cues is conditional on the presence of other cues
in the model. It investigates how the relative information content of cues in a cumulative model
can differ from the relative information content of cues in isolation. It also examines how the
conditional information content of cues at various parameter settings varies across the three lan-
guages. In this analysis we collapse the two cluster statistics and refer to them as CL in the tables
below. These parameter settings contain fewer cues than other settings at the level and statistic
parameters so this move reduces the inherent disadvantage these parameter settings face in these
multiple regression analyses.

Results

Table 4 presents the results of the step-wise multiple regressions over sets of cues within param-
eter settings.9 F-scores of the full models are repeated from Analysis 2 for convenience, and the
table also shows the results of 100 bootstrap samples for each of the models.10 As with the pre-
vious analyses, the bootstrapping results indicate that f-scores are robust and vary little across
the 100 bootstrap samples (all standard deviations are below 0.32%).11 As a result, most of the
f-score differences in the table can be interpreted as meaningful, with a few exceptions. The mod-
els whose f-score ranges overlap with the f-score ranges of the simpler models of the previous step
are shaded in grey. Specifically, the vowel-level cues in English and Polish make little improve-
ment to f-scores, with bootstrap f-scores overlapping the f-scores of simpler models without the
vowel-level cues. This indicates that vowel-level cues do not provide significant improvement
in English and Polish. The other case of insubstantial improvement is for the Statistic parame-
ter in Polish, for which the f-score ranges for the last two steps overlap with the previous steps.
The unit-predicting bigrams and mutual information statistics do contribute some information in
Polish, but the model without these statistics performs nearly as well as the full model. In all
other cases, however, these results indicate that all remaining parameter settings contribute non-
redundant information in at least one of the languages. To confirm that the step-wise regression
did not select a suboptimal set of parameters in the penultimate step, we also considered for each
parameter setting the model without that parameter setting. These results (not reported) corrob-
orate the results in Table 4; none of these models outperformed the penultimate models in the

9In doing this analysis, we also evaluated the cumulative information content for the set of cues at each of the
parameter settings individually. These results are summarized in TABLE 6 in the Appendix.

10TABLE 7 in the Appendix shows the Bayes Information Criterion (BIC) for each model.
11For why bootstrap f-scores are sometimes slightly higher than the cross-validated f-scores, see footnote 8.
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THE RICHNESS OF DISTRIBUTIONAL CUES 23

TABLE 4
Word Token F-scores of Step-Wise Multiple Regressions by Parameter Setting

English Polish Turkish

Level
P 84.6 (84.8, 0.11) P 54.1 (55.2, 0.12) P 59.2 (60.1, 0.32)
. . . +S 87.6 (87.8, 0.09) . . . +S 74.5 (74.9, 0.13) . . . +S 70.3 (71.1, 0.32)
. . . +C 89.9 (90.3, 0.10) . . . +C 77.9 (78.7, 0.09) . . . +V 73.8 (75.9, 0.28)
. . . +CL 90.7 (91.5, 0.10) . . . +CL 80.7 (81.5, 0.10) . . . +C 77.9 (79.4, 0.25)
. . . +V
(FULL)

90.8 (91.6, 0.12) . . . +V
(FULL)

81.2 (81.7, 0.11) . . . +CL
(FULL)

78.7 (80.9, 0.23)

Direction
B 83.8 (84.4, 0.12) B 75.0 (75.4, 0.18) F 65.2 (66.1, 0.26)
. . . +F
(FULL)

90.8 (91.6, 0.12) . . . +F
(FULL)

81.2 (81.7, 0.11) . . . +B
(FULL)

78.7 (80.9, 0.23)

Relation
Rank 84.5 (84.9, 0.09) Curr 70.4 (71.4, 0.13) Rank 60.6 (61.0, 0.25)
. . . +Next 88.6 (88.9, 0.10) . . . +Rank 77.0 (77.3, 0.11) . . . +Curr 72.5 (73.2, 0.23)
. . . +Curr 89.9 (90.50.10) . . . +Diff 79.8 (80.1, 0.09) . . . +Next 75.2 (77.1, 0.24)
. . . +Diff
(FULL)

90.8 (91.6, 0.12) . . . +Next
(FULL)

81.2 (81.7, 0.11) . . . +Diff
(FULL)

78.7 (80.9, 0.23)

Statistic
#T 78.9 (79.0, 0.09) #T 60.8 (61.4, 0.15) #T 58.9 (58.8, 0.22)
. . . +T 85.5 (85.8, 0.09) . . . +T 71.2 (72.5, 0.13) . . . +B 69.6 (70.1, 0.23)
. . . +#B 87.7 (88.1, 0.11) . . . +CL 78.6 (79.1, 0.10) . . . +#B 72.9 (74.0, 0.26)
. . . +CL 89.0 (89.4, 0.09) . . . +#B 80.0 (80.4, 0.12) . . . +T 75.7 (77.3, 0.23)
. . . +B 89.9 (90.5, 0.12) . . . +B 80.3 (81.1, 0.10) . . . +M 77.9 (79.4, 0.28)
. . . +M
(FULL)

90.8 (91.6, 0.12) . . . +M
(FULL)

81.2 (81.7, 0.11) . . . +CL
(FULL)

78.7 (80.9, 0.23)

Grey shading indicates parameter settings whose bootstrap f-score range overlaps with the f-score range of the pre-
ceding parameter setting. All settings at the Level parameter correspond to 40 cues, except CL, which corresponds to 16.
Backward and forward each correspond to 88 cues. Each of the Relation settings corresponds to 44 cues, and each of the
Statistic settings corresponds to 32 cues, except CL, which corresponds to 16.

table. Thus, while several parameter settings contribute little information in some languages, our
results indicate all the parameter settings we consider are needed for models in all languages to
reach their full potential.

Several observations regarding performance of particular settings can be made. Although
stress level cues were not very informative individually, they are the second group to be added
(after phoneme level cues) in all languages. This indicates that stress level cues capture the most
additional information about word boundaries given the information captured at the phoneme
level. This result complements experimental findings showing that stress cues are important in
early word segmentation (Jusczyk et al., 1999; Mattys et al., 1999; Thiessen & Saffran, 2004) and
corroborates prior modeling results showing improved segmentation performance after incorpo-
ration of stress information (Christiansen et al., 1998; Hockema, 2006). Conversely, cluster level
cues were among the most informative cues individually, yet they are added last or second-to-
last in the step-wise regressions. Their addition substantially improves performance in Polish, but
their late addition nonetheless suggests that the information they capture is largely redundant with
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24 JAROSZ AND JOHNSON

the information captured by phoneme level cues. Additionally, the first two statistics settings in all
languages include boundary-predicting transitional probabilities and unit-predicting transitional
probabilities, suggesting that these two kinds of statistics capture a good deal of complementary
information. Likewise, the first two settings along the Relation dimension added in all languages
include one absolute (Curr or Next) and one relative cue (Rank), again suggesting that these kinds
of cues capture different types of information. As in Analysis 2, this step-wise regression shows
that information content of cues is relative—performance within individual parameter settings is
not a good predictor of the cumulative information each setting contributes to the full model once
other settings are factored in.

Discussion

This analysis examined the richness of distributional information by investigating whether the set
of parameters could be reduced without sacrificing performance. Although Analysis 2 showed
that there is some redundant information contained within the set of cues as a whole, the results
of this section show that there is no systematic way to reduce the set of cue parameters without
affecting performance in one or more languages. This does not mean that some smaller set of cues
could not be found to perform as well or nearly as well as this set of 176. What it does illustrate,
however, is that the interaction of information captured by multiple cues is complex and varied
across languages. Cues that perform poorly in isolation may provide vital information once other
sources of information are incorporated. Conversely, cues that perform well in isolation may be
largely redundant with other highly performing cues. Furthermore, the relative importance of
particular distributional cues is language-dependent, with some cues that capture crucial infor-
mation in one language providing nearly no improvement in another. This suggests that in order
to make full use of distributional information, learners must be able to consider a diverse set of
distributional cues to identify the most reliable combination in the ambient language.

ANALYSIS 4

The findings of Analyses 1–3 show that distributional cues are a rich source of information about
word boundaries across languages when multiple cues are used simultaneously and weighted
appropriately. However, as Analyses 1–3 illustrate, the interactions among distributional cues are
complex and varied across languages. If learners are to make full use of this rich information,
they must be capable of adapting their segmentation strategies in response to the language input
in order to determine the relative reliability of different cues. To evaluate the potential information
content of cues, the preceding analyses relied on an oracle to set the relative weights of the cues
in such a way as to extract maximal information. Given these findings, it is not clear, however,
to what extent this rich source of information can be harnessed by unsupervised learners without
access to such an oracle. Although a complete answer to this question is beyond the scope of
this paper, the analysis described in this section is an initial investigation into the utility of rich
distributional cues in a fully unsupervised setting.
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THE RICHNESS OF DISTRIBUTIONAL CUES 25

Method

The method we employ in this analysis is an extension of the methods employed in Analyses
1–3. Logistic regression is not inherently suited to unsupervised learning, and we emphasize that
this analysis is a preliminary investigation of the usefulness of these cues in an unsupervised
setting and likely underestimates their potential. The basic insight is to use distributional cues
evaluated at and around utterance boundaries to predict word boundaries, an idea that has been
explored in a number previous studies (Allen & Christiansen, 1996; Aslin et al., 1996; Brent,
1999; Christiansen et al., 1998; Daland & Pierrehumbert, 2011; Fleck, 2008). We use all positions
corresponding to utterance boundaries as positive examples of boundaries for fitting purposes.
In order to provide the fitting process with non-boundaries as well, we make the simplifying
assumption that the positions adjacent to utterance boundaries are nonboundaries. This assump-
tion is mostly harmless as the proportions of false negatives it assumes are just 0.021, 0.082, and
0.015, in English, Polish, and Turkish, respectively. Thus, we create new training sets for each
language that consist of just utterance boundaries and the positions adjacent to them on the left
and right, labeling these adjacent positions as nonboundaries.

These new training sets are much smaller and simpler than the original data, and few cues
are needed to model these data perfectly. Recall that the cues themselves have access to utter-
ance boundaries so the task of predicting them is much simpler than that of predicting the word
boundaries. Since we are not interested in fitting this data perfectly but rather want to be able
to generalize from these training sets to the rest of the data, we select a subset of cues to use
for each language using these training sets. Specifically, for each language we perform step-wise
logistic regression on these new training sets until the f-scores reach 100%.12 This procedure is
not guaranteed to identify the best cues for segmentation, but it identifies viable cues capable
of distinguishing utterance boundaries from the positions adjacent to them, assuming those are
non-boundaries. We then examine each of the models considered by the step-wise regression
procedures for their generalization capacities, evaluating them on the original data.

Once fitted on the new training set, each of the models can be used to generate the probabil-
ity of a boundary for each position in the original data. Since we did not want to assume any
language-specific information for this analysis, we evaluate and present the predictions of the
models for the same range of thresholds in all languages. Specifically, for each model we per-
form separate f-score evaluations at rates of boundary prediction ranging between .15 and .40.
For example, for a rate of .35 a threshold is selected so that the proportion of boundaries predicted
equals 35%. We chose this method of thresholding because the actual probability thresholds
corresponding to these rates are highly arbitrary.

Results

The generalization results for all models considered during the step-wise regressions are shown in
Figure 3. For readability, we present the f-scores at thresholds .25, .3, and .35 only—performance

12Once f-scores reach 100%, there is no basis on which to prefer some cues over others. Furthermore, if additional
cues were added, there would be no controlling for how the fitting process weighted the various cues, as many solutions
would be possible, so the contribution of any particular cue could not be guaranteed or controlled.
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FIGURE 3 Unsupervised word token f-scores.

at higher and lower thresholds was poorer while performance at intermediate values was similar.
Perfect f-scores on the new training data were reached within 11 cues for English, 14 cues for
Polish, and three cues for Turkish. The ability of the models to generalize from utterance bound-
aries is highly dependent on the cues used and their weights, and our procedure for automatically
choosing cues is not capable of gauging generalization ability in any way (it only measures how
well the cues distinguish utterance boundaries from nonboundaries). Therefore, as cues are added
to the models, and the weights for the regressions are calculated from scratch, performance on
the original data sometimes goes down and then up.

The best performance for English (Figure 3a) is at a threshold of .35 and reaches an f-score
of 77.3% after two cues. The best performance for Polish is 41.2%, which is reached after six
cues at a threshold of .25 (Figure 3b). Finally, the best performance for Turkish is 34.4% and
is reached after two cues at threshold .25 (Figure 3c). In sum, performance reaches f-scores of
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THE RICHNESS OF DISTRIBUTIONAL CUES 27

77.3%, 41.2%, and 34.4% in English, Polish, and Turkish, respectively. Notably, in each of the
languages the highest f-score is reached after multiple cues are used, again showing a cumula-
tive effect of multiple distributional cues, this time in an unsupervised setting. Performance on
English is once again much higher than for the other two languages. Since the method employed
here relies on generalizing from utterance boundaries to all word boundaries, the differences in
performance may reflect differences in how representative of word boundaries utterance bound-
aries are in these languages. We emphasize that this analysis is a preliminary exploration; further
work employing methods better suited to unsupervised learning is needed to uncover the true
potential of unsupervised learners to exploit the richness of distributional information.

Discussion

Despite the preliminary nature of this approach, the performance of the resulting models provides
reason to be optimistic about the prospects of unsupervised learning with rich distributional infor-
mation. As discussed earlier, prior unsupervised segmentation models relying on distributional
information alone achieved word token f-scores in the range of 45–55% for English child-
directed speech. Our unsupervised results for English, reaching word token f-scores of 77.3%, are
substantially higher than previous models relying on distributional cues alone. Indeed, the per-
formance on English rivals that of recent lexicon-building approaches, which, until Johnson and
Goldwater’s 2009 result, achieved word token f-scores in the range of 70–80% on English child-
directed speech (Batchelder, 2002; Blanchard et al., 2010; Brent, 1999; Fleck, 2008; Goldwater
et al., 2009; Johnson, 2008b; Venkataraman, 2001). In Polish and Turkish, the unsupervised
results are less impressive, with less of the potential distributional information in these languages
(around 80% f-score) captured by these models. As discussed above, the explorations in this sec-
tion are preliminary, and we believe better-suited techniques will be able to extract much more
of this information. Nonetheless, these results demonstrate that rich distributional cues hold great
potential for the task of unsupervised word segmentation, a task we hope future work will explore
more fully.

GENERAL DISCUSSION

This study investigated the reliability and richness of distributional cues to word boundaries
in spontaneous child-directed speech in English, Polish, and Turkish. Analysis 1 showed that
information about word boundaries is available in a large and diverse set of distributional cues
across languages. It also showed for two previously unexplored languages that the reliability of
individual cues is not constant across languages, with the best singleton cues providing much
less information in Turkish and Polish than in English. Analyses 2 and 3 focused on the com-
bined information content of multiple cues, showing that the cumulative information content from
distributional sources is substantial and helps to narrow the performance differences between
languages. These analyses also illustrate that cues that appear weak individually may provide sub-
stantial complementary information in combination with other cues. All three analyses highlight
the richness of distributional information and the language differences in the relative reliability
of cues, showing that the most informative sets of cues vary depending on the language. Finally,
Analysis 4 provided initial investigations using this rich information in an unsupervised setting,
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providing reason to be optimistic that this rich source of information can be exploited without
supervision. Together these findings suggest that successful segmentation across languages may
depend on learners’ abilities to consider a wide range of distributional regularities and to integrate
information from many distributional cues in a way that reflects their relative reliabilities in the
ambient language.

Our findings highlighting the role of interacting cues across various levels of representation
parallel recent developments in theoretical and computational phonology. Optimality Theory,
the dominant theoretical framework in phonology, formalizes phonological well-formedness in
terms of the interaction of constraints stated over cross-cutting levels of representation (Prince
& Smolensky, 1993/2004). Probabilistic extensions of Optimality Theory have been used suc-
cessfully to model gradient phonotactic knowledge relying on an integration of soft constraints
referencing various aspects of phonological representation (Boersma, 1997; Coetzee & Pater,
2008; Hayes & Londe, 2006; Hayes & Wilson, 2008). Some of these formal proposals rely on
a model of constraint interaction that is closely related to the kind of cue interactions assumed
in our logistic regression analyses (Hayes & Wilson, 2008; Pater, 2009). Thus, there are close
connections between the kind of cue integration explored here and a large body of literature on
the modeling of gradient phonotactics. Most of the work on gradient phonotactics has focused on
modeling well-formedness of isolated words; however, there is also exciting new work approach-
ing segmentation from this perspective (Adriaans & Kager, 2010). We hope future experimental
and computational work will further pursue these connections by developing and testing mod-
els of infant segmentation that build on the joint findings in the segmentation literature and the
literature on modeling gradient phonotactics via the interaction of multiple cues.

An open question and one of much recent debate in the phonological literature is how much of
the formal machinery should be ascribed to innate endowments and how much can be acquired
from the available language data. The traditional assumption in generative linguistics is that the
constraints and representations over which they are calculated are innately available to the learner.
In an influential paper, Hayes and Wilson (2008) explore the feasibility of learning the con-
straints and their weights from the language input. They are able to achieve successful modeling
of gradient well-formedness across input data from several languages only when the models are
provided with access to phonological features, metrical structure, and representations allowing
direct computation over phoneme sequences within natural classes (tiers), similar to our vowel
and consonant levels. The ways in which we’ve calculated cues across different levels of repre-
sentation relies on access to certain aspects of phonological representation. For example, in order
to calculate the vowel and consonant level cues, the model must have the ability to differentiate
vowels from consonants and to construct representations that reference their sequences sepa-
rately. Thus, the regression models are certainly not entirely linguistically ignorant. At the same
time, as Hayes and Wilson discuss, there is a distinction to be made between a genetic endowment
that can access certain representations and perform certain calculations over these representations
and an endowment that includes a set of prespecified constraints or principles. To give a concrete
example, our simulations assume learners can identify vowels and make calculations over them
in order to discover regularities; however, this is qualitatively different from providing learners
with specific vowel constraints, such as the constraint that each word must contain a vowel (Brent
& Cartwright, 1996). Our results certainly do not provide a definitive answer to the question of
genetic endowment, but they do parallel the findings of Hayes and Wilson in showing that access
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to appropriate representations can go a long way. There is still much work to be done in devel-
oping cognitively motivated models relying on rich distributional information, but our findings
indicate there is a substantial amount of information available in the signal. Therefore, our results
do not support the conclusion (contra Yang, 2004) that distributional cues provide insufficient
information for successful segmentation.

Our findings motivate further exploration of the roles of interacting distributional cues in infant
segmentation as well as computational modeling. One consistent finding of the analyses above
is the complexity of the interactions of distributional cues. This study investigates how cues
should combine to provide maximal information about word boundaries, but it does not address
how infants actually integrate different distributional cues during language learning. The analy-
ses discussed above show that the information content of distributional cues is highly variable
both within and across languages. This raises the question of how the information content of
distributional cues affects infants’ sensitivity to them: does infants’ weighting of distributional
cues reflect their relative information content in the ambient language? Behavioral results from
speech perception, visual perception, and sentence processing indicate that language users do
weight cues according to their reliability (Bejjanki, Clayards, Knill, & Aslin, 2011; Clayards,
Tanenhaus, Aslin, & Jacobs, 2008; Ernst & Banks, 2002; Fine & Jaeger, 2011; Kleinschmidt &
Jaeger, 2011). For example, Ernst and Banks (2002) found that adults combine information from
visual and haptic cues according to the variability associated with these information sources: cues
that provide more reliable estimates are weighted more heavily by the subjects. In the segmen-
tation domain, there is already important work examining the relative weighting among broad
classes of cues (Johnson & Jusczyk, 2001; Mattys, 2004; Mattys et al., 1999; Mattys et al., 2005;
Morgan & Saffran, 1995; Thiessen & Saffran, 2003; Weiss et al., 2010). An important avenue
for future experimental work is determining the relationship between estimates of segmentation
cue reliability and cue weighting by infants to determine whether infants weight cues accord-
ing to their information content in the ambient language. On the computational side, our results
motivate development of segmentation models that integrate multiple distributional cues. There
is much work in the visual domain on modeling the integration of multiple cues with varying
degrees of reliability (Jacobs, 2002; Kersten, Mamassian, & Yuille, 2004). There are also mod-
els of phonetic category learning (Bejjanki et al., 2011; Feldman, Griffiths, & Morgan, 2009;
Kleinschmidt & Jaeger, 2011), sentence processing (Fine & Jaeger, 2011), and word segmenta-
tion (Adriaans & Kager, 2010; Cairns et al., 1997; Christiansen et al., 1998; Goldwater et al.,
2009; Johnson, 2008b; Norris & McQueen, 2008) that incorporate multiple statistical informa-
tion sources. Particularly relevant is a recent model by Toscano and McMurray (2010) that learns
to combine and weight multiple cues to phonetic categories from the distributional information
in the input. The approaches to cue integration and weighting formalized in these models are
promising avenues for the development of an unsupervised model of infant segmentation based
on multiple distributional cues.

Although the focus of this work has been on the information content of rich distributional
information, we do not mean to suggest that segmentation models or human learners must
rely only on distributional cues. Indeed, recent work suggests that human learners do not rely
exclusively on sequential statistics, with experimental evidence suggesting that additional biases
associated with lexicon-building strategies are at work (Frank, Tily, Arnon, & Goldwater, 2010;
Giroux & Rey, 2009). However, see Daland and Pierrehumbert (2011) for arguments that early
segmentation and word-learning are separate processes. As discussed earlier, lexicon-building
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30 JAROSZ AND JOHNSON

models that make limited use of distributional cues do not perform consistently well on all
languages. The above experimental results on learner biases together with our finding that
differences in performance across languages can be narrowed by combining multiple weak
distributional cues suggest there is much potential for combining the advantages of lexicon-
building approaches with reliance on rich distributional information. Also, it is important to keep
in mind that experimental work has shown that infants are capable of using finer-grained acoustic
cues not explored in the present study, such as coarticulation and allophony (Johnson & Jusczyk,
2001; Jusczyk et al., 1999; Thiessen & Saffran, 2004; Weiss et al., 2010). An important question
for future work is how the information content of these lower level cues varies across languages
and whether they can be used to further reduce the performance differences between languages.

Finally, there are several issues and simplifying assumptions that warrant further investiga-
tion. Together with most previous modeling work on segmentation, we have assumed that the
language input is represented as a sequence of discrete phonetic symbols. This is a simplification
since speech is actually a continuous stream with phonetic variation. Indeed, infants seem to solve
the phonetic categorization and segmentation problems during roughly the same period, suggest-
ing that by the time infants begin segmenting they have not yet fully learned to parse the speech
stream into discrete phonemes (Feldman et al., 2009). In recent work, Rytting, Brew and Fosler-
Lussier (2010) showed that segmentation performance is markedly lower on phonetically variable
speech as compared to speech transcribed using dictionary methods. Future work must investigate
the impact of phonetic variability not only on the informativeness of distributional cues investi-
gated in the present work but also on the performance of various computational models of word
segmentation. In addition, although we have shown that combining many weak distributional cues
can narrow performance differences between languages, performance in English is still substan-
tially higher in our analyses and tends to be higher in English in previously reported modeling
studies. In addition to exploring lower-level phonetic cues as discussed above, it is important
first to rule out the possibility that some of the language differences are a result of properties
of the particular corpora or the transcription conventions. The Brent corpus has become the
standard corpus for evaluation of segmentation models in English, but a number of the tran-
scription choices it assumes are controversial and appear to raise segmentation performance to
some degree (Blanchard & Heinz, 2008). The effect of using orthographic word boundaries to
represent phonological word boundaries should also be investigated further as this choice may
affect performance differently in different languages (Blanchard & Heinz, 2008). Finally, it is
not clear what effect the age of the children addressed in the corpora has; the non-English cor-
pora have tended to involve older children than the English corpora, which may be affecting the
segmentation performance.

The investigations in this study were motivated by a desire to connect experimental findings
on infant speech segmentation with computational models of segmentation via statistical analysis
of the learner’s input. We hope the findings of this work contribute to the development of a more
complete picture of the process by which infants extract words from fluent speech.
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APPENDIX

TABLE 5
Mean Word Token F-scores of Individual Cues Within Parameter Settings

English Polish Turkish

Level
P 38.2 CL 22.5 P 16.9
CL 41.8 P 20.3 CL 14.2
C 17.0 S 9.3 C 8.0
S 10.7 C 10.1 V 6.1
V 10.4 V 8.4 S 5.1

Direction
B 20.4 B 13.0 B 8.5
F 22.0 F 13.0 F 10.4

Relation
Rank 24.8 Diff 13.7 Diff 10.5
Diff 23.0 Curr 14.0 Curr 11.4
Curr 21.2 Rank 13.2 Rank 8.5
Next 15.7 Next 11.0 Next 7.6

Statistic
#T 21.9 #CL 24.1 #T 10.0
#CL 44.5 #T 13.7 B 8.6
M 19.9 T 11.3 T 9.3
#|CL| 39.1 #|CL| 21.0 M 9.8
#B 19.5 #B 11.7 #CL 16.2
T 17.3 M 12.7 #|CL| 12.2
B 17.0 B 10.6 #B 7.4
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TABLE 6
Word Token F-scores of Multiple Regressions within each Parameter Setting (# cues)

English Polish Turkish

FULL MODEL 90.8 FULL MODEL 81.2 FULL MODEL 78.7
Level

P (40) 84.6 P (40) 54.1 P (40) 59.2
CL (16) 63.1 CL (16) 38.7 CL (16) 29.0
C (40) 44.4 C (40) 34.3 C (40) 26.8
S (40) 22.7 S (40) 30.3 S (40) 10.8
V (40) 13.4 V (40) 7.1 V (40) 9.2

Direction
B (88) 83.8 B (88) 75.0 F (88) 65.2
F (88) 83.0 F (88) 68.8 B (88) 61.0

Relation
Rank (44) 84.5 Curr (44) 70.4 Rank (44) 60.6
Curr (44) 82.5 Diff (44) 61.2 Curr (44) 58.4
Diff (44) 77.3 Rank (44) 60.8 Diff (44) 57.2
Next (44) 53.7 Next (44) 47.6 Next (44) 39.0

Statistic
#T (32) 78.9 #T (32) 60.8 #T (32) 58.9
#B (32) 65.8 M (32) 46.9 T (32) 50.2
T (32) 64.5 T (32) 45.4 M (32) 45.7
CL (16) 63.1 #B (32) 43.1 B (32) 43.5
M (32) 62.9 B (32) 40.1 #B (32) 31.6
B (32) 54.3 CL (16) 38.7 CL (16) 29.0
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TABLE 7
BIC of Step-Wise Multiple Regressions by Parameter Setting

English Polish Turkish

Level
P 22115.38 P 66412.76 P 59634.58
. . . +S 18185.71 . . . +S 38975.8 . . . +S 41799.94
. . . +C 15167.96 . . . +C 33177.18 . . . +V 36330.03
. . . +CL 13411.23 . . . +CL 28624.88 . . . +C 32648.56
. . . +V (FULL) 13533.28 . . . +V (FULL) 28556.92 . . . +CL (FULL) 30345.13

Direction
B 22491.38 B 42290.25 F 49201.49
. . . +F (FULL) 13533.28 . . . +F (FULL) 28556.92 . . . +B (FULL) 30345.13

Relation
Rank 23294.7 Curr 45560.94 Rank 56038.09
. . . +Next 16893.51 . . . +Rank 35851.81 . . . +Curr 39273.54
. . . +Curr 14524.8 . . . +Diff 30997.91 . . . +Next 34977.52
. . . +Diff (FULL) 13533.28 . . . +Next

(FULL)
28556.92 . . . +Diff (FULL) 30345.13

Statistic
#T 30032.44 #T 57958.33 #T 63674.5
. . . +T 20543.38 . . . +T 41084.6 . . . +B 45759.34
. . . +#B 17840.77 . . . +CL 32791.56 . . . +#B 40300.46
. . . +CL 15960.65 . . . +#B 30726.16 . . . +T 34990.15
. . . +B 15053.84 . . . +B 29315.51 . . . +M 32648.56
. . . +M (FULL) 13533.28 . . . +M (FULL) 28556.92 . . . +CL (FULL) 30345.13

The Bayes Information Criterion (BIC) for each of the models in the step-wise multiple regressions in Analysis 3.
BIC provides a measure of fit with a penalty for complexity. The differences between languages are not meaningful, but
lower BIC within the same language corresponds to better models for that language. These figures confirm the results in
Table 4, indicating that, with the exception of the final step at the Level parameter in English, the addition of all parameter
settings improves performance.
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