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Abstract

People have a keen ability to reason about others’ mental
states, which is central for communication and cooperation.
A core question for cognitive science is what mental represen-
tations support this ability. We offer one proposal based on
the framework of influence diagrams, an extension of Bayes
nets that is suited for representing intentional goal-directed
agents. We evaluate this framework in two experiments that
require participants to make inferences about what another per-
son knows or values. In both experiments, participants’ judg-
ments were better predicted by our influence diagrams account
than by several alternative accounts.
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People rarely articulate everything they are thinking. Thus,
one of the major inductive problems we face is how to infer
other people’s thoughts from their observable behavior. As a
concrete example, suppose your friend asks you to join him
in visiting the art museum today, a Monday, which is a day
on which you happen to know the museum is closed. You
might infer then that your friend does not know the museum
is closed on Mondays, or that he does not know that today is
Monday, or perhaps neither. You suggest going to the natu-
ral history museum instead, which is open but is both more
expensive and farther away than the art museum. Your friend
declines. Now you might infer that he did not want to spend
more money, or that he did not want to travel so far, or per-
haps both; it’s also possible that your friend simply doesn’t
like the natural history museum.

People generally find these types of inferences about others
natural and exhibit relatively rich intuitive theories of mental
states and behavior (D’ Andrade, 1987). Mental state reason-
ing, also called theory of mind, poses some standard ques-
tions for cognitive science: Namely, what mental representa-
tions support mental state reasoning and what computations
are carried out over these representations (Perner, 1991). We
propose that these representations are similar to influence dia-
grams (IDs), an extension of Bayes nets that includes a notion
of goal-directed action (Howard & Matheson, 2005).

The ID framework provides a graphical language for rep-
resenting decision problems and an associated formal seman-
tics that supports quantitative predictions. The framework re-
tains all of the strengths of Bayes nets, including the ability
to make a distinction between the existence of relationships
among variables and the strength of those relationships, to
concisely specify a distribution over many variables, and to
predict the outcomes of interventions (Sloman, 2005). IDs,
however, build on Bayes nets by providing a formal way of
making predictions and inferences about intentional behavior.

Computer scientists have previously used IDs to model the
behavior of intentional agents, particularly in games (Gal &
Pfeffer, 2008; Koller & Milch, 2003), but this research has
focused primarily on relatively complex scenarios involving
multiple agents, rather than the simple scenarios that have
been the subject of most theory of mind research—like the
example at the beginning of this paper. And although there
are several existing computational models of mental state rea-
soning (Baker, Saxe, & Tenenbaum, 2009; Oztop, Wolpert, &
Kawato, 2005; Schultz, 1988; Wahl & Spada, 2000), the ID
framework has received little attention in the psychological
literature. We argue that IDs serve as a useful model of the
mental representations that support human reasoning.

The rest of the paper is organized as follows. First, we
describe the ID framework and discuss some of its strengths
for reasoning about other people’s mental states and behavior.
Then, we apply the framework to a specific task that involves
inferring what someone else knows or values and evaluate its
ability to predict human performance on the task.

Influence diagrams

We will introduce the ID framework using the following sim-
ple scenario. Alice is playing a game in which a two-color
die is rolled. Alice chooses a color and receives a reward if
her choice matches the color of the die. Thus, there are three
variables: the color of the rolled die, Alice’s chosen color,
and the value of the reward. Two variations of this scenario
can be represented by the IDs in Figure 1a and 1b, where the
three variables are denoted R, D, and U, respectively.

IDs differ from standard Bayes nets in that they allow for
the representation of three semantically distinct types of vari-
ables, each of which is shown in the example IDs. First are
chance variables, depicted by ovals, which represent proba-
bilistic events like the outcome of the die roll R. Just as in
causal Bayes nets, incoming edges to chance nodes represent
causal dependencies between events; therefore, we will refer
to these edges as causal edges. Second are decision variables,
depicted by rectangles, which represent intentional decisions,
like Alice’s choice D. Incoming edges to decision nodes rep-
resent information available when making the decision; we
will refer to these edges as knowledge edges. For example,
the IDs in Figure 1a and 1b differ in the presence of a knowl-
edge edge from R to D. The ID in la represents a situation
where Alice knows nothing about the roll before making her
choice and the ID in 1b represents a situation where Alice
gets to see the rolled color before making her choice. Lastly
are utility variables, depicted by diamonds, which represent
a decision maker’s utility, like Alice’s reward U. Incoming
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Figure 1: (a) An ID for a single decision with no information.
(b) An ID for a decision with complete information. (c) A
deterministic Bayes net representation of the ID in panel b.
When the utility function changes, the Bayes net incorrectly
predicts that Alice will continue to match the rolled color.
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edges to utility nodes represent the information that is rele-
vant to the decision maker’s state of satisfaction; we will refer
to these edges as value edges. In our example IDs, there are
value edges from D and R to U representing the fact that Al-
ice’s reward depends on the values of both of these variables.

Just as a full Bayes net specification consists a set of con-
ditional probability distributions (CPDs) as well as a graph
structure, an ID requires some additional components: a CPD
for each chance node, and a utility function that maps the
joint values of each utility node’s parents to a utility value. In
our example, Alice is rewarded only when her chosen color
matches the rolled color, as shown in the utility tables in Fig-
ures la and 1b, where r and b correspond to the two colors
red and blue.

Once a utility function is specified, the expected utility EU
associated with each possible action d; can be computed by
summing over the unknown variables. For example, when
Alice cannot see the outcome ¢ of the roll before making her
choice, as in Figure la, the expected utility associated with
choosing red is EU(r) = ¥ cc.py u(r,c)P(c), where u(-,-) is
the utility function shown in the table in the figure. However,
if Alice is able to see the outcome of the roll before mak-
ing her choice, as in Figure 1b, there is no uncertainty in the
expected utility computation: EU (r) = u(r,c).

The final component of IDs is a decision function ¢ that
specifies the probability of selecting an action d; for that de-
cision node D. A simple choice of ¢ is a utility maximizing
function, which characterizes the behavior of a rational agent.

1, ifd; =argmax,EU(d
G(dz):{o g d ( )

If the die in our example has five red sides and one blue side
and Alice maximizes her utility, she will choose red if she
cannot see the outcome of the roll, as in Figure 1a. Under
some conditions, however, people’s behavior is more con-

ey

otherwise

sistent with probability matching than maximizing (Vulkan,
2002). Thus, another reasonable decision function is a utility
matching function.
G(di) = M (2)
Y;EU(d))

IDs and Bayes nets are closely related, and it is possible to
“compile” any ID into an equivalent Bayes net by converting
all nodes to chance nodes and choosing CPDs that are con-
sistent with the ID’s decision function. For example, the ID
in Figure 1b can be compiled into the Bayes net shown to
the left of Figure 1c, where the CPD for D is constructed by
assuming that Alice acts to maximize her utility. The criti-
cal difference between the two representations is that the ID
makes the notion of utility maximization explicit, which of-
fers two important advantages. First, the ID representation
supports explanations of intentional action (Malle, 1999). If
the rolled color is red, then the ID can be used to explain that
Alice chooses red in order to maximize her utility. The Bayes
net offers no such explanation, and can only indicate that Al-
ice always chooses red when the rolled color is red. Second,
the ID representation automatically predicts how Alice’s ac-
tions will change if the utility function changes. Suppose the
game changes and Alice is now rewarded for choosing the
opposite of the rolled color. After updating the utility func-
tion accordingly, the ID representation predicts that Alice will
now choose a color different from the rolled color. Figure 1c
illustrates, however, that updating the utility node U in the
Bayes net leaves the CPD for the decision node unchanged.
As a result, the Bayes net incorrectly predicts that Alice will
continue to match the rolled color.

Modeling other people’s decisions

Although IDs were initially proposed as a way for decision
makers to compute optimal decisions under uncertainty, they
can also be used to represent other people’s decisions. From
this perspective, IDs can be used to understand two kinds of
mental state inferences: prediction and learning.

Prediction is possible when a person has full information
about another person’s decision problem, that is, a fully spec-
ified ID can be constructed for that person. Predictions can
then be made about the utilities that person will assign to
possible actions, or the action he or she will take (e.g., by
Equation 1). Additionally, because IDs can represent causal
relationships using chance nodes and causal edges, it is pos-
sible to make predictions about events, just as with standard
Bayes nets.

In cases where some details about the decision problem
are uncertain or unknown, it may be possible to learn these
details by observing the person make some decisions. These
situations involve two types of learning problems: structure
learning and parameter learning. In terms of IDs, these two
problems correspond to learning the graph structure and the
ID parameterization, respectively. For example, a person’s
utility and decision functions may be known but not what in-
formation is available when he or she makes a decision. This
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Figure 2: (a) The machine and the three shapes the player
may pick from in the shape game. (b) The three different
cards in the game. (c) IDs representing the decision prob-
lem for each card in Experiment 1. (d) IDs representing the
decision problem for each card in Experiment 2.

corresponds to learning what knowledge edges are present in
the ID. Similarly, one might learn what a person values (what
value edges are present) or what causal dependencies exist
(what causal edges are present). Parameter learning applies
when an ID graph structure is known, but the precise nature
of the relationships between variables is not. This can involve
learning the CPDs of chance nodes or the utility functions of
utility nodes.

Structure and parameter learning for chance nodes have
been previously explored in the context of causal Bayes nets
(Griffiths & Tenenbaum, 2005; Lagnado & Sloman, 2004;
Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003). The
remainder of this paper will focus on the less-studied prob-
lem of structure learning applied to decision and utility nodes,
that is, learning what knowledge and value edges are present
in an ID.

Experiment 1

The goal of our first experiment was to examine whether the
ID framework can be used to capture how people reason about
what other people know. We addressed this question by de-
vising a game called the shape game that allowed us to ask
participants about what other players knew during the game
based on records of their gameplay.

The shape game

The shape game consists of two components. The first com-
ponent (Figure 2a) is a machine with three boxes that display

shapes. In each round of the game, the machine randomly
selects two different shapes from the set of three and displays
them in the left two boxes (Boxes 1 and 2). The player then
gets to select one of the three shapes to display in the third
box (Box 3). The second component (Figure 2b) is a card
with holes in it, the “player card”, that is placed over the ma-
chine at the beginning of the round. There are three different
cards: one card covers Boxes 1 and 2 of the machine, one
card covers just Box 1, and one card covers no boxes. Thus,
depending on the card, the player may be unable to see one
or both of the shapes picked by the machine before picking a
shape. The goal of the game is to pick a shape that is different
from the shapes picked by the machine. Players are awarded
10 points for each pair of mismatching shapes for a maximum
of 20 points per round.

In the inference task, a record of 10 rounds from another
player is provided, which shows the three shapes from each
round but not the card. It is assumed that the same card was
used in all 10 rounds. The goal is to infer the card used in the
game, based on the player’s record of gameplay.

Model

IDs representing the shape game for each card are shown in
Figure 2c. In these graphs, the contents of Boxes 1 and 2 are
represented by chance nodes, the player’s choice for the shape
in Box 3 is represented by a decision node, and the awarded
points are captured by a utility node. A player’s score always
depends on the contents of all three boxes, but some cards
hide the contents of the machine’s boxes before the player
makes a decision. Thus, the IDs differ only in the presence
of knowledge edges. In other words, inferring the card used
involves making an inference about what a player knows, or
what knowledge edges are present.

Fully specifying the IDs in Figure 2c requires a decision
function that defines a probability distribution over the three
options of each decision d; € {{J,A,0O}. Later we present
modeling results based on both the utility maximizing func-
tion (Equation 1) and utility matching function (Equation 2).
Finally, because rounds are independent, given an ID /; and a
record of n rounds d = (dy,...,dy), o(d|l;) =T1;0(di|l;).

The inference task can now be framed as a model selec-
tion problem where the models are the IDs corresponding to
the three cards. We use Bayes’ rule to compute the probabil-
ity of each ID given a set a observed decisions. For an ID
I;, P(Ij|d) o< o(d|I;)P(I;). We assume a uniform prior dis-
tribution P(/;), reflecting the fact that all cards are equally
probable.

Method

Participants Fifteen Carnegie Mellon undergraduates
completed the experiment for course credit.

Design and Materials There are three possible outcomes
for each round: all different shapes (outcome D), matching
shapes in Boxes 1 and 3 (outcome M1), or matching shapes in
Boxes 2 and 3 (outcome M2). It is not possible for the same



Condition =~ Gameplay record

D, D, D, D, DD, D, D, D, D
D, D, D, M, D, M1, M1, Ml, D, D

D, D, D, M, D, M1, M1, M2, D, D

Table 1: Gameplay records used in the three conditions of
Experiments 1 and 2.

shape to be in all three boxes because the machine always
picks two different shapes. Participants saw three gameplay
records made up of these three outcomes, creating three con-
ditions, shown in Table 1. These conditions were randomly
ordered and the specific shapes that appeared in each record
were randomly generated for each participant.

These sequences were designed to instill some uncertainty
in the earlier rounds about the card being used, but to strongly
favor one of the three cards by the final round. For example,
in the first sequence consisting entirely of D outcomes, it is
possible for a player who cannot see Box 1 or Box 2 to get
lucky and choose a mismatching shape every time, but this
outcome becomes less likely as the length of the sequence
increases. In the third sequence, there is increasingly strong
evidence that the player was using the card with two holes un-
til the M2 round, when the one-hole card seems more likely.

The entire experiment was conducted using a graphical in-
terface on a computer. The outcome of each round was shown
as a machine like the one in Figure 2a with all three boxes
filled with a shape.

Procedure Participants were first familiarized with the
shape game by playing six rounds with each of the three
cards. Once they indicated that they understood the game,
they began the inference task. The sequences of rounds were
displayed one at a time with all previous rounds remaining on
the screen. After viewing each round, participants were asked
to judge how likely it was that the player had been using each
of the three cards for the entire sequence of gameplay. They
made their judgments for each card on a scale from 1 (very
unlikely) to 7 (very likely). They were also asked to give a
brief explanation for their judgments.

Results

Model The first model we considered used a utility maxi-
mizing decision function (Equation 1). Given the simple na-
ture of the game and participants’ own experience with it, we
predicted that they would expect other players to generally
play optimally. Predictions from this model are shown in the
second row of Figure 3a. In the first condition, the model
assigns increasing probability to the three-hole card as the
number of rounds (all D outcomes) increases. In the second
condition, the model rapidly changes its probabilities in fa-
vor of the two-hole card after the first M1 outcome. In the
third condition, the model raises the probability assigned to

the two-hole and three-hole cards after the first M1 outcome,
but decreases the probability assigned to the three-hole card
until the first M2 outcome is observed, at which point this
probability immediately rises to 1.

Human judgments Mean human judgments are shown in
the first row of Figure 3a. In order to convert participants’
judgments on the 1 to 7 scale to approximate probabilities,
the ratings in each round were first decremented by 1 to make
0 the lowest value. Then the ratings were normalized by di-
viding by their sum to obtain ratings that summed to 1.

In every round of the three conditions, the ordering of par-
ticipants’ ratings is consistent with the model’s predictions.
Overall, the model captures many of the qualitative trends in
the human data, resulting in a high correlation between the
human data and the model’s predictions (» = 0.95). One de-
viation from the model can be found in the later rounds of
the one-hole card condition. Whereas the model predicts cer-
tainty in favor of the one-hole card, participants’ judgments
were less certain and decreased in the final two rounds. This
effect, however, appears to have been driven by a subset of
participants who took into account the possibility that the
solitary M2 round in this condition was a mistake, a possi-
bility that was explicitly noted in several participants’ expla-
nations.

Alternative models We compared the human judgments to
two alternative models designed to test the importance of
the two key components of our model: utility maximiza-
tion and probabilistic inference. We tested the maximizing
assumption by implementing a utility matching model that
used a utility matching decision function (Equation 2). This
model’s predictions are shown in the third row of Figure 3a.
Clearly this model offers a poor account of human behavior
(r=0.61), especially in the second and third conditions. This
suggests that, as predicted, in this simple task, participants
assumed that the player they were assessing behaved mostly
optimally.

Next, we tested the probabilistic assumption of the first
model by comparing it to a purely logical model. The util-
ity maximizing model assigns increasing probability to the
three-hole card in the first condition because a long sequence
of D outcomes is highly improbable under any other circum-
stances. This outcome, however, is logically consistent with
any one of the three cards. Thus from a logical standpoint,
only the M1 and M2 rounds are definitively informative. Pre-
dictions based on this approach are shown in the fourth row of
Figure 3a. Contrary to the logical model’s predictions, how-
ever, participants did gradually adjust their ratings on rounds
that weren’t definitively informative (» = 0.45), consistent
with the utility maximizing model.

Finally, we examined whether these results could be ac-
counted for by a standard Bayes net structure learning model.
Recall that any ID can be compiled into an equivalent Bayes
net. Compiling the IDs in Figure 2c into Bayes nets and per-
forming model selection over these networks is one way to
implement our ID model. This approach, however, still relies
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Figure 3: Experiment results and model predictions for (a) Experiment 1 and (b) Experiment 2. In both experiments, the
utility maximizing ID model (labeled Max) was the best fitting model we considered. In all plots, the cyan line (x markers)
corresponds to the three-hole card, the blue line (4) corresponds to the two-hole card, and the red line (-) corresponds to the
one-hole card. The error bars in the human plots are standard errors. For the models, r is the correlation coefficient between

the model’s predictions and the human judgments.

critically on the assumption of utility maximization. We im-
plemented a third alternative model to test whether a Bayes
net approach could account for our results without incorpo-
rating this assumption. We treated the graphs in Figure 2c
as four-node Bayes nets with a known CPD for the utility
node and implemented a standard Bayesian structure learn-
ing model with uniform Dirichlet priors on the CPDs for the
other nodes (Heckerman, Geiger, & Chickering, 1995). The
model’s predictions are shown in the last row of Figure 3a.

The model performs reasonably well overall (r = 0.86) but
is inferior to the utility maximizing ID model in two respects.
First, after only one round, the Bayes net model assigns equal
probability to all three cards, since a single round provides
no information about the existence of causal relationships be-
tween the boxes. The ID model, however, assumes that the
player is attempting to choose a shape for Box 3 that does not
match Box 1 or Box 2, and observing a single round where
this goal is achieved suggests that the player is able to see
both boxes. The second limitation of the Bayes net model
is that it fails to predict the dramatic change in participants’
ratings after the first M1 round.

Experiment 2

Experiment 1 showed that people’s inferences about what an-
other player knew in the shape game were highly consistent
with a model selection account using IDs and a maximizing
utility function. The purpose of Experiment 2 was to apply
this same account to a task involving an inference about what
another person values.

Revised shape game

In order to address this question, we made a slight modifi-
cation to the shape game. In the previous version, the cards
were placed over the machine at the beginning of the round.
In the current version, the cards—now called “judge cards”—
were not placed over the machine until the end of each round.
Thus, in the judge card version of the game, players are able
to see the shapes in all boxes when making their selections.

The judge card determines how the score for each round
is computed: Only the shapes not covered by the card are
counted. Thus, when the judge card covers Box 1, the maxi-
mum number of points is 10, when the player’s shape is dif-
ferent from the shape in Box 2. When the judge card covers
Boxes 1 and 2, there are no shapes to mismatch and 10 points
are awarded no matter what shape the player picks.



Model

IDs representing the decision problem for each card in the
judge card version of the shape game are shown in Figure 2d.
The player always gets to see the contents of Boxes 1 and 2,
but the awarded points may not depend on the contents of all
boxes. Thus, the IDs in Figure 2c¢ differ only the presence of
value edges. In other words, inferring the card used involves
making an inference about what a player values, or what value
edges are present. The remaining details of the model were
identical to those in Experiment 1.

Method

All of the participants from Experiment 1 also participated in
Experiment 2 (in a random order), with two additional par-
ticipants whose data from Experiment 1 were lost due to an
error (total N = 17). Experiment 2 was identical to Experi-
ment 1 except participants made judgments about the judge
card version of the game.

Results

The mean human judgments and model predictions are shown
in Figure 3b. The utility maximizing and logical models make
the same predictions as in Experiment 1. This is because a
player who is unable to see the shape in Box 1 is effectively
equivalent to a player who does not care about the contents
of that box. The prediction that the two experiments produce
similar results is largely supported by the human data, which
are similar across the two experiments, and utility maximiz-
ing model once again performs well (r = 0.92). The util-
ity matching model produces different predictions in the two
experiments due to the slightly different point assignment
policies, but again offers a poor account of the human data
(r =0.51). Finally, the Bayes net model is unable to make
any inferences in the judge card version of the game. This re-
sult is a consequence of the fact that observed actions cannot
be used to make inferences about a utility function without
some assumption about how actions and utility are related
(e.g., by a decision function).

Conclusion

The results of our two experiments suggest that people take
both decision functions and probabilistic information into ac-
count when reasoning about mental states. The different pre-
dictions of the utility maximizing and utility matching models
supported the idea that people expected others to play nearly
optimally, a reasonable expectation in our simple task. How-
ever, this utility maximizing assumption alone was not suffi-
cient to capture people’s inferences, as indicated by the differ-
ent predictions of the utility maximizing and logical models.

The influence diagram framework accounted well for both
experiments, and performed better than a Bayes net model
that did not incorporate the notion of utility maximization.
Although Bayes nets share many of the strengths of IDs, they
are not naturally suited for reasoning about intentional agents.
The influence diagram approach can be viewed as a natural

way to supplement Bayes nets with the knowledge that ac-
tions are chosen in order to achieve goals. We propose that
any successful account of mental state reasoning will need to
represent this knowledge in a transparent and explicit way.
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