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SUMMARY

The dominant view that perceptual learning is
accompanied by changes in early sensory represen-
tations has recently been challenged. Here we tested
the idea that perceptual learning can be accounted
for by reinforcement learning involving changes in
higher decision-making areas. We trained subjects
on an orientation discrimination task involving feed-
back over 4 days, acquiring fMRI data on the first
and last day. Behavioral improvements were well
explained by a reinforcement learningmodel in which
learning leads to enhanced readout of sensory infor-
mation, thereby establishing noise-robust represen-
tations of decision variables. We find stimulus orien-
tation encoded in early visual and higher cortical
regions such as lateral parietal cortex and anterior
cingulate cortex (ACC). However, only activity
patterns in the ACC tracked changes in decision vari-
ables during learning. These results provide strong
evidence for perceptual learning-related changes in
higher order areas and suggest that perceptual and
reward learning are based on a common neurobio-
logical mechanism.

INTRODUCTION

For decades the dominant view in visual perceptual learning has

been that performance improvements on visual tasks are

accompanied by changes in early visual areas (Sasaki et al.,

2010; Seitz and Watanabe, 2005). However, this assumption

was mainly based on psychophysical data (Goldstone, 1998;

Karni and Sagi, 1991) and received only inconsistent support

from neural recording studies (Crist et al., 2001; Ghose et al.,

2002; Schoups et al., 2001). Recent studies suggest that percep-

tual improvements might rather be associated with changes

outside the early visual cortices (Zhang and Li, 2010; Zhang

et al., 2010b). Specifically, perceptual learning is thought to be

related to an enhanced readout of sensory information by higher

cortical areas that are directly involved in decision-making
(Chowdhury and DeAngelis, 2008; Law and Gold, 2008; Li

et al., 2004, 2009). This idea has recently been supported by

single-unit recordings in primates. More specifically, it has

been shown that performance improvements inmotion-direction

discrimination are accompanied by changes in responses of

lateral intraparietal area (LIP), but not middle temporal area

(MT) neurons (Law and Gold, 2008). Moreover, this pattern of

results is predicted by a reinforcement learning model in which

perceptual learning is established by changes in connectivity

between visual and decision areas leading to altered representa-

tions in higher cortical areas (Law and Gold, 2009).

Similar to this proposed mechanism, reward-based learning

and decision-making is also accompanied by activity changes

in decision-making areas such as LIP (Platt and Glimcher,

1999; Sugrue et al., 2004), dorsolateral prefrontal cortex (DLPFC)

(Barraclough et al., 2004; Pasupathy and Miller, 2005), and the

anterior cingulate cortex (ACC) (Kennerley et al., 2006; Matsu-

moto et al., 2007). Especially the ACC has been shown to be

involved in flexibly updating and representing the value of actions

leading to reward (Behrens et al., 2007; Hayden et al., 2009). In

principle, the role of sensory evidence in forming a perceptual

choice could be treated in the same way as the role of action

values in forming a reward-based decision (Gold and Shadlen,

2007). Consequently, neural circuits that update and represent

action values in reward-based tasks might be equally suited to

integrate sensory information in the context of perceptual deci-

sion-making. However, a direct engagement of human prefrontal

cortex in perceptual learning has not been shown so far.

Here we used a model-based neuroimaging approach to test

the idea that human perceptual learning and decision-making

can be accounted for by a reinforcement learning process

involving higher cortical areas. We trained subjects on an orien-

tation discrimination task with explicit performance feedback

over the course of 4 days. Functional magnetic resonance

imaging (fMRI) data were acquired on the first and last day of

training. Behavioral improvements were well explained by a

reinforcement learning model for perceptual learning. Learning

in this model leads to enhanced readout of sensory information,

thereby establishing noise-robust representations of decision

variables that form the basis for perceptual choices. By using

multivariate information mapping techniques (Haynes and

Rees, 2006; Kriegeskorte et al., 2006), we find sensory evidence
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Figure 1. Experiment and Improvements in

Perceptual Choices

(A) Sketch of the orientation discrimination task.

Perceptual decisions and motor responses were

dissociated by using a randomized response

mapping screen 1.5–5.5 s after stimulus presen-

tation. Feedback was provided by changing the

color of the fixation cross for 500 ms to green for

correct choices or red for incorrect choices.

(B) Training on the perceptual task took place on

4 days. During the first and the last day fMRI data

were acquired. During the second and third day

training took place in the environment of a mock

scanner.

(C) Behavioral performance (percentage correct)

as a function of training runs (left) and days (right).

On the left, dashed vertical lines separate training

days and gray shaded areas indicate training

during fMRI data acquisition. Data from different

training days are color coded from light gray (day 1)

to black (day 4). Error bars = SEM for n = 20.

(D) Psychophysical functions are shown (left)

relating stimulus orientation to the probability of

a clockwise decision (p(cw)). Solid lines represent

best-fitting sigmoidal function. Average slopes of

the sigmoids are shown (right) as a function of

training days. Error bars = SEM for n = 20.
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encoded in early visual cortex as well as in higher order regions

such as the putative LIP. However, only activity patterns in the

ACC tracked changes in the model-derived decision variables

during learning. Moreover, we find activity related to signed

reward prediction errors, the teaching signal of the reinforcement

learning model, in the ventral striatum and the same part of the

ACC where learning-related changes were observed. These

results provide strong evidence for perceptual learning-related

changes in higher order brain regions. Furthermore, these results

suggest that perceptual as well as reward learning and decision-

making can be understood in the framework of reinforcement

learning and that both forms of learning are based on a common

neurobiological mechanism.

RESULTS

Improvements in Perceptual Decision-Making
during Learning
During the course of 4 days 20 subjects (11 male, mean age ±

SEM, 26.3 ± 0.74) participated in an orientation discrimination
550 Neuron 70, 549–559, May 12, 2011 ª2011 Elsevier Inc.
task involving explicit performance feed-

back (Figure 1A). In each trial subjects

saw a low contrast Gabor in the right

upper visual field for 500 ms while

fixating on a central fixation cross. The

orientation of the Gabor could deviate

from 45� in both directions (counterclock-

wise and clockwise). Subjects were

asked to indicate the perceived orienta-

tion (tilted toward counterclockwise

versus tilted toward clockwise) on a
response mapping screen. After the response, the fixation cross

turned green given a correct decision or red given an erroneous

response. Days 1 and 4 each involved six runs (110 trials each) of

training while BOLD signals were acquired by using fMRI (Fig-

ure 1B). Days 2 and 3 each involved 15 behavioral training runs

in a mock scanner.

Performance on the task (percentage of correct decisions)

increased with training, demonstrating a robust effect of percep-

tual learning (Figure 1C). A one-way ANOVA with repeated

measures on percentage correct revealed a significant main

effect of run (F(41,779) = 6.49, p < 0.001). Furthermore, a more

parsimoniousone-wayANOVAcomparingperformancebetween

training days revealed a significant effect of day (F(3,57) = 20.70,

p < 0.001) with significant differences between all days (p < 0.05,

Bonferroni corrected, Figure 1C, right).

Learning involved a steepening of the psychophysical function

relating the stimulus to the perceptual decision (Figure 1D), i.e.,

subjects became increasingly sensitive to small deviations

from 45�. To quantify this improvement in orientation discrimina-

tion, we fitted a sigmoidal function to the psychophysical data of
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Figure 2. Reinforcement LearningModel for

Perceptual Decision-Making

(A) Perceptual decisions are based probabilisti-

cally on a decision variable DV that is the sensory

information x (orientation - 45�) scaled by a

perceptual weight w. The more positive DV the

more likely is a clockwise decision, and the more

negative DV the more likely is a counterclockwise

choice.

(B) Example time course of trial-wise values of DV

derived from the reinforcement learning model

(gray) for one subject on the first training day (six

runs = 660 trials). For comparison the physical

stimulus orientation is plotted on the same scale

(black). It can be seen that learning is implemented

by scaling the sensory evidence which thus

becomes more robust to noise.
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each subject and each day (Figure 1D, right). A one-way ANOVA

with repeated measures on the slopes of this function revealed

a significant main effect of day (F(3,57) = 31.97, p < 0.001).

Post hoc t test confirmed that the slope increased with every

training day (p < 0.05, Bonferroni corrected). Taken together,

these results provide strong evidence for improvements in

perceptual decision-making over the course of learning.

A Reinforcement Learning Model for Perceptual
Decision-Making
To account for improvements in perceptual decision-making

during learning we designed a reinforcement learning model

for perceptual decision-making (see Experimental Procedures

and Figure 2A). A similar model has recently been applied to

monkey behavioral and electrophysiological data (Law and

Gold, 2009). In brief, the model makes perceptual choices

p(cw) on the basis of a decision variable DV. Negative values

of DV lead to counterclockwise decisions, whereas positive

values of DV lead to clockwise decisions. The decision variable

is computed as the product of the sensory stimulus x (stimulus

orientation minus 45�) and a perceptual weight w accounting

for the ability to read out sensory information provided by the

stimulus x. Thus, the perceptual weight scales the stimulus

representation; low values of w lead to small absolute values of

DV, i.e., unreliable stimulus representations in the presence of

noise, whereas high values of w lead to large absolute values

of DV, i.e., noise-robust stimulus representations (Figure 2B).

In essence, perceptual learning involves updating the perceptual

weight by means of an error-driven reinforcement learning

mechanism (i.e., Rescorla-Wagner updating). Specifically, DV

forms not only the basis for the perceptual decision, but the

absolute value of DV also provides the probability that the

current trial will be rewarded (expected value EV). This expected

value is then compared with the actual reward r, resulting in
Neuron 70, 549–
a reward prediction error d that is in turn

used to update the perceptual weight in

proportion to a learning rate a. Learning

thus leads to an amplified representation

of stimulus information that can be used

to guide perceptual choices. It is impor-
tant to note that the individual noise level is implicitly modeled

as the slope of the sigmoidal function relating a given value of

DV to the probability of a clockwise decision. The learning rate

a and the other free model parameters were estimated for

each subject individually (see Experimental Procedures).

Comparison of the Model and Behavioral Data
The estimated model parameters and the individual sequences

of stimuli, choices, and feedback were used to construct deci-

sion variables for each subject (see Figure 2B for an example).

In the following analyses we compare the behavior of the model

with the behavior of the subjects to assess how well the model

can characterize subjects’ perceptual choices and perceptual

improvements over the course of training.

Model performance was computed by using the probability of

a correct decision, pðcorrectÞ=pðcwÞ,k+ ð1� pðcwÞÞ,ð1� kÞ,
where k = 1 if xR 0 and k = 0 if x < 0. Similar to subjects’ choice

behavior, model performance improved with training (Figure 3A).

A one-way ANOVA with repeated measures revealed a signifi-

cant main effect of runs (F(41,779) = 19.89, p < 0.001). Addition-

ally, a one-way ANOVA on performance over training days

revealed a significant main effect of day (F(3,57) = 36.53, p <

0.001) with significant differences between all days (p < 0.05,

one-tailed, Bonferroni corrected). We found a significant rela-

tionship (r = 0.81, p < 0.001) between the performance of models

and subjects across individual runs (Figure 3B).

Psychophysical functions were estimated from the decision-

making behavior of the model. Similar to subjects’ behavior,

learning was accompanied by a steepening of the psychophys-

ical function (Figure 3C). The slope of the function changed

significantly over the 4 training days (F(3,57) = 45.20, p < 0.001,

Figure 3C, inset). Post hoc t test revealed that the slope

increased with every day of training (p < 0.05, one-tailed, Bonfer-

roni corrected). Figure 3D depicts the relationship between the
559, May 12, 2011 ª2011 Elsevier Inc. 551
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Figure 3. Comparison of the Model and Behavior

(A) Performance (percentage correct) improvements of model behavior with

training. Error bars = SEM for n = 20.

(B) Scatterplot depicts the relationship between the run-wise performance of

individual subjects and models.

(C) Psychophysical functions of model behavior for different training days.

Inset depicts slope of the psychophysical functions across days. Error bars =

SEM for n = 20.

(D) Scatterplot depicts the relationship between the day-wise behavior (p(cw))

for different orientations of individual subjects and models.
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model’s and subjects’ psychophysical function. Both p(cw)

values were highly correlated (r = 0.98, p < 0.001) across indi-

vidual training days and orientations. Also the slopes of the

psychophysical functions of the model and the subjects were

highly correlated across individual training days (r = 0.97, p <

0.001). Taken together these results demonstrate that the rein-

forcement learning model accounted very well for subjects’

perceptual improvements over training.

Neural Representation of Stimulus Orientation
and Decision Variable
Having established the reinforcement learning model that

accounts for perceptual learning and decision-making we pro-

ceeded to investigate the underlying neural mechanism. In a first

step we identified brain regions that encode objective sensory

evidence, that is, the orientation of the Gabor patch. Specifically,

we used linear support vector regression (SVR) in combination

with a searchlight approach (radius = 4 voxels) that allows infor-

mation mapping without potentially biasing prior voxel selection

(Haynes et al., 2007; Kahnt et al., 2010; Kriegeskorte et al., 2006).

We used a leave-one-out cross-validation procedure by training

the regression model on one part of the data (11 scanning runs)

and predicted the orientation of the stimuli in the 12th scanning

run. This was repeated 12 times, each time by using a different

run as the independent test data set. Information about the orien-

tation was defined as the average Fisher’s z-transformed corre-

lation coefficient between the orientation predicted by the SVR

model and the actual orientation in the independent test data

set (Kahnt et al., 2011).

During stimulus presentation orientation was significantly

encoded (p < 0.0001, k = 20, corrected for multiple comparisons
552 Neuron 70, 549–559, May 12, 2011 ª2011 Elsevier Inc.
at the cluster level, p < 0.001) in activity patterns in the lower left

early visual cortex (BA 17,MNI coordinates [-12,�87, 0], t = 6.31,

Figure 4A), the left lateral parietal cortex (putative lateral intrapar-

ietal area, LIP, BA 7 [-24, �69, 57], t = 6.01, Figure 4C), the pre-

cuneus (BA 23 [-3, �36, 36], t = 6.26), and the medial frontal

gyrus (BA 9 [0, 48, 30], t = 6.75) (see Figure S1 and Table S1,

available online, for complete results). Activity patterns in these

regions can be used as a spatial filter to make linear predictions

about the orientation of the Gabor (Figures 4A and 4C, right).

In Figures 4B and 4D the idiosyncratic patterns of two subjects

in the early visual cortex and the LIP are plotted along with

their orientation predictions, respectively. It can be seen that

these predictive patterns consist of small subregions in which

activity increases and decreases with larger angles. Specifically,

some voxels have higher responses for orientations >45�

(yellow), whereas other voxels show higher responses for orien-

tations <45� (blue).
We compared our multivariate results to a more conventional

univariate whole-brain analysis searching for correlations

between stimulus orientation and the BOLD signal in each voxel

by using a parametric approach (Büchel et al., 1998). This

analysis did not reveal any significant voxels (p < 0.0001,

uncorrected, k = 5). Furthermore, a region of interest (ROI) anal-

ysis at a more liberal threshold of p < 0.05 revealed no univariate

correlations with stimulus orientation in the early visual cortex

(t = 1.29, p = 0.21), the lateral parietal cortex (t = 1.34, p =

0.20), and the medial frontal gyrus (t = 0.56, p = 0.58) as identi-

fied by our multivariate analysis (see above). This suggests

that the results of the multivariate analysis are above and

beyond what could have been obtained through univariate

approaches.

Our results so far suggest that information about the physical

properties of the stimulus, i.e., its orientation, is encoded in the

early visual cortex as well as in higher brain regions such as

the putative LIP. However, our model suggests that the orienta-

tion of the Gabor is not used directly to make the perceptual

decision. What is used to make the choice is the decision vari-

able DV. Thus, activity patterns in brain regions that are directly

involved in perceptual decision-making should correlate with

DV. We identified such brain regions by applying the same local

information mapping procedure described above, but this time

searching for representations of DV rather than orientation. We

found significant information (p < 0.0001, k = 20, corrected for

multiple comparisons at the cluster level, p < 0.001) about the

model-derived decision variable in the left putative LIP (BA 7

[-24, �63, 48], t = 5.98, Figure 5A), the ACC (BA 32 [-3, 45, 24],

t = 9.01, Figure 5C) and the precuneus (BA 23 [0, �39, 39],

t = 6.57) but not the early visual cortex (see Figure S2 and Table

S2 for complete results). In these regions distributed patterns of

activity can be used to make linear predictions about the deci-

sion variable derived from the reinforcement learning model

(Figures 5A and 5C, right). Again, a univariate whole-brain anal-

ysis searching for correlations with DV revealed no significant

voxels (p < 0.0001, uncorrected, k = 5). Furthermore, an ROI

analysis revealed no significant (p < 0.05) univariate correlations

with DV in the lateral parietal cortex (t = 0.64, p = 0.53) or the

ACC (t = 0.75, p = 0.46) as identified by our multivariate analysis

(see above).
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Figure 4. Encoding of Stimulus Orientation

(A) Information about stimulus orientation is en-

coded in activity patterns in the early visual cortex.

T-maps on prediction accuracy (Fisher’s z-trans-

formed correlation coefficients) are thresholded at

p < 0.0001, k = 20. For illustration purposes,

scatterplot (right) visualizes the relationship

between actual orientations and the orientation

predicted by the SVR model (average of normal-

ized predictions across cross-validation steps and

subjects). Error bars = SEM for n = 20.

(B) Example of individual predictive maps (indi-

vidual searchlight with peak prediction accuracy

within the early visual cortex) from two subjects

together with their orientation predictions. These

idiosyncratic maps have subareas in which activity

is differently correlated with stimulus orientation.

Yellow indicates areas where activity increases

with orientations >45�, whereas in blue areas

activity increases with orientations <45�. These

maps can be understood as optimal spatial filters

to predict the stimulus orientation based on the

activity in this region.

(C and D) Same as in (A) and (B) but for information

about stimulus orientation in the lateral parietal

cortex.
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Perceptual Learning-Related Information in ACC
The physical stimulus orientation is correlated with the decision

variable (DV) that is used by the model to make perceptual

choices. This makes it difficult to decisively dissociate regions

involved in representing sensory evidence from such regions

involved in perceptual learning and decision-making. However,

the decision variable used by themodel changes over the course

of learning and encoding in regions involved in perceptual

learning should thus follow DV rather than the stimulus orienta-

tion. Accordingly, regions involved in perceptual leaning should

have more information about DV than the stable stimulus orien-

tation. We identified brain regions involved in perceptual learning

by performing a voxel-wise comparison between information

maps of DV and stimulus orientation by using paired t tests.

This analysis revealed only one significant (p < 0.0001, k = 20,

corrected for multiple comparisons at the cluster level, p <

0.001) cluster in the ACC (BA 32 [-9, 39, 24], t = 6.82, Figure 6).

During stimulus presentation activity patterns in this region

contain significantly more information about DV than stimulus

orientation. Thus, this medial frontal region encodes a decision

variable that changes during learning, suggesting that the ACC

plays a key role for perceptual learning.

The discrepancy between themodel-derived decision variable

and stimulus orientation depends on the learning rate of the
Neuron 70, 549–
reinforcement learning model. The higher

the learning rate the more DV deviates

from the stimulus orientation. Therefore

we reasoned that if the ACC encodes

a decision variable which is shaped by

a reinforcement learning mechanism,

the contrast of information about DV >

stimulus orientation in this region should
be correlated with the individual learning rate of the model.

Indeed, this correlation was significant (r = 0.50, p < 0.05), sug-

gesting that subjects with higher learning rates have larger differ-

ences between encoding of DV and orientation in the ACC. This

further strengthens our conclusion that ACC is critically involved

in perceptual learning and decision-making.

No Changes in Early Visual Cortex with Training
One previous study suggested small changes in early visual

stimulus representations during learning (Schoups et al., 2001).

To investigate the possibility of such changes with training, we

conducted an ROI analysis by using the cluster in the left lower

early visual cortex in which significant information about orienta-

tion was encoded (see above). First we examined the orthogonal

question whether stimulus representation in early visual cortex

changes with training. The direct comparison between the infor-

mation about stimulus orientation and the information about the

decision variable in the early visual ROI revealed no significant

differences (p = 0.24, t = 1.22). Thus, the dynamically changing

DV does not provide a better account for early sensory represen-

tations than the static stimulus orientation. Importantly, we also

did not find a significant difference between orientation encoding

in the first and the second scanning session (p = 0.55, t = 0.61),

suggesting that the representation of stimulus orientation did not
559, May 12, 2011 ª2011 Elsevier Inc. 553
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Figure 5. Encoding of Model-Derived Deci-

sion Variables

(A) Information about model-derived decision

values is encoded in activity patterns in lateral

parietal cortex. T-maps on prediction accuracy

(Fisher’s z-transformed correlation coefficients)

are thresholded at p < 0.0001, k = 20. For illus-

tration purposes, the scatterplot (right) visualizes

the relationship between actual values of DV and

values of DV predicted by the SVR (average of

normalized predictions across cross-validation

steps and subjects). Error bars = SEM for n = 20.

(B) Example of individual predictive maps (indi-

vidual searchlight with peak prediction accuracy

within the lateral parietal cortex) from two subjects

together with their DV predictions. In yellow

subregions activity increases with increasingly

positive values of DV, whereas in blue subregions

activity increases with increasingly negative DV.

(C and D) Same as in (A) and (B) but for information

about model-derived DV in the ACC.
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change with training. Moreover, to search for unspecific effects

of perceptual learning in early visual cortex we compared the

mean stimulus locked BOLD amplitude (estimated by a general

linear model) between the two scanning days. Again, this com-

parison revealed no significant difference (p = 0.14, t = 1.55).

Taken together, these analyses suggest that the representation

of sensory evidence as well as unspecific BOLD responses in

early sensory areas did not change significantly over the course

of learning.

Reinforcement Processes in Perceptual Learning
So far we have shown that (1) the predictions of an adapted

reinforcement learning model correlate with learning-related

changes in orientation discrimination performance over time

and (2) that the model-derived DV, which builds the basis for

perceptual decisions, is coded in the medial frontal cortex.

However, because alternative learning models would also

predict similar increases in DV over learning, in the following

analyses we provide further evidence for the proposed reinforce-

ment learning mechanism. Evidence for Rescorla-Wagner-like

updating in the reward-learning literature originally came from

the observation of signed reward prediction error signals in
554 Neuron 70, 549–559, May 12, 2011 ª2011 Elsevier Inc.
dopamine neurons (Bayer and Glimcher,

2005; Schultz et al., 1997). In human

fMRI studies, however, prediction error

signals have been identified in the ventral

striatum, a target area of dopaminergic

midbrain neurons (Kahnt et al., 2009;

McClure et al., 2003; O’Doherty et al.,

2003; Pessiglione et al., 2006). Thus, to

provide further evidence for a reinforce-

ment learning process in the current

perceptual learning task, we regressed

the signed prediction errors from the

model against the feedback-locked

BOLD signal in each voxel (see Experi-

mental Procedures). We identified signifi-
cant (p < 0.0001, k = 5) correlations between model-derived

prediction errors and activity in the left ventral striatum

([-9, 0, �3], t = 4.77; Figure 7A), the bilateral anterior insular

cortex extending into the lateral OFC (left BA 47 [-33, 21, �3],

t = 5.56; right BA 47 [30, 21, �6], t = 6.49), the dorsolateral

PFC (right BA 9 [54, 15, 36], t = 5.17), as well as the dorsomedial

prefrontal cortex including the ACC (BA 32 [0, 27, 42], t = 5.81;

Figure 7B; see Table S3 for complete results). This shows that

the key learning variable of our computational model, namely

the signed reward prediction error, is coded in the activity of

reward-related regions such as the ventral striatum, providing

further evidence for a reinforcement learning process in percep-

tual learning.

In a second step, we aimed to confirm that the learning-related

changes inDV are indeed related to an updating mechanism that

is based on signed prediction errors as proposed by our model.

Thus, the same region in the ACC where activity patterns track

perceptual learning-related changes in DV should also process

reward prediction error signals. We performed a conjunction

analysis searching for voxels which fulfill both of the following

two criteria (both individually significant at p < 0.01): (1) voxels

should contain more information about DV than orientation and
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Figure 7. Activity Related to Signed Reward Prediction Errors

(A and B) Activity in the ventral striatum (A) and the medial frontal cortex (B) is

significantly correlated with signed reward prediction errors derived from the

reinforcement learning model. T-maps are thresholded at p < 0.005 for illus-

tration purposes.

(C and D) Conjunction analysis identifying voxels in which BOLD activity

correlates with model-derived signed prediction errors and which contain

more information about DV than orientation. Voxels that fulfill both criteria

(individually) at p < 0.01 and p < 0.05 are shown in yellow and red, respectively.
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Figure 6. Perceptual Learning-Related Activity in the ACC

(A and B) Activity patterns in the ACC contain significantly more information

about model-derived DV than stimulus orientation. T-maps on differential

prediction accuracy (decision variable > stimulus orientation) are thresholded

at p < 0.0001, k = 20.
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(2) BOLD signals should correlate with signed prediction errors

derived from the model. This conjunction analysis identified

a cluster in the ACC (BA 24/32) in which voxels fulfilled both

criteria (Figures 7C and 7D). This supports our conclusion that

perceptual learning in the ACC is indeed driven by a Rescorla-

Wagner-like updating mechanism, providing further and neces-

sary support for a role of reinforcement processes in perceptual

learning and decision-making.

DISCUSSION

Here we have shown that a reinforcement learning process can

account for behavioral and neural changes during perceptual

learning. Specifically, perceptual improvements over the course

of 42 training runs were well explained by a reinforcement

learning model. This model uses a simple delta rule (Sutton

and Barto, 1998) to update a perceptual weight which is used

to transform sensory information into a decision variable. In other

words, perceptual learning in this model is established by an

improved readout of sensory information leading to noise-robust

representations of decision variables that build the basis for

perceptual choices. By using multivariate information mapping

techniques we found stimulus orientation to be encoded in the

early visual cortex as well as higher cortical regions such as

the LIP. However, learning-related changes in activity were

found only in higher order brain regions. Specifically, we found

activity patterns in the ACC that encoded learning-related

changes in DV significantly better than the stimulus orientation.

This provides direct evidence that perceptual learning is accom-

panied by changes in higher order brain regions. Furthermore,

we show that our task involves reward prediction error signaling

in reward-related brain regions but also higher decision-making

areas, providing further evidence for reinforcement processes in

perceptual learning.

Previous electrophysiological work in primates also showed

that reinforcement learning models can account for perceptual

learning (Law and Gold, 2009). Similar to our finding for the

ACC, Law and Gold showed that decision variables represented

in LIP neurons became more noise-robust during training.

However, here we found such changes in the ACC but not the
putative LIP. This discrepancy can be explained by differences

in the experimental design. In their original study (Law and

Gold, 2008), monkeys made saccades into and out of the

response field of the recorded LIP neurons and single-unit

responses were analyzed during stimulus presentation, which

overlapped with saccade execution (i.e., decisions equal the

ocular motor action). In contrast, in the current fMRI experiment

human subjects made button presses by using a response

mapping screen later in the trial that allowed the dissociation

of the perceptual choice from preparatory end executive motor

signals. However, in line with their results our data also demon-

strate that activity changes in decision-making areas but not

early visual areas account for perceptual learning.

We conducted several analyses to search for perceptual

learning-related changes in early visual representations of

stimulus orientation. None of these provided any evidence for

perceptual learning. This is in line with findings that monkeys

trained on similar visual tasks show only little (Schoups et al.,

2001) if any change in the early visual cortex (Crist et al., 2001;

Ghose et al., 2002). Nevertheless, our combination of fMRI,

multivariate decoding, and computational modeling might not

be sensitive enough to find any potentially subtle changes in

early visual representations. However, our method is sensitive

enough to decode the stimulus orientation itself in visual cortex.

It is also sufficiently sensitive to find learning-related changes

in medial frontal cortex. This could suggest an alternative

account for perceptual learning which involves higher cortical
Neuron 70, 549–559, May 12, 2011 ª2011 Elsevier Inc. 555
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representations of decision variables. Importantly, this account

is in line with results from monkey electrophysiology (Law and

Gold, 2008) as well as with recent psychophysical and modeling

work (Zhang and Li, 2010; Zhang et al., 2010a, 2010b). Further-

more, studies investigating perceptual decisions revealed

a similar dissociation between early sensory regions and frontal

areas (Heekeren et al., 2008; Romo and Salinas, 2003). Specifi-

cally, sensory areas have been shown to track the physical stim-

ulus properties, whereas neural activity in frontal cortex tracks

perceptual judgments and thus the subjective experience of

the stimulus (de Lafuente and Romo, 2005, 2006; Heekeren

et al., 2004; Hernández et al., 2010; Lemus et al., 2010; Salinas

et al., 2000).

Our model suggests that reinforcement processes account

for perceptual learning. This is in line with recent conceptual

work that proposes a common mechanism for perceptual and

reward-based decisions (Rushworth et al., 2009). It is also

consistent with recent models of perceptual learning (Seitz and

Watanabe, 2005; Seitz and Dinse, 2007) in which reinforcement

signals drive perceptual learning, even if features are task-irrele-

vant, unattended (Dinse et al., 2003; Seitz and Watanabe, 2003),

or invisible (Seitz et al., 2009). Moreover, besides the behavioral

fit of our model, we show that prediction errors correlate with

activity in reward-related regions such as the ventral striatum

but also in the ACC where perceptual learning-related changes

in DV were identified. The presence of activity that correlates

with signed prediction errors, the teaching signal in reinforce-

ment learning models (Kahnt et al., 2009; McClure et al., 2003;

O’Doherty et al., 2003; Pessiglione et al., 2006), provides further

evidence for a reinforcement process in perceptual learning.

Thus, our results provide empirical evidence that perceptual

learning indeed operates by means of a reinforcement learning

process that involves reward prediction errors and is accompa-

nied by activity changes in frontal decision-making areas. This

medial frontal brain region is also critically involved in reward-

based learning and decision-making (Behrens et al., 2007;

Hayden et al., 2009; Holroyd and Coles, 2002; Ito et al., 2003;

Kennerley et al., 2006; Matsumoto et al., 2007; Rushworth

et al., 2007). Thus, our results suggest that perceptual as well

as reward-based learning and decision-making share a common

neurobiological basis and that both can be studied in the frame-

work of reinforcement learning.

Our results were achieved by combining computational

models of reinforcement learning with multivariate data analysis

methods. Rather than searching for univariate representations

of model variables as in conventional model-based fMRI

(O’Doherty et al., 2007), we searched for multivariate representa-

tions by using pattern recognition techniques (Haynes and Rees,

2006; Kriegeskorte et al., 2006; Norman et al., 2006). Multivariate

approaches have proven to be more sensitive than univariate

approaches for revealing the distributed cortical patterns

encoding sensory variables, such as stimulus orientation,motion

direction, or color, which are known to be encoded in the joint

activity of differentially tuned neurons (Brouwer and Heeger,

2009; Haynes and Rees, 2005; Kamitani and Tong, 2005;

Seymour et al., 2009). These patterns have been hypothesized

to reflect biased sampling of neural activity (Haynes and Rees,

2005; Kamitani and Tong, 2005), complex spatiotemporal
556 Neuron 70, 549–559, May 12, 2011 ª2011 Elsevier Inc.
dynamics involving the vascular system (Kriegeskorte et al.,

2010; Shmuel et al., 2010), or large-scale biases (Mannion

et al., 2010; Sasaki et al., 2006). Moreover, recent studies

suggest that cognitive and decision variables also are encoded

in distributed cortical activity patterns (Hampton and O’Doherty,

2007; Haynes et al., 2007; Kahnt et al., 2010, 2011; Soon et al.,

2008). Taken together, our current approach of decoding vari-

ables derived from computational models could provide a fruitful

tool to study neurocomputational processes underlying learning

and decision-making.

In conclusion, here we have shown that behavioral improve-

ments in an orientation discrimination task are accompanied

by activity changes in the ACC. Thus, our data provide strong

evidence for perceptual learning-related changes in higher

order areas. Furthermore, perceptual improvements were well

explained by a reinforcement learning model in which learning

leads to an enhanced readout of sensory information, which in

turn leads to noise-robust representations of decision variables.

This learning process involves an updating mechanism based on

signed prediction errors, just like classical reward learning.

Taken together, these findings support the notion that percep-

tual learning relies on reinforcement processes and that it

engages the same neural processes as reward-based learning

and decision-making. They advance our knowledge about

the neurobiological basis of perceptual learning and suggest

that the long-established distinction between perceptual and

reward-based learning should be reconsidered.
EXPERIMENTAL PROCEDURES

Task and Experimental Setup

In each trial subjects saw a low contrast (10%) Gabor patch (�1cycle per

degree) on mean gray background in the right upper visual field for 500 ms

while fixating on a central fixation cross (Figure 1A). Fixation was controlled

by using eye tracking throughout the experiment. In each trial the orientation

of the Gabor could deviate from 45� in five steps in both directions, counter-

clockwise (41�, 42.6�, 43.6�, 44.2�, and 44.5�) and clockwise (45.5�, 45.8�,
46.4�, 47.4�, and 49�). After a variable delay (1.5–5.5 s), subjects were asked

to indicate the perceived orientation (tilted toward counterclockwise versus

tilted toward clockwise) on a response mapping screen (randomly assigning

counterclockwise and clockwise decisions to left and right button presses)

with the index or middle finger of their right hand. This allowed us to disen-

tangle the perceptual decision from planning and executing the behavioral

response. Directly after the response, feedback was provided for 500 ms by

changing the color of the fixation cross to green given a correct decision or

to red given an erroneous response. In 45� trials positive and negative feed-

backwas provided randomly andbalanced. Trialswere separatedby a variable

interval of 1.5–4.5 s.

Subjects were trained over the course of 4 days. The first and last day

involved six runs of fMRI data acquisition, whereas days 2 and 3 consisted

of 15 runs of training without scanning. However, to ensure a constant environ-

ment across the entire experiment, training during days 2 and 3 took place in

a mock scanner, simulating body position, visual stimulation, and noise of the

actual MRI system in great detail. The experimental procedure was approved

by the local ethics review board of the University of Magdeburg.

Reinforcement Learning Model for Perceptual Decision-Making

In each trial t a decision variable DVt is computed according to DVt = xt,wt,

where xt is the stimulus orientation (minus 45�) and wt is the perceptual weight

that changes during learning. The model makes perceptual choices p(cw) on

the basis of DV according to: pðcwÞt = 1=1+ e�b,ðDVt�cÞ, where c is a bias

term accounting for unspecific biases and b is the slope of the sigmoidal
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function accounting for individual levels of noise. An expected value EV is

computed based on absolute values of DV (jDVj) which equal the probability

that the current trial will be rewarded: EVt = 1=1+ e�b,ðjDVt�cjÞ. During feedback

the expected value is compared to the actual reward (coded as 1 and 0 for

positive and negative feedback, respectively) resulting in a reward prediction

error d: dt = rt � EVt . This error is then used to update the perceptual weight

in proportion to a learning rate a: wt + 1 =wt +a,dt . For each subject the free

model parameters (a, wt = 1, b and c) were estimated by fitting the vector of

trial-by-trial model predictions p(cw) against a vector of subjects’ actual

trial-by-trial perceptual choices (coded as counterclockwise = 0 and clock-

wise = 1). It is important to note that DV is orthogonal to potentially confound-

ing variables like expected value, uncertainty, choice confidence, or task diffi-

culty. These variables are based on absolute values of DV (i.e., jDVj) and
therefore, both highly negative (high evidence for counterclockwise gratings)

and highly positive values of DV (high evidence for clockwise gratings) result

in a high expected value (as well as high confidence, low difficulty, and low

uncertainty), whereas values close to zero result in a low expected value

(as well as low confidence, high difficulty, and high uncertainty). Thus these

variables encompass a U- (expected value, choice confidence) or inverted

U-shaped (uncertainty, difficulty) relationship with stimulus orientation and

hence DV.

fMRI Data Acquisition and Preprocessing

Functional MRI data were acquired on a 3-Tesla Siemens Trio (Erlangen,

Germany) scanner. In each scanning run 341 volumes were acquired (TR = 2

s, 24 slices, 4.4 mm thick, in plane resolution 2 3 2 mm). Preprocessing was

performed by using SPM2 (Wellcome Department of Imaging Neuroscience,

Institute of Neurology, London, UK) and included slice-time correction, realign-

ment, and spatial normalization to a standard template (resampling to 3 mm

isotropic voxels). Spatial normalization was used to ensure that data from

both scanning days are in a common reference space.

Multivariate Decoding of fMRI Data

We used a searchlight approach that allows whole-brain information mapping

without potentially biasing voxel selection (Haynes et al., 2007; Kahnt et al.,

2010; Kriegeskorte et al., 2006) in combination with linear SVR. In a first

step, for each subject, general linearmodels (GLM) were applied to the prepro-

cessed functional imaging data of each run. The GLM contained 11 regressors

for different stimulus orientations (41�, 42.6�, 43.6�, 44.2�, 44.5�, 45�, 45.5�,
45.8�, 46.4�, 47.4�, and 49�) and four regressors accounting for left and right

button presses and positive and negative feedback, respectively (all

convolved with a canonical hemodynamic response function) as well as six

regressors accounting for variance induced by head motion. The voxel-wise

parameter estimates represent the response amplitudes to each of the 11

orientations in each of the 12 scanning runs. These parameter estimates

were then used as input for the SVR and deviations from 45� were used as

labels. SVR was performed by using the LIBSVM implementation (http://

www.csie.ntu.edu.tw/�cjlin/libsvm/) with a linear kernel and a preselected

cost parameter of c = 0.01. For each searchlight (all voxels within a radius of

4 voxels surrounding the central voxel) we performed a 12-fold leave-one-

out cross-validation. In each fold, training was based on data from 11 scanning

runs and prediction accuracy was obtained in the independent 12th scanning

run. The prediction accuracy of the central searchlight voxel was defined as

the average Fisher’s z-transformed correlation coefficient between the actual

labels of the independent test data set and the labels predicted by the SVR

model. Please note that because correlation coefficients are computed based

on model predictions in the independent test data and not on model fits in the

training data, this cross-validation procedure is completely insensitive to

potential noise fitting (i.e., overfitting) in the training data. This method resulted

in a three-dimensional map of locally distributed information about stimulus

orientation for each subject.

To map information about the model-derived decision variables, we sorted

trials into 11 groups based on their value of DV instead of stimulus orientation.

Here, parameter estimates of the GLM represent the response amplitudes

to each of the 11 values of DV in each of the 12 scanning runs. The average

decision variable in each group and run was used as label for the SVR. Search-

light-based information mapping was performed in the very same way as for
stimulus orientation (see above) allowing an unbiased comparison of both

information maps.

To identify regions with significant information about orientation and DV,

respectively, we performed second-level analyses by using voxel-wise one-

sample t tests on smoothed accuracy maps (6 mm full width at half maximum).

To identify regions where significantly more information about the decision

variable than orientation was encoded, we used voxel-wise paired t tests.

For all whole-brain tests we applied the same statistical threshold of p <

0.0001, uncorrected, together with a cluster-extend threshold of k = 20

continuous voxels that survive whole-brain correction for multiple compari-

sons on the cluster level (p < 0.001).

Prediction Error Analysis

To confirm the involvement of prediction error like updating in the context of

the current perceptual learning task, we searched for activity that correlates

with the trial-wise prediction errors derived from our reinforcement learning

model for perceptual decision-making. For this we set up a GLM with a para-

metric design (Büchel et al., 1998) in which the onset regressors for positive

and negative feedback were trial-wise parametrically modulated by the

model-derived signed reward prediction errors (d). These modulated regres-

sors were orthogonalized with respect to the regressors for the onset of posi-

tive and negative feedback and simultaneously regressed against the BOLD

signal in each voxel. Activity that correlates with signed prediction errors

was identified by using voxel-wise t tests on the parameter estimates of the

parametrically modulated regressors.
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