Model-Based Reinforcement Learning

Leonid Kuvayev Richard S. Sutton
Department of Computer Science Department of Computer Science
University of Massachusetts University of Massachusetts
Amherst, MA 01003 Amherst, MA 01003
kuvayev@cs.umass.edu rich@cs.umass.edu

Abstract

Learnig on-line can be very expensive in the real world. We pro-
pose to learn the model of the environment while obtaining on-line
experience and then use this model to facilitate learning and avoid
costly actual experiences. The model can be learned by different
value approximation schemes. In this paper the results are shown
for the most straight forward implementation. Nevertheless the
improvement in the convergence speed is significant.

1 Introduction

On-line methods proved their usefulness in hands of numerous researchers. This
paper first discusses the Mountain Car that has been proven a useful testbed task. In
the next section it discusses the methods to approximate state values and describes
the CMAC approach. In the Primitive Learning section we provide well known
Sarsa algorithm that will serve as a basis for comparison with a new algorithm
for model-based learning. The details of this algorithm as well as the experiments
are shown in the Model-Based section. Finally the direction for further research is
discussed.

2 MOUNTAIN CAR TASK

For our experiments we used Mountain Car task first studied by Boyan and Moore
(1995). In this task a car starts at the bottom of a mountain and drives along a
mountain track. The goal is to overpass the mountain top.

There are two continuous state variables, the position of the car, z;, and the velocity
of the car, v;. The valid ranges are —1 < z; < 1 and —2 < v; < 2. The state
transitions conform to the following simplified physics model obtained from Justin

Boyan at CMU:

m=1,¢9g=9.81, At =0.03

2.2+1 ifz<0
g = if 2> 0

1
(=g

Ji 94
m-/1+ g2 1+ ¢}

a; —

a - At?

Typ1 = 2y + vy - AL+
’Ut_|_]_:’l)t+(1,'At

Force, f;, can take three distinct values -4, 0, or +4 corresponding to three actions
reverse thrust, no thrust or forward thrust. If z;,1 or v;11 go out of range then they
are reset to the boundary value. The trial starts at the bottom of the mountain
with 2o = —0.5 and vg = 0. Reward is -1 on all time steps. The trial terminates
with the first position value that exceeds z;y1 > 0.5.

The steepness of the mountain prevents the car from reaching the top by moving
forward from the initial state. The optimal solution is to move away from the
mountain top initially in order to gain enough momentum, and then thrust forward
until the top is reached.

Figure 1: Surface of the value function after 500 trials.

3 REINFORCEMENT LEARNING AND FUNCTION
APPROXIMATION

To obtain a good policy we learn the state value function that represents remaining
cost to go. The greedy policy with respect to such function will produce the optimal
solution.

Several ways were considered to approximate the state value function, including
lookup table, CMAC networks and neural networks. Lookup table approach is
the most straight forward method but has severe limitations. The first one is the
prohibitive memory demand. The other limitation is the poor solution quality
due to unavoidable discretisation error. The CMAC networks require less memory
and possess excellent convergence speed and solution quality. Their limitation, the
dimensionality curse, did not produce any obstacles for the Mountain Car problem
with 2-dimensional state space. Neural networks were significantly slower than
CMAC during initial stage of learning. It was necessary to spend one or two orders
of magnitude more trials compare to CMAC networks before learning curve reached
the “knee” point. Neural networks are more suitable for a complex non-linear task
where the state space dimensions prohibit the use of the first two methods.

The CMAC network that was used in the experiments consisted of 10 layers with
10 by 10 grid in each layer. The total number of boxes is 10 - 10 - 10 = 1000. The
offsets for each layer were evenly spaced and ranged from 0 to 9/10 of the dimension
of the cell. We also experimented with 5-layer CMAC and obtained similar results
with a slight loss of stability.

4 PRIMITIVE LEARNING

As a basis for comparison with a new model-based algorithm we selected the Sarsa
algorithm, (Sutton, 88). It performed slightly better than the other well know
algorithm, Q-Learning introduced by (Watkins, 89). Sarsa algorithm is an on-line
learning algorithm were the state values are learned from the temporal differences.
The details of the algorithm are the following:

Initially: Q(s,a) := 0, Va € Actions, Vs € States

Start of Trial: s = sq, a := ezploration-policy(s)

Take action a; observe resultant reward, r, and next state s’
a' := exploration-policy(s)

Learn: Q(s,a) := Q(s,a) + a[r + Q(s',a’) — Q(s, a)]

Loop: a :=a';s := s'; if s’ is the terminal state, go to 2, else go to 3

DU R W N =

The first objective was to determine the best learning rate that can be used for all
further experiments. The result is shown in Figure 2. For this experiment we ran the
algorithm for 20 trials, calculated the average number of steps and then repeated it
30 times. The mean and standard error of the sample are shown for different values
of learning rate, &. The global minimum is reached in the neighborhood of & = 1.6.
This learning rate was used in further experiments. The unusually high value for
learning rate is explained by how the individual cell values are updated. The rule
is w(s,!) := w(s,l) + § - € for each layer [and error ¢, where L is the number of
layers. In our study the effective learning rate for each box is /L = 1.6/10 = 0.186.

The exploration was controlled through the temperature parameter. An action
was chosen with respect to Boltzman distribution. During all experiments the
temperature was kept at the low value of 0.2. It guaranteed the near greedy policy
and prevented an agent from being stuck.

5 MODEL-BASED LEARNING

Various on-line methods such as Sarsa and Q-Learning already proved their effec-
tiveness in hands of numerous researchers. The convergence is guaranteed in on-line

cases if value approximators are sufficiently accurate (Ref ???). The opportunities
for researchers exist in improving the speed of convergence. Learning on-line is ex-
pensive in the real world, compare to a simulation running in the computer memory.

We propose to learn the model of the environment while obtaining on-line experience
and then use this model to facilitate learning. The model can be learned by different
value approximation schemes, however the emphasis should be put on the achieving
the maximum accuracy in order to rely on the model-based experiences.

Given a state and action the model of the environment predicts the next state
that an agent will get to. The mapping can be learned from observing actual state
transitions. In case of discreet state space the transitions can be stored in the lookup
table. However in our study the state space is continuous, hence the mapping of a
state and an action to a next state need to be approximated. The simplest approach
using a hash table was implemented. The new algorithm is based on Sarsa described
in the previous section with the addition of model update step and sampling step.
The complete model-based Sarsa algorithm is as follows:

Initially: w(¢) := 0, Vi € Tiles, $5im = S0, Gsim —ezpl-policy(ssim)
Start of Trial: s = sq, a :=ezpl-policy(s)
Take action a; observe reward, r, and next state s’

!

a' := expl-policy(s)

Ot = W N =

Learn:
€:=r+ Zt’inTiles(s’,a’) w(t,) - ZtinTiles(s,a) w(t)
w(t) :=w(t) + ¢ - €, Vt € Tiles(s,a)
6. Update Model: Add a new observation s’ to a list of past observations kept

in the hash table entry m(s,a). If s’ is already in the table then increment
the number of times s’ has been observed by 1

7. Sample Model:
Repeat K times
take action asim;
use model to compute the predicted next state, s
if &', is the terminal state
set Ssim = S0, Gsim = empl'pOHCy(ssim)
go to the beginning of the loop
al;m i=ezpl-policy(ssim);
learn: €:=r + Zt’ETiles(s’sim,a’sim) w(t,) - ZtETiles(ssim,asim) w(t)

w(t) :=w(t) + ¢ - €, Vt € Tiles(Ssim @sim)

8. Loop: a:=a';s:= s'; if s’ is the terminal state, go to 2, else go to 3

!

1
tim, and reward, r';

The observed next states can be different and still hash to the same entry. We store
all observed next states with their frequencies. When the next state is looked up in
the table, one of the observed values is drawn according to its frequency.

To gain confidence in the model-based approach and to compare the effect of the
grid resolution for the hash table we designed the following experiment. We ran the
algorithm for 20 trials and computed the averaged number of steps. The model is
learned during the run but not expected to improve the convergence. Then another
run of 20 trials is performed using the model from the previous run. This time
the model should already be sufficiently learned to speed up the convergence. The
procedure is repeated for 50 runs each time using an up-to-date model. In Figure 3
we compared two grid sizes for the hash table. The high resolution 100 x 100 grid
is learned slower but shows more accurate performance. The low resolution 30 x 30

grid can be learned during the first run and provides the foundation for the next
experiment.

Our goal is to find the way a model can be used during on-line learning. In this
experiment we showed that a model can indeed provide a significant improvement
over model-free learning. The same experiment was run with different number of
model steps. The first data point with K = 0 corresponds to a model-free Sarsa
algorithm. With K > 0 the average number of steps is going down.

The improvement during the first 20 trials is slight. However a model-based learning
provides not only faster initial convergence but also more stable learning under high
learning rates.

6 FUTURE WORK

One of the drawbacks of the described model-based method is significant memory
consumption. For the relatively small task the hash table contained 1000 different
states where each state would typically have several predicted next states. This
approach is also inefficient since the next state probabilities have to be updated on
each real step. The possible solution is the use of CMAC or neural networks to learn
the mappings of states and actions to the next states. It however poses immediate
challenges due to initial disturbance the inaccurate model brings into the learning
of state values.

Acknowledgements

Thanks to Professor Richard Sutton, and to the members of the Adaptive Networks
Laboratory. This work is supported by National Science Foundation under grant
ECS-9511805 to Professor Barto and Professor Sutton.

References

Singh, S.P. & Sutton, R.S. (1996) Reinforcement Learning with Replacing Eligibility
Traces. Machine Learning 3:123-158.

Watkins, C.J.C.H. (1989) Learning from Delayed Rewards. PhD thesis, King’s
College, Cambridge, England.

Learning Rate Study
1000 T T T T T T T T

900 r
800 |
700 |
600 |
500 r

400 1 1 1 1 1 1 1 1
02040608 1 12141618 2
Alpha

Avg Steps per Trial

Figure 2: Convergence speed at various learning rates.

Grid Size Study
400 ~ T T T T T T T T T

33x33 ——
350 100x100 - 1

300

250
200
150

Avg Steps per Trial

100

50 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Epochs (each of 20 trials)

Figure 3: Convergence speeds up when using a model. Note the difference between
high and low resolution grids

Avg Steps per Trial

550

500 ¢

450
400
350
300
250
200
150
100

50

Number of Model Steps, K

first 20 trials —— A

B first 500 trials]

L i e N R I S R E
2 4 6 8

Figure 4: Convergence speeds up when using a model. K = 0 corresponds to model-

free Sarsa algorithm.

4000
3500
3000
2500
2000
1500
1000

500

I I
- K=0— 4
n
50 100 150
Trials

I I
- K=1— 4
1 = S ST
0 50 100 150 200
Trials

Figure 5: The learning curves for model-free (left) and model-based (right) algo-
rithms. The averaged number of steps per trial versus is plotted for the first 200

trials.

