
Model-Based Reinforcement LearningLeonid KuvayevDepartment of Computer ScienceUniversity of MassachusettsAmherst, MA 01003kuvayev@cs.umass.edu Richard S. SuttonDepartment of Computer ScienceUniversity of MassachusettsAmherst, MA 01003rich@cs.umass.eduAbstractLearnig on-line can be very expensive in the real world. We pro-pose to learn the model of the environment while obtaining on-lineexperience and then use this model to facilitate learning and avoidcostly actual experiences. The model can be learned by di�erentvalue approximation schemes. In this paper the results are shownfor the most straight forward implementation. Nevertheless theimprovement in the convergence speed is signi�cant.1 IntroductionOn-line methods proved their usefulness in hands of numerous researchers. Thispaper �rst discusses the Mountain Car that has been proven a useful testbed task. Inthe next section it discusses the methods to approximate state values and describesthe CMAC approach. In the Primitive Learning section we provide well knownSarsa algorithm that will serve as a basis for comparison with a new algorithmfor model-based learning. The details of this algorithm as well as the experimentsare shown in the Model-Based section. Finally the direction for further research isdiscussed.2 MOUNTAIN CAR TASKFor our experiments we used Mountain Car task �rst studied by Boyan and Moore(1995). In this task a car starts at the bottom of a mountain and drives along amountain track. The goal is to overpass the mountain top.There are two continuous state variables, the position of the car, xt, and the velocityof the car, vt. The valid ranges are �1 � xt � 1 and �2 � vt � 2. The statetransitions conform to the following simpli�ed physics model obtained from Justin



Boyan at CMU: m = 1, g = 9:81, �t = 0:03qt = � 2 � x+ 1 if x < 01(1+5x2t )3=2 if x � 0at = ftm �p1 + q2t � g � qt1 + q2txt+1 = xt + vt ��t+ a ��t22vt+1 = vt + a ��tForce, ft, can take three distinct values -4, 0, or +4 corresponding to three actionsreverse thrust, no thrust or forward thrust. If xt+1 or vt+1 go out of range then theyare reset to the boundary value. The trial starts at the bottom of the mountainwith x0 = �0:5 and v0 = 0. Reward is -1 on all time steps. The trial terminateswith the �rst position value that exceeds xt+1 > 0:5.The steepness of the mountain prevents the car from reaching the top by movingforward from the initial state. The optimal solution is to move away from themountain top initially in order to gain enough momentum, and then thrust forwarduntil the top is reached.
-1 -0.5 0 0.5 -2

-1
0

1
-100

-50

0

50

X
VFigure 1: Surface of the value function after 500 trials.3 REINFORCEMENT LEARNING AND FUNCTIONAPPROXIMATIONTo obtain a good policy we learn the state value function that represents remainingcost to go. The greedy policy with respect to such function will produce the optimalsolution.



Several ways were considered to approximate the state value function, includinglookup table, CMAC networks and neural networks. Lookup table approach isthe most straight forward method but has severe limitations. The �rst one is theprohibitive memory demand. The other limitation is the poor solution qualitydue to unavoidable discretisation error. The CMAC networks require less memoryand possess excellent convergence speed and solution quality. Their limitation, thedimensionality curse, did not produce any obstacles for the Mountain Car problemwith 2-dimensional state space. Neural networks were signi�cantly slower thanCMAC during initial stage of learning. It was necessary to spend one or two ordersof magnitude more trials compare to CMAC networks before learning curve reachedthe \knee" point. Neural networks are more suitable for a complex non-linear taskwhere the state space dimensions prohibit the use of the �rst two methods.The CMAC network that was used in the experiments consisted of 10 layers with10 by 10 grid in each layer. The total number of boxes is 10 � 10 � 10 = 1000. Theo�sets for each layer were evenly spaced and ranged from 0 to 9/10 of the dimensionof the cell. We also experimented with 5-layer CMAC and obtained similar resultswith a slight loss of stability.4 PRIMITIVE LEARNINGAs a basis for comparison with a new model-based algorithm we selected the Sarsaalgorithm, (Sutton, 88). It performed slightly better than the other well knowalgorithm, Q-Learning introduced by (Watkins, 89). Sarsa algorithm is an on-linelearning algorithm were the state values are learned from the temporal di�erences.The details of the algorithm are the following:1. Initially: Q(s; a) := 0, 8a 2 Actions, 8s 2 States2. Start of Trial: s = s0, a := exploration-policy(s)3. Take action a; observe resultant reward, r, and next state s04. a0 := exploration-policy(s)5. Learn: Q(s; a) := Q(s; a) + �[r +Q(s0; a0) �Q(s; a)]6. Loop: a := a0; s := s0; if s0 is the terminal state, go to 2, else go to 3The �rst objective was to determine the best learning rate that can be used for allfurther experiments. The result is shown in Figure 2. For this experiment we ran thealgorithm for 20 trials, calculated the average number of steps and then repeated it30 times. The mean and standard error of the sample are shown for di�erent valuesof learning rate, �. The global minimum is reached in the neighborhood of � = 1:6.This learning rate was used in further experiments. The unusually high value forlearning rate is explained by how the individual cell values are updated. The ruleis w(s; l) := w(s; l) + �L � � for each layer l and error �, where L is the number oflayers. In our study the e�ective learning rate for each box is �=L = 1:6=10 = 0:16.The exploration was controlled through the temperature parameter. An actionwas chosen with respect to Boltzman distribution. During all experiments thetemperature was kept at the low value of 0.2. It guaranteed the near greedy policyand prevented an agent from being stuck.5 MODEL-BASED LEARNINGVarious on-line methods such as Sarsa and Q-Learning already proved their e�ec-tiveness in hands of numerous researchers. The convergence is guaranteed in on-line



cases if value approximators are su�ciently accurate (Ref ???). The opportunitiesfor researchers exist in improving the speed of convergence. Learning on-line is ex-pensive in the real world, compare to a simulation running in the computer memory.We propose to learn the model of the environment while obtaining on-line experienceand then use this model to facilitate learning. The model can be learned by di�erentvalue approximation schemes, however the emphasis should be put on the achievingthe maximum accuracy in order to rely on the model-based experiences.Given a state and action the model of the environment predicts the next statethat an agent will get to. The mapping can be learned from observing actual statetransitions. In case of discreet state space the transitions can be stored in the lookuptable. However in our study the state space is continuous, hence the mapping of astate and an action to a next state need to be approximated. The simplest approachusing a hash table was implemented. The new algorithm is based on Sarsa describedin the previous section with the addition of model update step and sampling step.The complete model-based Sarsa algorithm is as follows:1. Initially: w(t) := 0, 8t 2 T iles; ssim = s0; asim =expl-policy(ssim)2. Start of Trial: s = s0, a :=expl-policy(s)3. Take action a; observe reward, r, and next state s04. a0 := expl-policy(s)5. Learn:� := r +Pt0inTiles(s0;a0) w(t0) �PtinTiles(s;a)w(t)w(t) := w(t) + �L � �; 8t 2 T iles(s; a)6. Update Model: Add a new observation s0 to a list of past observations keptin the hash table entry m(s; a). If s0 is already in the table then incrementthe number of times s0 has been observed by 17. Sample Model:Repeat K timestake action asim;use model to compute the predicted next state, s0sim, and reward, r0;if s0sim is the terminal stateset ssim = s0; asim = expl-policy(ssim)go to the beginning of the loopa0sim :=expl-policy(ssim);learn: � := r +Pt02Tiles(s0sim;a0sim) w(t0)�Pt2Tiles(ssim;asim)w(t)w(t) := w(t) + �L � �; 8t 2 T iles(ssim ; asim)8. Loop: a := a0; s := s0; if s0 is the terminal state, go to 2, else go to 3The observed next states can be di�erent and still hash to the same entry. We storeall observed next states with their frequencies. When the next state is looked up inthe table, one of the observed values is drawn according to its frequency.To gain con�dence in the model-based approach and to compare the e�ect of thegrid resolution for the hash table we designed the following experiment. We ran thealgorithm for 20 trials and computed the averaged number of steps. The model islearned during the run but not expected to improve the convergence. Then anotherrun of 20 trials is performed using the model from the previous run. This timethe model should already be su�ciently learned to speed up the convergence. Theprocedure is repeated for 50 runs each time using an up-to-date model. In Figure 3we compared two grid sizes for the hash table. The high resolution 100� 100 gridis learned slower but shows more accurate performance. The low resolution 30� 30



grid can be learned during the �rst run and provides the foundation for the nextexperiment.Our goal is to �nd the way a model can be used during on-line learning. In thisexperiment we showed that a model can indeed provide a signi�cant improvementover model-free learning. The same experiment was run with di�erent number ofmodel steps. The �rst data point with K = 0 corresponds to a model-free Sarsaalgorithm. With K > 0 the average number of steps is going down.The improvement during the �rst 20 trials is slight. However a model-based learningprovides not only faster initial convergence but also more stable learning under highlearning rates.6 FUTURE WORKOne of the drawbacks of the described model-based method is signi�cant memoryconsumption. For the relatively small task the hash table contained 1000 di�erentstates where each state would typically have several predicted next states. Thisapproach is also ine�cient since the next state probabilities have to be updated oneach real step. The possible solution is the use of CMAC or neural networks to learnthe mappings of states and actions to the next states. It however poses immediatechallenges due to initial disturbance the inaccurate model brings into the learningof state values.AcknowledgementsThanks to Professor Richard Sutton, and to the members of the Adaptive NetworksLaboratory. This work is supported by National Science Foundation under grantECS-9511805 to Professor Barto and Professor Sutton.ReferencesSingh, S.P. & Sutton, R.S. (1996) Reinforcement Learning with Replacing EligibilityTraces. Machine Learning 3:123-158.Watkins, C.J.C.H. (1989) Learning from Delayed Rewards. PhD thesis, King'sCollege, Cambridge, England.



400
500
600
700
800
900

1000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
vg

 S
te

ps
 p

er
 T

ria
l

Alpha

Learning Rate Study

Figure 2: Convergence speed at various learning rates.
50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45 50

A
vg

 S
te

ps
 p

er
 T

ria
l

Epochs (each of 20 trials)

Grid Size Study

33x33
100x100

Figure 3: Convergence speeds up when using a model. Note the di�erence betweenhigh and low resolution grids



50
100
150
200
250
300
350
400
450
500
550

0 2 4 6 8 10

A
vg

 S
te

ps
 p

er
 T

ria
l

Number of Model Steps, K

first 20 trials
first 500 trials

Figure 4: Convergence speeds up when using a model. K = 0 corresponds to model-free Sarsa algorithm.
05001000150020002500300035004000
0 50 100 150 200Trials

K = 0
05001000150020002500300035004000
0 50 100 150 200Trials

K = 1
Figure 5: The learning curves for model-free (left) and model-based (right) algo-rithms. The averaged number of steps per trial versus is plotted for the �rst 200trials.


