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a b s t r a c t

Lee and Sarnecka (2010) developed a Bayesian model of young children’s behavior on the
Give-N test of number knowledge. This paper presents two new extensions of the model,
and applies the model to new data. In the first extension, the model is used to evaluate
competing theories about the conceptual knowledge underlying children’s behavior. One,
the knower-levels theory, is basically a ‘‘stage’’ theory involving real conceptual change.
The other, the approximate-meanings theory, assumes that the child’s conceptual knowl-
edge is relatively constant, although performance improves over time. In the second exten-
sion, the model is used to ask whether the same latent psychological variable (a child’s
number-knower level) can simultaneously account for behavior on two tasks (the Give-
N task and the Fast-Cards task) with different performance demands. Together, these
two demonstrations show the potential of the Bayesian modeling approach to improve
our understanding of the development of human cognition.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Young children’s number knowledge is a classic domain
of research in cognitive development. On the one hand,
evolution has given humans (like other animals) the ability
to represent implicitly small, exact set sizes (up to about
4), and to represent explicitly larger, approximate cardinal-
ities (e.g., approximately 50 vs. approximately 100; see
Feigenson, Dehaene, & Spelke (2004) for review). On the
other hand, many types of numbers (e.g., negative integers;
pi and other irrationals; etc.) are better understood as cul-
tural products (Piaget, 1952). This combination of innate or
early-developing, preverbal knowledge with painstak-
ingly-acquired, verbalized knowledge makes the case of
number a perennially interesting one for cognitive devel-
opment. The present work uses examples from the domain
of number to show how Bayesian models can be useful for
studying cognitive development.

The first goal of the paper is to show how a model can be
used to decide between competing theories of young

children’s number knowledge. In our example, one theory,
the knower-levels theory, describes development as stage-
like, involving qualitative discontinuities in knowledge
development. The other theory, the approximate-meanings
theory, describes development as essentially continuous,
with improvements in children’s performance, but no real
qualitative changes in their underlying knowledge state.
Our version of number-knower-levels theory will make
three claims. The first is that children learn the exact,
cardinal meanings of the number words ‘one,’ ‘two,’ ‘three’
and ‘four,’ one at a time, and in order. The second claim is
that children figure out the meanings of all higher number
words at once when they learn the cardinality principle
(Gelman & Gallistel, 1978), which connects cardinal numer-
osity to counting; (e.g., Carey, 2009; Le Corre, Van de
Walle, Brannon, & Carey, 2006; Sarnecka & Carey, 2008;
Wynn, 1992). The third claim is that, before learning the
cardinality principle, children do not know the meanings
(even approximately) of any higher number words.

Our version of approximate-meanings theory will make
the claim that by the time children have learned the num-
ber words of their language (i.e., have learned to recite the
conventional number-word list up to 10), they already
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know the approximate cardinal value of each number
word, although their ability to demonstrate that knowl-
edge may be very poor (especially for the higher numbers).

Note that we have chosen relatively simple versions of
each theory as examples. More nuanced and complicated
theories could be tested by this same method. For present
purposes, it is not the exact details of particular theories
that matter, but the demonstration of how a Bayesian
graphical model can be used to decide among them.

The second goal of the paper is to show how a model
can be used to ask whether the same latent psychological
variable can simultaneously account for behavior on two
different tasks. In our example, the psychological variable
is a child’s number-knower level. One task is Give-N
(Wynn, 1992), where children are told a number word
and must generate a set. The other task is Fast-Cards (Le
Corre & Carey, 2007), where children are shown a set and
must generate a number word. We show how a formal
model can be used to identify regularities in children’s
behavior (potential indicators of the same underlying
knowledge) across the two different tasks.

We first presented a version of this model in a recent
paper (Lee & Sarnecka, 2010). In that paper, we considered
a dataset that contained only Give-N behavior. In this pa-
per, we apply the same model to new Give-N data. We then
extend the modeling approach in two fundamental ways,
to address our two research goals. First, we embed an
approximate-meanings theory within the same modeling
framework, to show how the theories can be compared
using Bayesian methods. Second, we extend the model to
apply to both Give-N and Fast-Cards data simultaneously,
to show how multiple tasks dependent on the same latent
knowledge can be modeled using Bayesian methods.

2. Data

2.1. Participants

Participants included 56 children (26 girls; 30 boys),
ages 2 years, 3 months to 5 years, 3 months (mean age
3;9). All children were monolingual and native speakers
of English, as determined by parental report. Children
were recruited from private child-care centers in Irvine,
California. Families received a prize (e.g., a small stuffed
animal or rubber duck) when they signed up to participate
in the study; no prizes were given at the time of testing. No
questions were asked about socio-economic status, race, or
ethnicity, but participants were presumably representative
of the middle-to-upper income, predominantly white and
Asian community from which they were recruited.

2.2. Procedure

Children were given three tasks (Intransitive counting,
Give-N and Fast-Cards) as part of a larger study. Intransi-
tive counting was always given first; Give-N and Fast-
Cards were presented in counterbalanced order afterward.

2.2.1. Intransitive counting task
The purpose of this task was to assess the child’s knowl-

edge of the conventional English number-word sequence

up to 10. The experimenter prompted the child to count
by saying, ‘‘Let’s count. Can you count to ten?’’ If a child
hesitated, the experimenter said, ‘‘Let’s count together’’
and counted to 10 slowly, encouraging the child to join
in. Afterward, the experimenter said ‘‘Great. Now you,’’
prompting the child to count alone. If a child stopped
counting before 10 (e.g., at five), the experimenter re-
peated the last three numbers with an encouraging tone
of voice (e.g., ‘‘three, four, five, . . .?’’) or asked, ‘‘What
comes after five?’’ If a child got to 10 but skipped one or
more numbers along the way, the experimenter did not
provide correction, but encouraged the child to count again
(e.g., ‘‘OK! Do you want to count again?’’), up to a total of
three attempts.

2.2.2. Give-N task
This task asked children to generate sets of a given

number. Materials included a stuffed animal, a plastic plate
(approximately 11 cm in diameter), and three sets of 15
plastic counters each (fish, dinosaurs and oranges, each
approximately 2–3 cm in diameter). Items in each set were
homogenous. The experimenter began the task by saying,
‘‘The way we play this game is, I will tell you what to put
on the plate, and you put it there and sli-i-i-de it over to
Pig, like this (demonstrating). OK, can you give one fish
to Pig?’’

After the child slid the plate toward the stuffed animal,
the experimenter asked one or more follow-up questions.
On low-number trials (those asking for one, two, three or
four items), there was only one follow-up question, repeat-
ing the original number word (e.g., ‘‘Is that one?’’) If the
child said ‘‘yes,’’ then the experimenter said, ‘‘Thank
you!’’ and placed the item(s) back in the bowl. If the child
said ‘‘no,’’ then the experimenter restated the original re-
quest, starting the trial over.

On high-number trials (those asking for five, eight or 10
items), the follow-up questions encouraged the child to
count. (For children who had spontaneously counted out
the items already, the follow-up was the same as on low-
number trials.) For children who had not counted the
items, the first follow-up question was the same (e.g., ‘‘Is
that five?’’). If the child said ‘‘yes,’’ the experimenter said,
‘‘Can you count and make sure it’s five?’’ If the child
counted and ended with a number other than five, the
experimenter said ‘‘Can you fix it so it’s five?’’ If the child
answered no’’ to the original follow-up question, the
experimenter said ‘‘Can you count and fix it so it’s five?’’
The child’s final response (after counting and fixing) was
the response used for the analysis.

Each child was given 21 trials: three trials each of the
numbers 1, 2, 3, 4, 5, 8 and 10. Trials were presented in
blocks of seven (one trial of each number). For each block,
a new set of items was used. Order of trials was random-
ized within each block.

2.2.3. Fast-Cards task
This task (adapted from Le Corre & Carey, 2007) asked

children to estimate the numerosities of briefly presented
sets. Materials included 21 laminated cards with pictures
of small plastic counters (ducks, fire trucks and bananas,
each approx 2-3 cm in diameter). Items in each set were
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homogenous. The experimenter began the task with a
warm-up trial. The experimenter showed the child a pic-
ture of just one item and said, ‘‘What’s on this card?’’ The
child usually answered with a noun (e.g., ‘‘a pig’’). The
experimenter said ‘‘That’s right, it is a pig! But in this
game, we use our number words, so you say, ONE’. (Here
the child would usually say, ‘‘one.’’) Then the experimenter
said ‘‘Good job! OK, what do you think you say for this
card?’’ and began the test trials.

If a child did not give a number-word response, the
experimenter prompted with one of the following ques-
tions: ‘‘Can you think of a number word for this picture?’’
‘‘How about a number?’’ ‘‘What number do you think goes
with this picture?’’ After one such prompt, the child’s re-
sponse was recorded and the experimenter moved on to
the next trial. The phrase ‘‘how many’’ was avoided, be-
cause previous research has shown that it prompts chil-
dren to count (Sarnecka & Carey, 2008). When children
did start to count the items, the experimenter lowered
the card and said, ‘‘This isn’t a counting game. You can just
guess a number.’’

Each child was given 21 trials: three trials each with
pictures of 1, 2, 3, 4, 5, 8 and 10 items. Trials were pre-
sented in blocks of seven (one trial of each set size). For
each block, a new set of cards was used. Order of trials
was randomized within each block.

3. A model of behavior on number tasks

Lee and Sarnecka (2010) developed a model of behavior
on the Give-N task, formalizing the number-knower-levels
theory. The model is inherently Bayesian, based on the pre-

mise that children use task instructions to update a prior
belief about appropriate behavior into a posterior belief.

A schematic account of the Lee and Sarnecka (2010)
model is presented in Fig. 1. The child on the left is shown
in a prior belief state, for a Give-N task with 15 toys. As
their thought bubble shows, the child permits the belief
that any number of toys between 1 and 15 might be appro-
priate behavior. But, the child is pre-disposed to give some
set sizes rather than others, purely because of the nature of
the task. These pre-dispositions are represented by the size
of the numerals.

This pre-disposition takes the form of a base-rate,
which specifies how likely each response would be in the
absence of any instructions at all. In Fig. 1, the child is a pri-
ori more likely to construct small sets (e.g., 1, 2, 3 or 4
items) or to give all 15 objects, than to construct larger sets
that stop short of the whole (e.g., 7–14 items).

Fig. 1 shows how two different instructions—‘give me
‘‘two’’’ and ‘give me ‘‘five’’’—lead the base-rate to be up-
dated, based on knower-level theory. To make this demon-
stration concrete, we assume the child is a 3-knower (i.e.,
the child knows the exact, cardinal meanings only of the
underlined numbers). For the ‘give me ‘‘two’’’ instruction,
updating simply corresponds to making 2 the most likely
response, since it is known.

For the ‘‘give me ‘five’’’ instruction, the updating is more
subtle, and involves two parts. First, those numbers that
are known, and are not the target number, become very
unlikely responses. This is why the numbers 1, 2 and 3
do not appear in the lower-right thought bubble—the like-
lihood of the child giving any of those responses is negligi-
bly small. Secondly, the remaining numbers keep the same

Fig. 1. Intuitive operation of model, showing a child who is a 3-knower responding to instructions to ‘give ‘‘two’’’ and to ‘give ‘‘five’’’.
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relative likelihood (e.g., 5 is still a more likely response
than 12, and less likely than 15) but they all have a greater
absolute likelihood, because the total probability still adds
up to one. Acting on this posterior belief, the child at the
bottom right of Fig. 1 is most likely to give 4, 5, or 15 toys.

In general, the model works by making relatively more
likely a target number that is known, relatively less likely
a number that is known but is not the target number,
and leaving relatively equally likely a number that is not
known. In this way, the task base-rate, the knower-level
of the child, and the instructions giving the target number
all interact to produce a belief that is the basis for behavior.

3.1. Formal implementation of model

Lee and Sarnecka (2010) implemented their model
using the formalism provided by graphical models. This
is a standard approach in machine learning and statistics
for specifying probabilistic generative models (e.g., Jordan,
2004; Koller, Friedman, Getoor, & Taskar, 2007), and is
becoming increasingly popular in the cognitive sciences
(e.g., Griffiths, Kemp, & Tenenbaum, 2008; Lee, 2008;
Shiffrin, Lee, Kim, & Wagenmakers, 2008). The basic idea
is that unobserved variables (i.e., model parameters) and
observed variables (i.e., data) are represented by nodes in
a graph, their dependencies are indicated by the graph
structure, and encompassing plates are used to indicate
replications.

Fig. 2 shows the graphical model for the Bayesian ac-
count of knower-level behavior on the Give-N task. The ob-
served data are the question qij, which corresponds to the
number of toys the ith child is instructed to give on their
jth question, and the answer gij, which corresponds to
how many toys they actually gave.

The base-rate is represented by the vector p, with the
element pk giving the initial probability of giving k toys.
The evidence value v is a model parameter, controlling
how much more or less likely behaviors become, when
the instructions provide evidence for or against them.

The discrete state parameter zi gives the knower-level of
the ith child, ranging from pre-number (PN)-knower level,
where the child does not yet know the exact meanings of
any number words, to the 1-knower level (where the child
knows the meaning only of ‘‘one’’), and so on up to the car-
dinal-principle (CP)-knower level. All of these parameters
are unknown, and must be inferred from data.

The base-rate, evidence and knower-level parameters
interact with the task instruction to generate the updated
belief represented by p0 with p0ijk giving the probability
the ith child will give k toys in response to a question about
number j. Following the logic of the model intuitively out-
lined above, and described in more detail by Lee and
Sarnecka (2010), this updating is given by

p0ijk /
pijk if k > zi

v � pijk if k 6 zi and k ¼ qij

1
v � pijk if k 6 zi and k – qij:

8><
>: ð1Þ

The observed behavior is simply sampled from the updated
probabilities, so that gij� Discrete (p

0
).

The three parts of this updating rule correspond to the
three cases described intuitively earlier. The first case ap-
plies to numbers that are greater than the child’s
knower-level, and so the base-rate for giving that number
guides their behavior. The second case applies when the
number is known, and is being asked for, so its likelihood
of being given is increased by a factor of v. The third case
applies when the number is known, but it not being asked
for, so its likelihood is decreased by a factor of v.

Our modeling approach uses Bayesian inference in two
separate ways, both as a model of a child’s inference about
how many toys to give, and as a method for us as scientists
making inferences about what a child knows based on
their behavior (see Kruschke (2010); Lee (2010); Lee &
Sarnecka (2010) for detailed discussion). Because of the
second, methodological, use of Bayesian principles, we
need to place priors on the unobserved parameters. These
are given by the relatively non-informative choices p �
Dirichlet (1,. . .,1), v� Uniform (1,1000), and zi � Discrete

1
6 ; . . . ; 1

6

� �
.

3.2. Basic results

3.2.1. Intransitive counting task
All the children except one produced the number-word

sequence correctly up to 10. The exception was a boy (age
3 years, 6 months) who produced the sequence only up to
7. We chose to include this child’s data in the analysis after
determining that excluding them did not change the re-
sults in any noticeable way.

3.2.2. Give-N task
For comparison with previous studies and with the

model’s sorting below, we first present the breakdown of
children into knower-levels by the standard heuristic
method. In this method, a child is counted as ‘knowing’ a
number N, if that child successfully generated sets of N
for at least two of the three trials asking for that number,
and did not generate a set of N more than once during
the 18 trials asking for other number words. For this setFig. 2. Graphical model for a knower-level account of task behavior.
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of Give-N data, that sorting produced four pre-number-
knowers (PN-knowers); seven 1-knowers; 10 2-knowers;
six 3-knowers; eight 4-knowers; and 21 CP-knowers. This
distribution is similar to those in previously reported sets
of Give-N data from children of comparable age and SES
background (e.g., Le Corre & Carey, 2007; Lee & Sarnecka,
2010; Sarnecka & Carey, 2008; Sarnecka & Lee, 2009).

3.2.3. Fast-Cards task
Using sorting criteria analogous to those in the Give-N

sorting above, children were counted as ‘knowing’ a num-
ber N if they successfully said N on at least two of the three
trials presenting pictures of N objects; and did not say N on
more than one of the eighteen other trials. This sorting pro-
duced the following distribution: four PN-knowers; seven
1-knowers; 21 2-knowers; 15 3-knowers; and nine 4-
knowers/CP-knowers. (The difference between 4-knowers
and CP-knowers cannot be reliably detected by the Fast-
Cards task, as the difference depends on counting.)

3.3. Modeling results

In this section we apply the model to the current Give-N
data. We do not work through all of the analyses in the
same detail as Lee and Sarnecka (2010). Instead, we focus
on the key results that show how modeling the new data
confirms the earlier findings. In particular, we focus on
the ability of the model to provide a good descriptive fit
to the observed task behavior of the children, and to infer
meaningful and useful characterizations of the processes
generating this behavior.

The posterior distributions for the latent knower-level
states zi classified the 56 children into three PN-knowers,
seven 1-knowers, 10 2-knowers, six 3-knowers, 10 4-
knowers and 20 CP-knowers. The standard Cohen’s kappa
measure of agreement (Cohen, 1960) was 0.63, indicating
what is usually considered ‘‘substantial agreement’’ be-
tween the heuristic and model-based classifications of
children into knower-levels, although clearly they are not
identical assessments.

Consistent with the detailed analysis presented by Lee
and Sarnecka (2010), the posterior distributions were
highly peaked, often giving almost all their mass to a single
knower-level. For those cases with uncertainty, it is always
with respect to neighboring knower-levels, even though no
such constraint is built into the model. As Lee and Sarnecka
argued, both of these properties are consistent with latent
knower-levels being meaningful psychological character-
ization of the individual differences between children.
The mean posterior for the evidence parameter v was
about 23 (i.e., when a 3-knower is asked to give 2, that re-
sponse becomes about 23 times more likely than it was in
the prior distribution, whereas all other responses become
about 23 times less likely). This is comparable with the va-
lue of 29 found by Lee and Sarnecka for the earlier dataset.

Fig. 3 shows the base-rate that is inferred from the cur-
rent data, and highlights a key contribution of the model.
As with the data considered by Lee and Sarnecka (2010),
the base-rate assigns high probabilities to small numbers,
consistent with the child giving one to four toys. High
probability is also assigned to 15, consistent with the
child’s giving the entire set. In the context of the Give-N
task, this base-rate makes strong intuitive sense. The fact
that the model infers this base-rate from the data shows
that the model is useful in quantifying an aspect of chil-
dren’s behavior (i.e., their pattern of ‘chance’ responding)
that had never been specified before.

Fig. 4 shows the fit between the model and data, exam-
ining how well the interaction of the inferred base-rate,
evidence value, and knower levels can account for trial-
by-trial task behavior. Each panel corresponds to a
knower-level stage, with the x-axis listing the number of
toys asked for, and the y-axis listing the number given.
The darkness of the shading in each cell thus represents
the posterior predicted probability the model gives to each
combination of question and answer. Overlayed in each
panel by circular markers are the observed data, for just
those children inferred to belong to the appropriate
knower-level. The area of each circle represents the num-
ber of times each question and answer pair was observed
for children at that knower-level.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Give−N Number

Pr
ob

ab
ilit

y

Fig. 3. Inferred base-rates for the Give-N task.
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The model predictions fit the data very well, as Fig. 4
shows. The distinctive pattern of near-perfect behavior
up to a child’s knower-level, but completely different
behavior beyond their knower-level, is evident in both ob-
served and model behavior. An especially important fea-
ture of the fit is the way the base-rate accounts for the
task-specific nature of the non-accurate behavior. It is clear
in Fig. 4 that this behavior is consistent with a base-rate—
giving emphasis to small numbers immediately above the
knower-level, and to 15—as formalized by the updating
process within the model. In this way, the model explains
task behavior in terms of an interaction between the
child’s conceptual knowledge of numbers, and superficial
aspects of the task.

4. Using the model to compare alternative theories

The model developed by Lee and Sarnecka (2010) ac-
counts for several Give-N data sets well, and provides the
ability to measure interpretable aspects of the behavioral
process. It does this assuming a discontinuous (stage-like)
developmental trajectory. That is, it assumes that children
learn exact meanings for the first 3–4 number words one at

a time and in order, and that during this time they do not
have even approximate cardinal meanings for the higher
number words in their counting list.1 A natural question
is how alternative accounts of number-concept develop-
ment fare within the same framework for modeling task
behavior. One obvious alternative is to assume that children
know the meanings of all the number words in their count-
ing list (at least approximately), and that the answers given
are noisy estimates of the numbers asked for. Under this
theory, there are no such things as number-knower levels.
Some children merely estimate more accurately than others.
This theory also explains why children would get all trials
correct up to a given number, and few or none correct above
that number—it’s simply because small set sizes are easier to
estimate than large ones. Finally, the theory explains why
children’s performance would improve over time: As chil-
dren get older, their estimation ability improves, and the
numbers they can reliably estimate get larger.

Fig. 5 shows a modified graphical model that introduces
an approximate-meanings assumption into the basic

1 2 3 4 5 8 10
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8
9
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11
12
13
14
15

PN Knowers
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1 Knowers

1 2 3 4 5 8 10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2 Knowers

1 2 3 4 5 8 10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

3 Knowers

1 2 3 4 5 8 10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

4 Knowers

1 2 3 4 5 8 10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

CP Knowers
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Fig. 4. Posterior predictive fit of the knower-level model to task behavior for all children.

1 For a refinement of knower-levels that does away with this latter
assumption, see Barner and Bachrach (2010).
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Bayesian task model. As before, a base-rate p is updated to
p
0

based on the question, and on a parameter controlling
each child’s number representation. In this case, the

parameter is ri, corresponding to the coefficient of varia-
tion for the ith child from approximate-meanings theory.
The updating is now given by

p0ijk / pijk �
1ffiffiffiffiffiffiffiffiffiffiffiffi

2pr2
i

q exp � 1
2r2

i

ðqij � kÞ2
� �

; ð2Þ

but the remainder of the model is formally identical to the
knower-level version.

Comparing this approximate representation of number
with the knower-level representation is best done at the
level of individual children. Fig. 6 shows the posterior pre-
dictive fit between the knower-level version of the model
and the observed behavior of six children, chosen at ran-
dom with the constraint that one child was chosen from
each knower level. Fig. 7 shows the fit of the approxi-
mate-meanings version of the model to the same six chil-
dren, together with their estimated coefficient of variation.

Figs. 6 and 7 clearly show the superiority of the knower-
level theory in accounting for the behavior of the six se-
lected children, and the same conclusion is warranted
across the entire data set. It is intuitively obvious that an
approximate-meanings account cannot explain why a
child might give 15 when asked for 1, without assuming

Fig. 5. Graphical model for an approximate-meanings account of task
behavior.
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Fig. 6. Posterior predictive fit to task behavior of the knower-level version of the model, for six selected children.
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a very large coefficient of variation. The formal modeling
summarized in Fig. 7 shows that the idea of updating a
base-rate does not overcome this deficiency in the approx-
imate-meanings account. To explain why children some-
times give numbers that are very different from the
numbers they were asked for—something regularly ob-
served in our data—an approximate-meanings account is
forced to allow such huge coefficients of variation that al-
most any answer would be consistent with the model.
Consequently, the model assumes coefficients for three of
the six children that are many times larger than coeffi-
cients of 0.33–0.5 previously reported for children of this
age (e.g., Halberda & Feigenson, 2008).

One simple way to quantify the differences in fit seen in
Figs. 6 and 7 is to calculate the agreement between the ob-
served and predicted behavior for both models. We did this
again using Cohen’s kappa, which is suited to the nominal
form of the data, for each child separately. For the knower-
level model, kappa ranged from 0.45 to 0.99 across all chil-
dren, with a mean of 0.54. For the approximate-meanings
model, kappa ranged from 0.01 to 0.25 with a mean of
0.13. The same pattern held when CP-knowers and non-
CP-knowers were analyzed separately. Kappa for CP-know-
ers ranged from .43 to .99 (mean .52) for the knower-level

model, as compared with .02 to .19 (mean .09) for the
approximate-meanings model. For non-CP-knowers, kappa
ranged from .43 to .69 (mean .53) for the knower-level
model, as compared with .28–.45 (mean .38) for the
approximate-meanings model. It would, of course, be pos-
sible to consider more advanced Bayesian model compari-
son measures (e.g., Pitt, Myung, & Zhang, 2002; Shiffrin
et al., 2008), but we think these basic results paint a clear
picture of the superiority of the knower-level model in
describing the current data.

5. Modeling knower-level accounts of multiple tasks

Throughout the empirical sciences, a basic hallmark of a
good theory is that it is able to describe observations or
make accurate predictions across a wide range of situa-
tions. This unification is something that can naturally be
achieved within the current Bayesian graphical modeling
framework (Lee, 2010). As a first demonstration of this ap-
proach, we show how knower-level theory can be evalu-
ated in terms of its ability to account for behavior in two
tasks: Give-N and Fast-Cards. The tasks have similar data
structure—in one, the child generates a set size to match
a number word; in the other, the child generates a number
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Fig. 7. Posterior predictive fit to task behavior of the approximate-meanings version of the model, for six selected children.
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word to match a set size. The tasks are fundamentally dif-
ferent in that only the Give-N task allows counting as a
strategy. On Fast-Cards, children are forced to estimate.
However, if the knower-level theory is correct, this distinc-
tion should not matter for most of the children in this
study. These children (the PN-, 1-, 2-, 3- and 4-knowers)
have not yet acquired the cardinality principle, and so do
not use counting to solve the Give-N task in any case.
The tasks also make different performance demands. For
example, Give-N requires no talking (making it appealing
to shy children) whereas Fast-Cards requires verbal re-
sponses. Finally, Give-N has a clear maximum response of
15 objects; Fast-Cards has no maximum response, because
the child could potentially say any number word at all.

5.1. Modeling Give-N and Fast-Cards

Fig. 8 presents a graphical model formalizing the inte-
gration of the Give-N and Fast-Cards tasks. At the heart
of the model is the knower-level, zi, for the ith child, which
plays a key role in generating behavior for all the trials on

both tasks. For the Give-N task, the questions and answers
continue to be represented by qij and gij, and the equivalent
observations in the Fast-Cards task are represented by ~qij

and ~gij. Each task has its own base-rate, p and ~p, and its
own evidence value, v and ~v . Updating for both tasks is
done exactly as for the Give-N model, as per Eq. (1). Thus,
the model in Fig. 8 assumes that a child’s knower-level is
fundamental for both tasks, and variations in the way they
answer the same question are due to task-specific base-
rates and evidence values.2

5.2. Task differences

We applied the model in Fig. 8 to the within-subjects
Give-N and Fast-Cards data. The base-rate for the Give-N
task is essentially the same as that shown in Fig. 3. The
base-rate for the Fast-Cards task is shown in Fig. 9, and is

Fig. 8. Graphical model using latent knower-level to account for both Give-N and Fast-Cards task behavior simultaneously.
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Fig. 9. Inferred base-rate for the Fast-Cards task.

2 For the application of the approximate-meanings model considered
earlier to the Fast-Cards data, see the supplementary online materials at
www.socsci.uci.edu/mdlee/LeeSarneckaTN.pdf.
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very different. It spans a range of possible answers from 1
to 100 (the largest observed answer in the data set). Most
of the probability is found for the numbers 1–10, with pro-
gressively greater probabilities on the smaller, more com-
mon, numbers. There is then a little probability between
10 and 20, with small ‘bumps’ at intuitively reasonable
places like 20, 50, 70 and 100, consistent with theories of
‘prominent’ or ‘spontaneous’ numbers (e.g., Albers, 2001).

There was only a small difference in the inferred evi-
dence values for the two tasks, with Fast-Cards being about

20, in comparison to the 23 found for Give-N. This suggests
that requesting a number has a similarly large influence in
both tasks, and means a more parsimonious model could
be considered in which just a single evidence value drives
behavior in both tasks.

5.3. Combining knower-level information across tasks

One basic capability provided by the combined model is
a method for estimating knower-levels based on the data
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Fig. 10. Knower-level inferences for individual tasks, and Give-N and Fast-Cards tasks combined (left panels), and posterior predictive fits (middle and right
panels) for three selected children. See text for details.
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from both tasks. This is not easily done by the heuristics
usually used. When knower-levels were computed using
the heuristic method we described earlier, the knower-le-
vel assigned based on Fast-Cards agreed with that based
on Give-N in only 21 of the 56 cases (38%). In 16 cases
(29%), the levels differed by one (e.g., a child might perform
as a 3-knower on Give-N, but a 2-knower on Fast-Cards). In
13 cases (23%), the levels differed by two (e.g., a child
might be a 3-knower on Give-N, but a 1-knower on Fast-
Cards). In five cases (9%), the levels differed by three (one
child performed as a 3-knower on Fast-Cards, but a PN-
knower on Give-N; the other four cases were children
who performed as CP-knowers on Give-N, but 2-knowers
on Fast-Cards). And there were two cases (4%) of children
performing as CP-knowers on Give-N, but PN-knowers or
1-knowers on Fast-Cards.

Heuristics do not offer a clear way of interpreting these
discrepancies. Some researchers might choose to ignore
one dataset altogether. For example, in 78% of discrepant
cases, the Give-N knower level was higher than the Fast-
Cards knower-level, presumably reflecting the fact that
Fast-Cards was a quick-response task. Thus, researchers
might conclude that Give-N provided a more accurate
assessment of knower-level. But excluding half the data
hardly seems an ideal solution, and does not account for
the 22% of cases where the Fast-Cards knower-level was
actually higher. Of course, it would be possible to extend
the heuristics for estimation by defining some sort of rule
for combination. But this would require more ad hoc deci-
sions, for procedures that already have several arbitrary
components. There is nothing principled about the two-
thirds cutoff in correct responding, for example, nor the
restriction to one error of commission. In fact, other
researchers have used different values within the same
heuristics for the same knower-level estimation problem.
Most fundamentally, faced with such discrepancies and
arbitrariness, researchers might reasonably conclude that
knower-levels are not a valid construct at all.

The probabilistic model-based approach offers a more
principled way of combining information. Because the
model formalizes how knower-levels generate behavior
on both tasks, Bayesian inference automatically combines
the evidence provided by all of the observed data to esti-
mate knower-levels. Space does not permit us to present
a detailed analysis of this simultaneous probabilistic esti-
mation for all 56 children. Fig. 10, however. shows results
for three children who collectively provide a good charac-
terization of what is observed looking at all children,
whose cases we now discuss.

5.3.1. Consistent and clear estimation
Child 25, in the top row of Fig. 10 is typical of the clear

and consistent across-task estimation observed for 12 of
the 56 children. The left three panels show their inferred
knower-level, when modeling just their Give-N behavior,
just their Fast-Cards behavior, or both simultaneously.
The middle and right panels show the posterior predictive
fit between the combined model and all of the child’s data
(with the Fast-Cards answers bounded at 20 for legibility,
excluding just a few data). The knower-level inferences
coming from both tasks independently agree with one an-

other, leading to a near-certain inference for the combined
model, which has the benefit of having both sources of task
information. The posterior predictive fits show that the
individual trial behavior of the child is well described,
and the model is able to capture task-specific effects. For
example, for Child 25, the model expects the observed an-
swers of 15 to requests above the child’s 2-knower level for
the Give-N task, but just expects inaccurate answers a little
greater than 2 for the Fast-Cards task.

5.3.2. Consistent but uncertain estimation
The results for Child 35 are a good example of what is

seen for 27 of the 56 cases. Here, the individual analyses
for the tasks separately lead to consistent, but uncertain,
inferences about the knower-level. It is possible Child 35
is either a 1-knower or 2-knower, because they make a
few mistakes with both numbers, but seem too accurate
to be a pre-number knower. But, the combined model, be-
cause it models all of the data from both tasks, is able to
reduce this uncertainty significantly, and makes a clear
inference in favor of 1-knower. The posterior predictive fits
again show a good account of the observed behavior, and
show intuitively how the ambiguity is resolved. Each task
individual has many correct behaviors when asked for
‘‘two’’, but, cumulatively, there are too many errors, lead-
ing to the 1-knower conclusion. For seven of the 56 chil-
dren, a different pattern of uncertainty is seen, in which
the two tasks separately reach moderately confident, but
different, conclusions. Typically, one task gives a knower-
level that is one level different from the other task. In these
cases, the combined model reflects the uncertainty by giv-
ing posterior mass to both neighboring possibilities.

5.3.3. Inconsistent estimation
In total, the scenarios just discussed apply to 46 of the

56 (82%) of the individual analyses. The analysis of Child
18 in Fig. 10 is included to show that, in the 10 remaining
cases, the combined model fails to account well for the ob-
served behavior. In one sense, this might be regarded as
comforting. It demonstrates by counter-example that the
model is not just a fancy, circular way of re-describing
the data. For Child 18, the knower-level inferences are very
different for the Give-N and Fast-Cards tasks. The compro-
mise reached by the combined model is unsatisfactorily
consistent with neither of the individual analyses, and
the posterior predictive fit (especially for the Fast-Cards)
shows that it fails to provide a good account of the data.
We think the inconsistencies in observed behavior for this
child can probably be explained in terms of boredom and
disengagement from the task.3 This, of course, is just spec-
ulation but demonstrates the general point that our model,

3 This child (a girl, aged 4 years) performed perfectly on the intransitive
counting task, volunteering to count to 10 in Spanish and Hebrew, as well
as English. She also performed near-perfectly on the Give-N task, and on
two other tasks that were part of a larger study. Fast-Cards was her final
task, presented perhaps 25 min into the test session. She estimated
accurately on the first block of trials, but when the second set of pictures
was brought out, she began to give wildly inaccurate estimates (e.g., saying
‘‘one’’ for a picture of 10 items and ‘‘eleven’’ for pictures of 1 and 3). It
seems likely that this child was simply bored and ready to return to her
classroom.
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like all models, is incomplete, and is only useful when ap-
plied to data consistent with its theoretical scope. In this
case, the model assumes that children are trying to comply
with the experimenter’s instructions. Deliberately inconsis-
tent performance results in a pattern for which the model
has no explanation.

6. Discussion

These analyses show how a formal model, grounded in
developmental theory, can contribute to our understand-
ing by generating specific and testable predictions about
behavior. In this case, the model was useful in two ways.
First, it gave us a formal framework for comparing alterna-
tive theories about the same behavior. Second, it gave us a
principled way of asking whether data from two very dif-
ferent tasks reflected the same underlying knowledge.

First, we used modeling to compare a knower-levels
(stage-like) theory of number-word learning to an approx-
imate-meanings (non-stage-like) theory. Both theories
were plausible on the surface. For example, both explained
why children would perform better on lower numbers
than higher numbers, and why children’s performance
would gradually improve as they got older. Modeling al-
lowed us to generate and test detailed quantitative predic-
tions for each theory, which led to the finding that the data
were actually much more consistent with the knower-lev-
els account.

Second, we used modeling to test the robustness of the
knower-levels construct by comparing behavior from two
different number tasks: Give-N (where a child hears a
number word and produces a set) and Fast-Cards (where
a child sees a set and produces a number word). If
knower-levels are ‘real’ (i.e., if they are a valid psychologi-
cal construct), then a child’s knower-level should be
detectable across a range of tasks. Our combined model
formalized the superficial differences between the two
tasks. This made it possible to separate task-specific as-
pects of behavior from those that reflect the childs under-
lying conceptual knowledge. To the extent that knower-
levels are an accurate way of representing this knowledge,
the model should be able to describe, predict and interpret
behavior on both tasks simultaneously, at the level of the
individual child. The advantage of modeling over more
informal, heuristic ways of testing the knower-levels the-
ory is that modeling generates specific quantitative predic-
tions for each individual child across the two different
tasks. The fact that our combined model does a good
job—in terms of describing the data, inferring the
knower-level, and modeling the details of the tasks them-
selves—provides a powerful form of evidence for knower-
levels as a valid construct.

The arguments here have been about number, but this
type of modeling could be equally useful in other areas of
cognitive and developmental science. Investigators in
every domain are faced with alternative explanations for
the same data, and every branch of psychology must test
the validity of its constructs. We think that probabilistic

generative models offer researchers a powerful tool for
solving these problems.

Acknowledgments

This research was supported by NIH Grant R03HD054654
to the second author. We thank the children, families
and staff of the UCI Child Care Centers, Merage Jewish
Community Center Preschool, Temple Bat Yahm Preschool,
Turtle Rock Preschool, and University Montessori. Thanks
also to UCI Cognitive Development Lab manager Emily
Carrigan, and to research assistants John Cabiles, Kristen
Cochrane, Loan Le, Sarah Song and Christina Tajalli.

References

Albers, W. (2001). Prominence theory as a tool to model boundedly
rational decisions. In G. Gigerenzer & R. Selten (Eds.), Bounded
rationality: The adaptive toolbox (pp. 297G–317). Cambridge, MA:
MIT Press.

Barner, D., & Bachrach, A. (2010). Inference and exact numerical
representation in early language development. Cognitive Psychology,
60, 40–62.

Carey, S. (2009). The origin of concepts. New York: Oxford University Press.
Cohen, J. (1960). A coefficient of agreement for nominal scales.

Educational and Psychological Measurement, 20, 37–46.
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number.

Trends in Cognitive Sciences, 8, 307–314.
Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number.

Cambridge, MA: Harvard University Press.
Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of

cognition. In R. Sun (Ed.), Cambridge Handbook of Computational
Cognitive Modeling (pp. 59–100). Cambridge, MA: Cambridge
University Press.

Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of
the ‘‘number sense’’: The approximate number system in 3-, 4-, 5-,
and 6-year-olds and adults. Developmental Psychology, 44, 1457–1465.

Jordan, M. I. (2004). Graphical models. Statistical Science, 19, 140–155.
Koller, D., Friedman, N., Getoor, L., & Taskar, B. (2007). Graphical models

in a nutshell. In L. Getoor & B. Taskar (Eds.), Introduction to statistical
relational learning. Cambridge, MA: MIT Press.

Kruschke, J. K. (2010). What to believe: Bayesian methods for data
analysis. Trends in Cognitive Sciences, 14(7), 293–300.

Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An
investigation of the conceptual sources of the verbal counting
principles. Cognition, 105, 395–438.

Le Corre, M., Van de Walle, G., Brannon, E. M., & Carey, S. (2006). Re-
visiting the competence/performance debate in the acquisition of
counting principles. Cognitive Psychology, 52(2), 130–169.

Lee, M. D. (2008). Three case studies in the Bayesian analysis of cognitive
models. Psychonomic Bulletin & Review, 15(1), 1–15.

Lee, M. D. (2010). How cognitive modeling can benefit from hierarchical
Bayesian methods. Journal of Mathematical Psychology.

Lee, M. D., & Sarnecka, B. W. (2010). A model of knower-level behavior in
number concept development. Cognitive Science, 34, 51–67.

Piaget, J. (1952). The child’s conception of number. Routledge.
Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of selecting

among computational models of cognition. Psychological Review, 109,
472–491.

Sarnecka, B. W., & Carey, S. (2008). How counting represents number:
What children must learn and when they learn it. Cognition, 108,
662–674.

Sarnecka, B. W., & Lee, M. D. (2009). Levels of number knowledge in
early childhood. Journal of Experimental Child Psychology, 103(3),
325–337.

Shiffrin, R. M., Lee, M. D., Kim, W.-J., & Wagenmakers, E.-J. (2008). A
survey of model evaluation approaches with a tutorial on hierarchical
Bayesian methods. Cognitive Science, 32(8), 1248–1284.

Wynn, K. (1992). Children’s acquisition of number words and the
counting system. Cognitive Psychology, 24, 220–251.

402 M.D. Lee, B.W. Sarnecka / Cognition 120 (2011) 391–402


