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Abstract

Extreme events come to mind very easily and people over-
estimate their probability and overweight them in decision-
making. In this paper we show that rational use of limited cog-
nitive resources can generate these ’availability biases.’ We hy-
pothesize that availability helps people to quickly make good
decisions in very risky situations. Our analysis shows that
agents who decide by simulating a finite number of possible
outcomes (sampling) should over-sample outcomes with ex-
treme utility. We derive a cognitive strategy with connections
to fast-and-frugal heuristics, and we experimentally confirm
its prediction that an event’s extremity increases the factor
by which people overestimate its frequency. Our model also
explains three context effects in decision-making under risk:
framing effects, the Allais paradox, and preference reversals.

Keywords: availability; Bayesian; bounded rationality; cog-
nitive biases; heuristics; judgment and decision-making

Introduction
People overestimate the probability of extreme events such
as terrorism (Sunstein & Zeckhauser, 2011) and other threats
(Lichtenstein, Slovic, Fischhoff, Layman, & Combs, 1978;
Rothman, Klein, & Weinstein, 1996) and overreact accord-
ingly (Sunstein & Zeckhauser, 2011). This phenomenon has
been explained by the availability bias (Tversky & Kahne-
man, 1973) according to which people overestimate the prob-
ability of events that come to mind very easily.

The availability bias appears irrational, but here we ar-
gue that it reflects the rational use of finite time (resource-
rationality; Lieder, Griffiths, & Goodman, 2013, Griffiths,
Lieder, & Goodman, in revision). In brief, we hypothesize
that the high availability of extreme events helps decision-
makers to allocate their finite time towards considering the
most important consequences their decision might have. We
model the strategy that might determine which events come
to mind first and how they influence judgment and decision-
making. Our model explains not only why people overesti-
mate the probability of extreme events, but it also explains
three context effects in decision-making under risk.

The plan of this paper is as follows: The first section intro-
duces the theoretical and empirical background. The second
section derives a rational model of decision-making in high-
risk situations. The third section presents an experiment test-
ing the model’s predictions for frequency judgment, and the
fourth section applies the model to explain context-effects in
decision-making under risk. The final section discusses our
results and their implications.

Sampling as a Decision Strategy
To evaluate a potential action a, decision makers should in-
tegrate the probabilities P(o|A = a) of possible outcomes
o with their utilities u(o) into the action’s expected utility
Ep(O|A=a)[u(O)] (Von Neumann & Morgenstern, 1944). In
the real-world–unlike in the laboratory–each action has in-
finitely many possible outcomes. As a consequence, the ex-
pected utility of action a becomes an integral:

Ep(O|A=a)[u(O)] =
Z

p(o|a) ·u(o)do. (1)

In the general case, this integral is intractable to compute, but
it can be approximated by sampling methods (Hammersley &
Handscomb, 1964). Mental simulations of a decision’s poten-
tial consequences can be thought of as samples. In fact, there
is neural evidence (Fiser, Berkes, Orbán, & Lengyel, 2010)
and behavioral evidence (Vul, Goodman, Griffiths, & Tenen-
baum, 2014; Denison, Bonawitz, Gopnik, & Griffiths, 2013;
Griffiths & Tenenbaum, 2006) that the brain handles uncer-
tainty by sampling. For instance, people’s predictions of an
uncertain quantity X given partial information y are roughly
distributed according to the posterior distribution p(X |y) as
if they were sampled from it (Griffiths & Tenenbaum, 2006;
Vul et al., 2014). These results suggest that people often
use only one or very few samples, and this is what rational
agents with finite computational resources (bounded rational
agents) should do (Vul et al., 2014). The evidence for sam-
pling in human cognition raises the question which sampling
algorithm(s) are implemented in the brain.

Importance sampling is a popular sampling algorithm in
computer science and statistics (Hammersley & Handscomb,
1964; Geweke, 1989), and it has been shown to have connec-
tions to both neural network (Shi & Griffiths, 2009) and psy-
chological process models (Shi, Griffiths, Feldman, & San-
born, 2010). Self-normalizing importance sampling estimates
the expected value of a function by the weighted average of
the function’s values at points drawn from a distribution q:

X1, · · · ,Xs ⇠ q, w j =
p(x j)

q(x j)
(2)

Ep[ f (X)]⇡ ÊIS
q,s =

1
Âs

j=1 w j
·

s

Â
j=1

w j · f (x j), (3)

where wi is the weight of the ith sample. With finitely many
samples, this estimate is generally biased. Following Zabaras



(2010), we approximate its bias and variance by

Bias[ÊIS
q,s]⇡

1
s
·
Z p(x)2

q(x)
· (Ep[ f (x)]� f (x))dx (4)

Var[ÊIS
q,s]⇡

1
s
·
Z p(x)2

q(x)
· ( f (x)�Ep[X ])2 dx (5)

Importance sampling can be used to approximate the ex-
pected utility Ep(O|A=a)[u(O)] of taking action a and to es-
timate the optimal decision a? = argmaxaEp(O|A=a)[u(O)]:

â? = argmax
a

Û IS
q,s(a), Û IS

q,s(a)⇡ Ep(O|a)[u(O)] (6)

Û IS
q,s(a) =

1
Âs

j=1 w j

s

Â
j=1

w j ·u(o j), o1, · · · ,os ⇠ q. (7)

Note that importance sampling is a family of algorithms: each
importance distribution q yields a different estimator, and two
estimators may recommend opposite decisions. We thus con-
sider which distribution q yields the best decisions.

Which distribution should we sample from?
Intuitively, the rational way to make a decision is to simu-
late consequences o according to one’s best knowledge of the
probability p that they will occur, i.e. q = p:

ÛRS
s (a) =

1
s

s

Â
i=1

u(oi), o1, · · · ,os ⇠ p(O). (8)

This importance sampling algorithm, which we call represen-
tative sampling, computes unbiased utility estimates. Yet–
surprisingly– representative sampling is insufficient for mak-
ing good decision with very few samples. Consider, for in-
stance, the choice to play Russian roulette with the popu-
lar six-round NGant M1895 revolver. Playing the game will
most likely, i.e. with probability p1 = 5

6 , reward you with a
thrill and a gain in status (u(o1) = 1) but kill you otherwise
(p2 = 1

6 , u(o2) = �109). Ensuring that representative sam-
pling declines a game of Russian roulette at least 99.99% of
the time, would require 51 samples–potentially a very time-
consuming computation. Many real-life decisions involve
high risks and are even more challenging, because the prob-
ability of disaster is orders of magnitude smaller than 1

6 but
may or may not be large enough to warrant caution. Exam-
ples include risky driving, the stock market, and air travel.
For some of these choices (e.g. texting while driving) there
may be a one in a million chance of disaster while all other
outcomes have negligible utilities:

u(od) =�109, p(od) = 10�6, 8i 6= d : |u(oi)| 1 (9)

If people decided based on n representative samples, they
would completely ignore the potential disaster with proba-
bility 1� (1� 10�6)n. Thus to have at least a 50% chance
of taking the potential disaster into account the agent would
have to generate almost 700 million samples. This is clearly
infeasible; thus one would almost always take this risk even

though the expected utility is about �1000. In conclusion,
under high risk, representative sampling is insufficient for
resource-bounded decision-making.

What is the problem with representative sampling and how
can it be overcome? Representative sampling fails when it
neglects crucial eventualities. Neglecting some eventuali-
ties is necessary, but particular eventualities are more im-
portant than others. Intuitively, the importance of potential
outcome oi is determined by |p(oi) · u(oi)| because neglect-
ing oi amounts to dropping the addend p(oi) · u(oi) from the
expected-utility integral (Equation 1). Thus, intuitively, the
problem of representative sampling can be overcome by con-
sidering outcomes whose importance (|p(oi) · u(oi)|) is high
and ignoring those whose importance is low.

Formally, the agent’s goal is to maximize the expected util-
ity of a decision made from only s samples. The utility fore-
gone by choosing a sub-optimal action can be upper-bounded
by the error in a rational agent’s utility estimate. Therefore
the agent should minimize the expected squared error of its
utility estimate, which is the sum of its squared bias and vari-
ance, i.e. E

⇥
(Û IS

q,s �E[U ])2] = Bias[Û IS
q,s]

2 +Var[Û IS
q,s
⇤
. As

the number of samples s increases, the estimate’s squared bias
decays much faster (O(s�2)) than its variance (O(s�1)); see
Equations 4-5. Therefore, as the number of samples s in-
creases, minimizing the estimator’s variance becomes a good
approximation to minimizing its expected squared error.

According to variational calculus the variance (Equation 5)
of the utility estimate in Equation 7 is minimized by

qvar(o) µ p(o) · |u(o)�Ep[U ]|. (10)

Interestingly, the optimal sampling distribution overrepre-
sents outcomes with large absolute utility, Thus, biased sam-
pling can lead to better decisions. Unfortunately, importance
sampling with qvar is intractable, because it presupposes the
expected utility Ep[U ] that importance sampling is supposed
to approximate. A priori the expected utility of a prospect
whose outcomes may be good or bad is equally likely to be
positive or negative. The same is true for choosing action a
over action b or vice versa. Therefore, the most principled
guess an agent can make for the expected utility Ep[U ] in
Equation 10–before computing it–is 0. Thus when the ex-
pected utility is not too far from zero, then the importance
distribution qvar is efficiently approximated by

q̃(o) µ p(o) · |u(o)|. (11)

This confirms our intuition and leads to an importance sam-
pling scheme that we call utility-weighted sampling:

Û IS
q̃,s =

1
Âs

j=1 1/|u(o j)|

s

Â
j=1

sgn(u(o j)) , o j ⇠ q̃, (12)

where sgn(x) is +1 for positive x and �1 for negative x.
Utility-weighted sampling is a simple and psychologically
plausible strategy for decision-making under uncertainty: It
generates examples of possible outcomes by an appropriately



biased simulation and tallies how many of them are positive.
If more than half of the examples for the utility of choosing
action a over action b are positive, then the agent will prefer
action a; if more than half of them are negative, then the agent
will prefer action b; otherwise it it will be indifferent.

Utility-weighted sampling succeeds where representative
sampling failed. In Russian roulette utility-weighted sam-
pling requires only 1 rather than 51 samples to recommend
the correct decision at least 99.99% of the time, because the
first sample is almost always the most important potential out-
come, i.e. death. Likewise one single utility-weighted sample
suffices to consider the potential disaster (Equation 9) at least
99.85% of the time, whereas even 700 million representative
samples would miss the disaster almost half of the time. Thus,
utility-weighted sampling would allow people to avoid both
disasters even under extreme time pressure. The hypothesis
that people decide by utility-weighted sampling makes two
predictions that we test in the next two sections:

1. People overestimate an event’s probability more, the more
extreme the event is.

2. Extreme potential outcomes are over-weighted in decision-
making, and extremity is context-dependent.

Overestimation of extreme events’ frequencies
We hypothesize that the mind re-uses utility-weighted sam-
pling (Equation 12) to estimate event frequencies, because
evolutionary fitness depended on good decisions rather than
accurate statements of probability. We therefore predict that
people’s estimate p̂k of the probability pk = p(ok) is

p̂k =
Âs

i=1 wi ·1(oi = ok)

Âs
i=1 wi

, wi =
1

|u(oi)|
, oi ⇠ q̃. (13)

Since the importance density q̃(o) µ p(o) · |u(o)| over-
represents events proportionally to their extremity |u|, i.e.
q̃(o)
p(o) µ |u(o)|, we predict that people’s relative over-estimation
p̂k
pk

is a monotonically increasing function of the event’s ex-
tremity |uk|. Formally, the bias (Equation 4) of utility-
weighted probability estimation (Equation 13) implies that
p̂k�pk

pk
= 1

s

⇣
� 1

|ui| +C
⌘

, for some constant C. We tested this
prediction with a simple experiment.

Methods
We recruited 100 participants on Amazon Mechanical Turk.
Each participant estimated how many of 1000 randomly se-
lected American adults had experienced each of 39 events in
2013 and judged the events’ valence (good or bad) and ex-
tremity (0: neutral – 100: extreme). The 39 events comprised
30 stressful life events from Hobson et al. (1998), four lethal
events (suicide, homicide, lethal accidents, and dying from
disease/old age), three more mundane events (going to the
movies, headache, and food-poisoning), and two attention-
checks. Overestimation was measured by the ratio of a par-
ticipant’s estimate over the event’s frequency according to of-
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Figure 1: Judged frequency and extremity by event type.

ficial statistics.1 The complete experiment can be inspected
online.2 Out of 100 participants 17 failed the attention check
(wrong answer on attention-check questions, or mean judged
extremity of lethal events less than 75%) and were excluded.

Results and Discussion
Consistent with our theory, participants overestimated the fre-
quencies of all lethal events (all p < 0.0005) but none of
the mundane events (all p > 0.048 > aSidak = 0.0014, Sidak-
correction for multiple comparisons). Participants also over-
estimated 23 of the 30 stressful life events. Figure 1 shows
that across event types overestimation gradually increase with
extremity: Absolute overestimation ( p̂� p) was significantly
larger for stressful life events than for mundane events (p <
0.01) and even larger for lethal events (p = 0.02). While
our participants’ probability estimates were very accurate for
mundane events, their (implicit) estimate of the annual death
rate was 25-times higher than its true value. For stressful life
events overestimation and judged extremity are both interme-
diate. This pattern answers the open question whether avail-
ability or regressed frequency causes the overestimation of
extreme events (Hertwig, Pachur, & Kurzenhäuser, 2005): if
estimates were merely regressive towards a mean frequency,
as proposed by Gigerenzer (2008a), then people should un-
derestimate frequent mundane events, but our participants did
not. Figure 2 shows that the average relative overestimation
of the 37 events increases with their judged extremity (Spear-
man’s rank correlation r= 0.53, p< 0.001). Furthermore, we
observed the same effect at the level of individual judgments
(Spearman’s rank correlation r = 0.28, p < 10�15). On aver-
age, the extremest event’s frequency (murder, 98% extreme)
was overestimated by a factor of 972, whereas the frequency
of the least extreme event (headache, 20% extreme) was over-
estimated by merely 6% (n.s.). Consistent with this result,
Rothman et al. (1996) found that prevalence is more heavily
overestimated for suicide than for divorce.

In conclusion, the experiment confirmed our theory’s pre-
diction that an event’s extremity increase the relative overesti-
mation of its frequency. However, additional experiments are

1Hobson & Delunas (2001),www.cdc.gov/nchs/fastats/deaths.htm,www
.mpaa.org/resources/3037b7a4-58a2-4109-8012-58fca3abdf1b.pdf,www.cdc
.gov/foodborneburden/, Rasmussen, Jensen, Schroll, & Olesen (1991).

2
http://sites.google.com/site/falklieder/freq estimation.html
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Figure 2: Overestimation p̂�p
p increases with perceived ex-

tremity (|u|). A cross represents one event’s average ratings.

required to disentangle the effects of extremity and low prob-
ability, because these two factors were anti-correlated. Future
work will formally test our model against competing theories
and investigate whether the effect of an event’s extremity is
mediated by how many instances of this event people imagine
or retrieve from memory (cf. Hertwig et al., 2005).

Context effects in decision-making
While our goal was to explain why people overestimate the
probability of extreme events, utility-weighted sampling also
predicts that people over-weight certain outcomes in eco-
nomic decisions. To simulate such decisions we model the
utility of winning or losing money by the following function
based on prospect theory (Tversky & Kahneman, 1992):

u(o) =

(
o0.85 , if o � 0
�|o|0.95 , if o < 0

. (14)

When choosing between receiving a high payoff with low
probability (risky gamble) or a low payoff with high proba-
bility (safe gamble), people often prefer the risky gamble in
one context but the safe gamble in another. This suggests
that people’s risk preferences are inconsistent and context-
dependent (Tversky & Kahneman, 1992). Utility-weighted
sampling can explain several such inconsistencies: (i) fram-
ing effects, (ii) the Allais paradox, and (iii) preference rever-
sals. We now consider these in turn.

Framing effects on risk attitudes
Framing outcomes as losses rather than gains can reverse peo-
ple’s risk preferences (Tversky & Kahneman, 1992): In the
domain of gains people prefer a lottery (o dollars with proba-
bility p) to its expected value (risk seeking) when p< 0.5, but
when p > 0.5 they prefer the expected value (risk-aversion).
To the contrary, in the domain of losses people are risk seek-
ing for p < 0.5 but risk averse for p > 0.5. This phenomenon
is known as the fourfold pattern of risk preferences.

Whether or not people should choose the gamble depends
on the expected value of the utility difference DU :

DU =

(
u(o)�u(p ·o) with probability p
�u(p ·o) with probability 1� p

(15)

Figure 3: Risk preferences (E[DÛ ]) predicted by utility-
weighted sampling with s = 2.

According to our theory, people simulate DU by sampling
from q̃(Du) µ |Du| · p(Du) and estimate E[DU ] by DÛ IS

q̃,s ac-
cording to Equation 12. When the bias of this estimate
(Bias(DÛ IS

q̃,s)) is positive, the agent will fancy the gamble
(risk-seeking), but when it is negative, the agent will be risk-
averse. The importance distribution q̃ is proportional to |Du|.
Therefore the agent will overweight the gain/loss o of the lot-
tery if p(o) is small, because then |u(o)�u(p ·o)|> |u(p ·o|).
Conversely, the agent will underweight outcome o if p(o) is
large, because then |u(o)�u(p ·o)|< |u(p ·o|)). This renders
the agent’s bias positive (risk-seeking) for improbable gains
and probable losses but negative (risk-aversion) for probable
gains and improbable losses (see Figure 3). Thus our model
predicts the fourfold pattern of risk preferences which is used
to explain how a person who is so risk-averse that he buys
insurance can also be so risk-seeking that he plays the lottery.

Next we show by simulation that a bounded rational agent
might indeed make both choices. First, we simulated the de-
cision whether or not to play the Powerball lottery.3 The jack-
pot is at least $40 million, but the odds of winning it are less
than 1:175 million. In brief, people pay $2 to play a gam-
ble whose expected value is only $1. We found that utility-
weighted sampling does, in expectation, fancy the lottery
when the number of samples is less than 4 (E[Û IS

q̃,s] � 59.8
for s  3). If the agent chose based on one sample (cf. Vul
et al., in press) and was given the choice twice a week, it
would buy about seven lottery tickets per year. This value
is a lower bound, because it ignores debt and other factors.
Nevertheless, it demonstrates that playing the lottery is com-
patible with resource-rational decision-making. Second, we
simulated the decision whether or not to buy insurance. The
magnitude of an insured loss l can be modeled by the Pareto
distribution (e.g., p(l) = a · xa

min · x�a�1,xmin < x < 109 with
a = xmin = 1). We found that the bias of utility-weighted
sampling (Equation 4) would make people overestimate the
value of insurance against such a loss by 244

s %, where s is
the number of samples. This resolves the apparent paradox
of being willing to buy both lottery tickets and insurance.

3
www.calottery.com/play/draw-games/powerball



Table 1: Allais Gambles
(o1, p1) (o2, p2) (o3, p3)

L1(z) : (z,0.66) (2500,0.33) (0,0.01)
L2(z) : (z,0.66) (2400,0.34)

Table 2: Utility-weighted sampling explains the Allais paradox.

z = 2400:

DU p q̃ q̃/p
0 0.66 0 0
u(2500)�u(2400) 0.33 0.54 1.6
�u(2400) 0.01 0.46 46

z = 0 :

0 0.66 ·0.67 0 0
�u(2400) 0.67 ·0.34 0.5 2.19
u(2500)�u(2400) 0.33 ·0.34 0.01 0.08
u(2500) 0.33 ·0.66 0.49 2.26

Note: The agent’s simulation yields DU = Du with probability
q̃(Du) µ p(Du) · |Du| where p is Du’s objective probability.

The Allais paradox
In the two gambles L1(z) and L2(z) defined in Table 1 the
chance of winning z dollars is exactly the same. Yet, when z=
2400 most people prefer L2 over L1, but when z = 0 the same
people prefer L1 over L2. This inconsistency is known as the
Allais paradox. Table 2 shows how our theory resolves this
paradox: According to the importance distribution q̃ (Equa-
tion 11) people overweight the event for which the utility dif-
ference between the two gambles’ outcomes (O1 and O2) is
largest (DU = u(O1)�u(O2)). Thus when z= 2400, the most
over-weighted event is the possibility that gamble L1 yields
o1 = 0 and gamble L2 yields o2 = 2400 (DU = �u(2400));
consequently the bias is negative and the first gamble ap-
pears inferior to the second (E[DÛ IS

q̃,2] = �152). But when
z = 0, then L1 yielding o1 = 2500 and L2 yielding o2 = 0
(DU = +u(2500)) becomes the most over-weighted event
making the first gamble appear superior (E[DÛ IS

q̃,2] = +4.1).
This explains why people’s preferences switch from the sec-
ond to the first gamble as z switches from 2400 to 0.

Preference Reversals
When people first price a risky gamble and a safe gamble with
similar expected value and then choose between them, their
preferences are inconsistent almost 50% of the time: most
people price the risky gamble higher than the safe one, but
many of them nevertheless choose the safer one (Lichtenstein
& Slovic, 1971). Utility-weighted sampling over-estimates
the expected utility Eprisky [u(Orisky)] of high-payoff (risky)
lotteries more than for low-payoff (safe) lotteries, because
q̃(o) µ |u(o)|. This explains why people price the risky gam-
ble higher than the safe one. To choose between two lot-
teries our model estimates the expected utility difference,
i.e. Epsafe,risky [u(Osafe)� u(Orisky)]. In this estimation prob-
lem there are 2⇥2 rather than just 2 possible outcomes, and
the importance of positive outcomes is counterbalanced by
the importance of the negative outcome. As a result, utility-
weighted sampling’s bias in favor of the riskier option is
weaker in choice than in pricing: so weak that it is overwrit-
ten by the risk-aversion due to concavity (flattening) of the

Table 3: Utility-weighted sampling explains preference reversals.

utility of E[U ] E[Û IS
q̃,2]

safer gamble (Ls : $1, p = 0.8) 0.80 1
riskier gamble (Lr : $2, p = 0.4) 0.72 1.8
choosing Ls over Lr 0.079 0.075

utility function (cf. Equation 14); see Table 3. This illustrates
that utility-weighted sampling weights events differently de-
pending on the problem to be solved.

General Discussion
Our resource-rational analysis of decision-making in high-
risk situations suggested that people should decide by utility-
weighted sampling (Equation 12). Utility-weighted sampling
explains not only how we are able to make sensible decisions
under high risk but also why we overestimate the frequency of
extreme events and have inconsistent risk preferences (fram-
ing effects, the Allais paradox, and preference reversals).

While overestimation was previously explained by ‘avail-
ability’ (Tversky & Kahneman, 1973), our theory specifies
what exactly the availability of events should correspond to–
namely their importance distribution q̃ (Equation 11)–and
why this is useful. Inconsistent risk preferences were pre-
viously explained by regret (Loomes & Sugden, 1982) or
salience (Bordalo, Gennaioli, & Shleifer, 2012). Like these
explanations our theory assumes an amplified impact of large
utility differences. While regret theory explains this ampli-
fication by altered subjective utilities, utility-weighted sam-
pling and salience theory explain the amplification by al-
tered probability-weighting. Despite this commonality, our
account offers three advances over salience theory. First,
we do not only describe the effect of utility on probability-
weighting, but we also model the cognitive strategy that gen-
erates it. Second, our theory reconciles this seemingly ir-
rational effect with rational information processing. Con-
cretely, the resource-rational basis of the salience of a util-
ity difference DU = u(O1)� u(O2) is the relative frequency
with which it should be simulated, i.e. the importance dis-
tribution q̃(Du) µ p(Du) · |Du|.4 Third, since our explanation
instantiates a more general theoretical framework–resource-
rationality–it can be extended to multi-alternative decisions,
decisions from experience, and many other problems.

We have proposed a psychologically plausible cognitive
strategy that approximates the normative–but intractable–
decision-rule of expected utility theory in two simple steps:
(i) generate example outcomes by biased mental simula-
tion, and (ii) count how many of them are positive. Inter-
estingly, these steps resemble two fast-and-frugal heuristics
(Gigerenzer, 2008b): Biased mental simulation (stochasti-
cally) considers the most important consequence first–like
take-the-best–and binary choices are made by tallying if there
are more positive than negative simulated outcomes–as in
the tallying heuristic. The fact that we derived this strategy

4This definition satisfies two of Bordalo et al.’s (2012) three axioms of salience.



as a resource-efficient approximation to normative decision-
making (resource-rational analysis) sheds light on why fast-
and-frugal heuristics work and how they can be generalized
to harder problems (cf. Lieder, Griffiths, & Goodman, 2013).
Future research will also compare the rationality and descrip-
tive accuracy of heuristics derived by resource-rational anal-
ysis to established heuristics, decision-by-sampling (Stewart,
Chater, & Brown, 2006), and other models of risky choice
(Erev et al., 2010). Our theory makes three novel predictions:

1. The probability-weighting function (Tversky & Kahne-
man, 1992) depends on the ratio of the outcomes’ utilities.

2. As time pressure or cognitive load increase, people’s risk
preferences become more inconsistent.

3. The more concave a person’s utility function, the less she
will overestimate and over-weight extreme events.

In conclusion, utility-weighted sampling is a promising ra-
tional process model of probability judgment and decision-
making. This strategy works not despite but because it is
biased (cf. Gigerenzer & Brighton, 2009). Biased minds
can not only make better inferences but also better decisions.
However, our results highlight a tension between good in-
ference and good decision-making: Bounded sample-based
agents should over-sample extreme events even though this
leads to overestimation (bad inference), and people appear to
do the same. In more general terms, the human mind should,
and appears to, sacrifice the rationality of its beliefs (the-
oretical rationality) for the rationality of its actions (prac-
tical rationality, Harman, 2013), because limited computa-
tional resources necessitate tradeoffs. Concretely, our anal-
ysis suggested that the availability bias is a manifestation
of resource-rational decision-making. This conclusion sup-
ports the emerging view that cognitive biases are a window on
resource-rational computation rather than a sign of irrational-
ity (Lieder, Griffiths, & Goodman, 2013; Lieder, Goodman,
& Griffiths, 2013). Being biased can be resource-rational.
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