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How multiple causes combine:
independence constraints on causal
inference
Mimi Liljeholm*

Department of Cognitive Sciences, University of California, Irvine, CA, USA

According to the causal power view, two core constraints—that causes occur

independently (i.e., no confounding) and influence their effects independently—serve

as boundary conditions for causal induction. This study investigated how violations of

these constraints modulate uncertainty about the existence and strength of a causal

relationship. Participants were presented with pairs of candidate causes that were either

confounded or not, and that either interacted or exerted their influences independently.

Consistent with the causal power view, uncertainty about the existence and strength of

causal relationships was greater when causes were confounded or interacted than when

unconfounded and acting independently. An elemental Bayesian causal model captured

differences in uncertainty due to confounding but not those due to an interaction.

Implications of distinct sources of uncertainty for the selection of contingency information

and causal generalization are discussed.

Keywords: causal power, confounding, interaction, uncertainty, Bayesian inference

Introduction

How do multiple causes combine to influence their effects? According to the causal power
view (Cartwright, 1989; Cheng, 1997), learners apply a set of generic, a priori, constraints that
enable the “teasing apart” of individual causal influences. Unlike models that simply assess co-
variation between putative causes and effects (e.g., Jenkins and Ward, 1965; Rescorla and Wagner,
1972; Van Hamme and Wasserman, 1994), the causal power view explains observed co-variation
by postulating underlying, unobservable, causal capacities. Two core constraints of the causal
approach—that candidate causes occur independently (i.e., no confounding) and influence their
effects independently—serve as boundary conditions for estimating causal strength1. This article
examines how human reasoners react when the constraints on causal inference specified by the
causal power view are violated.

As an illustration, consider three scenarios involving a target candidate cause, X, an
alternative cause, Y, and the presence (+) or absence (−) of some relevant effect. In the
first scenario, the effect occurs when X and Y are presented in combination, but not
when Y is presented alone [XY+, Y−]. In the second scenario, the Y− trials are removed
[XY+]. In the third scenario, X− trials are added to the first scenario [XY+, Y−, X−].
How would judgments about X differ across these three scenarios? According to the causal
power approach, it is only in the first scenario that the individual influence of X can be
teased apart from that of Y: In the second scenario X is confounded with Y, violating the

1Note that “independent causal influence” is a defeasible assumption that can be revised in the face of counterevidence.
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Liljeholm Independence constraints on causal inference

“no confounding” constraint, and in the third scenario, X
and Y interact, violating the assumption of independent causal
influence.

A probabilistic formalization of the causal power view, the
power-PC theory (Cheng, 1997), mathematically defines the
problem with estimating the strength of confounded causes:
Whenever the probability of the occurrence of one candidate
cause (e.g., Y) differs across the absence and presence of another
(e.g., X), the power-PC equations contain multiple unknowns so
that there is no unique solution. Thus, “no confounding” as a
constraint is a result of the power-PC theory (see Cheng, 1997
for details). Although consistent with data showing sensitivity to
confounding in the selection of frequency information, estimates
of outcome probabilities, exploratory behavior and causal model
selection (Spellman, 1996; Kushnir and Gopnik, 2005; Meder
et al., 2006; Schulz et al., 2007; Schulz and Bonawitz, 2007),
there is also ample evidence that subjects are willing to provide
a point-estimate of causal strength when asked to do so, even
under confounded conditions (Wasserman and Berglan, 1998;
Waldmann, 2001; Lovibond et al., 2003; Beckers et al., 2005; Le
Pelley et al., 2005). One possibility is that subjects employ some
heuristic (e.g., averaging across possible causal strengths) when
asked to give a single estimate but that, due to the lack of a unique
solution, such estimates are in fact associated with high levels of
uncertainty.

Novick and Cheng (2004) extended the power-PC theory
to the case of interacting, or conjunctive, causes arguing that,
as with simple causal powers, the discovery of conjunctive
powers requires postulating the existence of unobservable causal
capacities. While it successfully accounts for conditions under
which reasoners infer causal interactions (Novick and Cheng,
2004; Liljeholm and Cheng, 2007; Liljeholm et al., 2007), the
conjunctive power theory is silent on the issue of corollary
increases in uncertainty about simple causal powers. Consider
again the third scenario described above, in which neither X nor
Y generate the effect individually but only do so when combined.
Here, according to the conjunctive power theory, reasoners will
infer the existence of a conjunctive node “XY” and will continue
to assume that all distinct causes, X, Y, and XY, influence the
effect independently of one another, as well as of any other
candidate causes. However, given that candidate X (and/or Y)
has been found to violate the default assumption of independent
influence—a fundamental constraint on causal inference—one
might expect that further induction about the influence exerted
by X, particularly in novel contexts and compounds, would be
fraught with uncertainty.

Although the causal power view implies that interacting
and confounded causes should elicit high levels of uncertainty,
neither the power-PC theory nor the conjunctive power theory
provides an explicit, quantitative, measure of uncertainty. Such
a measure is provided, however, by the framework of Bayesian
causal models (Tenenbaum and Griffiths, 2001; Griffiths and
Tenenbaum, 2005; Lu et al., 2008). According to Bayesian models
of elemental causal induction, involving a single candidate cause
and a constant background cause, reasoners decide whether a set
of observations (D) was generated by a causal graphical structure
in which a link exists between the candidate cause c and effect e

(Graph 1) or by a causal structure in which no link exists between
c and e (Graph 0); both graphs assume the existence of a link
between background cause b and e. When the prior probabilities
of the two graphs are equal, the decision variable, termed “Causal
support,” is the log ratio of the likelihoods of the data (D) given
Graphs 1 and 0.

log
P

(

D|Graph1
)

P
(

D|Graph0
) (1)

The likelihoods are derived using a particular parameterization
that specifies how causes combine to influence their effects. For
example, the parameterization adopted by the power-PC theory,
and following from its assumptions (Cheng, 1997; Glymour,
1998), is the noisy-OR:

P
(

e+|b, c;wB,wC
)

= wB
b + wC

c − wBwC
bc (2)

where c is 0 or 1 depending on the absence vs. presence
of the candidate cause, b is always 1 (i.e., present), and
wB and wC are parameters associated with the strength of
the background and candidate cause, respectively. Causal
power is a maximum likelihood estimator of wC under this
parameterization.

Critically, in the Bayesian framework, the posterior
distribution on wC provides a basis for distinguishing between
strength and uncertainty about strength: Whereas the location
of the peak of this distribution is the maximum a posteriori
estimate of causal strength, the degree of uniformity of the
distribution indicates uncertainty in that estimate (Griffiths
and Tenenbaum, 2005). For example, in the most extreme
case, when the distribution is uniform, all possible values of
strength are equally likely and uncertainty about the “true”
strength is maximal. Thus, this model provides an explicit
representation of uncertainty in strength estimates, as well as
uncertainty about the existence of a causal relationship. The
present study extends Griffiths and Tenenbaum’s (Tenenbaum
and Griffiths, 2001; Griffiths and Tenenbaum, 2005) Bayesian
causal model to the case of two candidate causes and uses this
extension as a normative framework for assessing how violations
of causal power assumptions influence uncertainty in causal
inference.

Methods

Participants
One hundred and eight undergraduates at the University of
California, Los Angeles participated in the study to obtain course
credit. All participants gave informed consent and the study was
approved by the Institutional Review Board of the University of
California, Los Angeles.

Design
The study focused on two target causes, C and I, mnemonically
labeled here to indicate confounded and interacting causes,
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respectively2. Each target cause occurred in one of two non-
overlapping compounds, with one compound (CD) consisting
of confounded causes, and the other (IJ) of interacting causes.
Specifically, in the first phase, candidates C and D only
occurred in combination, such that the two causes were perfectly
confounded. Then, in a second phase, trials were introduced in
which candidate C occurred without D, thus unconfounding the
influences of the two causes. The causal power approach suggests
that uncertainty about the existence and strength of a causal
relationship between candidate C and the effect should be greater
in the first phase than the second.While candidate I likewise only
occurred together with its compound counterpart (J) in Phase
1, candidate J also occurred in the absence of I in this phase,
enabling an estimation of the independent causal influences of
the two causes. However, in the second phase, additional trials in
which I occurred without J suggested that the two causes acted
differently in compound than what would be expected based on
their individual influences (i.e., I and J apparently interacted).
Given this violation of the assumption of independent causal
influence, the causal power approach suggests that uncertainty
about the causal status of candidate I should be greater in the
second phase than in the first.

According to the causal power view, if a binary effect
always occurs in the presence of some candidate cause (e.g.,
C), the capacity of an alternative cause (e.g., D) to exert
generative influence will be occluded. Consequently, such a
“ceiling effect” constitutes yet another violation of the boundary
conditions for computing causal strength (Cheng, 1997). Here,
to restrict scenarios to violations of the “no confounding” and
“independent influence” constraints, the probability of the effect
in the presence of any given cause, or compound of causes, was
always less than 1.0. Specifically, the probability of the effect in
the presence of the CD compound was 0.8, rather than 1.0, thus
avoiding the ceiling effect. The probabilities of the effect in the
presence of candidate J and the IJ compound were such that
the increase in the probability of the effect when candidate I
was added to candidate J was one half (0.4) of the probability
of the effect on CD trials: If candidates C and D are assumed to
contribute equally, and linearly (Rescorla and Wagner, 1972) to
the probability of the effect onCD trials, this equates the strengths
of candidates I and C in the first phase. Finally, to assess the
generality of obtained differences in uncertainty across different
levels of causal strength, the probabilities of the effect in the
presence of target candidates C and I in the second phase were
either high (0.8) or low (0.0).

The different conditional probabilities of the effect were
implemented in two groups, respectively labeled “Cstrong_Iweak”
and “Cweak_Istrong,” with subscripts “strong” and “weak”
indicating the model-derived strength of the relevant target cause
by the end of the second phase. In group Cstrong_Iweak, the
probability of the effect in the presence of candidate C in the
second phase was 0.8, while that in the presence of candidate
I was 0.0. Conversely, in group Cweak_Istrong, the probability of

2The mnemonic labels C and I, indicating “confounded” and “interacting” causes

respectively, are used here to facilitate the presentation of the design. In the actual

study, to avoid any bias, candidate causes were arbitrary labeled X, Y, P, and Q, with

the assignment of labels to conditions being counterbalanced across participants.

the effect in the presence of candidate C in the second phase
was 0.0, while that for candidate I was 0.8. Importantly, in group
Cweak_Istrong, in which the probability of the effect in the presence
of candidate I in the second phase was high (0.8), the effect
probabilities in the presence of candidate J and compound IJ
were also greater (0.4 and 0.8, respectively) than those in group
Cstrong_Iweak. This was done because, had these probabilities
remained at 0.0 and 0.4, respectively (as in group Cstrong_Iweak),
candidate J would be considered an inhibitory, or preventive,
cause given the conditional probabilities in the second phase;
in other words, there would be no violation of the assumption
of independent causal influence. Participants were randomly
assigned to the two groups. The frequencies of all trial types, for
each group and each phase, are shown in Table 1.

At the end of each phase, participants were asked to select
between the following options regarding the influence of each
target candidate causes: “produces the effect,” “has no influence
on the effect” and “can’t tell.” The proportion of “can’t tell”
choices was used as a measure of uncertainty about the existence
of a causal relationship. Participants were then asked, regardless
of their answer to the first query, to rate the strength of the
influence of the candidate cause on a scale from 0 (not at all
strongly) to 100 (extremely strongly) and, finally, to indicate how
confident they were in their estimate of strength, again on a scale
from 0 (not at all confident) to 100 (extremely confident).

Materials and Procedure
The stimuli were presented on a computer and booklets were
provided for writing down causal judgments. At the beginning of
the experiment, participants were given a cover story informing
them that they would play the role of a research scientist
assessing the influences of various allergymedicines on headache,
a potential side effect. They were told that each medicine could
either produce headache or have no influence on headache (i.e.,
there were no preventive causes). On each trial (see Figure 1),
participants were presented with a picture of an individual allergy
patient and were told either that the patient had not received
any medicine or that a particular medicine, or combination
of medicines, had been administered to the patient. On the
first screen, the allergy patients’ face was covered with a gray
circle with a question mark printed on it and participants were

TABLE 1 | Experimental design.

Trial types Cstrong_Iweak Cweak_Istrong

Phase 1 Phase 2 Phase 1 Phase 2

CD+, CD− 16, 4 16, 4 16,4 16,4

C+, C− 0, 0 16, 4 0,0 0,20

IJ+, IJ− 8, 12 8, 12 16,4 16,4

I+, I− 0, 0 0, 20 0,0 16,4

J+, J− 0, 20 0, 20 8,12 8,12

NM+, NM− 0, 20 0, 20 0,20 0,20

Frequencies of trial types, shown in the leftmost column, for each group and phase. The

first and second entry in each cell indicates the presence (+) and absence (−) of the effect,

respectively. NM, No medicine.
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FIGURE 1 | Trial illustration. On each trial, participants saw a screen

indicating which medicine(s), or that no medicine, had been ingested, with the

face indicating the allergy patients state being covered by a gray circle and a

question mark. They were asked if the allergy patient had a headache, and

responded yes or no by pressing the “Y” and “N” keys, respectively. The

subsequent screen showed the allergy patient with headache or without

headache (indicated by a smiley face) together with feedback about whether

the participant was correct or not.

asked to predict whether or not the patient had a headache
given the administered medicine(s), by pressing the “Y” key to
indicate “yes” or the “N” key to indicate “no.” After making a
prediction, subjects were given feedback, which consisted of a
picture indicating the allergy patient’s state (i.e., with or without
headache) and a statement about whether the subject’s prediction
was right or wrong. None of the allergy patients had headache
in the absence of any medicine and this was explicitly stated in
the initial instructions, as well as apparent on 20 “No Medicine”
trials presented in each phase. Each type of medicine(s), and no
medicine, trial within a group was presented 20 times in each
phase in which the type occurred, for a total of 200 trials (see
Table 1).

Prior to viewing any data, participants were told that, after
observing the data, they would be required to answer questions
about the influences of the medicines on headache and that,
therefore, they needed to pay close attention to the feedback on
all trials. At the end of the first phase, participants were asked the
following questions about each medicine:

(1) Based on ALL of the information you’ve seen so far, what is
the overall influence of this medicine?

(a) This medicine produces headache
(b) This medicine has no influence on headache
(c) Can’t tell

(2) Regardless of your answer to question 1, based on ALL of
the information you’ve seen so far, what is your best estimate
of the overall strength of the influence of this medicine on
headache?

(3) How confident are you in your estimate of strength provided
above?

The emphasis on “ALL of the information” and “overall
influence/strength” was intended to highlight the importance

of generalizable causal knowledge. It is, of course, trivial to
estimate the probability with which the effect occurs when
candidate I is presented without candidate J in the second phase.
However, given that candidate I acts differently when presented
in compound with J than when presented individually, it is
difficult to predict how this candidate would act if presented in
a novel compound.

Strength estimates and confidence in those estimates were
rated on scales ranging from 0 (not at all) to 100 (extremely),
as described above. Rating scales were printed with extreme
numbers at respective endpoints and with numerical labels
indicating increments of 10. After answering the queries
following the first phase, participants were told that they would be
shownmore data from tests of themedicines, and that they would
subsequently be asked questions about causal influences again.
Finally, following the second phase, participants were again
presented with the three queries regarding structure, strength,
and uncertainty about strength.

At the end of each phase, for each medicine queried, a
summarized display of the trials from that phase, relevant for
evaluating the particular medicine, was shown on the screen
together with instructions to turn to the next page of the response
booklet, to write down the identity of the particular medicine
at the top of that page, and to answer the questions about that
medicine, all three of which were printed on each page of the
booklet. While ratings were collected for all causes following
the first phase, to avoid biasing subsequent learning, only target
causes (C and I) were queried after the second phase, with the
script terminating following responses to the second target cause.
The order of causes being queried at the end of each phase was
random.

Bayesian Causal Model
The causal support model with uniform priors (Tenenbaum and
Griffiths, 2001; Griffiths and Tenenbaum, 2005) was extended
to the case of two candidate causes and a constant background,
such that the hypothesis space consisted of four graphs, all of
which include a causal link from the background to the effect.
A full account of the Bayesian causal model is presented in
Appendix. For generality, all subsequent model equations, in the
main text and in the Appendix, will use C to indicate the target
cause, A to indicate the alternative candidate cause and B to
indicate the constant background. The four graphs making up
the hypothesis space are illustrated in Figure 2: In the first graph,
only the background (B) has a link to the effect (Graph0); in the
second graph, the target cause (C) has a link to the effect, but
the alternative candidate cause (A) does not (Graph1); in the
third graph, the alternative candidate cause, but not the target
cause, has a link to the effect (Graph2); in the fourth graph,
both candidate causes have links to the effect (Graph3). We
only consider generative causes, since participants were explicitly
instructed that candidate causes either produced the effect or
had no influence. The model was instantiated in each of four
scenarios, (i.e., for each condition, confounding and interaction,
and in each phase), with predictions derived for the target cause
in each scenario. Specifically, for each target cause, causal support
was defined as the ratio of likelihoods on graphs in which a link
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FIGURE 2 | Causal graphs. Explanation of the data observed by participants

as causal graphs in which a causal influence over the effect (E), indicated by

an arrow, exists for neither the target cause (C) nor the alternative (A) cause

(Graph0), for the target cause but not the alternative cause (Graph1), for the

alternative cause but not the target cause (Graph2), or for both candidate

causes (Graph3).

exists between the target cause and the effect over graphs in which
no link exists for the target cause:

supC→E = log
P(D|Graph1)+ P(D|Graph3)

P(D|Graph0)+ P(D|Graph2)
(3)

The likelihoods were computed by averaging out the unknown
causal strengths (wi) of the background, target cause and
alternative candidate cause such that, for example, for Graph3:

P(D|Graph3) =

∫ 1

0

∫ 1

0

∫ 1

0
P(D|wB,wC,wA,Graph3)

P(wB,wC,wA|Graph3)dwBdwCdwA (4)

where the likelihood terms are derived using a causal power
parameterization3 (see Equation 2).

A continuous measure of confidence in the existence of
a causal link (Tenenbaum and Griffiths, 2001; Griffiths and
Tenenbaum, 2005), causal support is strongly positive if a
causal relationship is very likely, strongly negative if a causal
relationship is very unlikely, and close to zero when the status
of a causal relationship is unknown. Behavioral “can’t tell”
choices were coded as zero, “produces” choices as 1, and the
“no influence” choices as −1, and mean judgments were then
modeled as causal support. Following Griffiths and Tenenbaum
(2005), a scaling transformation was applied to causal support
values. The posterior distribution on wC in the most likely
graph in which a link existed between the target cause and the
effect (i.e., Graph1 or Graph3, depending on which had the
highest likelihood) was used to model strength estimates and
uncertainty in strength estimates. Following Lu et al. (2008),
strength estimates were modeled as the mean of wC:

w̄C =

∫ 1

0
wCP(wC|D)dwC. (5)

Uncertainty in strength was quantitatively defined as the
Shannon entropy of the posterior distribution on wC, H(wC),
which is greatest when the distribution is uniform (i.e., all
strengths are equally probable):

H(wC) = −

∫ 1

0
P(wC|D) ln P(wC|D)dwC. (6)

3Integrals were numerically integrated.

To equate the scale with strength ratings, model-derived strength
estimates were multiplied by 100. Likewise, since Shannon
entropy reflects the degree of uncertainty, while participants
rated confidence, or certainty, mean confidence ratings were
subtracted from 100 to equate the directions of the scales.

Results

Human data for structure, strength and uncertainty about
strength are shown in the bottom rows of Figure 3 (for the
confounded target cause) and Figure 4 (for the interacting target
cause), with corresponding plots of model prediction shown
in the top rows. A 2 (Phase) × 2 (Group) mixed analysis
of variance (ANOVA) was performed on each type of rating
(strength and uncertainty about strength) and for each type
of causal power violation (confounding and interaction). The
results of these analyses are reported in relevant subsections.
Cohen’s dz (hereafter dz) is reported for all pairwise comparisons.
Throughout the results, group-labels “Strong” and “Weak” refer
to the model-derived strength of the relevant target cause at the
end of Phase 2.

Confounded Causes
Structure Judgments
Consistent with the causal power view, as can be seen in Figure 3,
both human judgments and the Bayesian causal model reflect
high levels of uncertainty associated with confounded target
cause C in Phase 1; uncertainty that is subsequently resolved by
individual presentations of that cause either with or without the
effect in Phase 2.

Specifically, when asked to categorically judge the influence of
a confounded candidate cause, at the end of the first phase, 88
out of 108 participants chose the “can’t tell” option, suggesting
low confidence in their ability to evaluate the existence of a
causal link. After viewing the data from Phase 2, in which the
relevant cause was presented without the confounding alternative
cause, participants in the Strong group overwhelmingly chose
the “produces” option (54 out of 58), while those in the Weak
group chose the “no influence” option (35 out of 50). Chi square
tests performed on these judgments revealed that the proportion
of “can’t tell” choices decreased significantly from the first to
the second phase in both the Strong (χ2 = 70.96, n = 58,
p < 0.001) and Weak (χ2 = 55.61, n = 50, p < 0.001) group.
Consistent with this pattern of results, causal support for the
relevant candidate cause starts out close to zero at the end of the
first phase, but becomes strongly positive and strongly negative,
for the Strong and Weak group respectively, at the end of
Phase 2.

Strength Ratings
A 2 (Phase)× 2 (Group) ANOVA performed on strength ratings
for the confounded target cause revealed a significant main effect
of Phase, F(1, 106) = 18.44, p < 0.001, a significant main effect
of Group F(1, 106) = 123.30, p < 0.001, and a significant Phase
by Group interaction, F(1, 106) = 129.13, p < 0.001. Planned
comparisons further revealed that, across the two phases, mean
strength ratings increased significantly in the Strong group [from
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FIGURE 3 | Model predictions and behavioral results for the

confounded target cause. Predictions of the Bayesian causal

model are shown in the top row, and mean human judgments in

the bottom row, for structure judgments (left), strength estimates

(middle) and uncertainty in strength estimates (right). Structure

judgments were derived by coding structure choices as “No

influence” = −1, “Can’t tell” = 0, “Generative influence” = 1.

Labels “Weak” and “Strong” indicate the model-derived strength of

the target cause (C) at the end of the 2nd phase. Error bars =

SEM.

FIGURE 4 | Model predictions and behavioral results for the

interacting target cause. Predictions of the Bayesian causal

model are shown in the top row, and mean human judgments in

the bottom row, for structure judgments (left), strength estimates

(middle) and uncertainty in strength estimates (right). Structure

judgments were derived by coding structure choices as “No

influence” = −1, “Can’t tell” = 0, “Generative influence” = 1.

Labels “Weak” and “Strong” indicate the model-derived strength of

the target cause (I) at the end of the 2nd phase. Error bars =

SEM.

44.4 to 85.7; t(57) = 14.11, p < 0.001, dz = 0.63] and decreased
significantly in the Weak group [from 43.70 to 21.60; t(49) =

4.46, p < 0.001, dz = 1.82]. Importantly, as can be seen in
Figure 3, in spite of the high levels of uncertainty associated with
the confounded cause at the end of the first phase, mean ratings
of its causal strength were as predicted by the Bayesian causal
model. In contrast, according to the power-PC theory, no unique
solution for causal strength exists at this point. These results
suggest that strength ratings do not necessarily reflect violations
of causal power assumptions even when ratings of uncertainty

do: a fact that may have obfuscated the use of causal power
assumptions in studies of human causal learning that do not
measure uncertainty. The Bayesian causal model also predicted
the increase in strength ratings across phases in the Strong group
and decrease across phases in the Weak group.

Confidence in Strength
When specifically asked about their confidence in strength
estimates, it is again apparent that participants were sensitive
to a violation of the “no confounding” constraint specified by
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the causal power approach. A 2 (Phase) × 2 (Group) ANOVA
performed on confidence ratings for the confounded target cause
revealed a significant main effect of Phase, F(1, 106) = 106.69,
p < 0.001, but no effect of Group F(1, 106) = 0.15, p = 0.70,
nor any interaction, F(1, 106) = 0.45, p = 0.51. Mean ratings of
confidence in strength estimates (bottom right plot in Figure 3)
reflect high levels of uncertainty following Phase 1, that are
significantly reduced at the end of Phase 2, in both the Strong
[from 51.12 to 16.98; t(57) = 8.30, p < 0.001, dz = 0.89] and
Weak [from 50.50 to 20.50; t(49) = 4.46, p < 0.001, dz = 1.09]
group. This sensitivity to confounding is ordinally captured by
the Bayesian model (top right plot in Figure 3), which predicts
high entropy for the posterior distribution over strength after
Phase 1, and lower levels of entropy following Phase 2.

Interacting Causes
Structure Judgments
Consistent with the causal power view, as can be see in the
bottom row of Figure 4, human judgments reflect low levels of
uncertainty when the target candidate cause exerts an apparently
independent influence in Phase 1, and a significant increase
in uncertainty when trials were introduced suggesting that
candidate causes interact in Phase 2. In contrast, according to
the Bayesian model, confidence in the existence of a causal
link increases from the first to the second phase for the Strong
group (top left plot in Figure 4), while uncertainty about strength
decreases across phases in both groups (top right plot in
Figure 4).

Specifically, when asked to judge whether or not an apparently
independently acting candidate cause had any influence over the
effect, at the end of Phase 1, only 30 out of 108 participants
chose the “can’t tell” option, suggesting high confidence in their
ability to evaluate the existence of a causal link. Moreover, out
of the remaining 78 participants, 77 indicated that the cause
produced the effect, while only one participant choose the “no
influence” option. After viewing the data from the second phase,
in which the probability of the effect given the relevant causes
deviated from that expected based on their individual influences,
the majority of participants chose the “can’t tell” option in both
the Strong (27 out of 50) and Weak (41 out of 58) group. Chi
square tests performed on the categorical judgments confirmed
that the increase in the proportion of “can’t tell” choices from
the first to the second phase was significant, in both the Strong
(χ2 = 6, n = 50, p < 0.05) and Weak (χ2 = 42.30, n = 58,
p < 0.001) group.

Consistent with human judgments in the Weak group, causal
support for candidate I was strongly positive based on the data
given in the first phase, and then decreased substantially across
phases. However, contrary to the pattern of results found for
human judgments, causal support increased across phases in the
Strong group. Note that, since both the individual and combined
influence of candidate I was clearly positive in the second phase
for the Strong group, one might have expected more participants
to choose the “produces” option, consistent with causal support.
One possible reason for the proportion of “can’t tell” choices in
this condition may be that participants postulated that candidate
I both (1) generated the effect and (2) prevented the influence

of candidate J on the effect, as an explanation for why the
occurrence of the effect in the presence of the compound is less
than that expected based on independent influences. Regardless,
the proportion of “can’t tell” choices after the second phase is
clearly much greater for the Weak than for the Strong group.

Strength Ratings
A 2 (Phase)× 2 (Group) ANOVA performed on strength ratings
for the interacting target cause (I) revealed a significant main
effect of Phase, F(1, 106) = 4.96, p < 0.05, a significant main effect
of Group F(1, 106) = 109.50, p < 0.001, and a significant Phase
by Group interaction, F(1, 106) = 11.68, p < 0.001. Again, mean
causal strength ratings were well accounted for by the Bayesian
model (middle column in Figure 4), which accurately predicted
the decrease in mean ratings across phases in the Weak group
[from 43.54 to 30.17; t(57) = 3.76, p < 0.005, dz = 0.49], as well
as the increase in the Strong group, from 61.90 to 65.50. Although
the increase in strength ratings across phases in the Strong group
was not significant (p = 0.3), the Bayesian model nicely captures
the ordinal pattern of strength ratings across groups and phases.

Confidence in Strength Ratings
As with confidence in strength estimates for the confounded
target cause, a 2 (Phase) × 2 (Group) ANOVA performed on
confidence ratings for the interacting target cause revealed a
significant main effect of Phase, F(1, 106) = 23.02, p < 0.001,
but no effect of Group F(1, 106) = 0.42, p = 0.52, nor any
interaction, F(1, 106) = 0.54, p = 0.46. Specifically, across the
two phases, as the target cause goes from an independent to
an interacting influence, mean ratings of uncertainty in strength
estimates increased significantly in both the Strong [from 25.50 to
33.80; t(49) = 2.45, p < 0.05, dz = 0.35] and Weak [from 21.38
to 32.76; t(57) = 4.5, p < 0.001, dz = 0.59] group; in contrast, the
Bayesian model predicts a decrease in uncertainty across phases
in both groups. Thus, when participants were asked about their
confidence in strength estimates, the human data again deviated
from the predictions of the Bayesian model (right column in
Figure 4).

Discussion

This study investigated the influence of violations of causal
power assumptions on uncertainty about the existence and
strength of a causal relationship. Consistent with the causal
power approach (Cartwright, 1989; Cheng, 1997), it was found
that when a candidate cause was confounded or interacted with
another cause, uncertainty in both the existence and strength
of a causal relationship was relatively high. In contrast, when
candidate causes were unconfounded and apparently exerted
independent influences on the effect, uncertainty was relatively
low. This pattern of results was well captured by a Bayesian
causal model, with a couple of notable exceptions: First, the
model predicted that confidence in the existence of a causal link
should increase as the interaction became apparent, while human
judgments suggested that it decreases. Likewise, the model
predicted a decrease in the degree of uncertainty about causal
strength as the interaction became apparent, while mean rated
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levels of uncertainty increase. Thus, while human judgments are
consistent with the notion of high uncertainty due to a violation
of causal power assumptions, the Bayesian causal model suggests
that uncertainty in strength estimates will decrease with the
opportunity to observe a candidate cause without its compound
counterpart, even when those observations are inconsistent with
the assumption of independent causal influence. Notably, the
ordinal predictions of the model were robust across several
variations, including using a linear rather than a noisy-OR
integration function (Lu et al., 2008), using necessary and
sufficient rather than uniform priors (Lu et al., 2008), and using a
weighted average across graphs (Meder et al., 2014), rather than
the most likely graph, to model strength estimates.

Although the Bayesian causal model accurately predicts high
uncertainty when there is perfect confounding (i.e., when causes
always occur in combination), it also predicts high uncertainty
for other reasons, such as when variance is high or samples are
small (Griffiths and Tenenbaum, 2005). In contrast, according
to the causal power view, confounding constitutes a unique
source of uncertainty—a violation of the boundary conditions
for causal inference—that is presumably impervious to any bias-
reducing influence of increasing sample size: Unlike uncertainty
due to small samples, uncertainty due to confounding cannot
be resolved by collecting more data, as long as candidate causes
continue to only occur in combination. Confounding, therefore,
has distinct implications for exploratory behavior and sampling
strategies. As noted, when causes are perfectly confounded, the
power-PC equations contain multiple unknowns, so that causal
strength is not uniquely defined (see Cheng, 1997). However,
while this constitutes a signal specific to violations of causal
power assumptions, the power-PC theory does not provide an
explicit, quantitative, measure of uncertainty. Meanwhile, the
Bayesian causal model does provide explicit representations
of uncertainty (in both structure and strength estimates) that
vary with violations of causal power assumptions, but does not
separate these, quantitatively or qualitatively, from uncertainty
due to variance or small samples. Further work is needed to
determine if accounting for human causal inference warrants a
model that provides both a categorical signal specific to violations
of causal power assumptions and a continuous measure of
corollary uncertainty.

The results also suggest that a violation of the assumption
of independent causal influence generates relatively high levels
of uncertainty. Importantly, at the end of the second phase
of the study, participants were asked to provide judgments
about the target cause after many observations of that cause
in the absence of its compound counterpart. Thus, they could
have based their judgments solely on such trials, ignoring
the instruction to consider all of the information presented
and avoiding the confusion arising from inconsistencies across
elemental and compound trials. The increase in uncertainty
as the interaction was revealed suggests that they did in fact
consider all of the trials, as instructed. It is likely, however,
that had they been asked to provide judgments about a novel
compound, consisting of the target cause and an alternative
cause with which it had not been previously paired, a more
profound increase in uncertainty would have resulted, as such

judgments would require generalization of causal knowledge,
a process that depends critically on the assumption of causal
invariance: if a cause can no longer be assumed to retain its
capacity to influence an effect regardless of the spatial or temporal
context, the very basis of generalization has been eliminated
(Liljeholm and Cheng, 2007; Liljeholm et al., 2007; Cheng et al.,
2013). Consequently, once a candidate cause has been found
to violate the default assumption of independent influence, one
might expect induction about that cause in novel contexts and
compounds to be fraught with uncertainty.

Implications for generalization notwithstanding, a substantial
literature has demonstrated that humans and other animals are
quite capable of treating compound causes differently from what
would be expected based on their individual elements, when
contingencies so demand (Holland and Block, 1983; Bellingham
et al., 1985; Lachnit and Kimmel, 1993; Shanks et al., 1998; Shanks
and Darby, 1998; Young et al., 2000; Lober and Lachnit, 2002;
Harris et al., 2008). For example, rodents and humans alike can
learn that an effect occurs in the presence of either X or Y, but
not in the presence of an XY compound (Lachnit and Kimmel,
1993; Harris et al., 2008). Such behavior can be modeled using
a “configural” representational unit that corresponds uniquely
to the XY combination; a solution that has been adopted by
the conjunctive power-PC theory (Novick and Cheng, 2004),
by various connectionist error-reduction models (Pearce, 1987,
1994, 2002; Schmajuk and DiCarlo, 1992) and, indeed, by the
Bayesian causal framework (Yuille and Lu, 2008). One might
suppose, then, that a Bayesian model that includes graphs in
which the combination of the target and alternative cause is
uniquely represented by a configural node would provide a
better account of judgments in the interaction condition than
the model considered here. Note, however, that the presence of
a configural node eliminates the variance due to inconsistencies
across elemental and compound trials that would otherwise be
attributed to elemental nodes, and that is the source of the
associated uncertainty. Consequently, the inclusion of graphs
with a configural node should decrease, rather than increase,
the model-derived uncertainty about the influence of the target
cause, resulting in an even poorer fit to the data presented here.

An alternative approach to causal interactions, recently
proposed by Lucas andGriffiths (2010), is to specify a conjunctive
integration function, or “functional form.” For example, a
function may specify that at least two causes must be present
to generate the effect. Inferences about causal structure can then
be drawn across multiple possible functional forms, potentially
with different priors (Lucas and Griffiths, 2010; Lucas et al.,
2014). Although priors that favor independent over conjunctive
functional forms may yield a pattern of results similar to
that observed here, it should be noted that the approach
advocated by Lucas and colleagues differs profoundly from
the principles outlined by theories on causal power. First
according to Lucas and Griffiths (2010), learning of functional
forms is strictly domain-specific, such that generalization of a
particular functional form, based on an increase in its priors
due to previous experience, pertains only to the specific causal
mechanism for which the form has been observed to apply. In
contrast, the causal power view specifies a set of domain-general
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constraints that enable causal discoveries from statistical
regularities regardless of specific causal mechanisms. Second,
whereas according to Lucas and Griffiths the appropriateness
of a given functional form, be it linear, noisy-OR, or
conjunctive, depends strictly on its observed applicability within
a particular domain, the causal power approach (Cartwright,
1989; Cheng, 1997) emphasizes that only those forms that
follow from the assumption of independent causal influence,
such as the noisy-OR, enable coherent transfer of causal
knowledge.

In summary, this study assessed how violations of boundary
conditions for computing causal power influenced uncertainty
in causal judgments. Consistent with previous work showing
sensitivity to confounding in exploratory behavior, estimates
of outcome probabilities, and causal model selection (Kushnir
and Gopnik, 2005; Meder et al., 2006; Schulz and Bonawitz,
2007; Schulz et al., 2007), confounding was found to modulate
uncertainty about the existence and strength of a causal
relationship. Likewise, uncertainty about the existence and

strength of a causal relationship was greater when causes
interacted than when they appeared to exert their influences
independently. Future work may be aimed at assessing how
these distinct sources of uncertainty influence the selection
of contingency information and the generalization of causal
knowledge.
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Appendix

A Bayesian Model of Structure and Strength
Judgments
As in Griffiths and Tenenbaum’s (2005) causal support model,
support for a given target cause, C, is defined here as the log
likelihood ratio in favor of graphs in which there is a link between
that cause and the effect (Graph1 and Graph3), over graphs in
which there is no such link (Graph0 and Graph2).

sup
C→E

= log
P(D|Graph1)+ P(D|Graph3)

P(D|Graph0)+ P(D|Graph2)
. (A1)

Each graph has a set of parameters θ , which are the causal
strengths w of the background (wB), target candidate cause (wC),
and alternative candidate cause (wA), respectively (i.e.,wB only in
Graph0,wB andwC in Graph1,wB andwA in Graph2, andwB,wC

and wA in Graph3). The likelihoods, P(D|Graphi), are obtained
by averaging out the relevant unknown parameters, such that, for
Graph0

P(D|Graph0) =

∫ 1

0
P(D|wB,Graph0)P(wB|Graph0)dwB, (A2)

for Graph1

P(D|Graph1) =

∫ 1

0

∫ 1

0
P(D|wB,wC,Graph1)

P(wB,wC|Graph1)dwBdwC, (A3)

for Graph2

P(D|Graph2) =

∫ 1

0

∫ 1

0
P(D|wB,wA,Graph2)

P(wB,wA|Graph2)dwBdwA, (A4)

and for Graph3

P(D|Graph3) =

∫ 1

0

∫ 1

0

∫ 1

0
P(D|wB,wC,wA,Graph3)

P(wB,wC,wA|Graph3)dwBdwCdwA, (A5)

where P(θ |Graphi) denotes the priors on causal strength
parameters, which are assigned independent uniform, Beta(1,1),
distributions. The likelihoods P(D|θ , Graphi) are computed
using the noisy-OR parameterization (Pearl, 1988), for which
causal power (Cheng, 1997) is the maximum likelihood estimate
(Griffiths and Tenenbaum, 2005).

Summarizing data D by contingencies N(e,c,a), the
frequencies of each combination of the presence versus
absence of the effect, target cause and alternative cause, the

likelihood term for Graph0 (setting wC = 0 and wA = 0) is

P
(

D|wB,Graph0
)

=

(

N
(

c−, a−
)

N
(

e+, c−, a−
)

)

×

(

N
(

c+, a−
)

N
(

e+, c+, a−
)

)

×

(

N
(

c−, a+
)

N
(

e+, c−, a+
)

)

×

(

N
(

c+, a+
)

N
(

e+, c+, a+
)

)

w
N(e+,c−,a−)+N(e+,c+,a−)+N(e+,c−,a+)+
B

N(e+,c+,a+) (1− wB)
N(e−,c−,a−)+

N(e−,c+,a−)+N(e−,c−,a+)+N(e−,c+,a+),

(A6)

where
( n
k

)

denotes the number of ways of picking k unordered
outcomes from n possibilities. N(c+) indicates the frequency
of events in which the target cause is present, with analogous
definitions for the other N(.) terms. To improve legibility, in
Equations (A7–A9) below, the four

( n
k

)

terms, which are identical
to those in Equation (A6), have been omitted. Moreover, N(.)
terms reflect marginalization over causes for which no link
exists in the relevant graph, such that, for example, the term
“N(e+, c+)” in Equation (A7) indicates the frequency of events
in which both the effect and target cause are present, summed
across the presence and absence of the alternative candidate
cause.

Thus, the likelihood term for Graph1 (setting wA = 0) is

P
(

D|wB,wC,Graph1
)

= w
N(e+,c−)
B (1− wB)

N(e−,c−)

[wB + wC − wBwC]
N(e+,c+)

[1− wB − wC + wBwC]
N(e−,c+),

(A7)

that for Graph2 (setting wC = 0) is

P
(

D|wB,wA,Graph2
)

= w
N(e+,a−)
B (1− wB)

N(e−,a−)

[wB + wA − wBwA]
N(e+,a+)

[1− wB − wA + wBwA]
N(e−,a+),

(A8)

and that for Graph3 is

P
(

D|wB,wC,wA,Graph3
)

= w
N(e+,c−,a−)
B (1− wB)

N(e−,c−,a−)

[wB + wC − wBwC]
N(e+,c+,a−) [1− wB − wC + wBwC]

N(e−,c+,a−)

[wB + wA − wBwA]
N(e+,c−,a+) [1− wB − wA + wBwA]

N(e−,c−,a+)

[wB + wC + wA − wBwC − wBwA − wCwA + wBwCwA]
N(e+,c+,a+)

[1− wB − wC − wA + wBwC + wBwA + wCwA

−wBwCwA]
N(e−,c+,a+) . (A9)

Causal strength estimates were modeled as the mean of the
posterior distribution P(wC|D) from the most likely graph in
which a link existed between the target cause and the effect (i.e.,
either Graph1 or Graph3 depending on which had the highest
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likelihood). The posterior distribution is obtained by applying
Bayes’ rule, such that, if for example Graph3 had the highest
likelihood,

P(wC|D,Graph3)

=

∫ 1

0

∫ 1

0

P(D|wB,wC,wA,Graph3)P(wB,wC,wA|Graph3)

P (D)
dwBdwA,

(A10)

where P(D|wB,wC,wA,Graph3) is the likelihood term [see
Equation (A9)]. P(wB,wC,wA|Graph3) refers to the prior
probabilities of causal strength parameters, again set to
independent Beta(1,1) distributions, and P(D) is the normalizing

term, denoting the probability of the observed data. The mean of
wC is given by

wC =

∫ 1

0
wCP(wC|D)dwC. (A11)

Finally, uncertainty about strength is modeled as the Shannon
entropy H(wc) of P(wC|D)

H(wC) = −

∫ 1

0
P(wC|D) ln P(wC|D)dwC. (A12)

MATLAB code implementing the model using numerical
integration is available in the online supplementary materials.
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