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Abstract

Learning in many visual perceptual tasks has been shown to be specific to practiced stimuli, while new stimuli have to be
learned from scratch. Here we demonstrate generalization using a novel paradigm in motion discrimination where learning has
been previously shown to be specific. We trained subjects to discriminate directions of moving dots, and verified the previous
results that learning does not transfer from a trained direction to a new one. However, by tracking the subjects’ performance
across time in the new direction, we found that their speed of learning doubled. Therefore, we found generalization in a task
previously considered too difficult to generalize. We also replicated, in a second experiment, transfer following training with ‘easy’
stimuli, when the difference between motion directions is enlarged. In a third experiment we found a new mode of generalization:
after mastering the task with an easy stimulus, subjects who have practiced briefly to discriminate the easy stimulus in a new
direction generalize to a difficult stimulus in that direction. This generalization depends on both the mastering and the brief
practice. The specificity of perceptual learning and the dichotomy between learning of ‘easy’ versus ‘difficult’ tasks have been
assumed to involve different learning processes at different cortical areas. Here we show how to interpret these results in terms
of signal detection theory. With the assumption of limited computational capacity, we obtain the observed phenomena — direct
transfer and acceleration of learning — for increasing levels of task difficulty. Human perceptual learning and generalization,
therefore, concur with a generic discrimination system. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Learning in biological systems is of great importance
at all levels of information processing, including percep-
tual and cognitive learning. But while cognitive learning
(or ‘problem solving’) is typically abrupt and general-
izes to analogous problems, perceptual skills appear to
be learned gradually and specifically. Thus, human
subjects cannot generalize a perceptual discrimination
skill to solve similar problems with a different attribute.
For example, in a visual discrimination task (Fig. 1), a
subject who is trained to discriminate between motion
directions 43 and 47° cannot use this skill, 90° away, to
discriminate between 133 and 137°.

Many perceptual learning experiments have used the
following experimental paradigm: subjects are trained

in a discrimination task with one particular attribute
(e.g. the pair of motion directions 43 and 47° above),
and are later tested with another attribute (e.g. the
second pair of motion directions 133 and 137°). Typi-
cally subjects start off with poor discrimination, and
improve substantially with training. But when tested
with the new attribute, their performance drops to
baseline. In other words, learning does not transfer
from the first to the second attribute.

To give a few examples, Fiorentini and Berardi
(1980) have found that learning in waveform discrimi-
nation does not transfer from vertical to horizontal
orientations. Ball and Sekuler (1982), whose paradigm
is used in our own experiments, have found that learn-
ing in motion discrimination in one pair of directions
does not transfer to another pair of directions 90° or
further away. Karni and Sagi (1991) have found that
learning in a visual search task does not transfer when
the background line elements rotate 90°. Finally, Pog-
gio, Fahle and Edelman (1992) have found that learn-
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Fig. 1. Schematic illustration of one trial of motion discrimination. (Left) each stimulus consisted of a random dot pattern moving inside a circular
aperture. The direction of each of the two stimuli was randomly chosen from two candidate directions: dir9D/2. The subject judged whether the
two stimuli moved in the same or different directions. Feedback was provided. (Right) the fixed direction dir was chosen from 12 primary
directions.

ing in Vernier acuity discrimination does not transfer
from vertical to horizontal orientation and vice versa.

In our first experiment (Section 2.2), we use the same
conventional paradigm, with which learning has been
previously shown not to transfer. We, however, keep
tracking the subjects’ performance in the second training
direction through time, and find that although the initial
performance in the second direction is poor, learning
nevertheless becomes faster. Thus, some knowledge
learned in the first direction is used in the second. In
other words, learning indeed generalizes in a task that
does not show immediate transfer.

Some recent results showed that the aforementioned
lack of transfer, or absence of immediate generalization,
occurs only if the task is ‘difficult’. Learning otherwise
transfers when the task is ‘easy.’ For example, Liu (1995)
has found, in motion discrimination, that a subject
trained to discriminate 41 from 49° can later readily
discriminate 131 from 139°. Ahissar and Hochstein
(1997) have found, in a visual search task with line
elements, that when the orientational difference between
the target and distractor elements is enlarged, or when
the target is restricted to only two possible locations,
learning transfers when all elements are rotated 90°. In
addition, Liu and Vaina (1995) have employed a simul-
taneous learning paradigm, in which learning trials in
two pairs of motion directions are interleaved with
unequal proportions. They found that the learning rate
in the less frequent pair is greater than in the more
frequent one, and suggested that learning transfers be-
tween the two interleaved tasks.

In our second experiment (Section 2.3) we replicate
one such result as described in Liu (1995). One criticism
of such results is that possibly there is no perceptual
learning left in these ‘easy’ tasks, and that what is
actually learned is some general knowledge about the

task, whose transfer is to be expected.
A few recent experiments varied the perceptual learn-

ing paradigm yet in a different way, by manipulating
task difficulty rather than attribute1. The exposure to an
easy stimulus is found to facilitate learning of a more
difficult stimulus with the same attribute. In a visual
search task (Ahissar & Hochstein, 1997), long presenta-
tion of the stimulus in a single trial enables subjects to
perform the task above chance when the stimulus pre-
sentation becomes short. Without this long presentation,
subjects’ performance remains at chance. This effect was
termed Eureka. In a shape discrimination task (Rubin,
Nakayama & Shapley, 1997), a session of training with
easy stimuli enables subjects to learn the task with the
difficult stimuli, which are difficult to learn otherwise.
This effect was termed insight.

Our third experiment (Section 2.4) uses a hybrid
design that manipulates both attribute (motion direc-
tion) and task difficulty. We found a new generalization
mode, which we termed rooting. Both extensive training
with one stimulus and a short exposure to another were
needed for such generalization.

Thus, in contrast to previous results of specific learn-
ing, we show in three experiments that learning in
motion discrimination often generalizes. The mode of
generalization varies: (1) When the task is difficult, it is
motion direction specific in the traditional sense, but
learning in a new direction accelerates. (2) When the task
is easy, learning generalizes to all directions after train-
ing in only one. (3) When subjects learn an easy task in
one direction, and then practice briefly the same easy
task in a new direction, learning generalizes to a difficult
task in this new direction. While (2) is consistent with
previous findings (Liu, 1995; Ahissar & Hochstein,
1997), (1) and (3) demonstrate that generalization is the
rule, not an exception limited only to ‘easy’ stimuli.

The specificity of learning was used to support the
hypothesis that perceptual learning embodies neuronal
modifications in the brain’s early stimulus-specific corti-
cal areas (e.g. visual area MT) (Ramachandran, 1976;
Gilbert, 1994; Karni, 1996). Our results show that

1 We note that task difficulty, which is defined in motion discrimi-
nation as the angular difference between two possible motion direc-
tions, can also be considered as an attribute. In this paper, however,
we distinguish task difficulty from other physical task attributes such
as motion direction or line orientation.
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generalization is common in perceptual learning, hence
this hypothesis needs to be revised.

In Section 3, we adopt a signal detection framework
to analyze our perceptual learning results. We describe
the model’s assumptions, including the limited compu-
tational capacity, and show simulation results that con-
cur with human learning. Our approach cannot model
the biological architecture, but it can demonstrate that
a ‘generic’ discrimination system exhibits similar behav-
ior to human subjects. From this similarity we conclude
that the current psychophysical results, though very
informative about human perceptual learning, cannot
be used to identify the exact mechanism of perceptual
learning in the brain.

2. Perceptual learning experiments

Below we describe three psychophysical experiments
that demonstrate three different modes of generaliza-
tion in perceptual learning. Experiment 1 in Section 2.2
shows acceleration of learning when the task is difficult.
Experiment 2 in Section 2.3 shows transfer to all direc-
tions from one trained direction when the task is easy.
Experiment 3 in Section 2.4 shows transfer after sub-
jects have learned an easy task in one direction, and
practiced briefly the same easy task in a new direction.

2.1. Methods

We start by describing the experimental task that is
common to all three experiments.

2.1.1. Stimuli and apparatus
The motion discrimination task is described in Fig. 1.

In each trial, the subject is presented with two consecu-
tive stimuli, each moving in one direction that is ran-
domly chosen from the following two: dir+ (D/2) and
dir− (D/2) (dir is fixed, denoting the average of the two
possible directions). Specifically, the stimuli were pre-
sented on a computer monitor (Silicon Graphics Indigo
2 Extreme, 60 Hz) with a resolution of 1280×1024
pixels. Each stimulus consisted of 400 dots that were
randomly distributed inside a circular aperture, whose
diameter was 342 pixels, or 8° in visual angle at a
viewing distance of 60 cm. Each dot was 3×3 pixels
that was approximately 4 min in visual angle. The dots
were white (3.9 cd/m2) on dark background (1.0 cd/m2,
contrast 59%). All the dots in one stimulus moved in
the same direction, with a constant speed of 10 °/s.
Subjects were asked to fixate on a red square (0.1
cd/m2, 0.58, 0.35) 11 pixels (16 min) wide.

We manipulated two variables. The first was dir, the
average of the two possible motion directions. It was
randomly selected from 12 primary directions around
the clock, corresponding to 30°/step starting from 0°

(Fig. 1). The second variable was D, the angular differ-
ence between the two possible motion directions, deter-
mining the difficulty of the task. We used D=4° for the
difficult condition, D=6° for the intermediate condi-
tion, and D=8° for the easy one. The only reason we
used D=4°, as opposed to the 3° used in Ball and
Sekuler (1987) on an oscilloscope, was that our moni-
tor’s resolution is lower. We found in our pilot study
that many subjects were unable to learn with D=3°.
D=8° was chosen as the easy condition because most
subjects found it relatively easy to learn, yet still needed
training to achieve good performance. We observed
large variation between subjects in the amount of train-
ing needed to learn the task: for some subjects D=6°
was still ‘easy,’ for others it was already ‘difficult.’

2.1.2. General procedure
In each trial, the first motion stimulus was presented

for 500 ms. This was followed by a 200 ms interval,
during which only the fixation mark was present. Then
the second stimulus was presented for 500 ms. The
subject fixated on the fixation mark, and decided
whether the motion directions of the two stimuli were
the same or different by pressing a mouse button.
Feedback was always provided: a correct response was
followed by an electronic beep, and silence otherwise.
The next trial automatically started thereafter. Unless
otherwise specified, each experimental session consisted
of 700 trials that lasted for about 25 min. The subject
viewed the stimuli binocularly. All the experiments were
conducted in a dark room.

2.2. Experiment 1: a difficult task

Each subject was trained extensively in one primary
direction, and then in another. Three subjects were
trained with D=4°, two with D=6°. We compared the
learning rate between the first and second primary
motion directions.

2.2.1. Procedure (D=4°)
Two naive subjects (DJ and ZJX) and author ZL

participated in the experiment. Subjects ZL and DJ
needed 20 sessions (700 trials per session) of training in
the first direction, and only nine sessions in the second
direction, which was 90° away from the first (Fig. 2).
Subject ZJX, who had no previous experience with any
psychophysical experiments, needed seven sessions in
the first direction, and only four in the second. Training
stopped in the first direction when a subject’s perfor-
mance reached a plateau, and in the second direction
when the performance matched the asymptotic level of
the first direction. At the very beginning of the experi-
ment, to reduce any effect of task familiarization, the
subjects practiced the task in the first direction until
they were sufficiently familiar with it, which amounted
to about 20 trials per subject.
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Fig. 2. (Top) Discrimination sensitivity d % as a function of training sessions. For comparison, a few accuracy scores are plotted on the right:
(hits+correct rejections)/(number of trials). Subjects DJ and ZL needed 20 training sessions in the first direction, and nine in the second. Subject
ZJX needed seven in the first, and four in the second. The rate of learning (the amount of improvement per session) nearly doubled in the second
direction. (Bottom) same as above but with D=6°. In addition, each subject’s baseline performance in the two directions was measured first. The
baseline performance of the second direction is shown with a circle, connected by a dashed line to the second learning curve. Subject QF nearly
transferred completely from the first to the second direction, whereas subject YHL’s initial performance dropped half-way.

2.2.2. Results (D=4°)
The subjects’ initial performance in the two direc-

tions was comparable, replicating the classical result of
stimulus specific learning (no direct transfer). We com-
puted linear regression for each learning curve and for
each subject, to obtain the slope or learning rate Dd %/
session. A within subjects t-test yielded a significant
difference (t(2)=6.40, PB0.01, one-tailed)2. The learn-
ing rate nearly doubled in the second direction (ratio,
1.9690.15). This indicates that although perceptual
learning did not directly transfer in this difficult task, it
did nevertheless generalize to the new direction. The
generalization was manifested as nearly 100% increase
in the rate of learning in the second direction.

2.2.3. Procedure (D=6°)
Since no direct transfer was found in the difficult

condition (D=4°), while complete transfer has been
found in the easy condition (D=8°) (Liu, 1995), we
tested two additional naive subjects with an intermedi-
ate condition (D=6°). The experiment was identical to
the above except for the following. At the beginning,

the subjects’ baseline performance was measured in
both primary directions. This was done by interleaving
blocks of trials from the two directions to avoid any
ordering effect, with 50 trials in each block, and 700
trials total per subject.

2.2.4. Results (D=6°)
As expected, the subjects’ performance was interme-

diate between the difficult and easy conditions (bottom
of Fig. 2). Of special interest are individual differences:
subject QF showed nearly complete transfer from the
first to the second direction, as is typical of an ‘easy’
task. In contrast, subject YHL showed partial transfer.
This demonstrates the relative nature of ‘easy’ and
‘difficult’ tasks. It also demonstrates that the two ob-
served modes of generalization, direct transfer versus
acceleration of learning, may be two extremes of a
continuum.

2.3. Experiment 2: an easy task

In this experiment, we replicated results originally
reported in Liu (1995) using the easy condition D=8°.
We demonstrate that training in one direction can
readily transfer to untrained directions.

2 As there are only three subjects, it is impossible for the Wilcoxon
matched-pair test to yield a significant result, even under the most
favorable situation as is here.
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Fig. 3. (Left) Discrimination sensitivity d % of subject JY who was trained in the primary direction 300°. (Middle) d % of control subject YHL who
had no training in between the two measurements around the clock. (Right) Average d % (and standard error) for all subjects before and after
training. Trained : results for the four trained subjects. Note the substantial improvement between the two measurements. For these subjects, the
d % measured after training is shown separately for the trained direction (middle column) and the remaining directions (right column). Control I :
results for the three subjects who discriminated brightness during the training. Control II : results for the seven subjects who skipped training.

2.3.1. Procedure
We first measured the subjects’ baseline performance

in the 12 primary directions, 64 trials each (768 trials
total). To avoid any ordering effect, the different direc-
tions were randomly interleaved. As a result the pri-
mary direction changed randomly from trial to trial in
the baseline measurement, making the baseline task
more difficult than the training task (where the primary
direction is fixed). After the baseline measurement, each
subject was trained in one oblique primary direction for
four sessions, 700 trials each. The primary direction
during training was randomly chosen for each subject
and counter-balanced across subjects. Finally we mea-
sured the subjects’ performance in all directions again,
the same as in the baseline measurement.

Three naive subjects and author DW participated in
the experiment. Our hypothesis was that training in one
direction enables subjects to improve in all directions.
To check whether any observed improvement is indeed
due to training in one direction, we conducted a control
experiment with seven subjects who did not undertake
any training. The experiment was otherwise identical3.

To further check whether such putative improvement
was due to training in motion discrimination per se or
only due to exposure to the motion stimuli, we con-
ducted another control experiment with three addi-
tional naive subjects. Here, the brightness of the dots in
a single trial could change from one stimulus to the
next. The subjects’ task was to decide whether the
brightness of the dots was the same or different between
the two stimuli, and feedback was provided (back-

ground, 1.0 cd/m2; light, 3.9 cd/m2, 59% contrast; dark,
2.5 cd/m2, 43% contrast). We predicted that no transfer
would occur if learning is specific to training in motion
direction discrimination.

2.3.2. Results
Using the Wilcoxon rank-sum test, we found that the

four trained subjects improved in nontrained directions
significantly more than the seven control subjects
(Dd %=0.79 versus −0.02; Ws(4, 7)=10, PB0.005,
one-tailed). The improvement of a trained subject was
computed in all but the trained direction, and that of a
control subject was computed in all directions. This
result suggests that training with an easy task in one
direction immediately improves performance in other
directions. Hence the learned skill generalizes across
motion directions (Fig. 3).

Next we compared the two control groups: the three
subjects who did the brightness discrimination versus
the seven who skipped training. It turned out that the
improvement in motion direction discrimination of the
first group was only marginally better than the second
group (Dd %=0.21 versus −0.02; Ws(3, 7)=11, when
Ws(3, 7)=10, P=0.10, one-tailed). This suggests that
familiarization with the stimulus hardly helps subjects
improve their discrimination. When the first three con-
trol subjects were compared with the four trained sub-
jects, the difference was statistically significant
(Dd %=0.21 versus 0.79; Ws(3, 4)=6, PB0.05). This
suggests therefore that exposure to the motion stimuli
per se without direction discrimination is insufficient
for direct transfer.

2.4. Experiment 3: generalization from easy to difficult
stimuli

In previous studies, the subjects’ exposure to an

3 Subject YHL also participated in Experiment 1, in the intermedi-
ate condition D=6°. Her data in the present experiment was col-
lected first, however. As a control subject, YHL was tested equally
often in all the primary directions. Therefore, we do not expect that
YHL’s performance in Experiment 1 was biased in any particular
motion direction.
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easy stimulus, termed insight or Eureka, has been found
to facilitate learning of a more difficult task. Here we
study the effect of such exposure in the context of
extensive practice in a different direction. We have
observed a new effect, which we term rooting.
2.4.1. Hypothesis

Experiment 3 was designed to determine whether the
underlying mechanism of transfer is very rapid learning
or ‘real’ transfer. If it is the latter, we expect that the
subject knows the task before being tested with the new
stimuli. If it is the former, then we do not expect that
the subject knows the task beforehand but has to learn
it very rapidly during the test. How can we distinguish
these two possibilities? We cannot do so by direct
measurement because very rapid learning, by definition,
is faster than our measurements can detect. We there-
fore employed the rooting paradigm, with the following
rationale.

Given three experimental conditions A, B, and C, if
we know in advance that mastering A transfers to B
and that B transfers to C, then only with ‘real’ transfer
does mastering A transfer directly to C, whereas with
very rapid learning mastering A does not immediately
transfer to C. In our rooting paradigm we let:
� A be the easy task in the direction with extensive

training;
� B be the easy task in a different direction with brief

training. From Experiment 2 we know that master-
ing A transfers to B;

� C be the difficult task in the direction of B. From
Rubin et al. (1997) we deduce that B transfers to C,
since both are in the same direction.
We tested the hypothesis with three motion direc-

tions. The first is called the trained direction, in which
a subject practices extensively with the easy task (A).
After this extensive practice, the subject is tested in two
new directions. In one, which we call the rooted direc-
tion, the subject practices briefly with the easy task (B),
and is then tested with the difficult task (C). In the
other, which we call the no6el direction, the subject is
tested with the difficult task (C) directly without prac-
ticing the easy task (B). We make the following
predictions:

If transfer is rapid learning, and after A is mastered:
� In the no6el direction, there is no exposure to B, thus

the transfer A�B does not materialize. Hence,
when the C stimuli are presented, there is no transfer
B�C.

� In the rooted direction, since the B stimuli are
presented, the transfer A�B materializes. Hence,
when the C stimuli are presented, there is transfer
B�C.

Thus, if transfer is rapid learning, we predict that the
performance with the difficult stimuli is good in the
rooted direction and poor in the no6el direction.

On the other hand, if transfer is real, then via trans-

fer subjects already know the stimuli before being
tested. Therefore after subjects have mastered A in the
trained direction, A transfers to B in both the rooted
and no6el directions. We now predict that in both the
rooted and no6el conditions the discrimination of C
should be good (similar to the discrimination of the
trained direction).

2.4.2. Procedure
The subjects were trained to master the easy task

(D=8°) in the trained direction (nine sessions, 700 trials
each) (Fig. 4). They then practiced the easy task in a
second direction (the rooted direction) for 100 trials.
Finally, they were tested with the difficult task (D=4°)
in the trained, the rooted, and a third direction (the
no6el direction) to which they had no previous exposure
(200 trials in each direction). The order of the tests in
the three directions was counter-balanced across sub-
jects. Three control subjects went through the same
procedure except that they skipped the extensive train-
ing in the trained direction. In other words, they did
not master the easy task.

For the trained subjects, we predict that there should
be a difference between the rooted and no6el directions,
which is due to the small number of trials (100) with the
easy task in the rooted direction. The control experi-
ment tests whether or not the small number of easy
trials in itself is responsible for this difference. If the
control subjects do not show a difference between the
rooted and no6el directions, then the extensive practice
in the trained direction and the small number of easy
trials in the rooted direction both account for this
effect. Note that we do not need a separate condition,
where subjects skip the brief training, to show that
extensive training alone cannot account for this effect,
since this condition is equivalent to the novel condition.

2.4.3. Results
For the trained subjects, their performance in the

easy task was similar in the trained and rooted direc-
tions, as predicted by Experiment 2, which showed that
mastering an easy task transfers directly to untrained
directions.

In the difficult task, subjects’ performance in the
trained and rooted directions was not different (d %=
0.49 versus 0.43, t(2)=0.68, P=0.28). But they were
significantly better in the rooted than in the no6el
directions (d %=1.32 versus 0.86, t(2)=2.84, PB0.05).
In contrast, the performance of the control subjects in
the rooted and no6el directions was not significantly
different (d %=0.50 versus 0.63; t(2)B0). In addition, in
the rooted direction, the trained subjects were signifi-
cantly better than the control subjects (Wilcoxon rank-
sum test: Ws(3, 3)=6, PB0.05, one tailed, Fig. 4).
Thus a mastered easy task can generalize to a more
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Fig. 4. Experiment 3. (Left) Schematic illustration of the experiment. After extensive training in one (trained) direction with an easy task D=8°,
the subject was tested in the same direction with both the easy task (50 trials) and the difficult task (D=4°, 200 trials). In a second (rooted)
direction, the subject was first tested with the easy task (100 trials) and then with the difficult task (200 trials). In a third (no6el) direction, the
subject was only tested with the difficult task (200 trials). The three directions were randomly chosen for each subject, with the constraint that
the rooted and no6el directions are symmetric about and 90° away from the trained direction. The order of the three difficult tests were counter
balanced for the trained subjects. Three control subjects, who skipped the initial extensive training, repeated the same tests in the same counter
balanced order, in the rooted and novel directions only. (Middle) Discrimination sensitivity d % for trained subject KCW and control subject LRW.
(Right) Average d % (and standard error) for the trained (left) and control (right) subjects in the difficult task (D=4°).

difficult task in a new direction only after subjects have
practiced, albeit briefly, the easy task in the new direc-
tion also. We term the brief practice with the easy task
in the new direction rooting. Unlike insight and Eureka,
rooting on its own cannot facilitate learning of the
more difficult task.

2.4.4. Conclusions
Based on the discussion above our results indicate

that rapid learning accounts for the observed transfer,
since subjects’ performance differs between the rooted
and no6el directions.

3. A computational model

We adopt a signal detection framework to analyze
human perceptual learning. Our model accounts for the
results in this paper by employing the constraint of
limited computational capacity. Although some strong
assumptions are made, e.g. that the measurements are
taken from normal distributions, we ask the reader to
keep our goal in mind: it is not to model the biological
architecture but rather to show that a ‘generic’ discrim-
ination system can demonstrate similar behavior to
perceptual learning. This weak statement already

justifies our argument that our psychophysical results,
although informative about human perceptual learning,
cannot be used to identify the exact mechanism of
perceptual learning in the brain.

The model’s specifics are as follows. Each experiment
consists of two consecutive sessions of a discrimination
task, which, for ease of reference to the psychophysical
results in the previous section, we call the two primary
motion directions. Each of the two sessions includes a
large number of trials. In each trial two stimuli are
presented, and the model decides whether their motion
directions are the same or different. Our model’s as-
sumptions are as follows.
1. In each trial, each of the two stimuli is represented

by a set of measurements that encode all aspects of
the stimulus (e.g. the output of a localized direction
detector). The measurements are encoded as a vec-
tor. Whether the two stimuli are the same or not is
determined by the difference of the two vectors.

2. Each component of a measurement vector is charac-
terized by its sensitivity to the discrimination task,
i.e. how well the two stimuli can be discriminated by
this component alone. The measurements are di-
vided into a few discrete sets (e.g. direction selective
versus speed selective). Pertinent to the task, each
set of measurements is either informati6e — mea-
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surements that have significant sensitivity, or non-
informati6e — those that do not. Nevertheless, an
informati6e component may vary greatly in its sensi-
tivity value, from zero to very high. When many
measurements have high sensitivity, the task is easy.
Otherwise, when only a few do, the task is difficult.

We assume that the sensitivity of an individual
component changes from one motion direction to
the next, but the set of informati6e measurements
remains unchanged. For example, in our task local-
ized directional signals are informati6e, though the
sensitivity of each component varies dependent on
specific motion directions. On the other hand, local
speed signals are never informati6e.

3. Due to the limited computational capacity, the
model can simultaneously process only a small sub-
set of the measurements from the input vector. The
decision in a single trial is therefore based on the
magnitude of this sub-vector, which is sampled from
the measurement vector. The sampling is as follows.

In each trial the model ranks the processed subset
of measurements according to their sensitivity to the
task. After a sufficient number of trials (enough to
estimate the sensitivity of the processed subset), the
model identifies the least sensitive measurement and
replaces it with a new random component from the
input vector. In effect, the model is searching for a
subset of the input vector that gives rise to the
maximal discrimination sensitivity. Consequently,
the performance of the model is gradually improv-
ing, which corresponds to learning from trial to trial
in each motion direction.

4. After learning in the first direction, the model iden-
tifies the informati6e and non-informati6e sets of
measurements. A set is identified as informati6e if
some of its sampled measurements had significant
(though possibly low) discrimination sensitivity in
the first training direction. In the next training
direction, only the set of informati6e measurements
is searched. The search therefore becomes more
efficient, and hence the acceleration of learning.
This accounts for the learning between training
directions. Thus the learning rate is predicted not to
increase with exposure only. In other words, sub-
jects need to discriminate (and not just to be ex-
posed to) the stimuli for effective inter-directional
generalization.

In the following we will further specify these assump-
tions, and show simulations of different learning
phenomena.

3.1. Learning with limited computational capacity

3.1.1. Notations
We assume that each stimulus generates an input that

is a vector of N measurements: {Ii}i=1
N . We also assume

that the discrimination is based on the difference be-
tween the two stimuli in a trial: x={xi}i=1

N , xi=DIi.
The discrimination task amounts to deciding whether x
is generated by noise — the null vector ®, or by some
signal—the vector S.

At time t a measurement vector xt is obtained, which
we denote as xst if it is the signal S, and xnt, otherwise.
Assume that each component in xt is a normal random
variable:

xnt={xi
nt}i=1

N :xi
nt�N(0, si),

xst={xi
st}i=1

N :xi
st�N(mi, si). (1)

We measure the sensitivity d % of each component. Since
both the signal and noise are normal random variables,
the sensitivity of the i-th measurement in the discrimi-
nation task is d %i= �mi �/si. Assuming further that the
measurements are independent of each other and of
time, the combined sensitivity of M measurements is

d %=
' %

M

i=1

�mi

si

�2

. (2)

Traditionally and without feedback, the sensitivity d %
determines (or bounds) asymptotic performance of a
discrimination system. In the next section we discuss
how to modify this framework to accommodate learn-
ing with limited computational capacity. The effects of
feedback are discussed in Appendix A.

3.1.2. Limited computational capacity: an assumption
We assume that the model can simultaneously pro-

cess at most M�N of the original N measurements.
Since different components have different sensitivity,
the discrimination depends on the combined sensitivity
of the sampled M measurements. Learning in the first
training direction, therefore, leads to selecting a ‘good’
subset of the measurements via searching. In the first
training direction the entire measurement space is
searched.

Having found the best M measurements in the first
training direction, the model divides the measurements
into two sets: those with above threshold sensitivity,
and those without. The first set is identified as informa-
ti6e. Such ranking is used for the next training direc-
tion, when only the informati6e set is searched.

To illustrate the limited capacity assumption, con-
sider the following example. Assume that the model has
N measurements of two types: N/2 motion direction
measurements and N/2 speed measurements. The
model learns during the first training direction that all
sampled speed measurements have null sensitivity,
whereas the sampled directional measurements have
varying (but usually significant) sensitivity (Fig. 5).

In the second training direction, the model receives N
measurements whose sensitivity distribution differs
from that in the first training direction, but still only
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Fig. 5. Hypothetical sensitivity profile for a population of measurements of speed and motion direction. (Left) First training direction — only
some of the motion direction measurements have significant sensitivity (say, d % above 0.5), with measurements around 45° having the highest d %.
(Right) Second direction — only some motion direction measurements have significant sensitivity, with measurements around 135° having the
highest d %.

directional measurements have significant sensitivity
(Fig. 5). Being trained in the first direction, the model
now only searches the measurements that were informa-
ti6e in the first direction, namely, the directional mea-
surements. Now the asymptotic performance in the
second direction remains unchanged because the most
sensitive measurements are within the searched subset.
The learning rate, however, doubles as the model
searches a space half as large4.

3.1.3. What determines task difficulty: an assumption
To account for the different modes of learning, we

make the following assumption. When the task is
difficult, only a small number of informative compo-
nents have high d %. When the task is easy, many infor-
mati6e measurements have high d %. Therefore, when the
task is easy, a set of M measurements that gives rise to
the best performance is found relatively fast, especially
after the informati6e measurements have been identified.
In the extreme, when the task is very easy (e.g. all
informati6e measurements have high sensitivity), learn-
ing is almost instantaneous and the outcome appears
like transfer. On the other hand, when the task is
difficult, it takes much longer to find the best M
measurements. Hence learning is slow.

3.1.4. Simulation protocol
The detailed simulations of the model are as follows.

In the first training direction, the model starts with a
random set of M measurements. In each trial and with
feedback, the mean and standard deviation of each
measurement is estimated: m i

st, s i
st when the signal is

present, and m i
nt, s i

nt otherwise. In the next trial, using
the same subset of M measurements {xi

t+1}M
i=1, the

model evaluates

d= %
M

i=1

!�xi
t+1−m i

st

s i
st

�2

−
�xi

t+1−m i
nt

s i
nt

�2"
, (3)

and classifies x as the signal if dB0, and as noise
otherwise. After feedback, m i

st, s i
st are updated if the

stimuli are different (signal), and m i
nt, s i

nt are updated if
the stimuli are the same (noise).

At time T, the least useful measurement is identified
as arg6al of

min
i

d %i, d %i=
�m i

sT−m i
nT�

(s i
sT+s i

nT)/2
(4)

(see Appendix). It is then randomly replaced by one of
the remaining N−M measurements. The learning and
decision making proceed as above for another T itera-
tions. This is repeated until the combined sensitivity of
the M chosen measurements stabilizes. At the end, the
decision is made based on the set of M measurements
that have the highest sensitivity.

At the end of training in the first direction, based on
the estimated d %i, the sampled measurements are labeled
as informati6e — those with d %i larger than some
threshold, and non-informati6e otherwise. All non-sam-
pled measurements that are in the same set as the
informati6e are labeled as such. In the second direction
the learning proceeds as above, but only the informati6e
measurements are searched.

3.1.5. Simulation results
In the simulation we used N=150 measurements,

with M=4, and two sets. Half of the N measurements
(the first set) had above threshold d %i, where the
threshold was set arbitrarily to 1. As an example, the
measurements with high d %i had a mean sensitivity of 20
(in the range 15–25). In the second training direction,

4 We reiterate that the 50–50 division of directional and speed
signals serves as a hypothetical example for illustration only. We are
not suggesting that there are half directional and half speed signals in
the visual system. We do not intend to quantify the acceleration of
the learning rate either.
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Fig. 6. Simulated performance (percent correct) as a function of time. (Left) Difficult task — the number of measurements with high d %i is small
(four out of 150). There is no transfer from the first to the second training direction, but the learning rate doubled. This graph is qualitatively
similar to the results shown in the top row of Fig. 2. (Middle) Intermediate task — the number of measurements with high d %i is larger (20 out
of 150). There is partial transfer from the first to the second training direction, and the learning rate also increases. This graph is qualitatively
similar to the results shown in the bottom row of Fig. 2. (Right) Easy task — the number of measurements with high d %i is large (72 out of 150).
There is almost complete transfer from the first to the second training direction.

the sensitivity of the measurements were randomly
changed, while maintaining that only those in the first
set have above threshold d %i. By varying the number of
direction sensitive measurements with high d %i, and thus
varying the difficulty of the task, we obtain the different
modes of generalization (Fig. 6).

3.2. Incorporating Bayesian inference

So far we have focused on generalization between
two directions that differ in the sensitivity of the com-
ponents, but share the same level of difficulty (the same
number of highly sensitive components). In other
words, the sensitivity distribution over the population
of measurements had different means, but approxi-
mately the same variance. We have observed the differ-
ent modes of generalization described in Experiments 1
and 2 (Fig. 6).

The phenomena of insight and Eureka, and our root-
ing result in Experiment 3, deal with generalization
from an easy to a difficult task with the same attribute.
In other words, the sensitivity distribution in subse-
quent sessions peaks at approximately the same at-
tribute, but has different variances (different number of
components with above threshold sensitivities). The
variance is large in an easy task, and is small in a
difficult task.

To take advantage of the peak correspondence in
subsequent sessions, we have incorporated Bayesian
updating into the model. Specifically, the model uses
the learned parameters (mean and standard deviation)
of the distributions of Si

T and ®i
T, which are computed

in the first training direction, as Bayesian priors in the
second training direction. As the most sensitive mea-
surement remains the same throughout the two tasks,
we obtain transfer from the first to the second direction
because the estimation starts off from a better prior in
the second direction. This is illustrated in Fig. 7a.

3.2.1. The model and Experiment 3
Our results in Experiment 3 (Section 2.4) indicate

that rapid learning accounts for the observed transfer.
Our model accordingly employs rapid learning as the
mechanism underlying transfer.

The simulations of our model above showed transfer
from one direction to another in the easy task. Using
the notations of Section 2.4, A transfers to B (Fig. 6).
By including Bayesian updating in our model, we also
found transfer from the easy to difficult tasks in the
same motion direction, i.e. B to C (Fig. 7a). By
combining these two, our model can replicate the re-
sults of Experiment 3 as well.

3.2.2. Is Bayesian inference sufficient?
It may appear that Bayesian inference suffices to

explain Experiments 1 and 2 without the assumption of
limited computational capacity. This is not the case,
however, because in the first two experiments the
parameters in the second direction are significantly
different from the first. A prior based on the first
direction at most improves the initial performance in
the second direction (partial transfer) but does not
improve the learning rate (Fig. 7b). Thus, Bayesian
inference alone only predicts one aspect of the general-
ization — direct transfer, but not the acceleration of
learning5.

4. Summary and discussion

In contrast to previous results of stimulus specific
learning (Ramachandran & Braddick, 1976; McKee &
Westheimer, 1978; Vogels & Orban, 1985; O’Toole &

5 We note that our model is partially Bayesian — we allow for
individual measurement’s sensitivity to change from one training
direction to the next, but the informative set remains unchanged and
can be estimated across training directions.
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Fig. 7. Simulation of a Bayesian decision model, whose learning rate changes from the first to the second motion direction. We show two cases
here. (a) An easy task is learned first, and is followed by a difficult one. Both are in the same direction. Learning the difficult task alone takes
a long time (lower plot). But when it follows the easy task — learning is instantaneous (upper plot). (b) The second task has the same level of
difficulty as the first, but in a different direction: 2nd session low — the parameters of the measurements change only slightly from the first
training direction to the second; 2nd session high — the change is larger. In both cases the performance in the second direction starts off better,
and continues to improve as fast as it did in the first direction (at the same point on the horizontal axis). There is no acceleration of learning,
however.

Kersten, 1992; Shiu & Pashler, 1992; Saarinen & Levi,
1995; Schoups, Vogels & Orban, 1995; Vaina, Sun-
dareswaran & Harris, 1995; Matthews & Welch, 1997),
we broadened the search for generalization beyond
traditional transfer. We found that generalization is the
rule, not an exception. Perceptual learning of motion
discrimination generalizes in various ways: as an accel-
eration of learning (Experiment 1), as an immediate
improvement in performance (Experiment 2), or as an
immediate improvement after immediate transfer of a
mastered skill (Experiment 3). In fact, the results in
Experiment 1 suggest that the two observed modes of
generalization, immediate improvement and accelera-
tion of learning rate, may be two extremes of a contin-
uum. Thus we demonstrate that perceptual learning is
more similar to cognitive learning than previously
thought, with both stimulus specificity and generaliza-
tion as important ingredients.

To analyze the modes of generalization we adopted a
signal detection framework, with the constraint of lim-
ited computational capacity. In this framework all the
observed generalization modes are accounted for, with
the same mechanism at work in both the ‘easy’ and
‘difficult’ tasks. We replicated the observed phenomena
— transfer and the acceleration of learning rate — for
respectively increasing levels of task difficulty. As in
Experiment 3, our model does not predict transfer per
se, but instead a dramatic increase in learning rate that
is equivalent to transfer.

Our model is forced by the limited computational
capacity to search the measurement space. Generaliza-
tion — transfer and increased learning rate — occurs

as search efficiency increases from one training direc-
tion to the next, when the search space decreases. Our
model also predicts that the learning rate should im-
prove only if the subject discriminates the relevant
attribute dimension, in apparent accordance with the
results of Experiment 1.

As for biological implications, the assumption that
many directional selective cells respond distinctively
(albeit slightly) to motion stimuli in any direction may
not be entirely unreasonable. Note that the tuning
curve of a directional selective cell in area MT is very
wide, typically spanning 90° between half amplitudes,
and is positive for more than 180°. Our assumption
only requires that a cell responds to all directions,
whereas the response may be very small and reliable
only after hundreds of trials6.

In contrast to the model proposed in Ahissar and
Hochstein (1997), our model employs a single mecha-
nism to account for all the existing modes of perceptual
learning. At the same time, our model is qualitative and
less specific, and thus does not make any concrete
quantitative predictions. We would like to emphasize
that this is not a handicap; our goal is to show,
qualitatively, that the various generalization phenom-
ena are not surprising, as they should occur in a generic

6 There is one possible confound in the experiment that we cannot
rule out, namely the role of eye movements. Although eye movements
are apparently negligible in motion discrimination (see Ball &
Sekuler, 1987), and although our subjects were instructed to fixate on
the center mark of the stimulus, we cannot rule out the possibility of
‘covert eye movement’ (Georgopoulos, 1995). We thank D. Kersten
for pointing this out.
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discrimination system with limited computational ca-
pacity. We therefore argue that it may be too early to
use existing perceptual learning results to identify corti-
cal areas of perceptual learning, and the levels at which
learning takes place (cf. Sowden, Davies, Rose & Kaye,
1996).
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Appendix A

When feedback is available, we assume that the
model can learn the parameters of the signal S — the
distribution of the vector xst, and the noise — the
distribution of the vector xnt. At time t the model
compares the input measurements with the estimated
signal and noise. For simplicity, we assume here that
there is only one signal and one measurement, thus the
index i can be dropped in the following discussion.

Let St denote the estimated signal — the mean of
the observations xst% up to time t, and the estimated
noise similarly ®t — the mean of the observations xnt%

up to time t. Thus St and ®t are normal random
variables, where

®t=Bxnt%\ t%=0…t�N
�

0,
s


tn

�
St=Bxst%\ t%=0…t�N

�
m,

s


ts

�
(5)

for ts, tn the number of occurrences of the signal and
noise, respectively. In the first t presentations, ts+ tn=
t. (The above follows from the distribution of the mean
and standard deviation of i.i.d. normal random
variables.)

The discrimination depends on the difference be-
tween the input signal xt, and the estimated mean
signal St and noise ®t. The likelihood of miss (reporting
‘same’ when stimuli are different) and false alarm (re-
porting ‘different’ when same) is inversely proportional
to lmiss and lfa respectively, which are defined as follows:

lmiss=d %(xst, ®t)−d %(xst, St)

lfa=d %(xnt, St)−d %(xnt, ®t). (6)

To estimate lmiss and lfa, we compute d % for two normal
random variables with different standard deviations, in

a yes/no decision task with no bias (the likelihood ratio
equals to 1). Let x�N(mx, sx) and y�N(my, sy) de-
note two normal random variables, where w.1.o.g. my\
mx. A likelihood ratio of 1 is obtained at point u when

fx(u)
fy(u)

=1[
(u−mx)2

2sx
2 =

(u−my)2

2sy
2 [u=mx

sy

sx+sy

=my

sx

sx+sy

. (7)

We assume that u is the decision boundary, so that the
answer is y for observed values larger than u and x
otherwise. Then, we have

d %=
u−mx

sx

+
my−u

sy

=2
my−mx

sx+sy

=
�Dm �

(sx+sy)/2
, (8)

where d %=Z(hit rate)—Z(false alarm rate), and Z() is
the inverse of the normal distribution function. We plug
Eq. (8) into Eq. (6) and obtain:

d %(xnt, ®t)=0, d %(xnt, St)=
�m−0��

s+
s


t

�
/2

(9)

[ lfa= lmiss=
�m ��

s+
s


t

�
/2

=d %(xst, xnt)
2�

1+
1


t

�.

(10)

The increase in sensitivity with time t reflects the learn-
ing within a training direction, and the asymptotic
performance increases with the given d %(xst, xnt) of the
measurement.

Note that in our modified model with feedback, the
sensitivity starts as d %(xst, xnt) for t=1, and increases
asymptotically to 2d %(xst, xnt). In other words, the
asymptotic performance with feedback is twice as much
as that without feedback, in qualitative agreement with
experimental data (Ball & Sekuler, 1982). Since we are
only interested in qualitative behavior and not quanti-
tative predictions, we ignore this difference in our dis-
cussion, since the change of sensitivity lmiss, lfa with time
is negligible in comparison with the change due to the
increase in search efficiency.
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