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a b s t r a c t

Perceptual learning refers to the phenomenon that practice or training in perceptual tasks often substan-
tially improves perceptual performance. Often exhibiting stimulus or task specificities, perceptual learn-
ing differs from learning in the cognitive or motor domains. Research on perceptual learning reveals
important plasticity in adult perceptual systems, and as well as the limitations in the information pro-
cessing of the human observer. In this article, we review the behavioral results, mechanisms, physiolog-
ical basis, computational models, and applications of visual perceptual learning.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Although early Gestalt psychologists denied any role of learning
in perception, Helmholtz (1911) made learning an essential com-
ponent in his theories of perception. Taking an ecological approach,
Gibson (1967) reviewed development of perceptual expertise in
early childhood and postulated that perceptual learning is a
process of discovering how to transform previously overlooked
potentials of sensory stimulation into effective information. The
systematic documentation of various specificities of perceptual
learning with implications of an early sensory site of learning re-
charged the research on perceptual learning (Karni & Sagi, 1991).
Since then, perceptual learning in adult human observers has been
documented in a wide range of perceptual tasks in visual, auditory,
and somato-sensory domains (Fahle & Poggio, 2002). In this
review, we focus on perceptual learning in the visual domain.
2. Perceptual learning

Perceptual learning has been documented in virtually every
visual task, including the detection or discrimination of visual
gratings (DeValois, 1977; Fiorentini & Berardi, 1980, 1981; Mayer,
1983), stimulus orientation judgment (Dosher & Lu, 1998; Shiu &
Pashler, 1992; Vogels & Orban, 1985), motion direction discrimina-
tion (Ball & Sekuler, 1982, 1987; Ball, Sekuler, & Machamer,
1983), texture discrimination (Ahissar & Hochstein, 1996; Karni &
ll rights reserved.
Sagi, 1991, 1993), time to perceive random dot stereograms
(Ramachandran & Braddick, 1973), stereoacuity (Fendick &
Westheimer, 1983), hyperacuity and vernier tasks (Beard, Levi, &
Reich, 1995; Bennett & Westheimer, 1991; Fahle & Edelman, 1993;
Kumar & Glaser, 1993; McKee & Westheimer, 1978; Saarinen & Levi,
1995), and object recognition (Furmanski & Engel, 2000).

The trade-mark finding in perceptual learning is that some of
what is learned is specific to stimulus or task factors such as retinal
location (Karni & Sagi, 1991), spatial frequency (Fiorentini &
Berardi, 1980), orientation (Poggio, Fahle, & Edelman, 1992)
(Fig. 1), or background texture (Ahissar & Hochstein, 1996). Percep-
tual learning that is highly specific to retinal location and stimulus
has been claimed to reflect neural plasticity in basic visual process-
ing mechanisms (Karni & Sagi, 1991).

Several recent papers re-examined specificity of perceptual
learning and found that a number of factors in the training proce-
dures, some of that were not obviously related to specificity or
transfer of learning, determine the degree of specificity, including
task precision (Jeter, Dosher, Petrov, & Lu, 2009), task difficulty
(Ahissar & Hochstein, 1997), number of trials (Censor & Sagi,
2009), and training schedule (Xiao et al., 2008). Xiao et al. (2008)
developed a novel double-training paradigm that employed con-
ventional feature training (e.g., contrast) at one location, and addi-
tional training with an irrelevant feature/task (e.g., orientation) at a
second location, either simultaneously or at a different time. They
showed that this additional location training enabled a complete
transfer of feature learning (e.g., contrast) to the second location.
Understanding factors that determine specificity/transfer of per-
ceptual learning is one of the most important challenges in the
study of perceptual learning.
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Fig. 1. Effect of switching from vertical to horizontal verniers (or vice versa) after
block 20. Averaged results of 12 naïve subjects; six started with horizontal
verneiers, and the others stated with vertical verniers. There is no transfer of
learning. (After Poggio et al. (1992)).
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3. Mechanisms of learning

Mechanisms of perceptual learning, i.e., what is learned during
perceptual learning, have been investigated in recent years in psy-
chophysics (Dosher & Lu, 1998, 1999; Gold, Bennett, & Sekuler,
1999; Saarinen & Levi, 1995), neurophysiology (Crist, Li, & Gilbert,
2001; Ghose, Yang, & Maunsell, 2002; Schoups, Vogels, Qian, &
Orban, 2001), brain imaging (Schiltz et al., 1999; Schwartz, Maquet,
& Frith, 2002), and patients (Fahle & Daum, 2002; Xu et al., 2010).

In psychophysical studies, Dosher and Lu (1998) introduced a
theoretical framework and an external noise plus training para-
digm to analyze how perceptual inefficiencies improve over the
course of perceptual learning (Fig. 2). Perceptual inefficiencies
are attributed to three limitations in perceptual processes (Lu &
Dosher, 2008): an imperfect perceptual template, internal additive
noise, and multiplicative noise. Systematic measurements of hu-
man performance as a function of both the amount of external
Fig. 2. The perceptual template model (PTM) and the signatures of three mech-
anisms of perceptual learning. (After Dosher and Lu (1998)).
noise added to the signal stimulus and the length of training re-
ceived by the observers make it possible to distinguish three mech-
anisms of perceptual learning: perceptual template retuning,
stimulus enhancement, and contrast-gain control reduction. It
has been consistently found that two independent mechanisms
(Fig. 3), stimulus enhancement and external noise exclusion, sup-
port perceptual learning in a range of tasks (Dosher & Lu, 1998,
1999, 2005, 2007; Lu, Chu, & Dosher, 2006; Lu & Dosher, 2004).

Although practice-induced neuronal plasticity has been docu-
mented in auditory (Metherate & Weinberger, 1990; Weinberger,
Javid, & Lepan, 1993) and somato-sensory cortices (Jenkins,
Merzenich, Ochs, Allard, & Guic-Robles, 1990; Recanzone,
Merzenich, & Schreiner, 1992), and in some visual fMRI studies
(Schiltz et al., 1999; Schwartz et al., 2002; Vaina, Belliveau, des
Roziers, & Zeffiro, 1998), evidence for practice-induced neuronal
plasticity in early visual cortical areas is however modest (Crist
et al., 2001; Ghose et al., 2002; Schoups et al., 2001; Yang &
Maunsell, 2004), although neurons in V1 may exhibit task specific
tuning (Li, Piech, & Gilbert, 2004) that seem to reflect selection of
task-relevant stimulus features for a particular task rather than
persistent cross-task changes in neuronal tuning. Law and Gold
(2008) found that perceptual learning in motion direction discrim-
ination does not involve neuronal response changes in the middle
temporal area (MT), but rather in the lateral intraparietal area (LIP),
a brain area related to selective readout of MT neurons. They con-
clude, ‘‘. . .[our] results suggest that the perceptual improvements
corresponded to an increasingly selective readout of highly sensi-
tive MT neurons by a decision process, represented in LIP, that
instructed the behavioral response.” In sum, these reports found
that early visual representations showed either no change or
Fig. 3. A perceptual learning task using the external noise paradigm. (A) Spatial
layout of the task, including the peripheral orientation discrimination Gabor
stimulus, and a central letter stimulus for a secondary task. (B) Contrast threshold
(Gabor signal contrast corresponding to the criterion accuracy) as a function of the
external noise in the stimulus. Threshold is a systematic function of criterion,
external noise, and practice (data from Dosher and Lu (1998)). (C) Examples of a
signal of constant contrast embedded in increasing amounts of external noise.
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modest changes in the slopes of tuning functions following percep-
tual learning.

One critical difference between existing neurophysiological
investigations of perceptual learning contrasting cortical plasticity
in auditory and somato-sensory domains, which exhibit strong
plasticity, and that in the visual domain, where evidence for early
visual plasticity is modest, lies in the animal specifies: non-prima-
tes are used in the auditory and somato-sensory domains, whereas
primates are used in the visual domain. It’s possible that primates
exhibit less training-induced plasticity than non-primates in early
visual areas (Karmarkar & Dan, 2006; Yao, Shi, Han, Gao, & Dan,
2007).

Some recent evidence might suggest greater plasticity in early
visual areas occurs in non-primates. Hua et al. (2010) examined
the effects of training in grating orientation identification on both
perceptual and neuronal contrast sensitivity functions of cats using
combined psychophysical measurements with extracellular single-
unit recording under anesthetized preparations. Conditioning was
used to train cats to identify the orientation of a high contrast ±45�
sinusoidal grating. Subsequently, the same procedure was used to
measure monocular contrast sensitivity functions (CSF) in both
eyes. The cats were then trained monocularly to perform a near-
threshold orientation identification task. After approximately
40 days of training, monocular CSFs were measured again, fol-
lowed by extracellular recordings of single-unit activities from
Fig. 4. Contrast sensitivity functions in the trained and untrained eyes before and after
functions. The green arrows indicate the trained spatial frequency, and the error bars rep
(C) and cat2 (D). (EF) C50-contrast sensitivity functions of V1 neurons recorded from cat1
displayed as mean ± SEM. (After Hua et al. (2010)). (For interpretation of the references to
the primary visual cortex (V1) of anesthetized cats. Contrast
response functions to the preferred stimuli were measured for iso-
lated neurons. The combined contrast sensitivities of individual
neurons were then used to construct the neuronal CSFs for neuro-
nal populations that responded preferentially to the stimuli pre-
sented via trained or untrained eyes (Fig. 4).

Hua et al. (2010) found that: (1) training improved perceptual
contrast sensitivity, with some degree of specificity for the training
spatial frequency and training eye, (2) training also improved the
contrast sensitivity of V1 neurons responding preferentially to
the trained spatial frequency, (3) perceptual and neuronal CSFs
were highly correlated both before and after training, and (4) a
systematic analysis of the parameters of the neuronal contrast re-
sponse functions indicated that the learning-induced plasticity was
caused by increased contrast-gain of the neurons associated with
training. The increased contrast-gain resulted in a parallel leftward
shift of the neuronal contrast response functions, consistent
with decreased post-synaptic polarization (Carandini & Ferster,
1997; Ohzawa, Sclar, & Freeman, 1985; Sanchez-Vives, Nowak, &
McCormick, 2000a, 2000b; Sclar, Lennie, & DePriest, 1989).

In addition to the difference in animal species, the Hua et al.
(2010) study differs from previous neurophysiological studies on
perceptual learning in two other ways: (1) previous electrophysio-
logical studies exploring training-induced visual cortical plasticity
generally used orientation threshold as the dependent measure.
training for cat1 (A) and cat2 (B). Smooth curves represent the best fitting Gauss
resent 1 SD. (CD) TC-contrast sensitivity functions of V1 neurons recorded from cat1

(E) and cat2 (F). Green arrows indicate the trained spatial frequency. All values are
colour in this figure legend, the reader is referred to the web version of this article.)



148 Z.-L. Lu et al. / Neurobiology of Learning and Memory 95 (2011) 145–151
Hua et al. (2010) used contrast thresholds as the dependent mea-
sure. It is possible that different neural networks might be involved
in orientation discrimination and contrast detection. (2) Hua et al.
(2010) recorded the response of V1 neurons in anesthetized and
paralysed cats, whereas previous studies made recordings in
awake-behaving monkeys. Compared to studies on anesthetized
cats, recordings from early visual cortical areas of wake monkeys
may include substantial top-down influences from higher visual
cortical areas (Gazzaley, Cooney, McEvoy, Knight, & D’Esposito,
2005; Li, Levi, & Klein, 2004; Watanabe et al., 1998). New studies
are necessary to further investigate all these factors.

4. The role of attention and feedback

Although earlier studies (Ahissar, Laiwand, Kozminsky, &
Hochstein, 1998; Schoups et al., 2001; Shiu & Pashler, 1992) found
that subjects can only learn the feature they paid attention to,
recent studies by Watanabe and colleagues (Seitz & Watanabe,
2003; Watanabe, Nanez, & Sasaki, 2001; Watanabe et al., 2002)
found that attention to a feature is not necessary for perceptual
learning of the feature to occur if the feature is irrelevant to the
primary task performed by the subject. Recent studies suggest that
the performance improvement from task-irrelevant learning can
be enhanced by attending to the feature (Gutnisky, Hansen, Iliescu,
& Dragoi, 2009).

Another important topic in perceptual learning concerns the
role of feedback. The empirical pattern of results is quite complex
(see Dosher & Lu, 2009 for a review). Whereas most perceptual
learning studies employed trial-by-trial feedback, several studies
documented significant perceptual learning with block, partial, or
even no feedback, and no perceptual learning with false, random,
manipulated block, and reversed feedback (Herzog & Fahle,
1997). Shibata, Yamagishi, Ishii, and Kawato (2009) showed that
arbitrary block-feedback facilitated perceptual learning if it is more
positive than the observer’s actual performance. At high training
accuracies, training with and without feedback generated essen-
tially the same learning curves (Liu, Lu, & Dosher, 2010b), and sig-
nificant learning was found in low training accuracy trials when
they were mixed with high accuracy trials (Liu, Lu, & Dosher,
2009; Petrov, Dosher, & Lu, 2006). Liu, Lu, and Dosher (2010a) con-
ducted a computational analysis of the complex pattern of empir-
ical results on the role of feedback with the Augmented Hebbian
Reweighting Model (Petrov, Dosher, & Lu, 2005), including a study
that showed significant perceptual learning with block, partial, or
even no feedback, and no perceptual learning with false, random,
manipulated block, and reversed feedback (Herzog & Fahle,
1997), another study (Shibata et al., 2009) that showed that arbi-
Fig. 5. Augmented Hebbian Reweighting Model (AHRM, Petrov et al., 2005) passes stim
tuned units, with non-linearities and spatial pooling. These activations, along with inpu
yield a decision. The AHRM has predicted the dynamics of learning in non-stationary tr
paradigms. (After Petrov et al. (2005)).
trary block-feedback facilitated perceptual learning if it is more po-
sitive than the observer’s actual performance, and the interaction
between feedback and training accuracy (Liu et al., 2010b). The
simulation results are both qualitatively and quantitatively consis-
tent with the data reported in the literature.

5. Computational models

One major open question is whether perceptual learning re-
flects representation enhancement in early sensory areas or
reweighting of sensory representation in the decision process.
Petrov, Dosher, and Lu (2005) introduced a task analysis frame-
work to evaluate the diagnostic value of experimental designs for
discriminating reweighting and representational enhancement in
perceptual learning. A systematic review of the literature suggests
that the two potential forms of plasticity – reweighting versus rep-
resentational change – make similar predictions about specificity
in most of the existing studies that had previously been cited as
evidence for representational enhancement.

A number of models have been proposed in perceptual learn-
ing (Herzog & Fahle, 1998; Petrov et al., 2005, 2006; Vaina,
Sundareswaran, & Harris, 1995; Vallabha & McClelland, 2007;
Weiss, Edelman, & Fahle, 1993; Zhaoping, Herzog, & Dayan,
2003) (see Tsodyks & Gilbert, 2004, for a review). All these
models assume an appropriate stimulus representation and pos-
tulate incremental learning; none proposes systematic changes
in representation. Based on the results from the task analysis
and neurophysiology, Petrov et al. (2005, 2006) implemented
the reweighting hypothesis outlined in Dosher and Lu (1998)
in a multi-channel Augmented Hebbian Reweighting Model
(AHRM) (Fig. 5). The AHRM consists of four units: representation
units that encode input images as activation patterns, a task-
specific decision unit that receives weighted inputs from the
representation units, an adaptive bias unit that accumulates a
running average of the response frequencies and works to bal-
ance the frequency of the two responses, and a feedback unit that
makes use of external feedback when (and if) it is presented.
Learning in the model occurs exclusively through incremental
Hebbian modification of the weights between representation
units and the decision unit; while the early processing pathway
that constructs representations from the retinal image remains
fixed throughout training. The AHRM has been very successful
in modelling a wide range of phenomena in perceptual learning,
including complex patterns of perceptual learning in an orienta-
tion discrimination experiment under destabilizing non-station-
ary manipulations both with and without trial-to-trial feedback
(Petrov et al., 2005, 2006), a large number of data patterns in
ulus images through a representational system of orientation and spatial-frequency
ts to a bias and feedback unit are weighted by the task-specific weighting system to
aining, the various roles of feedback in learning, and performance in external noise
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external noise studies of perceptual learning (Lu, Liu, & Dosher,
2010), and the complex patterns of results on the role of feed-
back in perceptual learning (Liu et al., 2010a).

6. Applications

The remarkable levels of neural plasticity and neurogenesis in
the adult nervous system (Bruel-Jungerman, Davis, & Laroche,
2007; Gould, 2007; Johansson, 2007; Kramer & Erickson, 2007)
have led to the test and development of visual rehabilitation pro-
grams based on perceptual learning. Here we discuss one example
application of perceptual learning in treating amblyopia.

Amblyopia is a developmental spatial vision impairment that
cannot be corrected by refractive means. It affects about 3% of
the population (Ciuffreda, Levi, & Selenow, 1991; McKee, Levi, &
Movshon, 2003; Simmers, Ledgeway, Hess, & McGraw, 2003). Con-
ventional wisdom on visual development suggests that spatial vi-
sion becomes hard-wired after a critical period, usually around
6–8 years of age (Berardi, Pizzorusso, Ratto, & Maffei, 2003); The
amblyopic visual system is generally thought to be fully (though
erroneously) developed by age eight and therefore no longer sub-
ject to therapeutic modifications. In clinical practice, only infant
and young child amblyopes are treated, while patients older than
8 years are left untreated (Greenwald & Parks, 1999).

Exploiting neural plasticity in the adult visual system, several
laboratories have demonstrated that perceptual training can be
used in the adult amblyopic visual system for visual rehabilitation
(Chung, Li, & Levi, 2006; Levi & Polat, 1996; Li & Levi, 2004; Li et al.,
2004a; Li, Provost, & Levi, 2007; Polat, Ma-Naim, Belkin, & Sagi,
2004; Zhou et al., 2006). One critical concern is the efficiency of
such treatment. Because the hallmark of perceptual learning in
the normal visual system is its specificity to the characteristics of
the training stimulus (Fahle, 2002), there is a question about gen-
eralizability of such training. If perceptual learning in the amblyo-
pic visual system were also highly specific to the characteristics of
the training stimuli and task, perceptual learning as a therapy for
amblyopia would not be very effective in improving general spatial
vision. At a minimum, multiple training stimuli and tasks would
need to be used to cover the range of stimuli and tasks important
for daily visual functions.

To evaluate and compare the generalizability of perceptual
learning in amblyopic and normal vision, (Huang, Zhou, & Lu,
2008) estimated the bandwidth of perceptual learning in both nor-
mals and amblyopes. They found that the bandwidth of perceptual
learning was drastically different (p < 0.01): for the amblyopic
observers, the average full bandwidth was 4.04 ± 0.63 octaves;
Fig. 6. Average contrast sensitivity improvements as functions of spatial frequency
for the amblyopic (a) and first control groups (b). The magnitudes of contrast
sensitivity improvements were normalized to that at the training spatial frequency;
spatial frequencies were normalized to the training frequency. Blue arrows indicate
the average training spatial frequency. Data were weighted by their standard
deviation. Only observers with significant contrast sensitivity improvements during
training are included. Error bars indicate SEM. (After Huang et al. (2008)). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
the average full bandwidth was only 1.40 ± 0.30 octaves for the
normal observers (Fig. 6). The estimated 4.04 octaves bandwidth
of perceptual learning implies that the impact of perceptual learn-
ing generalizes across spatial frequency channels in amblyopic
eyes. Such a broad bandwidth of perceptual learning may underlie
the improved visual acuity in the amblyopic eyes following train-
ing, a task that involves a wide range of spatial frequencies.
7. Conclusion

The susceptibility of the adult visual system to training suggests
that the perceptual system is not static even in adulthood. We can-
not fully understand perception without understanding perceptual
learning. Research on perceptual learning is of theoretical signifi-
cance in illuminating plasticity in adult perceptual systems, and
in understanding the limitations in the information processing of
the human observer. It is of practical significance as a potential
method for the development of perceptual expertise in normal
populations and for the non-invasive amelioration of deficits in
challenged populations by training.
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