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In this article 1 review the connectionist framework for modeling psychological pro- 
cesses, and I examine the role of connectionist models in empirical psychology. I illustrate 
how modeling can reveal the empirical implications of general principles, and I point out 
that the connectionist framework is particularly apt for formalizing certain proposed pro- 
cessing principles. The framework has led to the discovery of new classes of explanations 
for basic findings; it has led to unified accounts of disparate or contradictory phenomena; 
and it has shed light on the relevance of certain types of evidence for basic questions about 
the nature of the processing system. 10 1988 Academic POW. IIK 

When the study of cognition took hold in 
the 1960s it was common to think of the 
human information-processing system as a 
device much like a von Neumann com- 
puter. Processing was viewed as a se- 
quence of discrete operations (Sternberg, 
1969). Memory consisted of a set of sepa- 
rate stores (Atkinson & Shiffrin, 1968; 
Waugh & Norman, 1965). Complex pro- 
cesses were characterized by flowcharts 
specifying a sequence of steps to be taken 
under rigid control of an executive (Clark 
& Chase, 1972). For many years, this view 
has prospered. Theories of language pro- 
cessing (Marcus, 1980; Woods, 1970) and 
language acquisition (Berwick, 1985), of 
problem solving (Newell & Simon, 1972), 
of comprehension (Schank, 1981), and of 
knowledge representation (Minsky, 1975) 
have all come to psychology from research 
on the implementation of intelligent pro- 
cessing on von Neumann computers, as 
have several general theories of the nature 
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penter and the other participants of the symposium for 
helpful suggestions. Requests for reprints should be 
sent to J. L. McClelland, Department of Psychology, 
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of the human information processing 
system (e.g., J. R. Anderson, 1983; J. R. 
Anderson & Bower, 1973). 

Now a growing group of researchers is 
beginning to explore a different framework 
for thinking about cognitive processes. 
These researchers generally accept the 
computer metaphor as a useful approxi- 
mate description of the macrostructure of 
human thought. But they have come to feel 
that an alternative framework may be more 
appropriate for characterizing the micro- 
structure of cognition. 

In this article I will describe this alterna- 
tive, here called the connectionist frame- 
work, and then consider the role this 
framework can play in experimental cogni- 
tive psychology. In brief, my argument will 
be that modeling is often crucial if we are to 
understand the implications of certain 
kinds of basic principles of processing that 
might be proposed, and that the connec- 
tionist modeling framework provides ;I 
very apt formal language for embodying 
several principles whose implications de- 
serve to be explored. I will also point out 
that the connectionist framework has led to 
the discovery of new principles, that it has 
aided in the construction of specific models 
that organize disparate and sometimes con- 
tradictory phenomena. and that it has 
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helped us to clarify what kinds of evidence 
bear on distinguishing between alternative 
hypotheses about aspects of human infor- 
mation processing. 

The connectionist framework is also be- 
ginning to lead to new empirical research. 
This point is considered briefly in the 
present article; the articles that follow in 
this special issue illustrate it in consider- 
able detail (Dell, 1988; Elman & McClel- 
land, 1988; Gluck & Bower, 1988). The ar- 
ticles by Estes (1988) and Massaro (1988) 
are commentaries on the approach. 

THE CONNECTIONIST FRAMEWORK 

The term “connectionist models” was 
introduced by Feldman (198 1; Feldman and 
Ballard, 1982). In these papers, the term is 
used to refer to a class of models that com- 
pute by way of connections among simple 
processing units, Another phrase often 
used to describe some connectionist 
models is parallel distributed processing or 
PDP models (McClelland, Rumelhart, and 
the PDP Research Group, 1986; Rumel- 
hart, McClelland, and the PDP Research 
Group, 1986). PDP models are instances of 
connectionist models that stress the notion 
that processing activity results from the 
processing interactions occurring among 
rather large numbers of processing units. 

In this article I intend the phrase “the 
connectionist framework” to encompass 
all kinds of connectionist models. The 
framework may be thought of as providing 
a set of general assumptions about basic 
aspects of information processing, and a 
set of soft constraints on the range of spe- 
cific assumptions that might be made. In 
what follows I consider each of several 
aspects of an information-processing 
system. I describe the general assumptions 
connectionist models make about these 
aspects and I characterize some of the spe- 
cific assumptions that might be made. The 
presentation draws heavily on Rumelhart, 
Hinton, and McClelland (1986), which can 
be consulted for further details. 

Primitives and Their Organization 

Like all cognitive models, connectionist 
models must propose some building blocks 
and some organization of these building 
blocks. In connectionist models, the primi- 
tives are units and connections. Units are 
simple processing devices which take on 
activation values based on a weighted sum 
of their inputs from the environment and 
from other units. Connections provide the 
medium whereby the units interact with 
each other; they are weighted, and the 
weights may be positive or negative, so 
that a particular input will tend to excite or 
inhibit the unit that receives it, depending 
on the sign of the weight (we shall return to 
these matters when we consider the dy- 
namics of processing below). 

Any particular connectionist model will 
make assumptions about the number of 
units, their pattern of connectivity to other 
units, and their interactions with the envi- 
ronment. These assumptions define the ar- 
chitecture of a connectionist model. The 
set of units and their connections is typi- 
cally called a network. 

It should be noted that a very wide va- 
riety of architectures is possible. Two are 
shown in Figs. 1 and 2. One of these, in 
Fig. 1, from the distributed model of 
memory examined by McClelland and Ru- 
melhart (1985), shows a set of completely 
interconnected units, each receiving input 
from the environment and each projecting 
back to the environment. In some sense, 
the network in this figure is the most gen- 
eral possible connectionist architecture, in 
that all others involve restrictions of this 
general case. For example, some units may 
receive no input from the environment; 
some may send no output outside the net; 
and some of the interconnections among 
units in the network may be deleted. There 
may, furthermore, be restrictions on the 
values of some of the connections. In the 
general case, each may be positive or nega- 
tive, but the architecture may prescribe, 
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FIG. 1. A fully connected autoassociative network, 
with connections from each unit to every other unit. 
Each unit receives input from outside the network and 
sends output outside the network. All connections 
may be either positive or negative in this very general 
formulation. (From “Distributed Memory and the 
Representation of General and Specific Information,” 
J. L. McClelland and D. E. Rumelhart, 1985 by 
Journal of Experimental Psychology: General, 114, p. 
162. Copyright 1985 by the American Psychological 
Association. Reprinted by permission.) 

for example, that a certain group of units 
have mutually inhibitory connections of 
fixed strength. 

Figure 2 gives an example of a more re- 
stricted architecture, from the interactive 
activation model of visual work recognition 
(McClelland & Rumelhart, 1981). In this 
model, units stand for hypotheses about 
displays of letter strings at each of three 
levels of description: a feature level, a 
letter level, and a word level. There are ex- 
citatory connections (in both directions) 
between mutually consistent units on adja- 
cent levels, and inhibitory connections be- 
tween mutually inconsistent units within 
the same level. Thus the unit for T in the 
first letter position excites and is excited by 
the units for features of the letter T, as well 
as the units for words that begin with T. 
This unit also inhibits, and is inhibited by, 
units for other letters in the same letter po- 
sition. 

Active Representation 

Representations in connectionist models 
are patterns of activation over the units in 

Letter 

Featwe 

Input 

FIG. 2. A sketch of the network used in the internc- 
tive-activation model of visual word recognition 
(McClelland & Rumelhart. 1981). Units within the 
same rectangle stand for incompatible alternative hy- 
potheses about an input pattern and are mutually in- 
hibitory. Bidirectional excitatory connections between 
levels are indicated for one word and its constituents. 
(From “Putting Knowledge in its Place: A Scheme for 
Programming Parallel Processing Structures on the 
Fly” by J. L. McClelland. 1985. Cognitive Science. 9, 
p. 115. Copyright 1985 by Ablex Publishing, Reprinted 
by permission.) 

the network. In some ways, these kinds of 
patterns are similar to representations in 
other frameworks; after all, representations 
in a computer are ultimately patterns of 0s 
and 1s. There are differences, however. 
For one thing it is quite natural for connec- 
tionist representations to be graded, in the 
sense that each unit’s activation need not 
be one of two binary values. In some 
models, activations are restricted to binary 
or some other number of discrete values. 
but more typically each unit may take on a 
continuous activation value between some 
maximum and minimum. A more important 
difference is this: Connectionist represen- 
tations are truly active, in the sense that 
they give rise to further processing activity 
directly, without any need for a central pro- 
cessor or a production-matching-and-appli- 
cation mechanism that examines them and 
takes action on the basis of the results of 
this examination. 

Models differ in terms of the extent to 
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which individual processing units can be 
identified with particular conceptual ob- 
jects, such as letters, words, and concepts. 
The models illustrated in Figs. I and 2 rep- 
resent endpoints on a continuum. In the 
distributed model of memory, each concep- 
tual object is thought of as a pattern of acti- 
vation over a number of simple processing 
units. In the interactive activation model of 
work perception, on the other hand, each 
unit stands for a primitive conceptual ob- 
ject, such as a letter, a word, or a distinct 
visual feature. A large number of models lie 
between these two extremes (see Hinton, 
McClelland, & Rumelhart, 1986, and 
Feldman, 1986, for general discussions of 
the issue of distributed representation). 

Processing 

Processing in connectionist models 
occurs through the evolution of patterns of 
activation over time. This process is gov- 
erned by assumptions about the exact way 
in which the activations of units are up- 
dated, as a function of their inputs. Up- 
dating can be synchronous (all units up- 
dated simultaneously) or asynchronous 
(units updated in random order). Updating 
generally occurs as follows. First, a net 
input is computed for each unit to be up- 
dated. The net input is the sum of the acti- 
vations of all of the units that project to it, 
with each contributing activation weighted 
by the weight on the connection from the 
contributing unit to the receiving unit.’ The 
net input may also include a bias term as- 
sociated with the unit, as well as a term for 
inputs arising from outside the network. 
Thus for unit i, its net input is given by 

’ In a slightly more general formulation, the net 
input may be the sum of products of the activations of 
groups of contributing units. In this formulation there 
is a weight associated with each product, rather than 
each individual contributing activation. These product 
terms have no special computational significance, 
since the effects of multiplicative interactions among 
inputs can be accomplished by extra layers of units 
(see Williams, 1986). 

neti = C WGaj + bias, + ii. L11 

The net input ian then be used to set the 
new activation of the unit according to 
some monotonic but nonlinear function like 
the one shown in Fig. 3. Alternatively, the 
net input can be used to set the activation 
of the unit probabilistically to one of two 
discrete values (usually 1 or 0). Another 
possibility is that the net input may act as a 
force, tending to drive the activation of the 
unit up or down a small amount in each 
time step.2 

It is typical to use some form of non- 
linear activation function, so that the acti- 
vation of a unit is not simply set equal to 
the net input or some weighted average of 
the net input and the previous activation of 
the unit. Nonlinearities are typically neces- 
sary for two reasons: (1) Linear networks 
are subject to explosive growth of activa- 
tion due to positive feedback loops unless 
the weights are severely constrained (see 
Shrager, Hogg, & Huberman, 1987). (2) 
Many computations require a layer of non- 
linear units between input and output. 
Without nonlinearities, multiple layers of 
units add no additional computational 
power over that offered by a single layer 
(see Rumelhart, Hinton, & McClelland, 
1986, for further explanation). 

Knowledge 

Crucial to the very idea of cognition is 
the notion that information processing is 
guided by knowledge. We recognize the 
word the as a definite article because of 
knowledge we have about the relation be- 
tween letter strings and linguistic forms. 
We infer that a spoon may have been used 
if we hear “The man stirred the coffee” 
because of knowledge we have about the 
kinds of instruments that are used for stir- 

* Some variants of connectionist models (e.g.. 
Grossberg, 1978) treat the excitatory and inhibitory 
inputs as separate forces, rather than aggregating them 
together in a single term. 
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FIG. 3. The logistic function, a smooth nonlinear 
function that is frequently used in relating activations 
of units to their net inputs. This function is often used 
to set the activation of a unit to a value between 0 and 
I, or to set the activation of the unit to 1 or 0 probabi- 
listically, with the probability determined by the value 
of the function. 

ring. In many models, these kinds of 
knowledge would be stored in tables. For 
example, information about the would be 
stored in a table called a lexicon, listing 
correspondences of letter strings and the 
linguistic objects they represent. 

In connectionist models, the knowledge 
is stored in the connections among the pro- 
cessing units. This assumption works to- 
gether with the assumptions connectionist 
models make about representations. An ac- 
tive representation on a set of units, to- 
gether with the knowledge stored in con- 
nections, will give rise to new patterns of 
activation on the same or on other units. 

Typically in connectionist models, con- 
nection strengths are real-valued. In 
models whose connections are set by as- 
sumption, it is typical to assume homoge- 
neity of connection strengths as much as 
possible, to avoid excessive degrees of 
freedom. In models that learn, however, 
connection strengths are typically allowed 
to take on whatever values the learning 
process gives them; parsimony arises from 
the use of a homogeneous principle of 
learning. 

Learning 

If knowledge is in the connection 

weights, learning must occur through the 
adjustment of these weights. This weight 
adjustment process is assumed to occur as 
a by-product of processing activity. Some 
knowledge can in fact be built into connec- 
tionist models, in the form of initial con- 
nection strengths, before there has been 
any learning, but it is common to explore 
the limits of what can be acquired through 
connection strength adjustment with min- 
imal prewiring. The initial architecture of 
the network serves to impose constraints 
on the learning process; these can in many 
cases greatly facilitate learning and gener- 
alization, if these constraints are appro- 
priate to the problem the network is given 
to learn. 

A wide variety of “learning rules” for 
tuning connections has been proposed. A 
recent review is provided by Hinton (1987). 
Generally, these rules state that the adjust- 
ment that is made to each connection 
should be based on the product of a pre- 
synaptic term, associated with the unit 
sending input through the connection, and 
a postsynaptic term, associated with the 
unit that is receiving input through the con- 
nection. For example, the Hebb rule, as 
used by J. A. Anderson (1977), makes the 
change in the strength of a connection pro- 
portional to the product of the activation of 
the sending unit and the receiving unit.’ 

Learning through connection strength 
adjustment is very different from learning 
processes in most other types of models. It 
is governed by simple mathematical ex- 
pressions, and results in knowledge that is 
completely implicit, in that it is embedded 
inextricably in the machinery of pro- 

3 The Hebb rule is about the simplest connectionist 
learning rule, and it is limited in what it can do, so it 
has recently been somewhat less popular than other 
learning rules (but see Linsker, 1986a, 1986b. 1986~). 
Three learning rules frequently used in current con- 
nectionist models are the competitive learning rule. 

the deltu rtclc or least-meun-squared procedure, and 
the generalized delta rule or back propagation proce- 

dure (see Hinton. 1987, for details). 
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cessing, and is completely inaccessible to 
introspection or report. However, it should 
be noted, that while the connection 
changes themselves are not accessible, the 
patterns of activation they make it possible 
to construct can be accessible to other 
parts of the processing system. 

The Environment 

Though it has been implicit in what I 
have said already, there is another aspect 
of connectionist models that deserves com- 
ment, namely, their environment. The envi- 
ronment consists of an ensemble of pos- 
sible patterns that might be presented to 
the network. In most cases, these patterns 
are thought of as separate events, each one 
presented when the network is in a resting 
state, then left on until processing is com- 
plete. However, input patterns can have a 
richer temporal structure, or course; each 
event may consist of a sequence of events, 
or of a graded progression of input activa- 
tions. 

For networks with fixed connections, the 
environment simply defines the domain of 
inputs on which the network might be 
tested. For networks in which the connec- 
tions are adjusted as a result of processing 
experience, however, the environment 
plays a crucial role in determining exactly 
what is learned. Thus models that aim to 
capture aspects of cognitive development 
through connectionist learning include 
among their assumptions a specification of 
the details of the experience that gives rise 
to the resulting developmental sequence. 
In many cases, these assumptions play a 
major role in determining the success or 
failure of the modeling effort. 

The Spirit of the Thing 

The connectionist framework is cast, not 
as a list of specific detailed assumptions, 
but as a set of general principles and some 
guidelines that provide weak constraints on 
the range of variants that fall within the 
scope of these principles. Indeed, as Ru- 

melhart, Hinton, and McClelland (1986) 
noted, it is possible to build a von Neu- 
mann computer out of connectionist primi- 
tives, if they are organized in accordance 
with the von Neumann architecture. It thus 
becomes important to focus on the spirit of 
the connectionist framework. Generally, 
connectionist models of cognitive pro- 
cesses have been constructed expressly to 
exploit the capability for parallelism in- 
herent in the approach, to make use of the 
graded capabilities of patterns of activa- 
tion, and to capture the incremental nature 
of human learning in many tasks through 
the adjustment of connection strengths 
based on signals arising in the course of 
processing. 

The Microstructure of Cognition 

Finally, it is worth pointing out that the 
connectionist framework is not incompat- 
ible with other levels of description in cog- 
nitive science. Thus, there is nothing in- 
consistent with connectionist models in the 
claim that a cognitive system may traverse 
a sequence of states in a temporally ex- 
tended cognitive task such as solving an 
arithmetic problem. According to the con- 
nectionist approach one would tend to view 
each such step in the process of solving the 
problem as a new state of the processing 
network. Indeed, Rumelhart, Smolensky, 
McClelland, and Hinton (1986) describe a 
network that performs a mental tic-tat-toe 
simulation, settling into a sequence of 
states representing the results of the suc- 
cessive mentally simulated moves made by 
each player. 

There are important differences between 
conventional and connectionist models of 
sequential behavior. In connectionist 
models, the states need not be so discrete 
as they generally are in other models 
(Jordan, 1986; Rumelhart & Norman, 1982; 
Smolensky, 1986). Furthermore, the pow- 
erful constraint-satisfaction characteristics 
inherent in the connectionist framework 
are not typically exploited by conventional 



models of sequential processing. The idea 
that each step in a sequential process in- 
volves a massively parallel constraint satis- 
faction process seems like a promising 
starting place for a new way of thinking 
about the macrostructure of cognition. 

that we understand perfectly at this point, 
we are not at present in a position to say 
which aspects of cognition might be ex- 
plainable without recourse to a model of 
the microstructure. 

The point that connectionist models 
characterize the microstructure of cogni- 
tion applies not only with respect to time, 
but also with respect to the structure of the 
processing system and with respect to the 
description of the computational operations 
that the system is performing. Structurally, 
a processing system may consist of many 
parts, and for some purposes it may be ade- 
quate to describe its structure in terms of 
these parts and the flow of information be- 
tween them. Computationally, too, it may 
often be useful and illuminating to describe 
what function a part of such a system com- 
putes without referring specifically to the 
role in this computation that is played by 
the specific units and connections. The 
claim is, though, that it will be necessary to 
delve more deeply than this to provide a 
full description of the mechanisms of cog- 
nition. 

Psychological and Neural Modeling 

Are Connectionist Models 
Mere Implementations? 

Connectionist models are formulated for 
many different purposes. Some modelers 
are interested in characterizing actual 
neural circuitry. The framework is quite apt 
for this, and a growing group of researchers 
is pursuing this approach (Hawkins & 
Kandel, 1987; Gluck & Thompson, 1987; 
Rolls, in press; Zipser, 1986). This use of 
the connectionist framework is often a 
source of confusion in psychological 
circles, because most connectionist models 
in cognitive psychology are not aimed at 
this explicitly neural level. Instead, the aim 
of most connectionist models of psycholog- 
ical processes is to characterize processing 
at a level of description whose utility is as- 
sessable through behavioral, rather than 
neurophysiological, experimentation. This 
is certainly the case for the three papers 
that follow (Gluck & Bower, 1988; Elman 
& McClelland, 1988; Dell, 1988). 

In allowing that there may be a macro- 
structure to thought, connectionists may 
seem to suggest that their models merely 
describe the implementation details of a 
processing system that would be best char- 
acterized more abstractly. However, we 
simply do not know exactly what level of 
description is the appropriate one for char- 
acterizing many behavioral phenomena. 
Those of us who have turned to connec- 
tionist models have done so because these 
models have seemed to provide exactly the 
right level of description for characterizing 
certain kinds of cognitive processes. Just 
where the bounds of usefulness of the con- 
nectionist framework may lie seems at this 
point to be one of the very open questions. 
Since there is little in coenitive nsvchologv 

Thus, the connectionist models we are 
concerned with here remain functional 
characterizations of the mechanisms of 
thought. While it is true that they seem 
readily implementable in the brain, and this 
is often one source if inspiration in connec- 
tionist modeling, the models we are consid- 
ering in these articles are all offered for 
their usefulness in characterizing aspects of 
cognitive processing, as it is revealed 
through experimental research. 

ROLEOFCONNECTIONISTMODELSIN 
EMPIRICALRESEARCH 

In this section I consider what role con- 
nectionist models can play in the business 
of empirical psychological investigation. I 
begin with the question of the role of mod- 
eling in general, and then I turn to the par- 

y ~ , ~~~.~._, ticular merits of the connectionist frame- 

CONNECTIONISTMODELS 113 



114 JAMES L. MC CLELLAND 

work. In what follows I have drawn heavily 
from my own experience with connec- 
tionist models, from the cascade model 
(McClelland, 1979) to a recent model for 
converting print to sound (Seidenberg & 
McClelland, 1987). These experiences are 
what lead me to invest my own energies in 
modeling, and they illustrate my own 
reasons for tuning to modeling in general 
and connectionist modeling in particular. 

The Role of Modeling: An 
Illustrative Example 

To me, the central function of modeling 
is to make vague and complex ideas acces- 
sible and explicit, and precise enough to 
make their implications clear. My own his- 
tory in turning to modeling illustrates this 
function. In the mid-1970s my research on 
visual word recognition led me to the view 
that information processing might not in- 
volve a sequence of discrete stages, but a 
continuous flow of information through a 
series of processing levels (McClelland, 
1976). When formulated in verbal terms, 
this idea had little force; its implications 
were obscure. However, it was possible to 
formulate an explicit information-pro- 
cessing model based on this assumption 
(the cascade model, McClelland, 1979) and 
from this model to derive several basic 
consequences. This model served, for one 
thing, to make the idea of an ensemble of 
continuous processes much more vivid and 
therefore, I believe, made it much easier to 
see that there was an alternative to the idea 
of discrete stages. Ten years later, it is dif- 
ficult to remember the frame of mind of the 
mid-1970s, but I believe that at that time 
the idea of continuous processing was not 
widely considered and that the formulation 
of an explicit model in which that idea was 
embodied played a role in changing the way 
many of us think about mental processes. 
It certainly helped to consolidate my own 
thoughts on these matters. 

Equally important, the cascade model 
led to the discovery of several implications 

of the idea that processing occurred in a 
system of continuous processes. Surpris- 
ingly, the cascade model revealed that ad- 
ditive effects of experimental factors could 
easily arise in a system of continuous pro- 
cesses. At the same time, the model dem- 
onstrated that in a system of processes in 
cascade, interactions of experimental 
factors did not necessarily indicate that the 
factors were influencing the same pro- 
cessing level. 

Beyond these basic observations, the 
cascade model has played a role in leading 
to experimental studies investigating 
whether processing is continuous, as as- 
sumed by the cascade model, or discrete, 
as assumed by more traditional approaches 
(cf., Miller, 1982; Meyer, Yantis, Osman & 
Smith, 1985). The empirical picture that is 
emerging from these studies is quite rich 
and complex, and the circumstances under 
which there is continuous processing re- 
main to be fully described. The point here 
is not to review this picture, but simply to 
note that the existence of the model, as a 
concrete embodiment of the idea of contin- 
uous processing in a multilevel system, has 
helped to stimulate an ongoing line of em- 
pirical research. 

One point to take from this review of the 
cascade model is that the usefulness of a 
model is not simply a matter of its correct- 
ness. The cascade model illustrates how a 
model can make vague ideas precise and 
can allow the discovery of the implications 
of these ideas; the correctness of such a 
model can then be examined, once the im- 
plications have been made explicit. Of 
course, for a model to be interesting, it has 
to have some motivation; there must be 
some reason to suppose that the principles 
that it embodies are worth exploring. The 
point is that the cascade model and other 
models of complex processes should be 
taken as tools that help us understand the 
implications of possible assumptions that 
might be made about the characteristics of 
information-processing systems. 
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This goal of clarifying the implications of 
ideas often leads to deliberate simplifica- 
tion and elimination of detail, so that the 
consequences of the central assumptions 
can be made as clear as possible. The cas- 
cade model is certainly a case in point: it 
assumes a unidirectional flow of processing 
in a completely linear, multilayer system. 
Similar simplifications are often invoked in 
other fields of science, when some complex 
phenomenon needs to be understood. Sej- 
nowski (1986) illustrates this point by de- 
scribing the modeling of magnetism in iron. 
Ferromagnetism is modeled by replacing 
the complex structure of iron with a set of 
oriented point particles in a two-dimen- 
sional lattice, with each particle influencing 
the orientation of the nearest neighboring 
particles. He notes that such a model is 
successful if it exhibits large-scale qualita- 
tive phenomena (such as phase transitions) 
that are actually seen in the more complex 
objects (real iron bars) that are being mod- 
eled. The simplification is crucial because 
it would be impossible to model magnetism 
while taking the structure of iron into ac- 
count in all of its details. 

Why Connectionist Models? 

Given this view of the role of modeling, 
one can ask, what framework is the best to 
use? To me the answer is simply whatever 
framework appears to be the most useful. 
The connectionist framework is useful for 
capturing certain kinds of assumptions 
about the way in which information pro- 
cessing occurs. Two principles that have 
motivated a good deal of my own explora- 
tions of connectionist models are (1) the 
idea that processing in a multilayered pro- 
cessing system is continuous, so that infor- 
mation accumulates gradually over time 
and is propagated as it builds up, and (2) 
the idea that this kind of continuous pro- 
cessing may be interactive, so that influ- 
ences can be bidirectional, flowing both 
from higher to lower levels and from lower 
levels to higher levels. These ideas are well 

captured in the connectionist framework. 
They are generally not captured well in 
highly symbolic processing frameworks, in 
which the objects manipulated are discrete 
tokens that stand in an all-or-none fashion 
for some mental object. 

Of course, there has been considerable 
recognition of the need for continuous, dy- 
namic information processing within the 
traditional symbolic framework. A number 
of spreading-activation models of memory 
have been proposed (e.g., J. R. Anderson, 
1983), as have a number of activation- 
based production systems (Thibadeau, 
Just, & Carpenter, 1982). In such systems, 
the effects of experience are, at least in 
part, a matter of gradual parameter adjust- 
ment. Many times this sort of model can 
capture some aspects of the assumptions 
mentioned above in a way that allows their 
implications to be explored. 

In spite of the fact that some features of 
connectionist models can be captured in 
other frameworks, I have found the con- 
nectionist framework more workable for 
many applications, in part because there is 
less extra apparatus extraneous to the es- 
sential character of the ideas under explo- 
ration. This is not an argument in principle 
that the connectionist framework is the 
best for all purposes, but it is an argument 
that it may often offer a better match be- 
tween the assumptions one wishes to ex- 
plore and the tools the framework offers for 
exploring them. To illustrate, consider J. R. 
Anderson’s (1983) demonstration that the 
interactive activation model of visual word 
perception (McClelland & Rumelhart, 
1981) can be embodied in ACT*‘s produc- 
tion system formalism. In this demonstra- 
tion, Anderson made several extensions of 
the basic ACT* architecture specifically to 
capture the interactive activation process, 
and left unutilized major aspects of the pro- 
duction system architecture. The connec- 
tionist framework seems much more apt for 
capturing the essential assumptions of con- 
tinuous, interactive processing that Rumel- 
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hart and I wished to explore in the interac- 
tive activation model. 

Beyond this general point that the con- 
nectionist framework is often the most ap- 
propriate, there are other reasons why it 
has proved extremely fruitful to work 
within this framework. Models developed 
in this framework have been useful in three 
ways: 

(1) These models have led to new inter- 
pretations of basic phenomena in the litera- 
ture. 

(2) They have provided unified accounts 
of what had previously been seen as highly 
disparate or even contradictory phe- 
nomena. 

(3) They have clarified the relevance of 
certain kinds of evidence for adjudicating 
basic questions about the character of the 
information-processing system. 

I will briefly consider each of these three 
points in turn. 

New Interpretations 

There are several examples of long- 
standing phenomena that have been given 
new accounts within the framework of con- 
nectionist models. Here I will focus on one 
theme that illustrates this, the discovery 
through connectionist models that sensi- 
tivity to the regularities of language might 
not require an explicit rule-formulation 
mechanism, together with the subsequent 
discovery that sensitivity to the exceptions 
to these regularities might not even require 
an explicit lexicon. 

Perceptual facilitation of letters in pseu- 
dowords. Before the interactive activation 
model, perceptual facilitation for letters in 
pronounceable pseudowords (e.g., mave) 
had been reported several times (Baron & 
Thurston, 1973; McClelland & Johnston, 
1977; Spoehr & Smith, 1975). The phenom- 
enon had variously been attributed to fa- 
miliarity of subword spelling patterns; to 
the application of spelling-to-sound conver- 
sion mechanisms; and to the use of a 

system of orthographic rules. Neither of 
the first two accounts appeared adequate, 
since pronounceability is not critical 
(Baron & Thurston, 1973), and letter- 
cluster frequency did not correlate with de- 
gree of perceptual facilitation in some ex- 
periments (McClelland & Johnston, 1977), 
though it did in others (Rumelhart & 
McClelland, 1982). The third account was 
never given a formulation explicit enough 
to allow a detailed comparison with data. 

The interactive-activation model offered 
a different interpretation. It attributed per- 
ceptual enhancement to partial activation 
of word units by pseudowords. For ex- 
ample, mave produces partial activation of 
several words that share three letters with 
it (gave, save, have, male, mate, mare, and 
others) and these in turn produce feedback 
activation which ends up enhancing per- 
ception of all of the letters in mave. 

It must be stressed that this is a radically 
different kind of interpretation than the 
others. It differs from them in two ways. 
First, it proposes that the same mechanism 
that accounts for perceptual enhancement 
of words over pseudowords also applies to 
the advantage of pronounceable pseudo- 
words over random letter strings. Other 
approaches either ignored the perceptual 
advantage for words over pseudowords 
(though a small advantage for words over 
carefully matched pseudowords was typi- 
cally found) or attributed it to a separate, 
lexical mechanism. Second, it suggests that 
evidence of sensitivity to regularities of 
language - in this case, perceptual facilita- 
tion for wordlike stimuli but not for letters 
in random strings- need not be taken as 
evidence for the explicit extraction of these 
regularities in a system of rules or familiar 
subunits. The model simply had a set of 
word-detector units, yet it could account 
for effects of orthographic structure on the 
perception of items that were not words. 

Eliminating word detectors. The word 
detectors in the interactive activation 
model seemed at the time to be necessary, 
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at the very least to account for the percep- 
tual advantage of items which were them- 
selves familiar, relative to others that were 
not. However, J. A. Anderson (1977; J. A. 
Anderson, Silverstein, Ritz, & Jones, 1977) 
pointed out that familiarity effects of par- 
ticular patterns fall naturally out of a simple 
autoassociative model like the one shown 
in Fig. 1, in which there is no single unit 
representation for a particular stimulus 
item. Rather, changes to the connections in 
the network occasioned by experience with 
a set of patterns results in connection 
strengths that tend to enhance or sustain fa- 
miliar patterns, and to complete or rectify 
distorted versions of such patterns, in 
much the same way that the interactive-ac- 
tivation model can enhance letter se- 
quences that form familiar words. 

Such observations suggested that perfor- 
mance on familiar items in a variety of 
tasks might be the result, not of the forma- 
tion of a specific unit for each item, but of 
the changes in the pattern of connection 
weights among an ensemble of units in a 
network. Further, such models suggested 
that generalization-that is, the extension 
of performance on familiar items to novel 
items -might also be explicable in terms of 
the way in which an autoassociative net- 
work deals with patterns similar to those 
that gave rise to the changes in the pattern 
of connection strengths (see Knapp & An- 
derson, 1984; McClelland & Rumelhart, 
1985). 

This insight from connectionist modeling 
led to the development of a model of 
learning the past tense of English (Rumel- 
hart & McClelland, 1986). The past tense is 
interesting because it is quite regular, and 
speakers seem to know the regular pattern, 
in that they can apply it to novel words; 
while at the same time, there are many ex- 
ceptions. The model was interesting in that 
it captured both the regular correspon- 
dence and the exceptions, without having 
special units for specific exception words 
nor rules. Instead, there was simply a net- 

work of connections from a set of units for 
representing the base form of an input 
word, to a set of units for representing the 
word’s past tense. 

The network used in the model is shown 
in Fig. 4. The main part of the network- 
the part where the learning takes place-is 
called a pattern associator, and it has been 
used in a number of connectionist models 
(J. A. Anderson et al., 1977; Kohonen, 
1977). The pattern associator consists of 
two sets of units, one to represent the root 
form of the word and one to represent the 
past-tense form, and connections from 
each unit in the first set to each unit in the 
second set. Learning occurs by exposing 
the network to patterns representing the 
root forms of words, allowing the net to 
compute a pattern representing the past 
tense form based on this input and the ex- 
isting connection strengths, and then ad- 
justing the strengths of the connections to 
reduce the difference between the actual 
output and the desired output. The adjust- 
ment occasioned by a single pattern pre- 
sentation is assumed to be small, so that 
learning occurs rather gradually, through 
repeated trials. 

In a model of this type, if there is a 
strong regularity in the mapping from input 

01 root fo,m Of p.* tmu 

FIG. 4. The structure of the network used in mod- 
eling acquisition of the past tense. (From “On 
Learning the Past Tenses of English Verbs” by D. E. 
Rumelhart and J. L. McClelland, 1986, J. L. McClel- 
land, D. E. Rumelhart, and the PDP Research Group 
(Eds.), Parallel distributed processing: Explorations 

in the Microstrucrure of Cognition. (Vol. 2, p. 123). 
Cambridge, MA: MIT Press. Reprinted by permis- 
sion.) 
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to output, then the network will pick up on 
it; the changes produced in learning each 
pattern pair will work together synergisti- 
cally, and there will be positive transfer 
among the patterns. If some of the pairs di- 
verge from the regular pattern, they will be 
relatively more difficult to learn than reg- 
ular patterns, and at certain stages in 
learning, they can be regularized. 

This simple model, then, illustrates a 
truly novel interpretation of the “regulari- 
zation error” frequently reported in the 
child language literature, the finding that 
children in the 3- to 5-year age range often 
say “taked” instead of “took” or “goed” 
instead of “went.” Such errors have pre- 
viously been taken as evidence that the 
child has discovered the rule, and have mo- 
tivated a search for a characterization of 
the mechanisms that formulate, evaluate, 
and modify such rules. The past-tense 
model suggests an entirely new line of ex- 
planation. 

The past-tense model does not account 
for all aspects of human performance in 
formulating the past tenses of words in En- 
glish. Pinker and Prince (in press) and 
Lachter and Bever (in press) have amply 
documented these shortcomings. Thus, the 
model cannot be taken as a correct model 
of English past-tense formation in its 
present form. I mention it because it has 
served an important role, in spite of these 
shortcomings. It has brought a new kind of 
interpretation of lawful behavior into con- 
sideration, and it has stimulated a number 
of subsequent modeling efforts which tran- 
scend its limitations (Seidenberg & 
McClelland, 1987; Sejnowski and Rosen- 
berg, 1987). A problem with the past-tense 
model is that it has no intervening layers of 
units between the input and the output. 
This limitation has been overcome by the 
development of the back-propagation 
learning algorithm (Rumelhart et al., 1986). 
More recent models make use of this algo- 
rithm to train multilayer networks. 
Whether such models will be able to meet 
the empirical challenges leveled by Pinker 

and Prince and by Lachter and Bever is a 
matter that is currently under investigation. 

I hope this section illustrates the funda- 
mental point that modeling can be worth- 
while, even if a model that is developed in 
the course of exploring a set of issues is not 
fully consistent with the facts. The model 
may serve as a stepping stone in the devel- 
opment of a new way of thinking, even if it 
is only partly correct. It is a part of the on- 
going process of working toward an under- 
standing of the facts. 

Bringing Phenomena Together 

Another role that models can play is to 
bring together into a single, coherent pic- 
ture a large body of phenomena which 
might otherwise appear to be disparate and 
unrelated. My experience with connec- 
tionist models has been extremely grati- 
fying in this regard. Several of the connec- 
tionist models I have examined have 
helped to bring disparate or even appar- 
ently contradictory phenomena together 
into a single, coherent account. 

The TRACE model of speech perception 
is one example of a connectionist model 
that provides a unified account for several 
widely disparate phenomena. The model 
covers phenomena ranging from categor- 
ical perception of phonemes in minimal 
context (e.g., /ba/ or /pa/) to cue trade-off 
studies examining the effects of varying 
several cues to phoneme identity, to studies 
of the effects of context in phoneme identi- 
fication and the time course of these ef- 
fects, to studies of the time course of 
spoken word recognition, to studies of the 
segmentation of sequences of phonemes 
into words. To my knowledge, no prior 
model has provided a treatment of even 
half of the sets of phenomena on this list. In 
TRACE, they all emerge from a homoge- 
neous set of assumptions about an interac- 
tive-activation process between units rep- 
resenting hypotheses about the features, 
phonemes, and words present at different 
points in time within a temporally unfolding 
stream of speech. 
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Models can sometimes go beyond re- 
lating the previously unrelated to actually 
reconciling the previously contradictory. 
The interactive-activation model of visual 
word perception provides two cases in 
point. ln the literature on visual word rec- 
ognition, some studies have found reliable 
effects which might be attributable to famil- 
iarity of specific letter clusters (Rumelhart 
& McClelland, 1982), and other studies 
have not (McClelland & Johnston, 1977). 
At first (after the Rumelhart-McClelland 
experiment was finished but before the 
modeling work was done) these findings 
seemed simply contradictory to me. How- 
ever, in the course of developing the model 
and applying it to the data, Rumelhart and I 
discovered that the specific experimental 
design used by McClelland and Johnston 
(1977) tended to counteract a tendency that 
the model had to favor pseudowords with 
more frequent letter clusters. Similarly, the 
finding reported by Johnston (1978) that 
contextual constraint did not appear to 
control accuracy of letter perception also 
appeared puzzling at first, especially in that 
others had found evidence supporting such 
an effect under other conditions (Broad- 
bent & Gregory, 1968). However, the ap- 
parent contradiction disappeared when we 
discovered how the model worked on 
Johnston’s high- and low-constraint items. 

The details of the way in which these ap- 
parent contradictions were resolved by the 
model are somewhat involved, so 1 will not 
review them fully here. Rather, I will focus 
on just one part of the matter, namely, the 
reasons the model does not predict an ef- 
fect of constraint in Johnston’s (1978) ex- 
periment. I do so to illustrate the critical 
role the simulation model itself played in 
our ability to understand the overall pattern 
of results. 

When a word is presented to the interac- 
tive-activation model, it sends activation to 
letter detectors, which in turn send activa- 
tion to word detectors. Word detectors re- 
ceive bottom-up activation in proportion 
to the number of letters they share with the 

pattern of activation at the letter level. 
Consider, in this light, what happens when 
the word clue is shown, and the subject is 
to be tested on the first letter, in a forced- 
choice with alternatives c and h. (It is 
always the case in these experiments that 
both alternatives form a word with the con- 
text letters, as b does with -Le.) The input 
will activate the letters c, 1, u, and e. These 
in turn will activate the word unit for CLtr 
and, to a lesser extent, the word units for 
other words such as blue and glue. These 
other words compete for activation with 
clue to some extent, but in this case there 
are only two of them (we disregard the very 
infrequent wordflue). In contrast, consider 
the item cc&e, again with the first letter 
tested in a forced choice between c and h. 
This input will activate the letters c’, LI, k, P, 
and these in turn will activate the word 
cuke, and, to a lesser extent, other words 
not beginning in c. In this instance there 
are about 10 such words. One might ex- 
pect, then, that these partially activated 
competitors would tend to overwhelm 
cake, thereby reducing the feedback sup- 
port for the c considerably, compared to 
the case of c in clue. Since such feedback is 
responsible for facilitation of perception of 
letters in words, according to the model, 
we expected that the model would in fact 
produce larger facilitation for (’ in clrtr. 

compared to c in rakp. 
These expectations turned out to be in- 

correct for two reasons. First, the inhibi- 
tory connections among word units al- 
lowed the word unit receiving the most ex- 
citation (in this case, cake) to keep other 
words from becoming very active, thereby 
attenuating the impact of the number of 
competitors. Second, this story leaves out 
the fact that items like cake produce partial 
activations of words other than cuke that 
actually support the c. Thus cake activates 
coke, cafe, cuge, care, cuse, and care, as 
well as several words that do not begin 
with c; cllre, on the other hand, activates 
only one other word (club) beginning in c. 
In general, Johnston’s low-constraint 
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words (items like cake) activate more 
friends of the target letter c as well as more 
enemies of the target letter, with the result 
that the expected disadvantage of high- 
constraint words is neutralized. 

Once these points became clear, it be- 
came apparent that Johnston’s findings 
were not in fact inconsistent with the inter- 
active-activation model or with the results 
of other studies in which constraint effects 
were found (see McClelland & Rumelhart, 
1981, for further details). In this case, the 
model was crucial for discovering that 
there was no inconsistency. 

Relevance of Data 

Beyond leading to new kinds of interpre- 
tations and unifying disparate phenomena, 
connectionist models have also helped to 
clarify what data might be relevant to de- 
ciding certain basic questions. This point 
can easily be made with reference to the 
cascade model. The model showed that 
factors affecting the asymptotic activations 
of units at any level of processing would in- 
teract with factors affecting either asymp- 
totic activation or processing rate at any 
other level. This discovery indicates that 
finding an interaction between experi- 
mental factors cannot be taken as unequiv- 
ocal evidence, as it once was routinely, that 
the two factors are directly affecting the 
same processing stage. 

Another case of this can be found in the 
TRACE model of speech perception. As 
Elman and I point out in our paper in this 
collection (Elman & McClelland, 1988), 
top-down effects in TRACE tend to mani- 
fest themselves in simulations primarily as 
bias rather than as sensitivity effects in a 
signal detectability analysis. Thus a failure 
to find that context alters sensitivity does 
not rule out a top-down effect of context 
in perception. This is a key point about in- 
teractive models, and it has often been mis- 
understood. A second fact about TRACE is 
that it takes time in the model for contex- 

tual effects to influence processing at lower 
levels. Thus the finding that context effects 
often do not appear when subjects are in- 
duced to respond very shortly after a crit- 
ical stimulus (Fox, 1982, 1984; Swinney, 
1979; Tanenhaus, Leiman, & Seidenberg, 
1979) is not inconsistent with the notion 
that contextual influences arise from feed- 
back from higher to lower levels (see 
McClelland, 1987, for further discussion). 

Both a failure to find sensitivity effects in 
a signal detection analysis and the failure to 
find context effects at short time intervals 
have been taken as evidence against the 
view that higher processing levels feed 
back activation to lower levels. These ar- 
guments make sense in some theoretical 
frameworks, as does the argument that ad- 
ditive effects of two factors on reaction 
time indicates that the factors affect dif- 
ferent stages of processing. What the con- 
nectionist models have made clear is that 
the pattern of allowable inference can de- 
pend on basic assumptions which may at 
the least be open to question, 

CANCONNECTIONISTMODELS 
STIMULATERESEARCH? 

For me, a considerable part of the appeal 
of connectionist models lies in their power 
to evoke new interpretations of old 
findings, to provide a coherent account of a 
disparate body of known facts, and to help 
us understand more clearly the implica- 
tions of empirical results for basic ques- 
tions about the nature of processing. These 
contributions seem to me sufficient to war- 
rant continued exploration of connectionist 
models as a useful adjunct to standard em- 
pirical investigation. 

However, there is a further role that a 
theoretical framework can play, and that is 
to stimulate research. The question arises 
then, can the connectionist framework lead 
to new directions for empirical research or 
can it only give us new ways of thinking 
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about the phenomena that have already REFERENCES 

been discovered by research emerging 
from other frameworks? 

It is the burden of the collection of 
papers that follows here to argue that it 
can. Each describes a series of experiments 
that grew out of an attempt to test implica- 
tions of a model constructed within the 
connectionist framework. Dell (1988) de- 
scribes tests of the predictions of a model 
of speech production that accounts for the 
errors that subjects make in speaking. 
Elman and McClelland (1988) describe 
tests of a single but central prediction of 
the TRACE model of speech perception. 
Gluck and Bower (1988) describe tests that 
attempt to distinguish a simple adaptive 
network model of learning to make valid 
predictions in context from a Bayesian 
model. In all three cases, it will be apparent 
that the models have played a central role 
in the formulation of the question that led 
to the research. 

It must be emphasized that the particular 
experiments all are tests of the particular 
models that motivated them, and so they 
cannot be taken really as tests of the con- 
nectionist framework in general. Indeed 
the framework cannot really be tested as 
such, nor can it directly stimulate experi- 
mentation. It is a formal system in which to 
construct models, not a model itself. The 
usefulness of a particular model is rela- 
tively easy to assess, but the usefulness of 
a framework is a matter that will only be- 
come clear in the long run. For the moment 
it appears that the connectionist framework 
provides a valuable set of tools for con- 
structing models that are apt for a wide 
range of phenomena. Only the future can 
tell to what extent it will continue to be 
useful as work goes on. It seems most 
likely that the framework will prove its 
greatest worth as a stepping stone on the 
path to some future framework that we will 
only begin to grasp as we pursue research 
that combines both theoretical and empir- 
ical investigations. 
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