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In the last 15 years, the field of language acquisition has
undergone a sea-change. Whereas prior work emphasized
the nature of the representational structures and capacities
that would support learning (e.g. Chomsky, 1995), a
large number of studies are now looking directly at the
learning processes that are responsible for acquiring
the structure of  language (Saffran, 2003; Sebastián-
Gallés, 2007 for reviews).

It’s about time.
Computational work in the connectionist tradition

had long made the argument that there was significant
information available in the statistics of  the input to
support language acquisition, and that simple neurally
plausible devices could extract this information to do useful
work (for classic examples, see Elman, 1990; Rumelhart
& McClelland, 1986; and see Elman, Bates, Johnson,
Karmiloff-Smith, Parisi & Plunkett, 1996, for a review).
However, to many psychologists these models remained
existence proofs without behavioural demonstrations
that such learning was possible. However, in 1996, Saffran,
Aslin, Newport and colleagues demonstrated that 8-month-
old infants (Saffran, Aslin & Newport, 1996) and adults
(Saffran, Newport, Aslin, Tunick & Barrueco, 1997) could
learn the between-syllable transition probabilities in a
stream of  connected speech and use them to segment
words, even when there were no bottom-up cues to word
boundaries.

Since then, a small cottage industry has grown up in
which researchers use these paradigms to demonstrate
that infants and adults are capable of learning statistics
that might support a range of language processes. Such
processes include phonetic categories (Maye, Werker &
Gerken, 2002; Maye, Weiss & Aslin, 2008), phonological
regularities (Newport & Aslin, 2004), aspects of syntax
(Thompson & Newport, 2007; Gómez, 2002; Saffran,
2001), and word/referent mappings (Yu & Smith, 2007).

Statistical learning work has even begun to look at learning
across multiple levels (Graf  Estes, Evans, Alibali &
Saffran, 2007), and has shown that these learning
processes are not restricted to language (Hunt & Aslin,
2001; Saffran, Johnson, Aslin & Newport, 1999; Fiser &
Aslin, 2002, 2005; Kirkham, Slemmer & Johnson, 2002).

One strength of statistical learning as a theoretical
paradigm is that it posits discrete, clear learning mech-
anisms, mechanisms such as distributional statistics over
phonetic cues (Maye 

 

et al.

 

, 2002), transition probabilities
across an intervening syllable (Gomez, 2002), and word/
referent co-occurrence (Yu & Smith, 2007). These are
straightforward to measure in the input (to varying
degrees), and can be easy to manipulate experimentally.
Moreover, theoretically, they usually operate locally between
observable units and do not appear to be pre-tuned to
language structure. Thus, in their simplicity, these specific
statistical learning mechanisms would seem to be clear
examples of  concrete, core mechanisms of  language
development.

However, in this simplicity lies a question. Can these
core mechanisms do the job? Behavioural investigations
of  the sort conducted thus far cannot answer this.
Although these studies demonstrate without a doubt
that such learning occurs, it is an open question whether
it can scale up to the massive problem that is language.
For example, can transition probabilities be used to
segment all 60,000 words in the average lexicon?

Work such as Yang (2004) suggests that this is non-trivial
for some classes of statistics: transitional probabilities
across syllables alone may not be sufficient for discovering
the majority of words (although other classes of regularities
might be). Furthermore, even if  statistics alone were
sufficient to recognize words, would the resulting representa-
tions be sufficient for further developmental achievements
(e.g. constructing grammatical categories)? It is possible
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that statistical learning and the core mechanisms discussed
in this section serve to get the process off the ground, but
that other language-specific or social/pragmatic mechanisms
take over beyond a certain point.

Thus, the circle turns ’round again. The question of
the sufficiency of statistical learning mechanisms is best
answered computationally. The only way to know whether
transition probabilities are truly sufficient for segmentation
is to compute them over a large corpus of language. The
only way to know if  distributional statistics could be
useful for phonetic category learning given the noise in
the input is to put these discrete computational mechanisms
in this context and see. A computational implementation
of these theories (a model) has the potential to answer these
questions, particularly when coupled with corpora of real
language. However, although connectionist simulations
motivated much of the statistical learning approach to begin
with, they may not be ideal for this next undertaking.

Although such networks do engage in statistical learning,
they do not simply acquire the structure of  the input.
They acquire it 

 

for a specific purpose

 

 (cf. McMurray,
Horst, Toscano & Samuelson, in press). Elman’s (1990)
simple recurrent network, for example, acquires the
structure that is useful for predicting the next element in
the sequence, whereas Rumelhart and McClelland’s (1986)
past-tense model acquires the structure that is useful
for determining the past tense of English verbs. Other
statistics not related to the task may be ignored. As a tool,
then, this is incredibly powerful, allowing learning to be
focused by useful behaviour. It also reinforces the notion
that a connectionist model is not simply a generic, blank-
slate learning device (cf. Elman 

 

et al

 

., 1996). Moreover,
unlike Bayesian approaches, the force driving the acquisition
of the statistics is useful behaviour – the statistics are only
means to an end.

However, this presents challenges when trying to translate
these models into theory. What mechanisms beyond
statistical learning do such networks include? What
theoretical elements does the task impose on top of this
learning? Even the simplest back-propagation networks,
for example, include non-linear internal representations
and dimensionality reduction (e.g. Elman & Zipser, 1988).
Many unsupervised networks include competition (Rumel-
hart & Zipser; 1986; McMurray & Spivey, 1999). Other
networks include a bewildering array of mechanisms (e.g.
Nakisa & Plunkett, 1998). Are these related to the stability
of the representation, the basic learning process, or the ability
to complete the task? This can be difficult to parse out.

Thus, although such models represent an important
part of our exploration of the mechanisms of language
learning, it is also useful to take a step back and examine
each of the candidate mechanisms individually. Put another
way, from the perspective of  identifying candidate
mechanisms of  language development, connectionist
networks typically don’t separate the effects of statistical
learning from those of  other mechanisms, leaving it
unclear what is necessary and sufficient to do the job
(although in some cases they could, see McMurray 

 

et al

 

.,

in press). In a sense, the minimal grain of analysis is the
whole network.

What is needed is an approach in which such mech-
anisms can be separated, analysed and assessed. Luckily,
the simplicity of  statistical learning mechanisms (as
proposed) makes this a tractable task. Hypothetical sources
of  information such as co-occurrence statistics, the
likelihood of various sorts of transitions, and frequency
can be implemented computationally, and this in turn
can allow their performance to be evaluated against
real language data. If  other mechanisms are necessary
to turn these statistics into useful behaviour, these can be
added systematically and their theoretical role understood
more clearly. These other mechanisms might be the use of
additional classes of statistics, or they may be something
else, such as competition between representations, sensitivity
to particular perceptual salience, or error-driven learning.

Such analyses are powerful, whether carried out from a
statistical learning perspective or from other perspectives
(Yang, 2004). This approach, however, should not be limited
to statistical learning – such formal and computational
transparency should be a hallmark of all theories of
development.

To be clear, we are not saying that learning alone,
particularly in this distilled form, is sufficient to account
for all of the complexities of development. Development
is inherently non-rational, interactive and dynamic (cf.
Spencer, Blumberg, McMurray, Robinson, Samuelson &
Tomblin, in press). Such elementary computations may
be modulated by the social environment, the developmental
history, and the cognitive abilities of the child (see also
Hirsh-Pasek, Golinkoff & Hollich, 2000; Sebastián-Gallés,
2007). Nonetheless, this approach is of immense theoretical
value. It allows us to ask if statistical learning mechanisms
can do specific developmental jobs or if  more is needed.
Ultimately, dynamical systems and/or connectionist
approaches may provide a more complete account of
development as a whole (e.g. Spencer, Thomas & McClelland,
in press; Thelen & Smith, 1994; Elman 

 

et al

 

., 1996).
However, for the theoretical task of isolating and under-
standing specific mechanisms, simple computational
techniques confronted with the complexity of real input
offer an important complement.

The papers in the present section bring together work
in a variety of domains to ask this basic question: Can
statistical learning do the job and what other mechanisms
may be involved? McMurray, Toscano and Aslin address
this in the domain of speech perception; Hollich and
Prince examine attention and source localization;
Christiansen, Onnis and Hockema look at the interface
of  word segmentation and grammatical categories;
and Chemla, Mintz, Bernal and Christophe model the
beginnings of syntactic structure.

There are many avenues on which to evaluate our basic
question. Each paper takes a unique approach. McMurray

 

et al

 

., for example, ask if  acquiring a set of statistics is
sufficient for acquiring a useful cognitive representation
(in their case, a phonetic category), and Christiansen
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et al

 

. take a parallel tack, asking about the phonological
information that may be involved in grammatical categories.
We must also ask if particular learning devices are sufficient
for real language, beyond the toy-problems we use as proof-
of-concept, and beyond the use of English. In this vein,
Chemla 

 

et al

 

. evaluate their frequent-frames approach to
grammatical categorization to French.

In addition, language learning should not be compart-
mentalized into simply learning phonemes, words, or
grammatical categories – learning in one domain has
consequences for another. Thus, Christiansen 

 

et al

 

. ask
whether the output of a statistical word segmenter can
serve as useful input for acquiring grammatical categories,
and Chemla 

 

et al

 

. evaluate whether categories extracted
by the frequent-frames statistic can themselves serve as
the elements of further statistical learning – can frequent
frames be used recursively?

Finally, statistical learning ultimately must support
real behaviour. Thus, a crucial question is whether the
statistics alone are sufficient to account for some behaviour
or if  other processes are required. Here, Hollich and
Prince ask whether statistical co-occurrence of low-level
auditory and visual signals is sufficient to model infants’
moment-by-moment source looking behaviour in an
auditory/visual integration task, and McMurray demon-
strates how the unfolding of phonetic category learning
has consequences for early phonetic discrimination.

The papers in this section thus take the exploration of
the explanatory power of statistical learning to the next
level. The elegance of statistical learning is that it allows
us to quantify our theories of development precisely, and
to test their sufficiency against real-world data. Although
the four papers in this section examine different sub-
domains of language and use different metrics for evaluation,
all take this idea seriously and push the field of language
development forward in interesting ways. In particular,
such work begins the formation of  a bridge between
statistical 

 

learning

 

 and language 

 

development

 

.
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