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An emerging theory of the neurobiology of category learning postu-
lates that there are separate neural systems supporting the learning
of categories based on verbalizeable rules (RB) or through implicit
information integration (II). Themedial temporal lobe (MTL) is thought
to play a crucial role in successful RB categorization, whereas the
posterior regions of the caudate are hypothesized to support II cat-
egorization. Functional neuroimaging was used to assess activity in
these systems during category-learning tasks with category struc-
tures designed to afford either RB or II learning. Successful RB
categorization was associated with relatively increased activity in
the anterior MTL. Successful II categorization was associated with
increased activity in the caudate body. The dissociation observed
with neuroimaging is consistent with the roles of these systems in
memory and dissociations reported in patient populations. Conver-
gent evidence from these approaches consistently reinforces the
idea of multiple neural systems supporting category learning.
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Introduction

Humans are remarkably adept at identifying categories, reacting

similarly to distinct objects in the environment with common

features, even when differences in features between category

members are very subtle (e.g., faces). Learning a novel visual

category depends on developing new representations of cate-

gorymembership, a process thought to involve bothmajor types

of memory: declarative (explicit) and nondeclarative (implicit)

(e.g., Reber and others 2003). Declarative memory, supported

by the medial temporal lobe system (MTL, containing the

hippocampus), aids in both storage and conscious recollec-

tion of previous examples, supporting heuristic evaluation of

category membership. The role of nondeclarative memory is

seen in the nonconscious abstraction of a category prototype

(Knowlton and Squire 1993) based on changes in sensory cortex

(Reber and others 1998a, 1998b, 2003) or the gradual acquisition

of the category definition via feedback supported by the basal

ganglia (Knowlton and others 1996; Seger and Cincotta 2005).

The existence of multiple brain systems for category learning

does not answer the critical question of what factors determine

how categories will be learned. One factor that is likely to be

very important (although there are likely to be others) is that

the information structure of the category may determine what

neural system will support learning (Ashby and Ell 2001;

Maddox and others 2003). A category defined by a verbalizeable

rule, for example, a criterion applied to a single stimulus dimen-

sion, can be learned by an explicit, rule-based (RB) system. In

contrast, a highly similar category structure that requires

information integration (II) of 2 or more stimulus dimensions

(Ashby and Gott 1998) cannot be described by a simple verbal-

izeable rule (Ashby and others 1998) and is hypothesized to be

learned by a separate neural system.

One multiple-systems theory of the neurobiology of category

learning that incorporates the information structure of the

categories is the COVIS (Competition between Verbal and

Implicit Systems) model proposed by Ashby and others (1998).

In this model, 2 learning systems compete: an explicit, RB

system that depends on working memory and attention, and an

implicit, procedural learning system. A new addition to the

COVIS model is the MTL (Ashby and Valentin forthcoming). In

this system, the MTL acts together with prefrontal cortex (PFC)

structures and the head of the caudate to identify verbalizable

rules for categorization. Within COVIS, implicit learning is

hypothesized to depend on connections between visual cortical

areas and posterior regions of the caudate (e.g., posterior body

and tail of the caudate). These connections may serve to faci-

litate the development of new representations in the cortex

through feedback signals available in the basal ganglia.

This multiple-systemmodel of category learning can be tested

with functional neuroimaging (fMRI) of RB and II categorization

tasks. Closely matched RB and II categorization tasks were

created by modifying the structure of the categories, although

stimuli in both tasks are extremely similar and the stimulus

dimensions are identical (e.g., Maddox and others 2003). The

stimuli here were sine-wave gratings that varied in components

of frequency and orientation (Fig. 1). For the RB task, the fre-

quency of the grating determined category membership. For

the II task, participants were required to integrate frequency

and orientation information to determine membership. The

discriminability between categories was adjusted to roughly

match the 2 tasks in overall difficulty. fMRI data were collected

from participants in both groups while learning to categorize

over four 80-trial runs. Feedback after each trial enabled the

participants to learn the categories throughout scanning.

For each condition, activity evoked by correct categorization

was compared with that evoked by incorrect categorization to

identify brain areas associated with successful categorization.

This approach has the advantage of not just identifying activity

associated with making a categorization judgment but identify-

ing when knowledge of the category is being successfully app-

lied. In addition, this contrast captures the process of learning

over the course of the experiment as more successful catego-

rization judgments are made later in the session when the

category has been more effectively learned. By identifying the

brain regions associated with successful categorization, we
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hypothesized that the different neural networks that support

RB and II category learning could be distinguished.

We predicted that successful RB categorization would be

associated with increased activity in the MTL, reflecting explicit

knowledge of the category. In contrast, successful II categori-

zation would be associated with increased activity in the

posterior caudate, reflecting the critical role of this area in

feedback-oriented implicit category learning. Because our prior

hypotheses focused on the MTL and caudate as key components

of the 2 memory systems thought to participate in category

learning, anatomical regions of interest (ROIs) were defined for

these areas. For additional sensitivity, the ROI alignment (ROI-

AL) (Stark and Okado 2003) alignment technique was used to

coregister these anatomical structures directly to assess differ-

ences in evoked activity for the RB and II groups within the MTL

and caudate.

Materials and Methods

Participants
Thirty-four healthy, native English-speaking, right-handed adults

(15 males, 19 females) of mean age 23 (range, 18--30) were recruited

from the Northwestern University community for participation in this

study. All participants gave informed consent according to procedures

approved by the Northwestern University Institutional Review Board

and were compensated for their time. Participants were randomly

assigned to either the RB (N = 17) or II (N = 17) group. One RB

participant was eliminated due to poor quality echo-planar imaging

(EPI) data and 8 participants (4 RB, 4 II) were eliminated due to an

inability to learn the categories (failing to meet a performance criterion

of 60% correct on the final block).

Materials
Stimuli were circular sine-wave gratings (Gabor patches; see Fig. 1) that

varied in spatial frequency (thickness of lines) and orientation (tilt of

lines) as in Maddox and others (2003). Participants were instructed to

place each stimulus into one of two categories and to try to learn these

categories over time based on the feedback given after each trial. The

only difference between the RB and II groups was in the boundary that

defined the categories. The stimulus space for both the RB and II groups

can be thought of in 2 dimensions, spatial frequency on the x axis and

orientation on the y axis. For the RB group, the stimuli were divided into

categories based on a vertical decision boundary such that category

membership depended only on the spatial frequency of the sine-wave

grating (Fig. 1A). For the II group, the categories were defined by

a diagonal decision boundary that required integration of spatial

frequency and orientation information (Fig. 1B).

Procedure
On each trial, a fixation cross was presented for 750 ms followed by

a single stimulus that was presented for 2 s and during this time, parti-

cipants indicated to which category they judged the stimulus belonged.

Stimulus offset was followed by a 500-ms visual mask and feedback for

the participant’s choice (‘‘Right,’’ ‘‘Wrong’’) was shown for 750 ms.

Participants were warned (‘‘Time’’) if they had not made a response

during the 2 s the stimulus was on the screen (see Fig. 1C). A total of

320 categorization trials were performed by each participant in 4 runs

of 80 trials each. An equal number of fixation-only trials were

pseudorandomly interspersed between stimulus trials to maximize the

separability of the measured hemodynamic response.

Imaging
fMRI data were collected using a Siemens TRIO 3.0 T MRI scanner

equipped with a transit/receive head coil while participants performed

the categorization task. Whole-brain, gradient-recalled EPI (35 axial,

3-mm slices, 0 gap) were collected every 2 s (time repetition = 2000;

echo time = 25 ms; flip angle = 78�; 22 cm field of view; 64 3 64

acquisition matrix; resulting voxel size = 3.44 3 3.44 3 3 mm) for 330

volumes in each of 4 scans. For anatomical localization, high-resolution,

3D MP-RAGE T1-weighted scans (voxel size = 0.859mm 3 0.859 3 1mm;

160 axial slices) were collected for each participant following the

functional runs.

Data Analysis
The functional images were first coregistered through time to correct

for motion using a 3D alignment algorithm (Cox 1996). Voxels with low

signal ( <100 units, 30% of mean signal) or excessive sudden signal

change were eliminated ( >30% in 2 s) and the EPI data were smoothed

(6.9 mm full-width half maximum Gaussian kernel). Data were trans-

formed to standard stereotactic space (Montreal Neurological Institute

305; Collins and others 1994). Estimates of trial-locked evoked activity

were made for the period of 4--12 s after stimulus onset to account

for hemodynamic delay with overlapping responses deconvolved via

a general linear model. Brain regions in which activity was associated

with successful categorization were identified by comparing activity

during correct and incorrect trials for each participant. Within each

group, brain regions that exhibited consistently greater activity during

successful categorization was identified by a second-pass random effects

analysis. Monte Carlo simulation identified a reliability threshold of

t > 4.5 (P < 0.01 uncorrected) for all voxels in clusters of at least

300 mm3. This method estimates the false-positive rate for the study

by creating random noise data that matches the mean and standard

deviation of each voxel for each participant, maintaining the spatial

structure of the data. The noise data is then subjected to exactly the

same analysis as the real data (including spatial smoothing and the 2-pass

random effects model), and a statistical threshold is identified for which

fewer than 0.05 false-positive clusters are identified anywhere in the

brain for the study.

In addition to the whole-brain analysis, the ability to identify anato-

mical boundaries for 2 critical regions hypothesized a priori to be

important for category memory enabled a specific ROI analysis in the

hippocampus and the caudate. For each participant, ROIs were drawn

following anatomical boundaries that are visible on structural MRI. The

Figure 1. RB (A) and II stimuli (B). Each point represents a distinct Gabor patch (sine-
wave) stimulus defined by orientation (tilt) and frequency (thickness of lines). In both
stimulus sets, there are 2 categories (crosses and open circles points). RB categories
are defined by a vertical boundary (only frequency is relevant for categorization),
whereas II categories are defined by a diagonal boundary (both orientation and
frequency are relevant). In both RB and II stimuli there are examples of a stimulus from
each category. (C) Schematic of a single trial. A fixation point is followed by the to-be-
categorized-stimulus (either RB or II depending on the subject), then a short visual
mask that is followed by the feedback. The subject responded ‘‘category A’’ or
‘‘category B’’ during the 2 s the stimulus was on the screen using handheld buttons.
The length of the intertrial interval was pseudorandom and based on between zero and
five 4-s ‘‘fixation-only’’ trial periods arranged to maximize the separability of the
measured hemodynamic response to stimulus trials.
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MTL ROIs were drawn using boundaries that are described elsewhere

(Insausti and others 1998; Reber and others 2002). The caudate ROIs

were drawn according to known neuroanatomical boundaries separat-

ing the caudate from the surrounding white matter and ventricles. Each

individual’s ROIs were then aligned using the ROI-AL method described

in Stark and Okada (2003). This method optimizes regional alignment at

the expense of whole-brain alignment allowing for more precise

localization and enhanced statistical power. Of particular interest was

to test whether these 2 regions play different roles in RB and II cate-

gorization, that is, whether there was significantly different activity

associated with successful categorization in the RB and II groups.

Separate reliability thresholds for contrasts between the participant

groups within the ROIs were identified by additional Monte Carlo

simulations (the MTL ROI volume was 21 500 mm3 and the caudate ROI

was 11 000 mm3; note that this method matches the shape as well as

providing a ‘‘small volume’’ correction for the ROI volumes). Within the

targeted ROIs, an alpha level of 0.05 is met by requiring clusters for

which each voxel exhibited t24 > 2.0 to be at least 700 mm3 in volume

for the MTL and 600 mm3 for the caudate.

Results

For both groups of participants who learned the task, perfor-

mancewas above chance in all runs, and the groups demonstrated

similar learning curves (Fig. 2). Learning across runswas reflected

in a significant linear trend (F1,23 = 111.6,P < 0.05).Mean accuracy

averaged across all 4 runs for the RB group was 70.8% (standard

error [SE] = 1.83), and for the II group it was 74.9% (SE = 3.03). RB
and II accuracy was not significantly different across all 4 runs

(F1,23= 1.25, not significant), thusonecannot attribute differences
observed in functional activity to task difficulty.

In Figure 3, activity evoked by correct categorization was

compared with that evoked by incorrect categorization to iden-

tify brain areas associated with successful categorization. The

normalized atlas coordinates of the center of each of these

clusters for the RB and II groups are listed in Table 1. In the RB

group (Fig. 3, top) successful categorization was associated

with activity bilaterally in the MTL, body of the right caudate,

anterior cingulate, and medial frontal gyrus. In the II group

(Fig. 3, bottom), activity was observed bilaterally in the body and

tail of the caudate for successful categorization.

There was a great deal of common activity between the

groups that performed RB and II categorization. No differences

were observed in total trial-locked activity (for all trials)

between the groups, and there were no global differences in

total activity for correct categorization trials alone at a corrected

threshold across the whole brain. The involvement of the MTL

and caudate in RB and II categorization was examined with

targeted anatomical ROI analysis of these structures to improve

sensitivity to group differences in these crucial regions in which

we had prior hypotheses about differential activity.

Within the MTL ROI, the effect of successful categorization

was significantly larger for the RB than the II group in the left

anterior hippocampus. Correct RB responses evoked relatively

greater activity than incorrect RB responses, whereas the II

responses did not vary with success. It should be noted that the

general profile of activity in the anterior hippocampus was

a negative deflection that occurred for all stimuli (see Fig. 4C),

whether the trial reflected correct or incorrect categorization.

The RB success effect was an increase that effectively reduced

the size of this deactivation. This type of trial-locked deac-

tivation has been reported previously and interpreted as a

familiarity signal during recognition memory (Henson and

others 2003) or as an indication that MTL activity may be ele-

vated during ‘‘easy’’ or rest baseline conditions (Law and others

2005), for example, during the fixation periods interspersed

among trials here. Although it is tempting to suggest that

assessing the familiarity of stimuli is involved in RB categoriza-

tion, the size of this deactivation was not reliably different for

RB and II categorization (although success did not affect MTL

activity for II categorization), and further speculation should

await a better understanding of the conditions under which

trial-locked deactivations occur during memory tasks in the

MTL. Regardless of the reason for the deactivation, the MTL

activity was found to be correlated with RB success, implying

a role for the MTL memory system during the RB task.

In contrast, successful II categorization was associated with

greater differential activity in the right body of the caudate

compared with successful RB categorization (Fig. 4B). In this

region, increased activity was identified on all trials (Fig. 4D),

particularly correct trials, but the differential activity to suc-

cessful categorization was reliably larger for II participants,

suggesting that caudate activity is correlated with successful II

categorization. Both targeted ROIs exhibit some commonality

in the overall pattern of activity, possibly reflecting the com-

petition between 2 simultaneously active categorization sys-

tems. However, the difference between activity on correct and

incorrect trials indicates that the MTL activity is associated with

successful RB categorization while the body of the caudate is

associated with successful II categorization.

Discussion

Participants learning to categorize simple visual stimuli based

on an underlying structure that either afforded a RB or II ap-

proach exhibited dissociable patterns of neural activity. For the

participants performing RB categorization, the MTL was asso-

ciated with successful categorization responses. In contrast,

participants performing II categorization exhibited activity in

the caudate associated with success. The localization of these

differences further supports the idea from memory systems

research that RB categorization depends on declarative, explicit

memory, whereas II categorization may depend more on the

basal ganglia and nondeclarative memory mechanisms.

The role of the posterior regions of the caudate in II cate-

gorization supports the hypothesis first proposed in the COVIS

model (Ashby and others 1998) and was later supported by

neuropsychological research on patients with Parkinson disease

Figure 2. Accuracy of RB and II ‘‘learners’’ across 4 runs. Both groups performed
above chance in all runs, and average accuracy did not differ between groups (F1,24 =
1.25, not significant). RB mean performance across runs was 70.8% (SE = 1.83) and II
was 74.9% (SE = 3.03).
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(Knowlton and others 1996; Filoteo and others 2005). However,

there is at least one additional way for the brain to acquire

a novel visual category. Neuroimaging of prototype-based visual

categories has implicated changes within visual cortical areas

(Reber and others 1998a, 1998b, 2003). Learning this type of

category does not appear to depend on the basal ganglia (Reber

and Squire 1999), but those results differ from the II category

learning studied here in several relevant ways. The categories

are learned incidentally, without feedback, the category struc-

ture is based on a central prototype rather than a stimulus-space

decision boundary and only a single category is learned.

The role of the basal ganglia in categorization is becoming in-

creasingly well supported by patient data (Knowlton and others

1994; Filoteo and others 2001, 2005; Shohamy and others 2004)

as well as neuroimaging data (Poldrack and others 2001; Seger

and Cincotta 2002, 2005). The neurobiology of the caudate has

several notable features that suggest its effectiveness in visual

category learning. The projections of visual cortical neurons in

the TE area of the inferotemporal cortex onto the spiny neurons

of the tail of the caudate are organized in a many-to-one fashion

(Wilson 1995). This connection structure should be ideal for

extracting commonalities across a range of stimuli and neces-

sary to generalize to novel category exemplars. The basal ganglia

receive widespread input from the cerebral cortex, and these

pathways are topographically organized (e.g., McGeorge and

Faull 1989). Specific cortical regions project to the dorsal and

ventral striatum, and pallidal output from the basal ganglia loops

back into these same cortical regions via various thalamic nuclei

(Middleton and Strick 2000). It has been suggested that at least

5 parallel corticobasal ganglia loops exist, but of particular

interest here is the inferotemporal-cortical loop through the

posterior basal ganglia (Yeterian and Pandya 1995). This pos-

terior loop would allow for the possibility of influencing cortical

representations in the regions that project to the caudate

during category learning. The convergent nature of these pro-

jections supports the idea that this region of the caudate should

be particularly important for visual category learning, as found

here during II category learning. Finally, the availability of

reward signals via dopamine (Wickens 1990; Schultz 1992;

Aron and others 2004) and dopamine’s role in strengthening

recently active synapses make feedback-driven learning highly

likely to rely on the basal ganglia in general. Together, these

features indicate the plausibility of the hypothesis that the

caudate participates in visual category learning, and the neuro-

imaging data of participants performing II tasks now provide

significant support for this hypothesis.

In contrast to the caudate, the neurobiology of the MTL has

been proposed to be ideal for the information processing de-

mands of explicit, declarative memory. McClelland and others

(1995) provided an analysis of information processing in

Figure 3. Top: a portion of the successful RB categorization network featuring the MTL (t11 > 4.5, cluster > 300 mm3). Sagittal views are of the right hemisphere. Bottom:
a portion of the successful II categorization network featuring the body of the caudate. t12 > 4.5, cluster > 300 mm3).

Table 1
Volume-threshholded clusters of areas that activated differentially to correct versus incorrect

categorization trials for the RB and II groups

Brain region Brodmann
area

Talairach
coordinates (x, y, z)

Cluster
size (mm3)

RB group
Correct[ incorrect
Left anterior hippocampus �18, �8, �12 2172
Right anterior hippocampus 16, �5, �10 1781
Left superior frontal gyrus 8 �20, 17, 53 1688
Left medial frontal gyrus 10 �8, 53, 19 1203
Left transverse temporal gyrus 41 �59, �21, 10 1109
Right caudate body 18, �26, 28 1094
Left paracentral lobule 5 �8, �41, 56 1078
Right superior temporal gyrus 22 59, �8, �2 578
Left posterior cingulate 30 �11, �58, 17 531
Right precuneus 7 13, �47, 60 453
Right paracentral lobule 6 4, �34, 58 406
Right superior frontal gyrus 6 2, 2, 62 406

Incorrect[ correct
Right cuneus 18 2, �78, 5 719
Right supramargninal gyrus 40 55, �55, 37 578

II group
Correct[ incorrect
Left caudate body �20, �14, 29 2766
Left lentiform nucleus 24, �7, 3 1656
Right caudate body 17, �11, 28 969
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distributed neural networks and demonstrated that the demands

of rapid learning of distinct episodes requires specialized cir-

cuitry to avoid catastrophic interference. The hypothesized role

of this system in categorization would be to learn the specific

criterion (or rule) that distinguishes the categories. This may

be accomplished through the creation of a representation of

the boundary via exemplar stimuli that are very close to this

boundary. Then, a comparison of the current stimulus with

this boundary representation could be used to determine cat-

egory membership. This approach would lend itself to RB tasks

such as the one presented here in which a verbalizable rule (e.g.,

the relative spatial frequency of the Gabor pattern) clearly

differentiates the categories. Amnesic patients attempting to

learn an RB task are impaired (Kitchener and Squire 2000),

indicating that the MTL plays a role in these tasks. Additionally,

the knownmonosynaptic projections from hippocampus to PFC

(Thierry and others 2000) as well as animal data of projections

from hippocampus to the medial caudate via the fornix (Devan

and White 1999) support the more recent COVIS model (Ashby

and Valentin forthcoming) that includes the hippocampus.

The peristimulus time courses in Figure 4 suggest several

hypotheses about the operation and interaction of these 2

category-learning systems. In the MTL, activity is deflected

below baseline on each trial for all subjects. One potential ex-

planation for this downward deflection is high baseline activity

depressing the trial-locked activity (Law and others 2005).

Another explanation is that this effect reflects familiarity with

the stimuli (e.g., as in Henson and others 2003). In either case,

the pattern of activity in the MTL suggests the operation of

several opposing processes: 1) a tonic deactivation to each trial

and 2) an increase in activity for correct trials during RB cate-

gorization, possibly reflecting successful recollection. Our data

do not permit us to separate these effects although it is possible

that they reflect the neural correlates of the cognitive state (e.g.,

engaging in the general use of an RB strategy leads to de-

activation on all trials) from trial-specific effects (e.g., a relative

increase during a successful categorization event).

Activity in the caudate increases on each trial and the time

course suggests the possibility that it may be related to the

feedback given on each trial (although it’s also possible that the

delayed peak is simply a result of the hemodynamic response of

this brain area). Behavioral studies have shown that feedback

is particularly important for II but not RB category learning

(Maddox and others 2003; Maddox, Ashby, and others 2004).

Further, this pattern of activity has been observed previously

(Seger and Cincotta 2005) in the body and tail of the caudate

during successful categorization, thus emphasizing the impor-

tance of this structure in II category learning. As in the MTL, the

caudate activity is similar for the RB and II groups, although the

correct II trials evoke a reliably larger response. In both regions

the greater involvement of the critical brain area is inferred

from the greater observed response on correct trials as com-

pared with incorrect trials.

The patterns of peristimulus activity observed here do not

necessarily support the idea of direct competition between

the 2 neural systems. In Poldrack and others (2001), opposing

patterns of activity were observed in the MTL and caudate and

interpreted as direct competition, that is, activity in one system

downregulates the other system. Here, both tasks exhibited

this cross-region activity, but successful categorization distin-

guished between the RB and II category-learning process. This

could be interpreted as a form of competition in which 2

systems are engaged, but the system that ‘‘wins’’ is the one that

has the greater probability of success. When studying the

neural systems of healthy individuals, it is difficult to prevent

them from using all available resources to learn a new skill,

Figure 4. (A) RB categorization > II categorization in the left MTL (t24 > 2.0, cluster > 700 mm3). (B) II categorization > RB categorization in the right body of the caudate (t24 >
2.0, cluster > 600 mm3). ROI-AL methodology (Stark and Okada 2003) was used to align ROIs in both A and B. Note that cross-subject ROI-AL was improved at the cost of whole-
brain alignment. (C) Peristimulus time (PST) course for the left MTL ROI. (D) PST course for the right caudate ROI.

Cerebral Cortex January 2007, V 17 N 1 41

 by guest on D
ecem

ber 24, 2015
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://cercor.oxfordjournals.org/


particularly when one of these systems is hypothesized to

operate implicitly. The similarities in overall activity observed

here suggest that both types of learning may be active sim-

ultaneously in both conditions. Further, intermixing of strate-

gies, especially early in the learning process, could reflect

competition between the 2 categorization systems. The corre-

lation of success-related activity in the MTL with RB categori-

zation and in the posterior caudate with II categorization

suggests that these regions play a crucial role in effective appli-

cation of the associated categorization approach. Activity in the

MTL during II categorization and in the posterior caudate

during RB categorization may reflect activity in the system

that loses in competition, resulting in that activity being

unrelated to success.

Evidence from the cognitive neuroscience of category lear-

ning is consistently and convincingly demonstrating that there

are multiple brain systems for category learning. Computational

models have attempted to provide alternate accounts of be-

havioral and neuropsychological dissociations (Nosofsky and

Zaki 1998; Nosofsky and Johansen 2000), but neuroimaging has

found strong evidence for separable systems for category learn-

ing in the brain, in this as well as in previous studies (Poldrack

and others 2001; Reber and others 2003; Seger and Cincotta

2005). In particular, we posit that the MTL and basal ganglia can

function as independent memory systems in certain learning

situations. One theory that attempts to characterize these

independent systems is the COVIS model of category learning

(Ashby and others 1998). The neuroimaging findings reported

here provide significant support for this model and successfully

bring together previously distinct theories of memory systems

and category learning. Specifically, verbal, RB category learning

relies upon the MTL-based explicit memory system (along with

PFC structures), and nonverbal, implicit category learning relies

upon the basal ganglia--based procedural learning system.

Human Research Statement

This experiment required the use of human subjects because

we are interested in the higher cognitive process of learning.

Before beginning the experiment, participants were required to

read and sign the informed consent form. They were encour-

aged to ask any questions and had the option of leaving at any

time with no adverse consequences. The informed consent

forms are kept on record in the lab.
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