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Abstract 

 

Parametric systems have been proposed as models of how humans represent knowledge 

about language, motivated in part as a way to explain children’s rapid acquisition of 

linguistic knowledge. Given this, it seems reasonable to examine if children with 

knowledge of parameters could in fact acquire the adult system from the data available to 

them. That is, we explore an argument from acquisition for this knowledge 

representation.  We use the English metrical phonology system as a non-trivial case 

study, and test several computational models of unbiased probabilistic learners. Special 

attention is given to the modeled learners’ input and the psychological plausibility of the 

model components in order to consider the learning problem from the perspective of 

children acquiring their native language. We find that such cognitively-inspired unbiased 

probabilistic learners uniformly fail to acquire the English grammar proposed in recent 

metrical studies from English child-directed speech, suggesting that probabilistic learning 

alone is insufficient to acquire the correct grammar when using this parametric 

knowledge representation.  Several potential sources of this failure are discussed, along 

with their implications for the parametric knowledge representation and the trajectory of 

acquisition for English metrical phonology. 

 

 

 

 

 



 

1. Introduction: Knowledge representations 

Acquisition is not so easy if we believe children are acquiring a generative system for 

their language (e.g., Chomsky 1981, Halle & Vergnaud 1987, Hayes 1995, Tesar & 

Smolensky 2000, Prince & Smolensky 2004, Heinz 2007, among many others), rather 

than less abstract representations of the data they encounter (e.g., Daelemans, Gillis, & 

Durieux 1994, Goldberg 1995, Gillis, Daelemans, & Durieux 2000, Tomasello 2006, 

among many others).  The idea of a complex linguistic system that varies over a limited 

number of dimensions (often called parameters or constraints) serves a dual purpose.  

First, it is used to explain the constrained variation seen in adult languages cross-

linguistically within some specific domain (e.g., metrical phonology (Halle & Vergnaud 

1987, Hayes 1995) or syntax (Chomsky 1981)).  That is, it is often argued that it is 

surprising to see such limited variation if there is no common underlying system that 

humans are using.  Motivation for many theoretical representations comes from 

examining adult language knowledge and attempting to describe a system that can 

compactly capture the limited variation observed. For example, Hayes (1995, p.55) states 

that the requirements of a successful theory of stress are that it is “well defined”, 

“maximally restrictive”, and is “capable of describing all the stress systems of the world’s 

languages”.  Another motivation is tied explicitly to acquisition.  Specifically, systematic 

linguistic knowledge is used to explain how children come to know what they do about 

language so quickly (e.g., Chomsky 1981, Dresher 1999).  In this case, there is often an 

implicit assumption that if children have prior knowledge of the linguistic system, 

acquisition from the available data will be easier (e.g., see Crain & Pietroski’s (2002) 



discussion on “why language acquisition is a snap” for aspects of syntax and semantics).  

However, it is often unclear how exactly this acquisition process works, given the 

complexity of the systems proposed and the data children learn from.  In this paper, we 

explore the second motivation described above – the argument from acquisition – for a 

parametric knowledge representation, which is a knowledge representation that has been 

motivated mainly, to my knowledge, by cross-linguistic comparisons of adult knowledge.   

 

1.1. Acquiring complex systems 

  The proposal that children build complex systems from the available data is perhaps 

not too unreasonable – there is evidence that children search for linguistic generalizations 

in the available data, even when generalization is not required in order for children to 

effectively use the language. An example of this situation is metrical phonology, where 

the number of potential stress contours for any given word form is finite.  Children could 

simply memorize the appropriate stress contour for a word, but there are studies 

suggesting that children nonetheless seem to look for generalizations.  For example, 

Hochberg (1988) shows that Spanish children learning the metrical phonology of their 

language learn rules for assigning stress even when they could simply memorize the 

stress patterns on a word-by-word basis. Nouveau (1994) demonstrates similar behavior 

in Dutch children. Also, work by Kehoe (1997) demonstrates that English children 

produce greater numbers of errors on exceptional word forms, supporting a systematic 

representation of stress.  

To build the correct system rapidly, it is hypothesized that children have prior 

knowledge of the parameters of variation available in the complex system (e.g., Chomsky 



1981, Dresher 1999).  Without this prior knowledge, it would be difficult to decide the 

relevant points of variation (henceforth parameters) among all the potential ways the 

system might vary, and also to decide the correct values for those parameters.  This is 

why having knowledge of the parametric system beforehand makes acquisition easier. 

Yet how can we test this proposal?  If we have a knowledge representation specified 

and we have some idea what the data are like that children use, we can create 

computational models that are grounded both theoretically and empirically, and thus we 

can concretely examine questions about the acquisition process associated with a 

particular knowledge representation.  Specifically, within a model, we can precisely 

define the acquisition process and see the results of that definition for acquisition.  

Notably, acquisition is more constrained than the general learnability problems often 

considered in computational learning.  For instance, acquisition includes limitations on 

the type of input the learner receives, the duration of learning, and the processing 

capabilities of the learner.  Here, we will model the acquisition of a parametric system of 

metrical phonology, using child-directed speech data as input, and keeping in mind 

restrictions on the time course of acquisition and children’s cognitive limitations.  If we 

believe the model reasonably reflects the process of acquisition in children, the results 

that come from the manipulations of this process in the model inform us about the nature 

of this process in children.  From an empirical standpoint, some manipulations we can 

easily do within a modeled learner are more difficult to do with children – such as 

controlling the hypotheses they entertain (in this case, about different parameters), the 

data they learn from, and the way they change beliefs in competing hypotheses. For this 

reason, the results from modeling can be particularly informative about these aspects of 



acquisition, with respect to both what will and what will not work for a particular 

knowledge representation. 

 

1.2. Parametric metrical phonology 

A parametric system of metrical phonology is one proposal to explain the constrained 

variation seen in the world’s stress systems (Halle & Vergnaud 1987, Hayes 1995).  To 

acquire a parametric system, children must view the encountered data as the output of 

that generative system and deconstruct those data in order to identify the parameter 

values involved.  If we consider metrical phonology, the output is the stress contour 

associated with a given word, including the basic division into stressed and unstressed 

syllables.  Suppose a child encounters the word unicorn (stressed syllables will be 

indicated by underlining henceforth), which has the stress contour [stressed unstressed 

stressed].  Even if the child is primed to acquire a parametric system, the task is very 

difficult without knowing the relevant parameters.  A parameter could be any variable 

present in the child’s linguistic or non-linguistic experience; for instance, the child might 

consider (a) if the individual segments of the word matter (e.g., u, n, r), (b) if the 

individual syllables matter (e.g., u, corn), (c) if rhyming matters (e.g., u does not rhyme 

with corn), (d) if the speaker’s rate of speech matters (e.g., fast vs. normal speech), (e) if 

the speaker’s gender matters (e.g., female vs. male speech), and so on.  Knowing which 

parameters are relevant significantly constrains the child’s hypothesis space of language 

systems (henceforth grammars). In addition, knowing the range of values these 

parameters can have also reduces the hypothesis space. 



Still, even with this prior knowledge, the hypothesis space of possible grammars can 

be quite large as it grows exponentially with the number of parameters. For example, 

suppose the child is aware of n binary parameters. Then, there are 2n possible grammars 

in the hypothesis space.  Even if n is small (say 20), this can lead to a very large number 

of potential grammars (220 = 1,048,576).  Children still must choose among a fairly large 

number of hypotheses.  So, having a parametric system defined a priori certainly does not 

solve the acquisition problem by itself.  

In addition, the hypothesized cross-linguistic parameters often interact, so the 

observable data are ambiguous between a number of available grammars (Clark 1994, 

among others).  Consider, for example, a stress contour such as [stressed unstressed 

stressed] in a word like afternoon. In (1), we see just a few of the analyses generated 

from grammars that can yield this stress contour.  Syllables are either undifferentiated 

(S), or divided into Light (L) and Heavy (H) syllables, according to the syllable’s 

structure.  Larger units called metrical feet (indicated by parentheses (…) ) are then 

formed that are made up of one or more syllables, and stress is assigned inside each 

metrical foot. 

 

(1) Generative grammar analyses compatible with the stress contour of afternoon 

 (a) (S    S)    (S) (b) (L     L)    (H) (c) (L)    (L      H) 

       af   ter   noon       af     ter   noon       af      ter   noon 

 

Metrical phonology system parameters include which syllables are contained in 

metrical feet, how large metrical feet are, and which syllables are stressed inside metrical 



feet.  Even if these parameters are known already, it can be difficult to determine which 

parameter values combined to yield the observed stress contour.  So, even with this prior 

knowledge, the acquisition problem is again not really solved, even if there are relatively 

few parameters involved.  The acquirability of the correct grammar from the available 

data is still an open question. 

 

1.3. The present case study: English metrical phonology 

Here, we examine the acquirability of the English grammar defined with respect to a 

specific parametric system of metrical phonology (Dresher (1999), Dresher & Kaye 

(1990), Halle & Vergnaud (1987)), based on the input available to English children. Note 

that for the remainder of this paper, whenever the terms “English grammar” or “adult 

grammar” are used, they refer to the adult English grammar derived from these metrical 

phonology studies and do not refer to how the English grammar may be defined for other 

possible knowledge representations.  As such, the results reported here impact this 

specific knowledge representation only. 

Prior computational modeling work (Pearl 2008, 2009) has suggested that this adult 

grammar is acquirable from English child-directed speech as long as the child (1) 

employs a selective learning bias, (2) is sensitive to the probability distributions in the 

data,  and (3) sets parameters in particular orders (see section 5 and Appendix A3 for 

more discussion of this learning strategy).  Since this system is acquirable from realistic 

data (even if additional knowledge is required in the form of the learning bias and the 

parameter-setting orders), we have a mark in favor of this proposal of knowledge 

representation. However, an open question is whether that additional knowledge is 



necessary for a child who can leverage the information available in probability 

distributions.  That is, can children who simply track probabilistic information also 

acquire the correct grammar? 

The metrical phonology system is a tractable case study to explore as the hypothesis 

space can be explicitly defined by a reasonably small number of parameters drawn from 

cross-linguistic research. However, these parameters interact and thus make identifying 

the parameter value responsible for a given stress contour non-trivial. The instantiation of 

the metrical phonology parameters used in this case study are adapted from the 

parameterization used in Dresher (1999), which is based on the system in Dresher & 

Kaye (1990) that draws from Halle & Vergnaud (1987). Also, a metrical phonology 

system very similar to the one here has been used to study the acquisition of stress by 

second-language speakers (Archibald 1992).  In this system, there are five main binary 

parameters and four binary sub-parameters, yielding 156 legal grammars in the 

hypothesis space (this is due to some dependencies between the parameters, discussed in 

more detail in section 2 below).   The resultant grammars concern only whether syllables 

are stressed or unstressed, and not how much stress syllables receive compared to other 

syllables.1  Moreover, these grammars do not describe interactions with the morphology 

                                                 
1 Once this first basic distinction is made, children can then decide where the main stress of the word lies, 

since we will assume that main stress assignment depends on first knowing which syllables are stressed.  In 

grid theory, as described in Dresher (1999) which draws from Prince (1983), stressed vs. unstressed 

corresponds to distinctions made on Line 1, while main stress corresponds to distinctions made on Line 2, 

i.e., main stress is an additional level of representation beyond the distinction between stressed and 

unstressed.  However, see Prince (1983), Hayes (1995), and Prince & Smolensky (2004) for discussion of 

this assumption, which is controversial for different levels of metrical representation within languages. 



system, due to considerations of the child’s likely initial knowledge state when acquiring 

the metrical phonology system.  Specifically, children may not have hypothesized the 

connection between the morphology system and the metrical phonology system.  Kehoe 

(1998) suggests that children may already know several parameter values of the English 

system by 22 months.   It seems unlikely that children at this age have extensive 

knowledge of their language’s morphology, since Brown (1973) suggests that it is just 

after 36 months that they begin to use morphological endings with some regularity. We 

thus proceed with the following premise: the child’s first hypothesis about the metrical 

phonology system is that it is autonomous, and does not interact with other systems.  

Given this, the child first attempts to identify the grammar in the hypothesis space that is 

most compatible with the available data, perhaps noting that there are exceptions to this 

grammar once the grammar has been identified. Later, the child may recognize that some 

exceptions are systematic, and can be captured by considering interactions with the 

morphology system.   

It is important to note that the metrical phonology system considered here, while not a 

full adult system, is still significantly more complex than parametric systems explored in 

some prior computational modeling studies, which involved at most three interacting 

parameters (Gibson & Wexler 1994, Niyogi & Berwick 1996, Pearl & Weinberg 2007).  

Previous studies that have examined parametric systems of similar complexity to the one 

considered here have often not used child-directed speech as input when assessing the 

system’s acquirability (Dresher 1999, Dresher & Kaye 1990, Fodor & Sakas 2004, Sakas 

2003, Sakas & Nishimoto 2002, among others). To address this, the modeled learners 

here use a data set drawn from CHILDES (MacWhinney 2000) as input that contains 



both the forms children are likely to encounter and the frequencies at which they will 

encounter these forms.  

In the remainder of the paper, we review the parameters of the metrical phonology 

system under consideration, and then describe the analysis of the English child-directed 

speech data.  Following that, we present several cognitively-inspired unbiased 

probabilistic learners that attempt to acquire the adult English grammar from data 

distributions estimated from English child-directed speech.  Surprisingly, we will find 

that they fail to acquire the correct grammar with any reliability.  Following that, we 

identify the source of their failure and find it is due to the definition of the acquisition 

task – specifically, the definition of the target state and the data distributions in the 

English child-directed speech data.  For this reason, no unbiased probabilistic model 

would succeed at this task, even if it was not constrained in the way our cognitively-

inspired modeled learners are.  We conclude with discussion of implications for this 

parametric knowledge representation and the acquisition process. 

 

2. The parameters of the system 

A sample metrical phonology analysis using the English grammar is shown for 

octopus in (2).  The word is divided into syllables (oc, to, pus), which are then classified 

according to syllable structure as either (L)ight or (H)eavy.  The rightmost syllable (pus) 

is extrametrical (indicated by angle brackets <…>), and so not contained in a metrical 

foot. The metrical foot spans two syllables (oc, to), and the leftmost syllable within the 

foot (oc) is stressed.  This leads to the observable stress contour: octopus. 

 



(2) metrical phonology analysis for octopus 

  (H  L)  <H> 

  oc         to         pus 

 

As we can see, many parameters combine to produce the word’s stress contour in this 

system. We will now briefly step through the various parameters involved (drawn from 

Dresher (1999) and Dresher & Kaye (1990)).  For a more detailed description of each of 

the parameters and their interactions with each other, see Dresher & Kaye (1990),  

Dresher (1999), and Pearl (2007). 

One parameter, quantity sensitivity, concerns whether all syllables are treated 

identically, or differentiated by syllable rime weight for the purposes of stress 

assignment.  The rime consists of the nucleus and coda only, so this definition of weight 

is insensitive to the syllable onset (e.g,. en = ten = sten = stren). A language could be 

quantity sensitive (QS), so that syllables are differentiated into (H)eavy and (L)ight 

syllables. Long vowel syllables with or without codas (VV(C)) are Heavy, short vowel 

syllables (V) are Light, and short vowel syllables with codas (VC) are either Light (QS-

VC-L) or Heavy (QS-VC-H). In contrast, if the language is quantity insensitive (QI), all 

syllables are treated identically (represented below as ‘S’).  Both kinds of analyses are 

shown in (3) for unicorn. 

 

(3)  QS and QI analyses of  unicorn 

 QS analysis    H    L        L/H        QI analysis       S        S        S 

 syllable rime   CVV     V         VC 



 syllable structure  CVV   CV      CVCC 

 syllables        u       ni         corn           u       ni       corn 

 

Syllables classified as Heavy should be more prominent than syllables classified as 

Light, and one way this prominence can be expressed is by receiving stress (following the 

assumption in Dresher (1999) that draws from Prince (1983)).  However, sometimes 

Heavy syllables are not stressed.  In the current parametric system, this can be due to 

another parameter, extrametricality, which concerns whether all syllables of the word are 

contained in metrical feet.  Only syllables contained in metrical feet receive stress, so an 

excluded Heavy syllable will not be stressed.  In languages with extrametricality (Em-

Some), either the leftmost syllable (Em-Left) or the rightmost syllable (Em-Right) is 

excluded.  In contrast, languages without extrametricality (Em-None) have all syllables 

included in metrical feet.  Example (4a) shows Em-Some analyses for giraffe and 

octopus, while (4b) shows an Em-None analysis for afternoon.  Note that these are not 

necessarily the analyses believed to hold for English – they are simply analyses 

compatible with the observable stress contour. 

 

(4a) Em-Some analyses, QS, QS-VC-H 

  Em-Left     Em-Right 

  syllable class   <L>   (H)  (H     L)    <H>  

  syllable rime    V     VC     VC    V     VC 

  syllables       gi     raffe      oc     to     pus 

(4b) An Em-None analysis, QS, QS-VC-L 



  syllable class     (L      L)    (H) 

  syllable rime   VC   VC   VVC 

  syllables     af     ter   noon 

 

Once the syllables to be included in metrical feet are known, metrical feet can be 

constructed.  The foot directionality parameter controls which side of the word metrical 

foot construction begins at, the left (Ft-Dir-Left) or the right (Ft-Dir-Rt).  Examples of 

both options are shown in (5). 

 

(5a) Start metrical foot construction from the left (Ft-Dir-Left):   (L    L   H  

(5b) Start metrical foot construction from the right (Ft-Dir-Rt):     L    L   H) 

 

Then, the size of metrical feet must be determined by the boundedness parameter.  An 

unbounded (Unb) language has no arbitrary limit on foot size; a metrical foot is only 

closed upon encountering a Heavy syllable or the edge of the word. If there are no Heavy 

syllables or the syllables are undifferentiated (because the QI value is used), then the 

metrical foot encompasses all the non-extrametrical syllables in the word.  Some example 

Unb analyses are shown in (6).2   

 

                                                 
2 Note that the assignment of stress has not yet taken place (this does not occur until the foot headedness 

parameter discussed below).  However, as Heavy syllables should be stressed, the unbounded analyses 

shown in (6) end up with foot directionality being the same direction as foot headedness, in order to create 

a stress assignment where word-internal heavy syllables are stressed.  This will not necessarily be true for 

the Bounded analyses, as shown below in (7).   



(6) Unb analyses 

 (a) Building feet from the left (Ft-Dir-Left), QS, Em-None 

  (Step 1)  (L   L   L   H   L begin 

  (Step 2)  (L   L   L) (H   L heavy syllable encountered 

  (Step 3)  (L   L   L) (H   L) end 

 (b) Building feet from the right (Ft-Dir-Rt), QS, Em-None 

  (Step 1) L   L   L   H   L) begin 

  (Step 2) L   L   L   H) (L) heavy syllable encountered 

  (Step 3) (L   L   L  H) (L) end 

 (c) Building feet from the left (Ft-Dir-Left) with all light syllables, QS, Em-None 

  (Step 1) (L   L   L   L   L begin 

  (Step 2) (L   L    L   L  L) end 

 (d) Building feet from the right (Ft-Dir-Rt) with undifferentiated syllables (QI) 

 and  Em-None 

  (Step 1)  S   S   S   S   S) begin 

  (Step 2) (S   S   S   S   S) end 

 

The alternative is for metrical feet to be Bounded (B), and so to be no larger than a 

specific size.  A metrical foot can be either two units (B-2) or three units (B-3); units are 

either syllables (B-Syl) or sub-syllabic units called moras (B-Mor) that are determined by 

the syllable’s weight (Heavy syllables are two moras while Light syllables are one).    

Only if the word edge is reached can metrical feet deviate from this size (by being 

smaller than this size).  Example (7) demonstrates different bounded analyses, with 

various combinations of these parameter values.  



 

(7) Bounded analyses of five syllable sequences 

      (a) B-2, B-Syl, QS, Em-None, Ft-Dir-Left:     (L     H)    (L     L) (L)            

(b) B-3, B-Syl, QI, Em-None, Ft-Dir-Rt:      (S      S)    (S     S    S)  

(c) B-2, B-Syl, QS, Em-None, Ft-Dir-Left:        (H      L)   (L     L)  (L) 

(d) B-2, B-Mor, QS, Em-None, Ft-Dir-Left: 

     mora analysis  µ µ    µ      µ      µ     µ 

              syllable classification       (H)   (L      L)    (L    L) 

 

Once the metrical feet are formed, the foot headedness parameter determines which 

syllable within a foot is stressed.  Feet headed on the left have the leftmost syllable of the 

foot stressed (Ft-Hd-Left) while feet headed on the right have the rightmost syllable of 

the foot stressed (Ft-Hd-Rt).  Example (8) shows samples of both analyses. 

 

(8) Ft-Hd-Left and Ft-Hd-Rt analyses for (L  L)  (L), which uses QS, Em-None, Ft-

 Dir-Left, B-2, B-Syl 

 (a) Ft-Hd-Left: (L   L)   (L) 

 (b) Ft-Hd-Rt:    (L   L)   (L) 

 

These five parameters (quantity sensitivity, extrametricality, foot directionality, 

boundedness, and foot headedness) and their sub-parameters (VC-H/L, Em-Left/Right, 



B-2/3, and B-Syl/Mor) yield 156 legal grammars in the hypothesis space.3 Since these 

parameters interact, a change to any one of their values could non-trivially change the 

stress contour.  For example, consider (9), where changing the extrametricality parameter 

from Em-Right to Em-Left causes the entire stress contour to become its inverse (i.e., all 

syllables that were previously stressed are now unstressed, and all syllables that were 

previously unstressed are now stressed). 

 

(9) Consequences of changing a single parameter for a four syllable sequence 

 (a) QI, Em-Some, Em-Right, Ft-Dir-Left, B, B-2, B-Syl, Ft-Hd-Left 

  (S     S)  (S)  <S>   S S S S  

 (b) QI, Em-Some, Em-Left, Ft-Dir-Left, B, B-2, B-Syl, Ft-Hd-Left  

  <S> (S    S)   (S)    S S S S 

 

Due to parameter interaction, it may be difficult for a child to determine if a particular 

parameter value is responsible for generating the correct stress contour.  This has been 

called the Credit Problem (Dresher 1999), and is the result of data ambiguity. For 

example, consider two grammars that the word cucumber is compatible with (10). These 

two grammars share no parameter values whatsoever in common, making it difficult to 

determine which parameter values should be credited with correctly generating the 

observed stress contour. 

                                                 
3 Note that this is less than the 180 possible grammars, as grammars including both quantity insensitivity 

(QI) and bounded moraic (B-Mor) are ruled out - counting by moras requires treating syllables as Heavy 

and Light (i.e., using the QS value). 



 

(10) Two grammars cucumber is compatible with 

 (a) QI, Em-None, Ft-Dir-Rt, B, B-2, B-Syl, Ft-Hd-Left 

  syllable class  (S) (S  S) 

  syllables  cu cum ber 

 

 (b) QS, QS-VC-H, Em-Some, Em-Right, Ft-Dir-Left, Unb, Ft-Hd-Rt  

  syllable class  (H) (H) <H> 

  syllables  cu cum ber 

 

3. English 

The particular language considered in this modeling study is English, which has the 

following parameter values (following Dresher (1999), who draws from the analysis in 

Halle & Vergnaud (1987)): QS, QS-VC-H, Em-Some, Em-Right, Ft-Dir-Rt, B, B-2, B-

Syl, and Ft-Hd-Left.  There are several reasons English was chosen as the target 

language. First, English child-directed speech data are very ambiguous with respect to the 

156 grammars in the hypothesis space, making the acquisition problem non-trivial.  

Second, there are numerous irregular data – we can easily see this if we examine syllable 

types, where a syllable type is defined as a sequence of syllables specified by their rime 

(e.g., VC (closed)-VC (closed) is a 2-syllable syllable type, and corresponds to many 

different 2-syllable vocabulary items).  A survey of the Brent corpus of English speech 

directed to children between the ages of eight and fifteen months (Brent & Siskind 2001) 

reveals 174 separate syllable types for words of two or more syllables. Of these 174, 85 



have more than one stress contour associated with them.  For example, the VC-VC 

syllable type includes the words herself, answer, and somewhere, which all have different 

stress contours. Since a grammar generates a stress contour based on the syllable type, 

this means that no one grammar can be compatible with these 85 syllable types.  Instead, 

a grammar may be compatible with one of the associated stress contours for a given 

syllable type of this set of 85 but will, by definition, not be compatible with any others 

that are associated with it. In the example above, no one grammar would be able to 

produce the contours associated with all three words – at best, a grammar would produce 

a contour compatible with one word (e.g., words like answer) and incompatible with the 

other two (e.g., words like herself and somewhere). Thus, the English data set is noisy in 

this respect, and certainly complicates acquisition of a generative system. We should note 

that the task for the learners here is to select the adult English grammar, given the English 

child-directed speech data, but not necessarily to note which words are exceptions to this 

grammar.  The noting of exceptions would presumably occur after the child has figured 

out which grammar to choose.4  The child would then identify exceptional data points as 

ones that the selected grammar cannot analyze. 

                                                 
4 However, one can imagine that a child might be able to begin noting exceptions for some of the 

parameter values.  For example, if the child realizes the grammar uses the quantity sensitive (QS) value, the 

child might be able to recognize words containing internal unstressed heavy syllables (e.g., the y in 

ponytail) as being incompatible with this parameter value.  These words could then be ignored.  It should 

be noted that this requires some additional processing/reasoning on the child’s part, such as realizing that 

this observable structural pattern is incompatible with the quantity sensitive value.  This is similar to the 

knowledge required to recognize unambiguous data, in this case for the quantity insensitive (QI) value.  

Depending on the parameter value, this may be easy or rather difficult.  See Appendix A3 for discussion. 



Still, we should not give up hope completely on a generative system.  While there 

obviously must be some way to deal with these exceptional data, a grammar that can 

reliably cover a large portion of the data is still a useful grammar for children to have. 

Also, this situation is not too unusual for metrical acquisition data; for example, 

Daelemans et al. (1994) note that 20% of the Dutch data they consider are irregular 

according to a generally accepted metrical analysis and so must be dealt with in terms of 

idiosyncratic marking.  

A third reason for using English as our case study is that previous computational 

modeling research (Pearl 2008, 2009) has found that the adult English grammar can be 

acquired in this parametric system from child-directed English speech data if the child 

has a bias to learn only from unambiguous data (Fodor 1998a, Dresher 1999, Lightfoot 

1999, Pearl & Weinberg 2007) and the parameters are acquired in a particular order.  

Given a possible way to succeed using a bias, we can now explore whether successful 

acquisition for this difficult case specifically requires a bias or is merely aided by it.  If 

unbiased learners are successful, we know that a bias – while helpful – is not strictly 

necessary.  This is attractive as the successful bias found previously required prior 

knowledge or potentially intensive processing to implement (see Pearl (2007, 2008) for 

details), in addition to restrictions on the order in which parameter values could be set. 

However, if unbiased learners are unsuccessful, we can examine why they fail and 

whether the problem that afflicts these modeled learners is model-specific or endemic to 

all unbiased models.  Fourth, and finally, numerous English child-directed speech 

samples are available through CHILDES (MacWhinney 2000), so realistic estimates of 



the data distributions children encounter can be made.  Thus, our argument from 

acquisition for this parametric knowledge representation can be empirically grounded. 

 

4. The model 

4.1. The learner’s input 

The learner’s input was derived from the distributions of words and their associated 

stress contours in English child-directed speech samples.  The Bernstein-Ratner corpus 

(Bernstein Ratner 1984) and the Brent corpus (Brent & Siskind 2001) were selected from 

the CHILDES database (MacWhinney 2000) because they contain speech to children 

between the ages of eight months and two years old. This age range was estimated as the 

time period when children might be beginning to set the parameters of the metrical 

phonology system under consideration, given that several parameters of this system may 

be known by 28 months (Kehoe 1998).  The Bernstein-Ratner corpus consists of 

recordings of nine child-mother dyads during play sessions, with the children ranging in 

age between 1;1 and 1;11.  The Brent corpus consists of sixteen sets of mothers speaking 

to preverbal infants between the ages of 0;8 and 1;3.  In total, this yielded 540,505 words 

of orthographically transcribed child-directed speech, consisting of 8,093 word types.  

For the most part, words were defined as strings of text surrounded by space, though 

there were some exceptions such as words connected by +, like nightie+night. A child’s 

syllabification of these words was estimated by using the MRC Psycholinguistic 

Database (Wilson 1988), and the associated stress contour was estimated by referencing 

the CALLHOME American English Lexicon (Canavan et al. 1997). Words not present in 

these two databases were given a syllabification/pronunciation consistent with the 



conventions in the two databases – such words were usually child-register words, e.g. 

booboo. See Appendix A1 for a detailed summary of the corpus. 

The simulated learners learned from 1,666,667 words sampled from this data set, as 

this was the estimated number of tokens children would hear in a six month period5, 

based on the estimates for word tokens heard in a three year period (10 million) in Akhtar 

et al. (2004) (citing Hart & Risley (1995)). 

 

4.2. The modeling framework 

All the models described below fit into a very general modeling framework involving 

three components: a definition of the hypothesis space, a definition of the data intake, and 

a definition of the update procedure (Pearl 2007, Pearl & Lidz 2009). The hypothesis 

space here is defined in terms of competing grammars, similar to other previous modeling 

work (Clark 1992, Gibson & Wexler 1994, Niyogi & Berwick 1996, Sakas & Fodor 

2001, Sakas & Nishimoto 2002, Yang 2002, Sakas 2003, Fodor & Sakas 2004, Pearl & 

Weinberg 2007, Pearl 2008). The data intake is all the available input, which is derived 

from the frequencies in child-directed speech samples.  The update procedure shifts 

belief, represented here as probability, between competing hypotheses.  All the modeled 

learners presented use online update procedures, meaning that they extract information 

from the data as the data come in.  This is in contrast to learners (such as ideal/rational 

learners) that store all the data encountered to analyze together at some future point (e.g., 

                                                 
5 It should be noted that most modeled learners converged before the “six months” (as measured in words 

encountered) were up.  This suggests that even if a longer period were given for acquisition to occur (e.g., 

twelve months or eighteen months), the results reported here would not change. 



Perfors, Tenenbaum & Regier 2006; Goldwater, Griffiths, & Johnson 2007; Foraker, 

Regier, Kheterpal, Perfors, & Tenenbaum 2007, 2009).  Often such modeled learners are 

addressing the learnability of the information from the available data, without the 

constraints on processing that acquisition would require.  Those studies complement 

studies that use incremental models (Gibson & Wexler 1994, Niyogi & Berwick 1996, 

Sakas & Fodor 2001, Yang 2002, Sakas 2003, Fodor & Sakas 2004, Gambell & Yang 

2006, Pearl & Weinberg 2007, Vallabha, McClelland, Pons, Werker, & Amano 2007, 

Pearl 2008, Pearl & Lidz 2009), and these latter studies are more likely to use algorithms 

that are closer to the procedures children use to acquire language.  Specifically, from the 

consideration of psychological plausibility, it is unlikely that children (or adults) have 

large enough memory capacity to store every utterance ever heard in all its detail. Instead, 

it seems far more likely that children process the data into smaller chunks, perhaps one or 

at most a few data points at a time, updating their hypotheses about the underlying system 

as they go.   

 

4.3. Unbiased models  

The basic hypothesis space for each of the unbiased models considered is the set of 

156 viable grammars, comprised of the five main and four sub-parameters in the metrical 

phonology system.  For each parameter, there are two competing values (e.g., QS vs. QI 

for quantity sensitivity).  The learner initially associates a probability of 0.5 with each, 

representing no bias for either parameter value.  This probability is then altered, based on 

the data encountered. 



A given data point contains two types of information: the syllable rime structure and 

the stress contour.  For example, the word cucumber has the syllable rime structure ‘VV 

VC VC’ and the stress contour ‘stressed stressed unstressed’.  For each data point, the 

model generates a grammar based on the current probabilities associated with all 

parameter values, following the algorithm in Yang (2002).  For instance, when generating 

the quantity sensitivity value, the modeled learner uses the probabilities associated with 

QI and QS.  Suppose they are 0.40 and 0.60 respectively; then, the model will use the QI 

value with 40% probability and the QS value with 60% probability.  If the learner uses 

the QS value, the sub-parameter QS-VC-H vs. QS-VC-L is then chosen based on the 

associated probabilities. This generation process continues until all parameter values have 

been selected.  Using the probabilistically generated grammar, the model then constructs 

a stress contour for the word, given its syllable rime structure. If the generated stress 

contour matches the observed stress contour, all parameter values in that grammar are 

rewarded (11a); if the generated stress contour does not match, all parameter values in 

that grammar are punished (11b).  Note that the learner does not attempt to assign credit 

or blame to a particular parameter value within the grammar.  Instead, all participating 

values are rewarded or punished together, based on the grammar’s ability to match the 

observed stress contour.  The learner then moves on to the next data point. 

 

(11) Observed Stress Contour: cucumber 

 (a) grammar selected: QI, Em-None, Ft-Dir-Rt, B, B-2, B-Syl, Ft-Hd-Left 

 generated stress contour: 

     syllable class  (S) (S  S) 



     syllables  cu cum ber   

        match: reward all 

 

 (b) grammar selected: QI, Em-None, Ft-Dir-Rt, B, B-2, B-Syl, Ft-Hd-Rt 

 generated stress contour: 

     syllable class  (S) (S  S) 

     syllables  cu cum ber 

        mismatch: punish all 

 

When the probability for one parameter value approaches 0.0 or 1.0, the learner sets 

that parameter to the appropriate value.  For example, if the threshold was 0.2/0.8 and 

Em-Some’s probability reached 0.8, the learner would set the extrametricality parameter 

to Em-Some by giving that parameter value a probability of 1.0 (while Em-None would 

be set to a probability of 0.0).  The grammar generated for subsequent data points would 

then always contain the value Em-Some, since its probability is 1.0.  All simulations used 

a 0.2/0.8 threshold, based on estimates of the thresholds children are able to generalize at 

(Gómez & Lakusta 2004, Hudson Kam & Newport 2005).6  Ideally, after a reasonable 

                                                 
6 Specifically, Hudson Kam & Newport (2005) show that 6-year-old children do not reliably extract a 

generalization from noisy data when the probability of the generalization occurring in the data is 0.60.  This 

suggests that the threshold for generalizing is higher than this.  Goméz & Lakusta (2004) demonstrate that 

12-month-old children seem able to make a generalization from noisy data when the probability of the 

generalization occurring in the data is 0.83 (but not when the probability is 0.67).  This suggests that the 

threshold is above 0.67 but may be lower than 0.83.  The threshold of 0.8 for these simulations was chosen 



number of English data points, the learner will set the correct values for the English 

grammar.  

The unbiased learners considered here vary with respect to how they implement the 

reward/punishment component of the update procedure.  One learner type is based on the 

Naïve Parameter Learner (NPLearner) described in Yang (2002), which uses the Linear 

reward-penalty scheme (Bush & Mosteller 1951), as shown in (12).  The update equation 

involves a parameter γ that determines how liberal the learner is.  The larger γ is, the 

more probability the learner shifts for a single data point.  

 

(12) Linear Reward-Penalty Scheme 

 pv = previous probability of parameter value (e.g., QI) 

 po = previous probability of opposing parameter value (e.g., QS) 

(a) generated stress contour matches observed stress contour (reward)7 

 

€ 

pvnew  = pv + γ(1- pv) 

 

€ 

ponew  = 1-

€ 

pvnew  

(b) generated stress contour does not match observed stress contour (punish) 

 

€ 

pvnew  = (1- γ)pv  

 

€ 

ponew= 1-

€ 

pvnew  
                                                 
as a value within this range.  Varying this threshold value between 0.67 and 0.83 did not qualitatively 

change the results found. 

7 Though there is actually a separate formula for calculating ponew, we can calculate it this way since there 

are only two values for any parameter.  Note also that multiplying the terms out will show a more intuitive 

notion of reward and punishment: both the reward and punishment of pv involve the subtraction of the 

quantity γ*pv from the original probability, and only the reward involves the addition of the quantity γ. 



 

As an example, suppose we consider the probabilities of QI and QS for the quantity 

sensitivity parameter.  Initially, they are both 0.5. For the first data point, suppose QI is 

chosen to be part of the grammar (using the probabilistic grammar generation process 

described at the beginning of this section) and that grammar fails to generate the observed 

stress contour.  The QI value (and all other participating values) are punished.  Suppose γ 

is 0.01.  The new value of QI would be (1-0.01)*0.5 = 0.495 and the new value of QS 

would be 1-0.495 = 0.505. 

The second learner type is a Bayesian learning variant (BayesLearner) that uses 

Bayes’ rule to update parameter value probability. Since there are only two parameter 

values per parameter, the learner uses the beta distribution to calculate the probability a 

binomial distribution should be centered at in order to account for the observed data 

(Chew 1971).  The update equation involves two statistical parameters, α and β (see 

(13)).  Setting both of these values to 0.5 initially biases the model to favor neither 

parameter value, and also to prefer the probabilities reflected by the observed data.  This 

is because these values represent prior beliefs the learner has, specifically that the learner 

imagines (before ever observing any data) that 0.5 of 1 data point supports one parameter 

value over the other.8 Since these values are so small, they represent a very weak initial 
                                                 
8 Obviously, learners cannot really observe fractions of data points.  However, prior beliefs represent 

probabilities, so this can also be thought of as a learner having 50% confidence that 1 data point supports 

one parameter value over the other. We could encode this same idea by having α = β = 1, so that the prior 

belief is that 1 out of 2 data points support one parameter value over the other.  However, this means the 

initial bias for a parameter probability of 0.5 is slightly stronger, and takes more observed data to 

overcome.  



bias, and the observed data will soon overshadow this bias.  This means the learner has 

no initial preference for a parameter’s value, and is strongly driven by the observed data.  

If a parameter value participates in a grammar that generates a matching stress contour, 

the number of successes for that parameter value is incremented by 1.  If a parameter 

value participates in a grammar that does not, the number of successes is left alone.  

Either way, the total data seen is incremented by 1 if the parameter value was part of the 

grammar used to generate the stress contour.  The probabilities for opposing parameter 

values are then calculated and all probabilities are normalized so they sum to 1. So, for 

each parameter value, the model tracks (a) the current probability, (b) the number of 

matching stress contours that parameter value has been involved in generating, and (c) 

the total number of stress contours that parameter value has been involved in generating. 

 

(13) BayesLearner update equation 

 pv = previous probability of parameter value (e.g., QI) 

 po = previous probability of opposing parameter value (e.g., QS) 

€ 

pvnew =
α +1+ successes

α + β + 2 + total data seen
 

€ 

pvnew , normalized =
pvnew

pvnew + po
 

€ 

ponew , normalized =
po

pvnew + po
 

 

As an example, suppose we consider the same scenario as before: the probabilities of 

QI and QS for the quantity sensitivity parameter.  Initially, they are both 0.5. For the first 

data point, suppose QI is chosen to be part of the grammar and that grammar fails to 



generate the observed stress contour.  The QI value (and all other participating values) 

are punished. The non-normalized probability for the QI value is 

(0.5+1+0)/(0.5+0.5+2+1) = 0.375.  The non-normalized probability for the QS value has 

not changed from 0.5 since it was not used for this data point.  The normalized 

probability of QI is then 0.375/(0.375 + 0.5) = 0.429 while the normalized probability of 

QS is then 0.571. 

One property of these learners is that neither is very noise-tolerant, since the 

probabilities are updated for each data point encountered.  Given the noisy English data 

and the complex system with interacting parameters, this may not be a desirable property.  

Yang (2002) advocates a method called batch-learning for smoothing the acquisition 

trajectory when the system to be acquired involves multiple parameters, such as the 

metrical phonology system here.  Unlike the standard usage of the term batch-learning, 

this method does not require the learner to analyze larger quantities of data 

simultaneously.  Instead, the learner simply keeps a count of how many successes 

(matches) or failures (mismatches) a parameter has had in a row.  If the parameter has 

succeeded or failed a certain number of times in a row, only then does the learner invoke 

the update function.  Thus, this method is compatible with an incremental learning 

procedure that extracts information from data as they come in.  In addition, this method 

allows the learner to be more robust in the face of noisy data, as a string of 

successes/failures is less likely to result unless that parameter value really is 

succeeding/failing on the majority of the data. In order to distinguish this method from 

the standard usage of batch-learning, we will refer to it as count-learning hereafter.   



The count size c regulates how often a parameter value is rewarded/punished.  Every 

time the parameter value is part of a grammar that generates a matching stress contour, 

that parameter value’s counter is incremented; every time the parameter value is part of a 

grammar that generates a mismatching stress contour, that parameter value’s counter is 

decremented.  If the counter reaches c, the parameter value is rewarded; if the counter 

reaches –c, the parameter value is punished.  Afterwards, the counter is reset to 0.  

Applying count-learning to the learner types already discussed is straightforward.  A 

count NPLearner will reward/punish a parameter value if the counter reaches +/-c. A 

count BayesLearner only updates if the counter reaches +/-c:  specifically, if the counter 

is +c, successes is incremented by 1 and total data seen is incremented by 1; if the 

counter is –c, only total data seen is incremented by 1.  

We illustrate the count version of each learner type below with an example.  Suppose 

we again consider the parameter values QI and QS for the quantity sensitive parameter.  

Suppose that c is 5.  Initially, QI and QS both have probability 0.5, and their counters are 

both 0.  For the first data point, suppose QI is chosen to be part of the grammar and that 

grammar fails to generate the observed stress contour.  The counter for QI is now -1.  For 

the next three data points, suppose QS is chosen for the grammar and those grammars 

succeed at generating the observed stress contour.  The counter for QS is +3 and the 

counter for QI is -1. Suppose the next two data points use QI and those grammars 

succeed: QS’s counter is still +3, but QI’s counter is now +1. Suppose then that the next 

six data points use QI and those grammars fail: QS’s counter is still +3, but QI’s counter 

is now -5, which is the count limit c.  The QI value is then punished using the appropriate 

update equation for the learner.  If the NPLearner uses a γ of 0.01, the new probability of 



QI is 0.495 and the new probability of QS is 0.505.  If the BayesLearner learner is used, 

the new probability of QI is 0.429 and the new probability of QS is 0.571.   The counter 

for QI is then reset to 0. 

The count-learner’s robustness to noise can be seen from the previous example – 

instead of updating for each of the twelve individual data points (punishing QI once, 

rewarding QS three times, rewarding QI two times, and then punishing QI six times), the 

learner only punishes QI once.  Importantly, this is only after the QI value has been 

involved in a string of failures, and so is more likely to really be failing to be compatible 

with the data.  

 

4.4. Processing the input 

Since a data point consists of a single word at a time, the learners here included the 

assumption that children can successfully identify words in fluent speech by the time they 

are acquiring the metrical phonology system. This does not seem unreasonable as word 

segmentation research by Jusczyk and colleagues suggests that children as young as 

seven months can identify some words in fluent speech successfully (Jusczyk & Aslin 

1995, Jusczyk, Houston, & Newsome 1999), so this process should be operational by the 

time children are acquiring a generative system of stress. In addition, each data point was 

pre-divided into syllables, with individual syllables identified by rime as type VV(C), 

VC, or V. Thus, the learners also included the assumption that children can successfully 

syllabify words and are sensitive to the rime structure. This also does not seem 

unreasonable as Juscyzk and colleagues have suggested that young infants are sensitive to 

syllables and properties of syllable structure (Jusczyk, Goodman, & Baumann 1999, 



Turk, Jusczyk, & Gerken 1995), so this process would again likely be operational by the 

time acquisition of the stress system begins.  Thirdly, the learners did not call the update 

procedure if a monosyllabic word was encountered, as monosyllabic words do not have a 

stress contour (i.e., a sequence of syllables that are stressed/unstressed relative to each 

other within a given word).  Instead, monosyllabic words were ignored. This can be 

viewed as a learner assumption that the generative system is used for defining the contour 

over multisyllabic sequences that will have relatively contrasting stress among the 

syllables, and is not used when only a single syllable is present.   Under this view, 

monosyllabic words are not informative. 9   Fourthly, the learners did not set any sub-

parameters before the corresponding main parameter was set.  For example, the quantity 

sensitivity sub-parameter QS-VC-L vs. QS-VC-H would not be set before setting the 

main quantity sensitivity parameter QS.  So, until QS was set, no data impacted the 

probabilities of QS-VC-L and QS-VC-H.  This assumes that children will only consider 

information about a sub-parameter if it is necessary to do so to acquire their particular 

language’s grammar; otherwise, they will not bother tracking the success rate for that 

sub-parameter. 

 

                                                 
9 Also, it turned out that simulations with models that processed monosyllabic words never converged on 

the English grammar due to the extrametricality parameter.  Since the majority of monosyllabic words are 

stressed, the English property of having extrametricality on the rightmost syllable (Em-Some, Em-Right) 

was punished by these data, as the rightmost syllable was the only syllable in the word.  Since that syllable 

is stressed, it cannot be extrametrical.  So, a stressed monosyllabic word is incompatible with an analysis 

that requires Em-Some.  This suggests that a learner trying to acquire the English grammar for this 

parametric system must assume monosyllabic words are not informative. 



4.5. Learner parameters and simulations 

The four learners – NPLearner, BayesLearner, Count NPLearner, and Count 

BayesLearner – were run on the input set, which was probabilistically generated from the 

English child-directed speech distributions.  So, while the probability distribution of the 

data each learner used was the same, the exact words and order in which these words 

were encountered varied for each run of a modeled learner, creating a randomized data 

set with similar distributional properties to the English dataset.  The NPLearner and 

Count NPLearner were run with learning parameter γ = 0.001, 0.0025, 0.01, and 0.025.  

The Count NPLearner and Count BayesLearner were run with count parameter c = 2, 5, 

7, 10, 15, and 20. Each learner variant was run 1000 times.  The desired output behavior 

was to converge on the English grammar within the acquisition period, as defined by the 

number of data points an average child would encounter in six months (1,666,667). 

 

5. Results and discussion  

Table 1 shows the percentage of the trials each learner converged on the English 

grammar.   When multiple parameter values are used for a learner (e.g., c = 2, 5, 7, 10, 

15, or 20 for the counting variants), the average percent convergence is given.   

 

Unbiased Learner % English Convergence 

(.01 = .01%) 

NPLearner  

    γ = 0.001, 0.0025, 0.01, or 0.025 

 

0.000 



BayesLearner 0.000 

Count NPLearner  

    γ = 0.001, 0.0025, 0.01, or 0.025 

    c = 2, 5, 7, 10, 15, or 20 

 

 

0.033 

Count BayesLearner  

     c = 2, 5, 7, 10, 15, or 20 

 

0.000 

Table 1. Unbiased learner results. 

 

The most striking aspect of these results is the extreme rarity with which these 

unbiased learners converge on the English grammar.  Only the Count NPLearner ever 

manages to do it, and then only for about one out of every 3000 trials. 

How do we interpret this lack of convergence for unbiased probabilistic learners?  

Recall that the biased learner from Pearl (2008, 2009) guaranteed convergence so long as 

the child learned only from unambiguous data (Fodor 1998a, Dresher 1999, Lightfoot 

1999) and set the parameters in a particular order (See Appendix A3 for details of how 

this works).  Thus, convergence in a small fraction of the trials here certainly does not 

look like the best we can do.  If we look closer at the modeling results obtained here, we 

can see what kind of errors the unbiased learners are making.  It seems in general that 

these learners will converge on grammars that have several parameter values in common 

with the English grammar – but crucially are different on at least one value. In (14), we 

see several example grammars of this kind, with incorrect values in italics. Unfortunately 

for our learners, having even one value incorrect means that the grammar is not correct, 



and will produce contours different from the English grammar (recall example (9) where 

changing only one parameter value severely alters the generated stress contour). 

 

(14) Examples of incorrect grammars selected by unbiased learners 

(a) QI, Em-Some, Em-Right, Ft-Dir-Left, Unb, Ft-Hd-Left 

(b) QI, Em-None, Ft-Dir-Rt, Unb, Ft-Hd-Left 

(c) QS, QS-VC-H, Em-Some, Em-Right, Ft-Dir-Rt, B, B-2, B-Mor, Ft-Hd-Left 

(d) QS, QS-VC-L, Em-Some, Em-Right, Ft-Dir-Rt, Unb, Ft-Hd-Rt 

 

5.1. The problem for unbiased learners 

Obviously, this exceptionally poor performance was not the behavior we were 

looking for from these unbiased learners.  The question then is whether the problem is 

with these modeled learners in particular, or if there is some underlying issue that will 

cause all unbiased probabilistic models to fail.  If the problem is with these learners, then 

we simply need to try better learners.  For instance, perhaps if we did not constrain our 

learners so much, they would perform better.  This would be because, by constraining our 

learners, we have somehow hindered them from finding the optimal grammars in the 

hypothesis space.  However, if the problem is somehow inherent to the acquisition task as 

defined, then no unbiased probabilistic model can be successful – constrained or not. 

Let us examine the acquisition task in more detail.  The hypothesis space contains 

156 grammars: the grammar proposed for English and 155 others.  We know that the 

English grammar is not compatible with all the available English data (as indeed none of 

the grammars are), but how compatible is it?  It turns out that the English grammar 



generates stress contours that are compatible with 73.0% of the observable data tokens 

(where every instance of a word is counted) and 62.1% by types (where frequency is 

factored out and a lexicon item is only counted once no matter how often it occurs).  So 

this English grammar covers a large portion of the data, even if it requires a non-trivial 

number of words to be viewed as exceptions to the system (see Appendix A2 for more 

discussion of words that are exceptions for this English grammar).  

However, let us now look at the grammars our constrained learners are choosing, 

given the data.  The average compatibility of these grammars is 73.6% by tokens and 

63.3% by types, which is slightly higher than that of the English grammar.  Some of the  

grammars commonly chosen are listed below in Table 2, along with their token and type 

compatibility scores: 

 

Grammar Token 

Compatibility 

Type 

Compatibility 

QS-VC-L, Em-Some, Em-Right, Ft-Dir-Left, 

Unb, Ft-Hd-Left 

73.4% 64.6% 

QS-VC-L, Em-Some, Em-Right, Ft-Dir-Rt, 

Unb, Ft-Hd-Left 

73.4% 63.7% 

QI, Em-None, Ft-Dir-Rt, Unb, Ft-Hd-Left 73.6% 63.3% 

QI, Em-None, Ft-Dir-Left, Unb, Ft-Hd-Left  73.6% 63.3% 

Table 2. Non-English grammars commonly selected by unbiased probabilistic learners.  

Non-English parameter values are italicized. 

 



The grammar with the highest compatibility in the hypothesis space - which differs 

from the English grammar in quantity sensitivity, extrametricality, and foot directionality 

(QI, Em-None, Ft-Dir-Left, B, B-2, B-Syl, Ft-Hd-Left) - has scores of 76.5% by tokens 

and 70.3% by types, which is again not all that much higher than the English grammar’s 

compatibility.  But the simple fact remains: the grammars the constrained learners are 

choosing are the better grammars. The problem is that the English grammar is not one of 

those more optimal grammars. 

How far from optimal is it?  If we rank the competing grammars by their 

compatibility with the English data set, it turns out that there are 51 other grammars that 

are more compatible with the data tokens than the English grammar.  If we make the 

comparison to the data types, the English grammar is less compatible than 55 other 

grammars. That is, the English grammar is barely in the top third of the hypothesis space, 

when ranked by compatibility with the child-directed speech data. Given this, it is not 

surprising that our unbiased probabilistic learners rarely chose it – unbiased probabilistic 

learners are geared to identify the more optimal hypotheses in the hypothesis space, and it 

turned out that the English grammar was not one of those hypotheses. 

 

5.2. The real culprits 

The behavior of the unbiased probabilistic learners does not accord with the behavior 

we expected to see in children, given our definition of the acquisition task.  Since the 

problem is not with the unbiased probabilistic learners, which are performing just as they 

should to identify optimal grammars, then where does the problem lie? 

 



5.2.1. The initial target state 

One option is that we have modeled acquisition very well with these unbiased 

learners, but the target state for children is not what we thought it was.  Specifically, 

recall that this parametric knowledge representation (as with many other theories of 

knowledge representation) was constructed based on analysis of adult usage. It is possible 

that, while these values are correct for English stress, the English grammar is only 

optimal when the full range of word forms in English are available.  Thus, the child 

would only converge on the English grammar after more adult-like speech has been 

encountered.   

To test this, we can examine a corpus of adult-directed speech and assess the English 

grammar’s compatibility with those data, as well as its overall ranking in comparison to 

the other grammars in the hypothesis space.  The North American English 

CALLFRIEND corpus (Canavan & Zipperlen 1996) contains transcripts of phone calls 

between adult English speakers in the Northern United States, as recorded by the 

Linguistic Data Consortium.  It includes 82,487 data tokens and 4,719 data types, with 

non-monosyllabic words comprising 14,235 data tokens and 2,851 data types (see 

Appendix A1 for more details of this corpus).  The English grammar defined here is 

compatible with 63.7% of the data tokens and 52.1% of the data types – even worse than 

this same grammar’s compatibility with the child-directed speech  data!  However, there 

are fewer grammars that can do better - only 33 other better grammars by data token 

compatibility and 35 better by data type compatibility, with the most compatible 

grammar (QI, Em-Some, Em-Right, Ft-Dir-Rt, B, B-2, B-Syl, Ft-Hd-Left) parametrically 

very similar to the English grammar (only the quantity sensitivity value differs) and 



having a data token compatibility of 66.6% and a data type compatibility of 56.3%.   

Thus, the English grammar is more optimal in the hypothesis space when adult-directed 

speech are considered, and so more likely to be chosen by an unbiased probabilistic 

learner.   

However, the lower overall compatibility of the English grammar with the adult-

directed speech data highlights another important consideration for the acquisition task.  

As mentioned in the initial discussion of this parametric system, this system does not 

include interactions with the morphology system, which are important for completely 

characterizing the adult knowledge state for English (Chomsky & Halle 1968, Kiparsky 

1979, Hayes 1982).10 Yet we supposed that children initially would not realize the 

connection between the two systems, and so would not be able to use this knowledge to 

account for more data.  So, perhaps children’s initial target state should not be the 

English grammar values as currently defined; instead, children’s initial target state is a set 

of parameter values that are optimized for a system that lacks interaction with 

morphology. Given child-directed speech data, they indeed would find the grammars our 

learners have found here.  We should then expect to observe an extended period of time 

where they believe a non-English parameter value is correct, and this should last until the 

morphology system comes online and they realize the potential interactions between 

morphology and stress (perhaps around age 3, as Brown (1973) shows robust usage of 

morphological markers such as progressive and plural inflections in child speech by 3;1).  

                                                 
10  We could imagine that models containing some morphological knowledge might be able to converge on 

the English grammar, given adult-directed speech or perhaps even given child-directed speech.  This has 

been left for future research. 



 Kehoe (1998) conducted an elicitation task with children on English words and 

novel words following English stress patterns, and found by studying the errors in 

children’s productions that 28-month-olds seemed to be experimenting with aspects of 

the metrical phonology system such as quantity sensitivity and extrametricality while 34-

month-olds were mostly able to imitate the correct stress pattern.  She took this to mean 

that the 34-month-olds had acquired the English system, but it is possible that in fact 

children were using a non-English system capable of producing the stress contours they 

were tested on.  For example, one novel word children were tested on was “tanema” 

(rhyming with “Panama”: /tQn´m´/), which had the stress pattern of “stressed unstressed 

unstressed”.   Around 41% of the time, 34-month-old children imitated the correct stress 

contour, while around 52% of the time, these children produced 2-syllable truncations 

with stress on the first syllable (e.g., “tama”).  (The rest of the time, these children 

produced different random errors.)   We can see in (15) below that this behavior could be 

compatible both with the English grammar and all of the grammars listed in table 2 that 

were commonly chosen by our unbiased probabilistic learners11. 

                                                 
11 Note that we are assuming that truncation occurs for reasons not having to do with the grammar.  The 

grammars mentioned are then capable of generating the stress pattern associated with the truncated forms.  

An alternative would be that truncation occurs due to a grammatical deficit, such as children not allowing 

extrametrical syllables (that is, assuming Em-None).  If this were true, not even the English grammar would 

successfully parse these examples, since the adult English grammar includes extrametrical syllables (Em-

Some). It would then seem strange for Kehoe (1998) to view the truncated forms used by the 34-month-

olds as demonstrating their knowledge of the adult English grammar.  Since she seems to, we assume that 

the truncated forms should be compatible with an adult English grammar.  This implies that the truncation 

is occurring for some other reason besides a grammatical deficit. 



 

(15) “tanema” analyses (syllable rime structure is V V V) 

(a) the English grammar & two commonly chosen grammars produce the same 

analysis: 

  QS, QS-VC-H, Em-Some, Em-Right, Ft-Dir-Rt, B, B-2, B-Syl, Ft-Hd-Left 

  QS, QS-VC-L, Em-Some, Em-Right, Ft-Dir-Left, Unb, Ft-Hd-Left 

  QS, QS-VC-L, Em-Some, Em-Right, Ft-Dir-Rt, Unb, Ft-Hd-Left   

   full word     2-syllable truncation 

   (L L) <L>    (L) <L> 

   V V  V     V  V 

   ta ne ma    ta   ma  

 

(b) the other two commonly chosen grammars produce the same stress contour:  

  QI, Em-None, Ft-Dir-Left, Unb, Ft-Hd-Left 

  QI, Em-None, Ft-Dir-Rt, Unb, Ft-Hd-Left 

   full word     2-syllable truncation 

   (S S S)    (S S) 

   V V V     V V 

   ta ne ma    ta   ma  

 

 To gauge what English children’s initial target state is (around say, 3 years, before 

the morphology system is fully online), we might wish to conduct similar elicitation style 

experiments with an eye towards forms that would more specifically single out one 



grammar from another.12  For example, we might expect a form like “toynema” 

(/tçjn´m´/) to differentiate between the English grammar and one of the grammars in 

(15a), as the English grammar would still assign this the same stress contour as before 

while the non-English grammar selected by our unbiased probabilistic learners would 

produce different stress contours in some cases, as shown in (16).  

 

(16) Stress contours for “toynema” (syllable rime structure is VV V V) 

(a) English grammar 

 QS, QS-VC-H, Ft-Dir-Rt, B, B-2, B-Syl, Ft-Hd-Left 

   full word     2-syllable truncation 

   (H  L) <L>    (H) <L> 

   VV  V  V    VV  V 

   toy ne ma    toy   ma  

 

 (b) non-English grammar  

   QS, QS-VC-L, Em-Some, Em-Right, Ft-Dir-Rt, Unb, Ft-Hd-Left  

   full word     2-syllable truncation 

   (H) (L) <L>    (H) <L> 

   VV  V  V    VV  V 

                                                 
12 It may also be possible to gauge children’s knowledge with some kind of task that does not require as 

much effort from them, since an imitation or elicitation task may have other performance factors associated 

with it.  To this end, it might be useful to have children choose which pronunciation they prefer for a given 

novel word. 



   toy ne ma    toy   ma  

   (different contour)   

 

In summary, given our incomplete knowledge of young children’s metrical 

competence, it is possible that the unbiased probabilistic learners examined here actually 

performed quite well when assessed in terms of the parametric system under 

consideration.  Specifically, the target grammar for young children without 

morphological knowledge may not be the adult grammar proposed by Dresher (1999). 

We have suggested one kind of experiment that may more precisely identify young 

children’s metrical phonology knowledge, so that this question can be decided. 

 

5.2.2. Biased learning 

Another possibility is that children do indeed reach the adult English grammar 

defined here, and we will find that their productions and knowledge are consistent with 

only the English grammar.  However, to acquire this parametric system, they must use 

some kind of bias to help them along.  That is, in order to use the probability distributions 

in the data effectively, children must not be unbiased learners. 

A bias that was found to be successful in previous modeling work for this same case 

study was a selective learning bias that altered the learner’s intake (Pearl 2008, 2009).  In 

particular, the modeled learner only learned from the subset of the available input viewed 

as maximally informative: unambiguous data (Fodor 1998a, Dresher 1999, Lightfoot 

1999, Pearl & Weinberg 2007). While learning only from maximally informative data has 

intuitive appeal, it is not without its difficulties.  Specifically, data are often ambiguous, 



especially in systems involving multiple interacting parameters, such as metrical 

phonology.  So, unambiguous data would comprise only a small subset of the available 

input.   Moreover, it is not necessarily straightforward to identify unambiguous data, 

though there are various proposals for how children might be able to do this such as by 

looking for cues in the observable data (Dresher 1999) or by parsing the data with various 

parameter value combinations (Fodor 1998b, Sakas & Fodor 2001).  See Appendix A3 

for more discussion of unambiguous data for the parameters discussed in this case study, 

and the proposals for identifying unambiguous data in the input. 

Notably, Pearl (2008, 2009) found that a general class of probabilistic learners was 

successful as long as they employed this selective learning bias and obeyed certain 

parameter-setting order constraints, such that some parameters were learned before other 

parameters (see Appendix 3 for details). The reason why this bias works is because the 

unambiguous data favor the English parameter values when the parameters are acquired 

in particular orders.  For example, the unambiguous data for the extrametricality value 

Em-None may outnumber the unambiguous data for Em-Some before the learner realizes 

the grammar is quantity sensitive (QS).  However, once the grammar is known to use QS, 

the learner may then alter her view about which data are informative (e.g., if the 

rightmost syllable is Heavy but unstressed, this is a signal that this syllable is 

extrametrical).  It may then turn out that, with this new knowledge, the data perceived as 

unambiguous for Em-Some now outnumber the data perceived as unambiguous for Em-

None.  A probabilistic learner should then choose Em-Some after observing a sufficient 

quantity of data.   



If the probabilistic learner learns the parameters in one of the viable parameter-setting 

orders, the English grammar is the grammar selected, since the parameter values 

comprising the English grammar are favored by the unambiguous data distributions.  

Success then rests on the child having knowledge of these viable parameter-setting 

orders. Depending on the method used to identify unambiguous data, the knowledge of 

the appropriate orders may be derivable from either the data themselves or other learning 

biases the child has (see Pearl (2007, 2009) for discussion). 

Interestingly, simulations have suggested that it is not the parameter-setting order 

alone that causes the English grammar to be chosen – when parameters are set in similar 

orders by the unbiased learners described here, there is still no reliable convergence on 

the English grammar.  Moreover, the few times these learners do converge on the English 

grammar, there is no commonality in their parameter-setting order.  The only other 

potential cause of the desired acquisition behavior from the biased learners is their 

restriction to unambiguous data.  A reasonable question is why the unambiguous data do 

not exert their influence sufficiently within the larger dataset of the input.  That is, since 

the unambiguous data are present and appear in the correct distributions to lead the child 

to the English grammar (subject to certain parameter-setting order constraints), why don’t 

they do so even if other unhelpful data are present?  The answer may have to do with the 

quantity of unambiguous data.  For this case study, the unambiguous data are a small 

minority of the available data (at most around 5%).  The ambiguous data, by definition, 

are compatible with competing grammars.  So, it is likely that the helpful bias the 

unambiguous data provide is washed away in the wake of the ambiguous data that must 



be processed, since probabilistic learners extract some information from ambiguous data 

as well, and that information may lead the learners astray. 

The implication of this success with biased learners is that the acquisition task as 

currently defined (i.e., learn the adult English grammar from child-directed English data, 

without morphological knowledge) is not impossible for probabilistic learners; it just may 

be impossible for unbiased probabilistic learners13.  If we discover that children do indeed 

select the English grammar initially, even prior to morphological knowledge, then this 

suggests that children must have some biases to guide their acquisition if they are 

representing their knowledge of metrical phonology the way this parametric system 

believes them to do.  

 

6. Implications for acquisition and theories of knowledge representation 

What we have learned from the computational models presented here is what is 

necessary for children who use probabilistic learning to succeed at this acquisition task, 

as it is currently defined. Specifically, for children to select the adult English grammar in 

this parametric system, given child-directed speech data and no knowledge of the 

connection between metrical phonology and the English morphology system, children 

cannot be unbiased.  This is an argument from acquisition for a bias in children, if they 

                                                 
13 Note that this result specifically applies to learners attempting to learn using this parametric knowledge 

representation.  Unbiased probabilistic learning may succeed when learners are using alternative knowledge 

representations, which then would support those knowledge representations over the knowledge 

representation considered here (see discussion in section 6).  



are to use this parametric system to learn the adult English grammar defined in this 

system.   

Now, as discussed in the previous section, we may discover through experimental 

research that children’s initial target state is not the adult English grammar.  If so, we can 

then see if unbiased learners are selecting the grammars children are selecting, given the 

data.  If we find that unbiased learners are still not selecting the same grammars as 

children, we again have a reason to believe children require a bias to guide their 

acquisition of this parametric system.  If, however, we find that both unbiased learners 

and children are indeed selecting the same grammars, then we have even stronger support 

for this parametric knowledge representation – nothing beyond a sensitivity to data 

distributions is required to learn as children seem to learn.  Note, however, that support 

for this knowledge representation does not necessarily rule out other knowledge 

representations that might be similarly compatible with children’s metrical competence.14 

To that end, the methodology used in this paper to examine this parametric 

knowledge representation is something that can be applied to many different theories of 

knowledge representation (many of which may also be motivated primarily by their 

ability to account for limited cross-linguistic variation).  For each theory, we can explore 

an argument from acquisition by seeing what kinds of probabilistic learners – unbiased or 

biased – can acquire the correct grammar from child-directed speech data, assuming that 
                                                 
14 In addition, support for this generative knowledge representation does not rule out alternative non-

generative approaches to acquisition that also may be compatible with children’s observable knowledge 

(e.g., the exemplar-based approach of Daelamans et al. (1994)). Notably, however, these alternative 

approaches do not necessarily have anything to say about the constrained variation seen cross-

linguistically, which is often one of the motivations for generative systems (Hayes 1995).  



theory’s knowledge representation.  We can then compare theories of knowledge 

representation, based on their acquisition performance.  For instance, perhaps two 

theories allow the correct grammar to be selected based on child-directed speech data, but 

one requires probabilistic learners to have some bias while the other does not.  This could 

be taken as support for the theory that does not require biased learners, as it assumes less 

knowledge in the learner.  As another example, suppose one theory allows the correct 

grammar to be selected only by biased learners, while another theory does not allow the 

correct grammar to be selected at all.  This second theory might be dispreferred since it is 

“unacquirable” from child-directed speech data, even though the first theory still requires 

additional knowledge (in the form of a bias). 

Using this framework, we can explore the acquirability of other knowledge 

representations proposed within a generative framework.  For instance, Hayes (1995) 

specifies a parametric system that includes a more restricted inventory of metrical foot 

types than what the system here assumed, combining aspects of quantity sensitivity, 

boundedness, and foot headedness.  It is possible this more restricted system allows the 

correct grammar to be acquired from child-directed speech without the probabilistic 

learners having any additional knowledge.  We can also explore optimality theoretic 

systems, where constraints must be ranked rather than parameters set (Tesar & 

Smolensky 2000).  It is again possible that by using a different knowledge representation, 

and so changing what the child is trying to learn, the English child-directed speech make 

the English grammar (however it may be defined) much more favorable for unbiased 

learners. 



At the same time as we compare knowledge representations, we can also gain 

knowledge about the acquisition process for generative knowledge representations.  

Suppose we discover that no matter what knowledge representation we use, unbiased 

learners still cannot succeed on English metrical phonology.   This tells us some kind of 

bias is required for acquiring a generative system, an idea noted by several researchers 

for other case studies in acquisition (e.g. English anaphoric one: Regier & Gahl 2004, 

Foraker et al. 2009, Pearl & Lidz 2009; structure-dependence of syntactic rules: Perfors, 

Tenenbaum, & Regier 2006).  We can then explore what biases may allow probabilistic 

learners to succeed.  The unambiguous data bias discussed in the previous section is one 

bias that is successful for a particular implementation of a parametric system, but there 

may well be others that accomplish the same thing. For instance, a child may have a bias 

to learn only from data that appear to be systematic or productive (Yang 2005).  The 

exact nature of the necessary bias can be investigated through computational modeling 

studies, such as Perfors, Tenenbaum, & Regier (2006)  and Foraker et al. (2009), which 

use a simplicity bias on the hypothesis space, and Regier & Gahl (2004), Pearl (2008, 

2009), and Pearl & Lidz (2009), which use a subset bias on the hypothesis space and a 

data intake bias.   Of particular interest is whether the necessary bias is likely to be 

domain-specific (Regier & Gahl 2004, Pearl 2008, 2009, Pearl & Lidz 2009) or domain-

general (Regier & Gahl 2004, Perfors, Tenenbaum, & Regier 2006, Foraker et al. 2009, 

Pearl & Lidz 2009).  For instance, while the bias to learn only from unambiguous data 

may be domain-general in nature, the identification of unambiguous data may be domain-

specific in nature (see Pearl (2007) for discussion on this point). 

 



7. Conclusion 

We have examined a parametric knowledge representation for metrical phonology 

from the perspective of acquisition, using computationally modeled learners that 

attempted to acquire the adult English grammar based on realistic distributions of English 

child-directed speech. We discovered that solving this acquisition task using this 

knowledge representation requires the learner to have something more than the ability to 

leverage probabilistic information in the data.  In the broader picture, we have presented a 

computational modeling framework that allows us to make an argument from acquisition 

for (or against) a particular knowledge representation, based on the acquirability of the 

correct grammar for that knowledge representation. At the same time, we can specify 

what is required to make the correct grammar acquirable, thereby describing more 

precisely the acquisition process for a child using a particular knowledge representation.  

Key to this approach is that the modeled learners learn from realistic data and consider 

psychological plausibility in their algorithms; when they do this, modeled learners make 

more powerful arguments from acquisition since they are more closely approximating the 

child’s acquisition process. This approach can allow us to understand how children solve 

the acquisition problems that they do, and what knowledge they are using while they do 

it.  

 

Acknowledgements: 

Many thanks to Amy Weinberg, Bill Idsardi, Jeffrey Lidz, Charles Yang, Roger Levy, 

Jon Sprouse, Ivano Caponigro, Diogo Almeida, Heather Goad, Diane Lillo-Martin, four 

anonymous reviewers, and the audiences at GALANA 2008, the UCSD Linguistics 



Department, the UC Irvine Artificial Intelligence and Machine Learning Group, the 

UCLA Linguistics Department, the USC Linguistics Department, and the UMCP 

Linguistics Department.  This work has been supported by NSF Grant BCS-0843896. 

 

References 

Akhtar, Nameera, Maureen Callanan, Geoffrey Pullum, & Barbara Scholz. 2004. 

Learning antecedents for anaphoric one. Cognition 93. 141-145. 

Archibald, John. 1992. Adult abilities in L2 speech: evidence from stress. In Jonathan 

Leather & Allan James (eds.), New Sounds 92: Proceedings of the 1992 Amsterdam 

Symposium on the Acquisition of Second Language Speech, 1-17. Amsterdam: 

University of Amsterdam Press.  

Bernstein Ratner, Nan. 1984. Patterns of vowel Modification in motherese. Journal of 

Child Language 11. 557-578. 

Brent, Micahel and Jeffrey Siskind. 2001. The Role of Exposure to Isolated Words in 

Early Vocabulary Development. Cognition 81/82. 33–44. 

Brown, Roger. 1973. A First Language: The Early Stages. Cambridge, MA: Harvard 

University Press. 

Bush, Robert & Frederick Mosteller. 1951. A mathematical model for simple learning. 

Psychological Review 58. 313-323. 

Canavan, Alexandra and George Zipperlen. 1996. CALLFRIEND American English-

Non-Southern Dialect. Linguistic Data Consortium: Philadelphia, PA. 

Canavan, Alexandra, David Graff, and George Zipperlen. 1997. CALLHOME American 

English Speech. Linguistic Data Consortium: Philadelphia, PA. 



Chew, Victor.  1971. Point Estimation of the Parameter of the Binomial Distribution.  

American Statistician 25(5), 47-50. 

Chomsky, Noam. 1981. Lectures on Government and Binding. Dordrecht: Foris. 

Chomsky, Noam & Morris Halle. 1968. The sound pattern of English. New York: Harper 

and Row.  

Clark, Robin. 1992. The Selection of Syntactic Knowledge. Language Acquisition 2(2). 

83-149.  

Clark, Robin. 1994. Kolmogorov complexity and the information content of parameters. 

IRCS Report 94-17. Institute for Research in Cognitive Science, University of 

Pennsylvania. 

Crain, Stephen & Paul Pietroski. 2002. Why language acquisition is a snap. The 

Linguistic Review 19. 163-183. 

Daelemans, Walter, Steven Gillis, and Gert Durieux. 1994. The Acquisition of Stress: A 

Data-Oriented Approach. Association for Computational Linguistics 20(3). 421-451. 

Dresher, Elan. 1999. Charting the learning path: Cues to parameter setting. Linguistic 

Inquiry 30. 27-67. 

Dresher, Elan & Jonathan Kaye. 1990. A computational learning model for metrical 

phonology. Cognition 34. 137-195. 

Fodor, Janet Dean. 1998a. Unambiguous Triggers. Linguistic Inquiry 29(1). 1-36. 

Fodor, Janet Dean. 1998b. Parsing to Learn. Journal of Psycholinguistic Research 27(3). 

339-374. 



Fodor, Janet Dean & William Sakas. 2004. Evaluating Models of Parameter Settings. 

Proceedings of the 28th Annual Boston University Conference on Language 

Development, 1-27. Somerville, MA: Cascadilla Press. 

Foraker, Stephani, Terry Regier, Naveen Khetarpal, Amy Perfors, & Joshua Tenenbaum 

2007. Indirect evidence and the poverty of the stimulus: The case of anaphoric one.  

Proceedings of the 29th Annual Meeting of the  Cognitive Science Society. Nashville, 

TN. 

Foraker, Stephani, Terry Regier, Naveen Khetarpal, Amy Perfors, & Joshua Tenenbaum. 

2009. Indirect evidence and the poverty of the stimulus: The case of anaphoric one. 

Cognitive Science 33(2), 287-300. 

Gambell, Timothy & Charles Yang. (2006). Word Segmentation: Quick but not dirty. 

Manuscript: Yale University. 

Gerken, LouAnn & Richard Aslin. 2005. Thirty years of research on infant speech 

perception: The legacy of Peter W. Jusczyk. Language Learning and Development 1, 

5-21. 

Gibson, Edward. & Kenneth Wexler. 1994. Triggers. Linguistic Inquiry 25. 407-454.  

Gillis, Steven, Walter Daelemans, and Gert Durieux. 2000. Lazy Learning: A comparison 

of Natural and Machine Learning of Stress. In P. Broeder and J.M.J. Murre (Eds.), 

Models of Language Acquisition: inductive and deductive approaches. Oxford 

University Press, 76-99. 

Goldberg, Adele. 1995. Constructions: A construction grammar approach to argument 

structure. Chicago, IL: University of Chicago Press. 



Goldwater, Sharon, Tom Griffiths, & Mark Johnson. 2007. Distributional cues to word 

segmentation: Context is important. Proceedings of the 31st Boston University 

Conference on Language Development, 239-250. Somerville, MA: Cascadilla Press. 

Gómez, Rebecca & Laura Lakusta. 2004. A first step in form-based category abstraction 

by 12-month-old infants. Developmental Science 7(5). 567-580. 

Halle, Morris & William Idsardi. 1995. General Properties of Stress and Metrical 

Structure. In Goldsmith, J. (ed.), The Handbook of Phonological Theory, 403-443. 

Cambridge, MA & Oxford: Blackwell Publishers.  

Halle, Morris & Samuel Jay Keyser. 1971. English Stress: Its Form, its Growth, and its 

Role in Verse. New York: Harper and Row. 

Halle, Morris & Jean-Roger Vergnaud. 1987. An Essay on Stress. Cambridge, MA: MIT 

Press.  

Hart, Betty & Todd Risley. 1995. Meaningful differences in the everyday experience of 

young American children. Baltimore, MD: P.H. Brookes. 

Hayes, Bruce. 1982. Extrametricality and English stress, Linguistic Inquiry 13, 215-225. 

Hayes, Bruce. 1995. Metrical Stress Theory: Principles and Case Studies. Chicago: 

University of Chicago Press. 

Heinz, Jeffrey. 2007. Learning Unbounded Stress Patterns via Local Inference. 

Proceedings of the 37th Annual Meeting of the Northeast Linguistics Society (NELS 

37). 

Hochberg, Judith. 1988. Learning Spanish Stress: Developmental and Theoretical 

Perspectives.  Language 64(4). 683-706. 

Hudson Kam, Carla & Elissa Newport. 2005. Regularizing unpredictable variation: The 



roles of adult and child learners in language formation and change. Language 

Learning and Development 1. 151-195. 

Jusczyk, Peter & Richard Aslin. 1995. Infants detection of the sound patterns of words in 

fluent speech, Cognitive Psychology 29. 1–23. 

Jusczyk, Peter, Anne Cutler, & Nancy Redanz. 1993. Infants' preference for the 

predominant stress patterns of English words. Child Development 64. 675-687. 

Jusczyk, Peter, Mara Goodman, & Angela Baumann. 1999. Nine-month-olds’ attention to 

sound similarities in syllables, Journal of Memory & Language 40. 62–82. 

Jusczyk, Peter, Derek Houston,  & Mary Newsome.  1999. The beginnings of word 

segmentation in English-learning infants. Cognitive Psychology 39. 159–207. 

Kehoe, Margaret. 1997. Stress error patterns in English-speaking children’s word 

productions. Clinical Linguistics and Phonetics 11(5). 389-409. 

Kehoe, Margaret. 1998. Support for metrical stress theory in stress acquisition. Clinical 

Linguistics & Phonetics 12(1). 1-23. 

Kingdon Roger. 1958. The groundwork of English stress. London: Longmans, Green. 

Kiparsky, Paul. 1979. Metrical Structure Assignment is Cyclic. Linguistic Inquiry 10.4, 

421-441. 

Lightfoot, David. 1999. The Development of Language: Acquisition, Change, and 

Evolution. Oxford: Blackwell. 

MacWhinney, Brian. 2000. The CHILDES Project: Tools for Analyzing Talk. Mahwah, 

NJ: Lawrence Erlbaum Associates. 

Niyogi, Partha & Robert Berwick. 1996. A language learning model for finite parameter 

spaces. Cognition 61. 161-193. 



Nouveau, Dominique. 1994. Language Acquisition, Metrical Theory, and Optimality: A 

Study of Dutch Word Stress. Utrecht: Utrecht University dissertation. 

Pearl, Lisa. 2007. Necessary Bias in Natural Language Learning. College Park: 

Maryland: University of Maryland dissertation. 

Pearl, Lisa. 2008. Putting the Emphasis on Unambiguous: The Feasibility of Data 

Filtering for Learning English Metrical Phonology. Proceedings of the 32nd Annual 

Boston Conference on Child Language Development (BUCLD 32), 390-401. 

Somerville, MA: Cascadilla Press. 

Pearl, Lisa. 2009. Acquiring Complex Linguistic Systems From Natural Language Data: 

What Selective Learning Biases Can Do. Ms. University of California, Irvine. 

Pearl, Lisa & Jeffrey Lidz. 2009. When domain general learning fails and when it 

succeeds: Identifying the contribution of domain specificity. Language Learning and 

Development 5(4). 235-265. 

Pearl, Lisa & Amy Weinberg. 2007. Input Filtering in Syntactic Acquisition: Answers 

from Language Change Modeling. Language Learning and Development 3(1). 43-72.  

Perfors, Amy, Joshua Tenenbaum, & Terry Regier. 2006. Poverty of the Stimulus? A 

rational approach. Proceedings of the 28th Annual Conference of the Cognitive 

Science Society. Vancouver, Canada. 

Prince, Alan. 1983. Relating to the grid. Linguistic Inquiry 14. 19-100. 

Prince, Alan and Paul Smolensky. 2004. Optimality Theory: Constraint Interaction in 

Generative Grammar. Blackwell. 

Regier, Terry & Susanne Gahl. 2004. Learning the unlearnable: The role of missing 

evidence. Cognition 93. 147-155.  



Sakas, William. 2003. A Word-Order Database for Testing Computational Models of 

Language Acquisition.  Proceedings of the 41st Annual Meeting of the Association for 

Computational Linguistics.  

Sakas, William and Janet Fodor. 2001. The Structural Triggers Learner. In Stefano 

Bertolo (ed.),  Language Acquisition and Learnability, 172-233. Cambridge: 

Cambridge University Press. 

Sakas, William & Eiji Nishimoto. 2002. Search, Structure, or Statistics? A Comparative 

Study of Memoryless Heuristics for Syntax Acquisition. Ms: City University of New 

York. 

Tesar, Bruce & Paul Smolensky. 2000. Learnability in Optimality Theory. Cambridge, 

MA: The MIT Press. 

Tomasello, Michael. 2006.  Acquiring linguistic constructions. In William Damon, 

Richard Lerner, Deanna Kuhn & Robert Siegler (eds.), Handbook of Child 

Psychology, 255-298. New York: Wiley. 

Turk, Alice,  Peter Jusczyk, & LouAnn Gerken. 1995. Do English-learning Infants Use 

Syllable Weight to Determine Stress? Language and Speech 38(2).143-158. 

Vallabha, Gautam, James McClelland, Ferran Pons, Janet Werker, & Shigeaki Amano. 

2007. Unsupervised learning of vowel categories from infant-directed speech. 

Proceedings of the National Academy of Sciences of the U.S. 104(33). 13273-13278. 

Wilson, Michael. 1988. The MRC Psycholinguistic Database: Machine Readable 

Dictionary, Version 2. Behavioural Research Methods, Instruments and Computers 

20(1). 6-11. 



Yang, Charles. 2002. Knowledge and Learning in Natural Language. Oxford: Oxford 

University Press. 

Yang, Charles. 2005. On productivity. Yearbook of Language Variation 5. 333-370. 

 

 

A1. Appendix: Child-directed and Adult-directed speech data  

The child-directed speech data comprising the input of the constrained learners were 

taken from the Brent (Brent & Siskind 2001) and Bernstein (Bernstein Ratner 1984) 

corpora in CHILDES (MacWhinney 2000).  The token and type distributions of this 

corpus are shown below in Table A1. For each n-syllable word class, the frequency of 

each stress pattern is shown along with at least one example word that has that stress 

pattern and appeared in the child-directed speech data.  Stressed syllables are represented 

as 1, while unstressed syllables are represented as 0, e.g., the pattern ‘01’ represents an 

unstressed syllable followed by a stressed syllable, such as in the word giraffe.  Stress 

patterns absent from the table have a token and type frequency of 0. 

 

Total: (540505 tokens / 8093 types) 

Words with the same number of syllables: (tokens / types) 

1-syl: (449312 / 4474) 2-syl: (85268 / 2898) 3-syl: (4749 / 476) 

Stress Pattern Frequency 

1: (373838 / 4420) 

book, know 

0: (75474 / 54) 

Stress Pattern Frequency 

11: (11213 / 401) 

something, snowman 

10: (66568 / 2236) 

Stress Pattern Frequency 

110: (572 / 109) 

dishwasher, sunglasses 

101: (3049 / 272) 



as, is over, sleeping 

01: (7487 / 261) 

around, himself 

basketball, understand 

100: (689 / 60) 

wonderful, earlier 

011: (6 / 5) 

repairman, peroxide 

010: (433/ 30) 

important, adventure 

4-syl: (1008 / 214) 5-syl: (163 / 26) 

Stress Pattern Frequency 

1101: (1 / 1)                  0110: (2 / 1) 

identify                         dehydrated 

1100: (20 / 8)                0101: (18 / 14) 

tasmanian                    congratulate 

1010: (910 / 161)          0100: (50 /26) 

conversation                unfortunate  

1001: (7 / 3) 

pedialyte 

Stress Pattern Frequency 

11010: (1 / 1)                    01100: (1 / 1) 

rhinoceroses                     electronically 

10101: (54 / 1)                  01010: (67 / 8) 

cockadoodledoo               fantabalocious 

10100: (39 / 15)                01000: (2 / 1) 

personality                       cooperative 

6-syl: (4 / 4) 7-syl: (1 / 1) 

Stress Pattern Frequency 

100100: (2 / 2)              010100: (1 / 1) 

czechoslovakia’s          impossibility 

100010: (1 / 1) 

hypoallergenic 

Stress Pattern Frequency 

1010100: (1 / 1) 

unidentifiable 



Table A1. Child-directed speech data. 

 

The adult-directed conversational speech data examined come from the North 

American English CALLFRIEND corpus (Canavan & Zipperlen 1996).  The token and 

type distributions of this corpus are shown below in Table A2.  For each n-syllable word 

class, the frequency of each stress pattern is shown along with at least one example word 

that has that stress pattern and appeared in the adult-directed speech data.  Stressed 

syllables are represented as 1, while unstressed syllables are represented as 0, e.g., the 

pattern ‘01’ represents an unstressed syllable followed by a stressed syllable, such as in 

the word giraffe.  Stress patterns absent from the table have a token and type frequency of 

0. 

 

Total: (82487 tokens / 4719 types) 

Words with the same number of syllables: (tokens / types) 

1-syl: (68252 / 1868) 2-syl: (11059 / 1780) 3-syl: (2554 / 755) 

Stress Pattern Frequency 

1: (40249 / 1794) 

down, fast 

0: (28003 / 74) 

as, is 

Stress Pattern Frequency 

11: (1409 / 224) 

something, sixteen 

10: (8445 / 1298) 

very, smiling 

01: (1205 / 258) 

around, supposed 

Stress Pattern Frequency 

111: (1 / 1) 

giordano 

110: (315 / 78) 

thanksgiving, however 

101: (553 / 141) 

saturday, understand 

100: (948 / 270) 



video, totally 

011: (11 / 6) 

tornado, chicago 

010: (726 / 259) 

semester, tomorrow 

4-syl: (468 / 242) 5-syl: (141 / 64) 

Stress Pattern Frequency 

1110: (1 / 1)               1101: (2 / 1)   

relaxation                   identified 

1100: (19 / 13)           1011: (3 / 1) 

priorities                    ibuprofen 

1010: (235 / 114)       1001: (4 / 3) 

situation                     videotape 

1000: (25 / 14)           0110: (3 / 1) 

obviously                   distributed  

0101: (22 / 7)             0100: (154 / 87) 

relationship               perfectionist 

Stress Pattern Frequency 

11100: (2 / 1)                  11010: (1 / 1) 

biometrical                     biomechanics 

10100: (90 / 32)              10010: (13 / 8) 

understandable               radioactive 

01010: (20 / 13)               01000: (15 / 9) 

discrimination                immediately 

6-syl: (13 / 10) 

Stress Pattern Frequency 

110100: (1 / 1)                        101100: (3 / 2)                   101010: (2 / 1) 

postbaccalaureate                  heterosexual                       bioengineering 

101000: (2 / 2)                        100100: (1 / 1)                   100010: (1 / 1)   

indistinguishable                    spirituality                          identification 



010100: (3 / 2) 

suggestopedia 

Table A2. Adult-directed conversational speech data. 

 

Appendix A2. Exceptions to the English grammar in child-directed speech. 

The English grammar (following Dresher (1999), who draws from Halle & Vergnaud 

(1987)) is quantity sensitive (QS) with closed syllables viewed as Heavy (QS-VC-H), has 

the rightmost syllable as extrametrical (Em-Some, Em-Right), constructs metrical feet 

starting from the right edge of the word (Ft-Dir-Rt), specifies metrical feet as two 

syllables in size (B, B-2, B-Syl), and stresses the leftmost syllable in a foot (Ft-Hd-Left).  

Given child-directed speech data from the Bernstein Ratner (Bernstein Ratner 1984) and 

Brent (Brent Siskind 2001) corpora from the CHILDES database (MacWhinney 2000), 

we found that this grammar was only compatible with 73.0% of the data tokens and 

62.1% of the data types. 

A common set of exceptions involves words that stress the rightmost syllable of the 

word, thereby violating Em-Right (since extrametrical syllables are not stressed): 81.8% 

of the token exceptions and 57.1% of the type exceptions involve a word of this kind, and 

include commonly appearing words such as herself, himself, instead, backyard, bathtub, 

football, someone, something, somewhere, sweatshirt, washcloth, birthday, goodbye, 

onto, alright, balloon, excuse, inside, airplane, almost, always, bathroom, bedroom, 

cupcake, sometimes, sunshine, haystack, myself, peanut, playpen, snowman, okay, 

eighteen, playhouse, seesaw, baseball, downstairs, goldfish, mailbox, outfit, reindeer, 

sweetheart, toothbrush, rainbow, oatmeal, outside, above, across, again, ahead, because, 



before, enough, giraffe, return, away, alone, around, supposed, tonight, dinosaur, 

pokemon, microphone, microwave, and kangaroo.  

Another common set of exceptions are words that contain an unstressed internal 

syllable that would be viewed as heavy (closed (VC), long (VV) or superlong (VVC)).  

Because this syllable could not be unstressed due to extrametricality since it is not at a 

word edge, such words present a problem for the quantity sensitive (QS) setting that 

views closed syllables as heavy (QS-VC-H); specifically, these internal syllables should 

be prominent due to their syllable weight, but are nonetheless unstressed.  These words 

accounted for 11.4% of the token exceptions and 22.2% of the type exceptions, including 

commonly appearing words such as wonderful, certainly, indians, oranges, caterpillar, 

watermelon, and everybody.  There were, of course, often-used words that had this issue 

as well as having stress on the rightmost syllable, such as basketball, understand, 

yesterday, underneath, neighborhood, overalls, radio, studio, applesauce, somersault, 

waterfall, butterfly, seventeen, anymore, everyone, everything, everywhere, lollipop, 

pussycat, anyway, and pattycake. 

Notably, many of these exceptions have the form of compound words.  It could be 

very useful to children to realize that compound words are likely to obey different 

generalizations than non-complex words when children are trying to identify the adult 

grammar for English.  Similarly, when children gain enough morphological knowledge to 

notice that certain words have stress-neutral affixes such as –ful and –ly, the stress pattern 

of complex words such as wonderful (wonder + ful) and certainly (certain+ly) no longer 

appears exceptional with respect to the adult English grammar described here.  In 

general, as children gain more knowledge about morphology, many exceptions noted 



here may be dealt with.  This is likely why the full characterization of the adult English 

stress system involves interactions with the morphological system (Chomsky & Halle 

1968, Kiparsky 1979, Hayes 1982).  In addition, if children are sensitive to certain 

phonological properties of exceptions, they may also notice minor generalizations 

pertaining to the exceptional items, such as the fact that closed syllables ending with a 

sonorant (e.g., caterpillar, oranges, somersault) are treated as Light syllables (see 

Kingdon (1958), Chomsky & Halle (1968), and Halle & Keyser (1971) for other 

examples of minor generalizations that occur in English).  As with complex words, 

recognizing these minor generalizations in non-complex words may also reduce the 

number of exceptions to the adult English grammar. 

 

Appendix A3. Selective learning biases: Unambiguous data 

Pearl (2008, 2009) found that probabilistic learners biased to learn only from data 

perceived as unambiguous were successful at acquiring the English grammar for the 

parametric system described here.  One difficulty with this strategy is that children must 

somehow identify which data are unambiguous in the input.  A data point is defined as 

unambiguous with respect to a given parameter value (e.g., an unambiguous data point 

for Em-None may be ambiguous for the foot directionality parameter).  Two proposals 

for how children could identify unambiguous data are that (1) they look for certain 

configurations in the input, called cues (Dresher 1999, Lightfoot 1999), and (2) they 

parse a data point to determine if only a single parameter value for a given parameter 

yields a stress contour that matches the observed stress contour (Fodor 1998b, Sakas & 

Fodor 2001).  



Cues for each value of the metrical phonology system are given in Table A3, with an 

example of each cue in parentheses after the description of the cue.  Note that most cues 

depend on the current state of the child’s knowledge (e.g., see the cues for QS, Ft-Dir-

Left, B-Syl, and Ft-Hd-Left).  Note that these cues are not the cues proposed in Dresher 

(1999), but are designed in the same spirit – to identify highly informative data.  Unlike 

some of the cues in Dresher’s proposal, all these cues can be identified within a single 

data point.  This is in contrast to cues that operate over multiple data points.  Not needing 

to compare multiple data points may be desirable if the child is simply extracting 

information from the current data point and integrating that information into her 

knowledge of the parametric system, rather than explicitly comparing the current data 

point to items already in the lexicon.  In addition, cues are proposed not just for those 

parameter values that could be viewed as marked, but also for parameter values that 

could be viewed as the default option. 

 

Parameter 

Value 

Cue 

QI Unstressed internal VV(C) syllable (…VV…) 

QS Em-None or Em unknown: 2 syllable word with 2 stresses (VV VC) 

Em-Some: 3 syllable word, with 2 adjacent syllables stressed  

(VC VV VC) 

QS-VC-L Unstressed internal VC syllable (…VC…) 

QS-VC-H Em-None or Em unknown: 2 syllable word with 2 stresses, one or more 

are VC syllables (VV VC) 



Em-Some: 3 syllable word, with 2 adjacent syllables stressed, one or 

more are VC syllables (VC VV VC) 

Em-None Both edge syllables are stressed (V…VC) 

Em-Some Union of Em-Left and Em-Right cues 

Em-Left Leftmost syllable is Heavy and unstressed (H…) 

Em-Right Rightmost syllable is Heavy and unstressed (…H) 

Ft-Dir-Left QI or Q-unknown, Em-None/Left or Em unknown: 2 stressed adjacent 

syllables at right edge (…VC V) 

QI or Q-unknown, Em-Right:  2 stressed adjacent syllables followed by 

unstressed syllable at right edge (…VC V VV) 

QS, Em-None/Left or Em unknown: stressed H syllable followed by 

stressed L syllable at right edge (…H L) 

QS, Em-Right: stressed H syllable followed by stressed L syllable 

followed by unstressed syllable at right edge (…H L H) 

Ft-Dir-Rt QI or Q-unknown, Em-None/Right or Em unknown: 2 stressed adjacent 

syllables at left edge (VC V…) 

QI or Q-unknown, Em-Left:  unstressed syllable followed by 2 stressed 

adjacent syllables at left edge (VC V VV…) 

QS, Em-None/Right or Em unknown: stressed L syllable followed by 

stressed H syllable at eft edge (L H…) 

QS, Em-Left: unstressed syllable followed by stressed L syllable 

followed by stressed H at left edge (H L H…) 

Unb QI or Q-unknown: 3+ unstressed syllables in a row (…VC VV VC…) 



QS: 3+ unstressed Light syllables in a row (…L  L  L) 

B Union of B-2 and B-3 cues 

B-2 QI or Q-unknown: 3+ syllables in a row, every other one stressed  

(… VC VV VC…) 

QS: 3+ Light syllables in a row, every other one stressed (…L L L…) 

B-3 QI or Q-unknown: 4+ syllables in a row, every third one stressed  

(…V VC VV V…)  

QS: 4+ Light syllables in a row, every third one stressed (…L L L L…) 

B-Syl QI or Q-unknown: Union of QI B-2 and QI B-3 cues 

QS, B-2: 2 adjacent syllables, one stressed Heavy and one unstressed 

Light (…H L…) 

QS, B-3: 3 adjacent syllables, 2 unstressed Light preceding a stressed 

Heavy or following a stressed Heavy (…H L L…), (…L L H…) 

B-Mor Em-None or Em-unknown: 2 syllable word with both syllables Heavy 

and stressed (H H) 

Em-Some: 3 syllable word with 2 adjacent syllables Heavy and stressed  

(L H H) 

Ft-Hd-Left Em-None or Em-unknown: Leftmost syllable is stressed (VC…) 

Em-Left: 2nd from leftmost syllable is stressed (VV VC…) 

Ft-Hd-Rt Em-None of Em-unknown: Rightmost syllable is stressed (…VC) 

Em-Right: 2nd from rightmost syllable is stressed (…VC VV) 



Table A3. Cues for metrical phonology parameter values.  Some cues may depend on the 

child’s current knowledge state, represented in italics.  For example, the cue for QS 

depends on what is known about extrametricality (Em-None/Em-Some/Em-unknown). 

 

The parsing method involves the child using the structure-assigning ability of parsing 

that is presumed to be used already during language comprehension (Fodor 1998a, 

1998b, Sakas & Fodor 2001). The parsing instantiation examined in Pearl (2008, 2009) 

tries to analyze a data point with “all possible parameter value combinations”, conducting 

an exhaustive search of “all parametric possibilities” (Fodor 1998b).  For this kind of 

parsing, a successful parameter value combination will generate a stress contour that 

matches the observed stress contour of the data point  - this is then a successful parse of 

the data point.  For instance, the combination QI, Em-None, Ft-Dir-Left, B, B-2, B-Syl, 

Ft-Hd-Left is able to generate the stress contour [stressed unstressed stressed] for the 

word afternoon.  Since the stress contour the child would encounter for afternoon 

matches this stress contour (afternoon), this combination can successfully parse this data 

point. 

If all successful parses use only one of the available parameter values for a given 

parameter (e.g,. Em-None of the extrametricality values), that data point is viewed as 

unambiguous for that parameter value. Data points that can be parsed with multiple 

parameter values of the same parameter (e.g., Ft-Hd-Left and Ft-Hd-Rt for the foot 

headedness parameter) are considered ambiguous.  These ambiguous data points are 

filtered out of the child’s intake for that parameter value (e.g., foot headedness) by the 

child’s unambiguous data learning bias. 



As an example of this parsing method in action, suppose the child encounters 

afternoon, and successfully recognizes two pieces of information: (1) the syllables are af 

(VC), ter (VC), and noon (VVC), and (2) the associated stress contour is VC VC VVC.  

A parsing child would try to generate the observed stress contour with all available 

parameter value combinations and come up with five that are successful: 

 

 (a) QI, Em-None, Ft-Dir-Left, B, B-2, B-Syl, Ft-Hd-Left 

 (b) QI, Em-None, Ft-Dir-Rt, B, B-2, B-Syl, Ft-Hd-Rt 

 (c) QS, QS-VC-L, Em-None, Ft-Dir-Left, B, B-2, B-Syl, Ft-Hd-Left 

 (d) QS, QS-VC-L, Em-None, Ft-Dir-Rt, B, B-2, B-Syl, Ft-Hd-Rt 

  (e) QS, QS-VC-L, Em-None, Ft-Dir-Left, Unb, Ft-Hd-Left) 

 

All these successful parses share Em-None, meaning that Em-None was required for 

a successful parse.  The child then perceives this data point as unambiguous for Em-

None. 

It turns out that a general class of probabilistic learners using either of these 

identification methods is guaranteed to succeed at selecting the parameter values that 

comprise the English grammar (i.e., the adult English grammar described in the main 

text) when trained on the same corpus of English child-directed speech used for the 

unbiased probabilistic learners examined here (see Pearl (2008, 2009) for details).  

However, these biased learners require that certain parameter-setting order constraints be 

obeyed.  For cues, these are as follows: (a) QS-VC-H before Em-Right, (b) Em-Right 

before B-Syl, and (c) B-2 before B-Syl.  That is, (a) the child must determine that VC 



syllables are treated as Heavy (QS-VC-H) before determining that the rightmost syllable 

is extrametrical (Em-Right), (b) the child must determine that the rightmost syllable is 

extrametrical (Em-Right) before determining that a metrical foot’s size is determined by 

the number of syllables it contains (B-Syl), and (c) the child must determine that metrical 

feet are two units in size (B-2) before determining that a metrical foot’s size is 

determined by the number of syllables it contains (B-Syl). 

For parsing, there are three groups such that the first one must be set before the 

second one, and the second one must be set before the third one: 

 

 Group 1: QS, B, Ft-Hd-Left 

 Group 2: Ft-Dir-Rt, QS-VC-H 

 Group 3: Em-Some, Em-Right, B-2, B-Syl 

 

So, first the parsing child must determine that the language is quantity sensitive (QS), 

that metrical feet are of some arbitrary bounded size (B), and that metrical feet are headed 

on the left (Ft-Hd-Left) before determining any of the other parameters of the English 

grammar.  Then, the parsing child must determine that metrical feet are constructed 

starting from the right edge of the word (Ft-Dir-Rt) and VC syllables are treated as Heavy 

(QS-VC-H).  Finally, the parsing child can determine that the rightmost syllable is 

extrametrical (Em-Some, Em-Right) and metrical feet are two syllables in size (B-2, B-

Syl). 

If the child does not follow these parameter-setting order constraints, whether that 

child is using cues or parsing to identify unambiguous data, the child will not observe 



distributions of unambiguous data that favor the adult English grammar’s parameter 

values.  Thus, to succeed, a child trying to acquire the adult English grammar in this 

parametric system must not only know to learn from unambiguous data alone, but must 

also either have or derive the knowledge of these parameter-setting order constraints.  See 

Pearl (2007, 2009) for discussion of how some or all of these constraints may be derived 

from properties such as data saliency, data quantity, and default values for the parametric 

system, depending on the identification method. 

 


