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Abstract

Poverty of the Stimulus (PovStim) has been at the heart of ferocious and tear-filled debates
at the nexus of psychology, linguistics, and philosophy for decades. This review is intended as
a guide for readers without a formal linguistics or philosophy background, focusing on what
PovStim is and how it’s been interpreted, which is traditionally where the tears have come in.
I discuss PovStim from the perspective of language development, highlighting how PovStim
relates to expectations about learning and the data available to learn from. I describe common
interpretations of what PovStim means when it occurs, and approaches for determining when
PovStim is in fact occurring. I close with illustrative examples of PovStim in the domains of
syntax, lexical semantics, and phonology.

1 Introduction
“Poverty of the stimulus” (PovStim) is essentially a claim about the data available to children
when they’re trying to learn certain pieces of knowledge (more on this in the next section). No-
tably, PovStim has been at the heart of debates in cognitive science – in particular, the intersection
of psychology, linguistics, and philosophy – for decades. Here are just some of the papers fo-
cusing on it over the years: Chomsky (1965); Kimball (1973); Chomsky (1975); Baker (1978);
Stich (1978); Pinker (1979); Chomsky (1980a, 1980b); Baker and McCarthy (1981); Hornstein
and Lightfoot (1981); Gordon (1986); Chomsky (1988); Lasnik (1989); Lightfoot (1989); Pinker
(1989); Sampson (1989); Crain (1991); Ramsey and Stich (1991); Wexler (1991); Marcus (1993);
Garfield (1994); Jackendoff (1994); Morgan, Bonamo, and Travis (1995); Pullum (1996); Seiden-
berg (1997); Ambridge, Rowland, and Pine (2008); Lightfoot (1998); Cowie (1998); Laurence
and Margolis (2001); Matthews (2001); Crain and Pietroski (2002); Fodor and Crowther (2002);
Legate and Yang (2002); Pullum and Scholz (2002); Scholz and Pullum (2002); Chouinard and
Clark (2003); Dresher (2003); Collins (2004); Pinker (2004); Idsardi (2005); Scholz and Pullum
(2006); Ambridge et al. (2008); Valian (2009); Hsu and Chater (2010); Perfors, Tenenbaum, and
Wonnacott (2010); Clark and Lappin (2011); Hsu, Chater, and Vitányi (2011); Perfors, Tenen-
baum, and Regier (2011); Hsu, Chater, and Vitányi (2013); Pearl and Sprouse (2013b, 2013a);
Rey (2014); Chater, Clark, Goldsmith, and Perfors (2015); King (2015); Han, Musolino, and
Lidz (2016); Pearl and Mis (2016); Skidelsky (2016); Abend, Kwiatkowski, Smith, Goldwater,
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and Steedman (2017); Belletti (2017); Fodor and Sakas (2017); Lasnik and Lidz (2017); Piattelli-
Palmarini (2017); Zenker and Schwartz (2017); Fitz and Chang (2017); McCoy, Frank, and Linzen
(2018); Pearl and Sprouse (2018); and Rawski and Heinz (2019). Interestingly, people who have
written on PovStim are often quite exercised by it. Much of the ink spilled above has been spent
expressing (in my opinion) rather strong feelings, in addition to actual debate. So, why has PovS-
tim gotten so much continuous – and often quite feisty – attention? It’s because of the implications
people take PovStim to have.

Here, I try to give an overview of what PovStim is and how it’s been interpreted, which is re-
ally where all the tears have traditionally come in. My goal is to accomplish this overview without
the tears, as much as possible, particularly for readers without a formal linguistics or philosophy
background. To do this, I approach PovStim from the perspective of language development, and
focus on how PovStim relates to expectations about learning and the data available to learn from.
I then describe how people interpret PovStim when it occurs. Because a lot of PovStim debate is
actually about when PovStim occurs, I’ll discuss some approaches people have taken for determin-
ing if PovStim is in fact occurring. These approaches often focus on determining how much data
is required for children to learn what they do when they do; if the quantity of data required is less
than the quantity of data children seem to get, then PovStim is occurring. I’ll then discuss some
potential examples of PovStim and how I think it best to interpret them, given our current under-
standing. I’ll conclude with what seem to me to be the best ways to make progress on determining
(i) when PovStim occurs, and (ii) what it means when it does.

1.1 Alright, what is it?

Figure 1: A visual demonstration of a PovStim
problem for two-dimensional data. Each X cor-
responds to an observed data point, and A-F cor-
respond to potential representations that speakers
could use to generate the observed data. The cor-
rect representation (C) is in dashed lines. PovS-
tim occurs because all these representations are
compatible with the data.

At its heart, PovStim is a developmental claim,
i.e., a claim about whether something is in fact
learnable (and more practically, learnable by
typically-developing children). PovStim oc-
curs when there’s unresolvable ambiguity in
the data – in this way, the data are insufficient
on their own (i.e., the stimulus is too impov-
erished) for children to infer the correct an-
swer (Laurence & Margolis, 2001; Scholz &
Pullum, 2002; Clark & Lappin, 2011; Chater
et al., 2015; Skidelsky, 2016; Lasnik & Lidz,
2017). So, there’s an induction problem. Re-
searchers are then rather impressed when chil-
dren nonetheless seem to reliably resolve that
ambiguity, and end up with the right answer de-
spite the induction problem (Chomsky, 1975;
Ramsey & Stich, 1991; Garfield, 1994; Lau-
rence & Margolis, 2001; Matthews, 2001;
Collins, 2004).

I think it’s helpful to see this kind of unresolvable ambiguity more concretely, as in Figure 1.
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Here we see a two-dimensional space, where some data points are observed (each indicated with an
X). Now, let’s assume learners believe that observable data are generated by speakers using some
internal representation (e.g., an observed vowel pronunciation generated from an underlying vowel
definition of some kind, or an observed utterance generated from an underlying syntactic rule set
of some kind). So, for this kind of learner, the data in Figure 1 were generated from some internal
representation the speakers used. The learner is then trying to figure out what that representation
was, on the basis of these observed data. In a two-dimensional space like what’s shown in Figure
1, a representation might correspond to a mean value for each dimension, which has some variance
in each dimension (leading to ellipses like those shown in Figure 1). So, speakers generate data
points that fall within the bounds of that internally-defined ellipse. This means the child’s job is to
figure out which ellipse, corresponding to a particular internal representation, is the one speakers
used to generate those data. Some sample hypotheses are shown (A-F), with the correct one (C)
indicated with a dashed line. The problem here is that all these hypotheses are compatible with the
data. That is, these data could be generated by a speaker who had representations corresponding
to A, B, C, D, E, or F. So, these data are ambiguous about which hypothesis is correct, and this
ambiguity is unresolvable without some kind of additional guidance about which one to pick. Thus,
an induction problem, i.e., PovStim.

Now, imagine if all the children we observe always end up with hypothesis C. Maybe they
explore some other hypotheses along the way (like A or B or D), but they all still converge on
C as the underlying representation for these data. This would be very surprising. Put simply,
why C? What does C have going for it that the other hypotheses don’t? Why not A or B or D
as the final answer, given these data? What’s causing this constrained generalization to C? This
constrained generalization becomes even more surprising when the hypothesis space has more than
these 6 hypotheses in it. Generally, language scientists think of children’s hypothesis spaces being
quite vast. So, when we observe a PovStim problem and we see constrained generalization – that
is, children not picking hypotheses that are perfectly compatible with the available data and so
avoiding “tempting errors” (Laurence & Margolis, 2001) – we get very interested in why children
are doing this.

This is really where all the interest in PovStim comes from. PovStim means the data are
insufficient for explaining how children make the generalizations they do. This is because the
data are compatible with multiple hypotheses that children seem to ignore (Laurence & Margolis,
2001; Belletti, 2017; Piattelli-Palmarini, 2017). So, children must be using something else to help
them decide among the possible hypotheses – and that something else doesn’t come from the data
themselves. It has to come from somewhere else. But, where else is there, if the data are the only
external signal the child has to work with? The answer is that the something else is internal – it
comes from the child herself. Prior to learning from these data, the child already knows something,
and that something helps her navigate through these hypotheses that are equally compatible with
the data. That is, the prior something allows the child to make constrained generalizations.

So, PovStim can be summed up as in (1), which shows why PovStim and children making
constrained generalizations should lead us to believe children have prior knowledge.

(1) PovStim and constrained generalizations together imply prior knowledge
a. Data: There are data external to the child that are available for learning about some
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underlying representation humans have (e.g., about language).
b. PovStim: These data are compatible with more than one hypothesis about the under-

lying representation. This is why they’re considered impoverished or insufficient –
they don’t pinpoint the correct hypothesis on their own.

c. Constrained generalization: Children figure out the correct representation anyway.
d. Prior knowledge: Therefore, children have prior knowledge that causes them to make

the constrained generalization.

1.2 How do we tell that data are insufficient?
One key component to this chain of reasoning is the actual PovStim part itself, i.e., that the data
are insufficient on their own to guide the child to the correct answer. This is why children have to
somehow go beyond the information provided in those data (Ramsey & Stich, 1991; Wexler, 1991;
Pullum & Scholz, 2002; Skidelsky, 2016; Lasnik & Lidz, 2017). Above, I described this insuf-
ficiency as the data being compatible with more than one hypothesis (with the visual example in
Figure 1). However, there’s been considerable discussion of precisely how data can be insufficient,
which I’ll briefly summarize now. Where possible, I’ll connect each idea to the PovStim definition
used above, where the data are compatible with more than one hypothesis.

The data just aren’t there. One way PovStim is discussed is that the required data simply aren’t
available (Chomsky, 1965; Kimball, 1973; Baker, 1978; Hornstein & Lightfoot, 1981; Gordon,
1986; Lasnik, 1989; Ramsey & Stich, 1991; Lightfoot, 1998; Legate & Yang, 2002; Pullum &
Scholz, 2002; Lasnik & Lidz, 2017; Zenker & Schwartz, 2017). What does it mean for data to be
required? Required data are those that pinpoint the correct hypothesis. For example, there are no
data points in the hypothesis space in Figure 1 that would uniquely identify hypothesis C as the
correct hypothesis. This is because every data point in C is also in F (i.e., C is a subset of F), so
even the least ambiguous “C” data points still have unresolvable ambiguity between C and F (i.e.,
there’s a “Subset Problem” caused by F if the child needs to learn C). In particular, there is no
obvious C-but-not-F data point available – and this is exactly what’s caused both significant worry
and theories for how children deal with it (Brown & Hanlon, 1970; Bowerman, 1988; Marcus,
1993; Hsu et al., 2013; Chater et al., 2015; Lasnik & Lidz, 2017; Pearl, in press). This situation
aligns exactly with our current definition of PovStim – multiple hypotheses are compatible with
the available data. In this particular case, multiple hypotheses will always be compatible with data
points covered by the correct hypothesis C.

A lot of debate then happens about exactly what kind of data are required to pinpoint the correct
hypothesis. This in turn depends on quite a number of things: (i) what the correct hypothesis is, (ii)
what the hypothesis space looks like, (iii) what data are available, and (iv) how children are able to
leverage those available data. To begin with, it matters quite a lot what the hypothesis space looks
like. Imagine if E were the correct hypothesis instead of C, as in Figure 2 – there are certainly
possible data points that would uniquely pinpoint E in this hypothesis space (some are shown as
Xs in Figure 2). If those unambiguous E data were available, no PovStim problem would happen.

So now let’s talk about the availability of data to children, which is also a place where a lot of
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tears have historically occurred. For instance, researchers have often described children as learning
primarily (or only) from what’s called direct positive evidence (Pinker, 1989; Seidenberg, 1997;
Marcus, 1993; Laurence & Margolis, 2001; Fodor & Crowther, 2002; Fodor & Sakas, 2017).
In Figure 2, this means that to learn E is correct, children need to encounter data that are only
compatible with E (like the Xs shown). These data are then positive examples of hypothesis E that
children directly observe.

Figure 2: A hypothesis space where there are un-
ambiguous data available for the correct hypoth-
esis E. Unambiguous (direct positive evidence)
data points for E are shown with Xs. A negative
evidence data point for E is shown with a frowny
face.

Direct positive evidence contrasts with both
negative evidence and indirect evidence. Neg-
ative evidence is evidence about what’s not the
correct hypothesis. An example would be the
frowny face in Figure 2. One way to think
about this is that someone directly tells the
child that this data point isn’t in fact right (i.e.,
it’s not covered by the correct hypothesis E).
However, we don’t often go around telling peo-
ple what isn’t so unless they’ve somehow indi-
cated they think it might be so. Here, this might
correspond to children indicating they think
that data point is part of the correct hypothe-
sis, and then being corrected. But, it turns out
that children aren’t often explicitly corrected
(Bowerman, 1988); even when they are, they
seem to ignore those explicit corrections (McNeill, 1996; Brown & Hanlon, 1970). Still, there are
other kinds of corrective feedback they receive (Quine, 1960; Morgan et al., 1995; Saxton, 1997;
Saxton, Kulcsar, Marshall, & Rupra, 1998; Saxton, 2000; Chouinard & Clark, 2003; Saxton, 2005;
King, 2015), and this feedback potentially highlights the “negative” status of the data point (i.e.,
that this data point isn’t covered by the correct hypothesis).

As a concrete example of corrective feedback, let’s consider recasts (Saxton, 1997; Saxton et
al., 1998; Saxton, 2000, 2005), where the child says something incorrect and the caretaker responds
by recasting that incorrect thing into something correct. In Figure 2, this might occur if the child
said the frowny face data point, and the caretaker responded by recasting it as an X data point. (A
language example might be something like the child saying “I runned really fast”, and the caretaker
recasting that as “Right, you ran really fast”: runned is recast as ran.) In this way, the caretaker has
indirectly communicated the negative status of the frowny face data point – that is, if the child is
astute enough to notice the recast. This particular issue of the child noticing the recast as negative
evidence highlights why even this kind of corrective feedback may also have limited effectiveness
(Morgan et al., 1995).

This relates to the second distinction I mentioned above: indirect evidence. Indirect evidence
means the data point isn’t directly about the correct hypothesis – instead, the child has to infer what
information from that data point is relevant for pinpointing the correct hypothesis. For recasts, the
indirect part was recognizing that what the caretaker said was a replacement to be used instead of
the frowny face data point. More specifically, in the ran recast for runned, the child has to infer
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that the caretaker wasn’t saying ran simply because she felt like it; instead, the child must infer
that ran is the correct way to express that meaning (i.e., RUN in the past tense). This highlights
how harnessing indirect evidence is likely to take more effort from the child.

Figure 3: A hypothesis space with different types
of data available for the correct hypothesis E.
Data points that are hard to leverage are shown
with an H, while more useable data are shown
with a U.

This then relates to the final point: we need
to be clear about how we think children are able
to leverage the available data. If data are avail-
able in the input, but children can’t use them
(perhaps because these data are just too indi-
rect), we might well have a PovStim problem
after all. For instance, imagine a scenario like
Figure 3, where E is the correct hypothesis and
there are in fact unambiguous data available,
but they’re hard for the child to use for what-
ever reason (these are labeled H in Figure 3).
If a particular child is in fact unable to use the
hard data points, this leaves that child with a
smaller set of useable data (these are labeled U
in Figure 3); then, these data do in fact cause a
PovStim problem because they’re compatible with multiple hypotheses (correct hypothesis E, and
incorrect hypotheses C and F).

The data are noisy. Because of speech errors on the part of the speakers or processing errors on
the part of the child listeners, the data may be “noisy” (Chomsky, 1965; Hornstein & Lightfoot,
1981; Ramsey & Stich, 1991; Garfield, 1994; Seidenberg, 1997; Laurence & Margolis, 2001;
Piattelli-Palmarini, 2017). Though Clark and Lappin (2011) note that noise in the input signal
is something children have to deal with in many areas of cognitive development (e.g., auditory
perception and vision), the PovStim-related issue would be that the data are too noisy. For example,
let’s consider the left panel of Figure 4, where C is the correct hypothesis and potential noisy data
are shown as Ns.

These N noisy data points are compatible with B and F, but not compatible with C. So, these
noisy data would cause a PovStim problem because all the data (that is, the data points shown as
Xs as well as the additional noisy N data points) are still compatible with multiple hypotheses. In
this case, those noisy data points would make the entire available data compatible with B and F.
This does in fact rule out some of the other hypotheses – but it unfortunately would also rule out
the correct hypothesis C. This is the other main problem with noisy data, and the one that seems to
get more discussion: noisy data throw the child off the right track. This isn’t PovStim necessarily,
because there may be only one hypothesis left after the noisy data are considered. However, this
isn’t the outcome we want (remember: children end up with C). So, children have to ignore the
noisy data somehow. But again, this is a separate issue from PovStim, which is when noisy data
create unresolvable ambiguity.
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Figure 4: A visual demonstration of noisy data (left panel) and misleading data (right panel). Each
X corresponds to an observed non-noisy data point while each N is a noisy data point in the left
panel and each M is a misleading data point in the right panel. The correct representation (C) is in
dashed lines.

The data are misleading. This is related to the idea of noisy data, where perhaps due to the
vagaries of what people choose to talk about or how children interpret the data, the data are mis-
leading. That is, it’s not that speakers are making errors and so generating noise; rather, something
internal to children (e.g., their developing knowledge or their developing processing capabilities)
causes children to perceive these perfectly correct data incorrectly. Belletti (2017) describes an
instance where an incorrect hypothesis seems to be the one the data suggest, if the child is viewing
the data in a particular (unhelpful) way. So, the child is then thrown off the right track. In the right
panel of Figure 4, we see an example like this: many misleading data (shown with Ms) appear, and
these data can’t be captured by the correct hypothesis C. So, these data would mislead the child, in
this case away from generalization C. As before, this situation is actually separate from PovStim:
while misleading data might cause PovStim, they don’t have to. In the right panel of Figure 4, they
do cause a PovStim problem – the child again sees data that are compatible with more than one
hypothesis (here: B and F). But the real problem, and the one that causes much discussion, is the
fact that the correct hypothesis (C) isn’t one of the compatible hypotheses. As before with noisy
data, this is a separate issue from PovStim.

Children learn so quickly and uniformly. Another point that often comes up is how quickly
typically-developing children learn language, given those children’s immature cognitive abilities
(Jackendoff, 1994; Laurence & Margolis, 2001; Crain & Pietroski, 2002). This is related to the
concept of computational complexity or computational efficiency in formal learnability studies
(Clark & Lappin, 2011) – in essence, how complex is it to navigate to the right answer and how
efficiently can that navigation be done, given the data? If children compute something complex
very fast, this is pretty surprising.

The surprise at children’s quickness can link to PovStim, though it does so implicitly. In
particular, if we have a PovStim problem, as in Figures 1, 3, or 4, the fact that children converge
on the right answer at all is already surprising. The fact that children do it despite not being as
cognitively adept as adults is really a bonus surprise. This surprise at children’s quickness may
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also relate more directly to the idea of noisy or misleading data; when those are present in the
input, it’s surprising that children can so quickly navigate to the right answer.

An associated idea is that children learn uniformly – that is, typically-developing children all
seem to end up with the same answer (Chomsky, 1965; Lasnik & Lidz, 2017). This is again a
surprise if we assume PovStim is happening. (In fact, recall from (1) that this is the “Constrained
generalization” part that comes after we see that a PovStim problem exists.) So, arguments in favor
of PovStim that are based on children’s uniformity of learning actually rely on PovStim already
being established – it’s only really surprising that children all end up with the same answer if there
was more than one answer possible.

1.3 So what does it mean if the data are insufficient?
Wait, does that really happen? There’s definitely debate (and tears) about when the data do in
fact seem insufficient (e.g., see Morgan, 1986; Pinker, 1989; Pullum & Scholz, 2002; Scholz &
Pullum, 2006; Ambridge et al., 2008; Chater et al., 2015). This has a lot to do with what goes
into figuring out all those components I mentioned above: what the correct hypothesis is, what the
hypothesis space looks like, what data really are available in children’s input, and how children are
able to leverage those available data. In order to claim PovStim is occurring, we need to assume
something about each of these components. Only then can we concretely specify what the data
are that are available (and useable), which was the “Data” in (1). Sometimes, people aren’t as
explicit about the assumptions that underlie a particular definition of the available data. But, if
someone declares some dataset is the relevant data for some learning problem, this person must
have in mind (even if implicitly) a correct hypothesis the child is trying to identify from those
data, a hypothesis space with competing hypotheses to choose from, a notion of what data children
actually encounter, and ideas about which data children are able to use. This is why it’s helpful
to state these components explicitly – that way, we can at least identify where the disagreement is
occurring, if and when it occurs. That is, is there disagreement because we don’t think the child is
trying to identify that particular hypothesis? Or because we don’t think those are the correct set of
competing hypotheses? Or because we think other data are actually available, and those other data
are useable by children?

Okay, but if it does happen. If we agree about all the components that go into defining the data,
we can then agree when a PovStim problem is occurring. Then, if we agree that children show
constrained generalization despite that PovStim problem, we can agree that children have some
kind of prior knowledge.

It seems to me that this is where another round of tears happens. Children must have the nec-
essary knowledge available internally if it’s not derivable from the external information currently
available. So, one option is that children derived the necessary knowledge from external informa-
tion that was previously available. Because they completed that knowledge derivation before the
current time, the knowledge they gained is therefore prior knowledge. If that’s what’s happening,
then we need an explanation for how children could derive that necessary knowledge beforehand
from the data that was available beforehand. That is, this “derived prior knowledge” is just a place-
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holder for another learning story that we need to fill in. That learning story may in fact rely on
knowledge that was derived previously, so then we need a learning story about how that knowledge
was derived from the child’s previous data. And so on.

At some point, however, the learning story we come up with will have to involve something
about knowledge or abilities that were already built into the child. That is, any learning story
(especially a learning story about language) eventually comes back to some kind of innate abilities
the child has. Why? Because something internal about typically-developing children causes them
to develop language when they’re exposed to linguistic data, and something about kittens and
rocks doesn’t (Chomsky, 2000). This internal something is sometimes referred to as children’s
“biological endowment” (Lasnik & Lidz, 2017). The idea that typically-developing children have
innate abilities that allow them to learn has been called the nativist position.1

So, this line of argument is how the prior knowledge implied by PovStim and constrained
generalization leads to the assumption of innate knowledge. Many people have noted that even
once we recognize the need for innate knowledge, nowhere have we specified the nature of that
innate knowledge (Stich, 1978; Laurence & Margolis, 2001; Scholz & Pullum, 2006; Chater et
al., 2015; Skidelsky, 2016). A range of nativist positions are compatible with the necessary prior
knowledge. Importantly, once we’ve decided that innate knowledge or abilities are required, we
then have to explain how they got into human biology. This requires explanations from both
developmental neurobiology and evolutionary biology. So, it’s often a good idea to be very careful
about we want to claim about that innate knowledge or those innate abilities that enable children
to make their constrained generalizations in the face of a PovStim problem. Once we decide on the
nature of the innate something, we’ve just created explanatory work to do on the biological front.

Nativism isn’t crazy from a language evolution perspective. Related to the explanatory work I
noted above, I want to briefly mention some evolutionary modeling work by Kirby (2017) that takes
on the explanatory challenge of innate knowledge for learning language. In particular, Kirby’s
work ties directly into PovStim problems, demonstrating via computational modeling why we
could find ourselves with children who just happen to have the right innate knowledge or abilities
to converge on the correct language answers in the face of the unresolvable ambiguity that PovS-
tim presents. I’ll summarize the essence of those modeling results below, following along with
the caricatures in Figure 5, where we consider the transmission of language over time from one
generation to the next. The idea is that parents generate language data from their underlying repre-
sentation, and children try to figure out that underlying representation from those data. Then, the
children grow up and become the ones producing language data for the next generation of children.
Language thus survives in a specific form because that form can be successfully transmitted from
parents to children.

At some initial stage, parents have an underlying representation that they use to generate the
observable data for their children. These data are compatible with multiple hypotheses about the
underlying representation (e.g., our classic PovStim problem, as shown in the first adult speech
bubble in Figure 5). The children still have to learn an underlying representation. However, the

1More on this terminology in the next section, especially since it’s been taken to mean different things by different
people.
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Figure 5: A visual demonstration of how a PovStim problem can cause children to have just the
right innate biases for learning language from ambiguous data, given parents transmitting language
to their children over time.

children can’t do it on the basis of the external data, because we have that unresolvable ambiguity.
So, what do they use? Something internal, of course – their prior (or innate) knowledge and
abilities, shown with an arrow in the first child’s mind in Figure 5. That is, the children converge
on whatever answer already best suits their own internal biases.

These children then grow up and are the ones producing data for the next generation of children.
What representation are our grown-up children using to generate the data? The one their internal
biases guided them towards, as shown in the grown-up child (which is the second adult) in Figure
5. So, here they are, generating the same ambiguous data they themselves learned from, but from
an underlying representation they’re naturally inclined towards. Now, which representation will
their children pick out when given those same ambiguous data? The one their children’s internal
biases steer the children towards, shown with an arrow in the second child’s mind in Figure 5.

All this is to say that, over time, language may well have been shaped to capitalize on the inter-
nal biases children have (i.e., the innate knowledge and abilities they have), and it may have done
this precisely because the data were ambiguous. Put simply, when the data are ambiguous, children
have the freedom to pick a representation suited to their internal biases; this in turn allows these
children, once grown up, to continue generating ambiguous data for their children to learn from.
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Importantly, those children will converge on the same answer, which aligns with their internal bi-
ases, despite the unresolvable ambiguity in the data. There’s no need to make the data unambiguous
– children’s innate biases will guide them safely to the right answer anyway, just as it guided their
parents. So, PovStim causes children to rely on their innate biases to shape the language; future
generations can successfully learn that same-shaped language knowledge from ambiguous data by
relying on those innate biases. This then is how we end up with typically-developing children who
have remarkably helpful innate biases for learning language as it’s shaped today.

1.4 So what is that special prior something?
As I mentioned above, once researchers agree that PovStim and constrained generalization are hap-
pening, they generally can agree that at some point in development, innate knowledge or abilities
are required (Pullum & Scholz, 2002; Clark & Lappin, 2011; Rawski & Heinz, 2019). After that,
opinions often sharply diverge (with tears). I’ll describe the two most prominent viewpoints I’m
aware of.

Linguistic nativism and Universal Grammar. One form of nativism is linguistic nativism, a
term used (among others) to describe the view that the innate knowledge is language-specific
(Pullum & Scholz, 2002; Scholz & Pullum, 2002, 2006; Clark & Lappin, 2011). That is, the
innate knowledge children are equipped with is something that’s only useful for learning language,
and not for other aspects of cognition – some proponents of this view include Chomsky (1971),
Hornstein and Lightfoot (1981), Baker and McCarthy (1981), Crain and Pietroski (2002), and
Valian (2009). Innate, language-specific knowledge often goes by the name Universal Grammar
(e.g., Pearl and Sprouse (2013b) and Skidelsky (2016) use this term for it). However, sometimes
Universal Grammar is used to describe plain nativism (Clark & Lappin, 2011) – that is, whatever
innate knowledge (language-specific or not) is needed for children to learn language successfully
from ambiguous data. So, if someone says they believe in Universal Grammar because PovStim
problems exist where children show constrained generalization, it’s useful to determine what kind
of Universal Grammar that person is supporting.

More generally, proponents of linguistic nativism traditionally have had a vested interest in
showing that PovStim and constrained generalization both occur; they then draw the conclusion
that the prior knowledge needed ultimately comes from innate language-specific knowledge. How-
ever, this causes tears, because it’s not the only conclusion to draw.

Non-linguistic nativism and empiricism. In particular, other people see both PovStim and con-
strained generalization occurring, and conclude the required innate knowledge isn’t specific to
language (e.g., see Clark & Lappin, 2011; Chater et al., 2015; Piantadosi & Kidd, 2016).2 We
might reasonably think of this viewpoint as non-linguistic nativism, because the innate knowledge
required is claimed not to be language-specific So, in this way, it contrasts with linguistic na-
tivism, though both viewpoints are perfectly fine with innate knowledge being required (i.e., plain
nativism).

2See sections 2.3 and 3.2 for concrete examples of this kind of proposed innate knowledge.
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However, sometimes linguistic nativism is described simply as “nativism” – this leads to yet
more tears, as people then conflate nativism (innate knowledge required) with linguistic nativism
(innate, linguistic knowledge required). This conflation causes non-linguistic nativists to prefer
terms that contrast with nativism: non-nativism or empiricism (Chater et al., 2015; Piantadosi &
Kidd, 2016).3 But, non-nativism and empiricism might sound odd when describing child language
development, because a non-nativist/empiricist child wouldn’t have any innate knowledge or abil-
ities; this seems strange when we think about children learning language, where everyone’s pretty
happy with children having innate knowledge of some kind (Scholz & Pullum, 2006). As I said
though, what’s happened is that the non-linguistic nativists have co-opted these terms to make
clear their viewpoint is distinct from the viewpoint of the linguistic nativists. That is, those who
call themselves non-nativists or empiricists are in fact nativists, as I’ve defined here (e.g., Clark
and Lappin (2011) note that “No empiricist that we are aware of denies that humans have innate
cognitive abilities through which they acquire language.”). The non-linguistic nativists have grav-
itated recently towards the term “empiricist” in particular to highlight their belief that children
harness the data much more effectively than linguistic nativists have traditionally thought (Chater
et al., 2015). That is, today’s empiricists believe there’s a larger role for the available empirical
data, even though they still believe in innate knowledge.

Linguistic vs. non-linguistic nativists. So, it seems that everyone who agrees that PovStim and
constrained generalization occur then believes in some kind of innate knowledge (that is, we’re
all nativists). People simply split on the nature of that innate knowledge. Linguistic nativists
believe that at some point sometime in children’s language development, there’s required innate
knowledge that’s specific to learning language; non-linguistic nativists don’t believe this. Instead,
non-linguistic nativists believe all required prior knowledge is derivable from the child’s experience
coupled with non-linguistic innate knowledge and abilities.

The reason this split causes so may tears is that it’s currently quite hard to prove which per-
spective is right, even for a specific PovStim and constrained generalization pairing. The good
news for linguistic nativists is that it only takes one piece of innate linguistic knowledge for them
to be right. That is, linguistic nativism doesn’t specify how much innate linguistic knowledge is
needed – just that some is. Of course, it may be that many people who identify as linguistic na-
tivists think quite a lot of the required innate knowledge is linguistic – but technically, a linguistic
nativist is someone who believes at least one piece of required innate knowledge is linguistic. This
contrasts with the non-linguistic nativists, who believe that absolutely no innate linguistic knowl-
edge is required, ever. So, for them to be right, they have to demonstrate that for every PovStim
and constrained generalization pairing, children never need innate linguistic knowledge. That’s a
tall order. However, the good news for all the nativists is that we can make progress by showing
concretely which prior knowledge will allow children to show constrained generalization for spe-
cific PovStim problems; computational modeling is a particularly effective way to do this (Clark
& Lappin, 2011; Chater et al., 2015; Pearl, in press), and this approach is discussed more in the
next section, with some examples reviewed in section 3. Once we know which prior knowledge
options will allow children to show constrained generalization, we can argue about which options,

3Special thanks to Vic Ferreira for first pointing this out to me.

12



linguistic or non-linguistic, we think are best among the options that do in fact work.

2 How to tell if we have PovStim
A first step is to identify if a PovStim problem is occurring for a particular piece of language
knowledge. This means we need to be clear about what the correct hypothesis is, what the hy-
pothesis space is, what the available data are, and how children leverage those data. If all of those
align to show unresolvable ambiguity in the child’s input, we have a PovStim problem. Below I’ll
review two general approaches for doing exactly this: demonstrations of PovStim in principle and
demonstrations in practice. I’ll then connect this to children’s constrained generalization, where
the idea is that the ambiguity is unresolvable given the time constraints children have to resolve it
and the quantity of data they encounter. This means we need to determine how much data would be
enough to resolve that ambiguity as quickly as children do, and I’ll review some current approaches
to doing that.

2.1 Show it in principle
Formal learnability approaches (interpret with caution). One way to show the data are insuf-
ficient is to use formal learnability approaches to show it in principle (Gold, 1967; Horning, 1969;
Wharton, 1974; Angluin, 1980; Valiant, 1984; Angluin, 1988; Jain, Osherson, Royer, Sharma,
et al., 1999; Niyogi, 2006; Clark & Eyraud, 2007; Heinz, 2016). The reason these approaches
have the caveat “in principle” is because they attempt to idealize away from aspects of the learning
problem in order to be able to draw very general conclusions that should hold, no matter what the
specifics are of the particular learning problem. So, when formal learnability approaches yield a
learning result suggesting the data are insufficient, it holds in principle, given the assumptions that
were made.

This is often where the trouble comes in. Formal learnability results are hard to interpret
out of context – see Johnson (2004) and Clark and Lappin (2011) (C&L2011) for how results
from Gold (1967) have notoriously been misinterpreted (a lot). In particular, Gold’s results were
used to assume that PovStim exists for “language” as a whole, where language is something that
generates sequences of units – so, we can think about this as sequences of sounds or morphemes
or words or phrases or sentences, or whatever else. To be able to have such a general result
about any kind of language knowledge like this was very exciting – but this result was based on
assumptions about the nature of the learning process that are unlikely to be true for children. So,
drawing parallels between what happens for those learners and what happens for children isn’t
recommended. That is, asserting that PovStim holds for children learning language on the basis of
these results isn’t safe to do. Why not? In essence, the idealizing assumptions idealized away too
much from the learning situation children actually face. So, the results weren’t applicable to people
interested in the learning problems children face. (Again, see Johnson (2004) and C&L2011 for
more detailed discussion about why these learning results don’t really bear on PovStim for children.
In this particular case, the idealizations made the learning problem far harder than the one children
actually face.)
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However, other formal learnability results relied on assumptions that made the learning prob-
lem being investigated more similar to the learning problem children face (see C&L2011 for more
detailed discussion of how those learning problems were more similar). For instance, C&L2011
discuss learnability results where (i) the learner has to converge on target knowledge that’s “close
enough” to the true target in some measurable way (rather than being identical), (ii) the input
examples aren’t labeled as to whether they’re positive examples of what’s grammatical in the lan-
guage or instead noise, (iii) there is in fact noise in the input, and (iv) the learner has to learn in
a “reasonable” amount of time instead of getting an infinite amount of time to learn. In this case,
C&L2011 note that the learners can do this as long as they leverage indirect negative evidence, and
so interpret an item with relatively low probability as ungrammatical. That is, these learners must
be able to leverage the data in a certain way in order to succeed – i.e., they need a specific type of
learning process in order to show constrained generalization in the face of PovStim. So, C&L2011
are demonstrating both that (i) PovStim exists in the hypothesis space they define, given the hy-
pothesis the learners must identify and the available data, and (ii) what learners need to do (and
thus know) to solve this PovStim. Here, the necessary knowledge is to leverage indirect negative
evidence (and have the innate ability to do so). To the extent that the assumptions that C&L2011
made are translatable to children’s learning, then we can translate the insight about relying on
indirect negative evidence to children as well.

A reasonable person might wonder why someone would use formal learnability approaches,
given how difficult it is to idealize away details of children’s learning scenarios without also losing
relevance to those learning scenarios. C&L2011, referencing Pinker (1979), offer this explanation:
it can be useful to adopt idealizations that are demonstrably false when those idealizations make
the learning problem harder than the one children face. If the harder learning problem can be
solved, then the easier real problem that children face should also be solvable. However, just
because we can’t solve the harder problem doesn’t mean children can’t solve the easier problem –
this was a key misinterpretation of the Gold (1967) results, where the idealized learning problem
was much harder. This potential for misinterpretation underscores how careful we have to be when
interpreting formal learnability results, as they apply to children’s potential PovStim.

Ideal learner approaches that use realistic hypothesis spaces and available data. A related
“in principle” approach is to focus on a set of learning scenarios that map more directly to chil-
dren’s learning scenarios. For example, Chater and colleagues (Hsu & Chater, 2010; Hsu et al.,
2011, 2013; Chater et al., 2015) have developed a “rigorous formal framework for understand-
ing what can, in principle, be learned from positive linguistic evidence alone” (ch.5, p.150 of
Chater et al., 2015). (This contrasts with additionally learning from indirect negative evidence, as
C&L2011’s ideal learner did.) More specifically, this approach assumes an ideal learner who can
extract the maximal possible information from the available input; the available input is restricted
to the input we believe is available to children (this is the positive linguistic evidence mentioned by
Chater and colleagues). For this reason, the target hypothesis and hypothesis space are also more
directly tied to specific linguistic phenomena where we know what these look like for children. So,
this ideal learner approach defines the correct hypothesis, the hypothesis space, and the available
data to be what they are for children, and then idealizes how children leverage those data.

14



Idealizing how children leverage the available data allows us to define an upper limit on what
could be learned from the available data – that is, what’s possible in principle for children to learn
from the available data. So, if PovStim exists even for an ideal learner able to extract as much
information as possible from the data, it likely exists for children too (remember: this is because
children aren’t ideal learners – they’ll have an even harder time leveraging the data). This is a
related line of logic to the formal learnability approaches described above: there, if a learner could
solve a harder learning problem than the one children face, we might assume that children could
solve their easier problem; here, if we find that an ideal learner can’t solve the problem when it has
the best possible information extraction abilities (i.e., making it an easier learning problem than
what children face), then we might assume that children can’t solve their harder problem either.

I should note that this is the general approach of computational-level models of development
(in the sense of Marr, 1982): investigate what an ideal learner can do, when given the same learning
“computation” to accomplish as children (i.e., the same correct hypothesis, the same hypothesis
space, and the same available data). Then, if we find something is possible to learn in principle
with an ideal learner, we can see if it’s possible to learn in practice with child-like learners who
have constraints on how they leverage their data. (Maybe it’s not, and we still have PovStim after
all.)

In contrast, if we find something isn’t possible to learn in principle with an ideal learner, we
can plausibly assume that children, who have far more constraints on how they leverage those
data, also couldn’t learn the correct hypothesis from those data. We can then assume PovStim
exists for children learning that hypothesis, given that hypothesis space, those available data, and
their constrained ability to leverage the available data.

2.2 Show it in practice for particular case studies
A very related idea is to demonstrate PovStim occurs in practice for specific case studies where a
learner is trying to identify a specific correct hypothesis within a specific hypothesis space, given
specific available data. This is clearly similar to the ideal learner approaches mentioned above,
and the main difference is that researchers investigating if PovStim occurs in practice for a specific
case study aren’t necessarily committed to an ideal learner. Instead, these researchers may well be
investigating a learner which is more child-like in its constraints on leveraging the available data
(e.g., Pearl & Sprouse, 2013a; Pearl & Mis, 2016). Such child-inspired constraints are typically
tied to current knowledge about how children of various ages are known to leverage available
data (e.g., statistical learning abilities at different ages: Saffran, Aslin, & Newport, 1996; Xu &
Tenenbaum, 2007; Smith & Yu, 2008; Perfors, Tenenbaum, Griffiths, & Xu, 2011; Aslin, 2017).

An important aspect of investigating a particular case study is that researchers can be explicit
about what they think the available data are that children can leverage, because this is a notorious
source of PovStim tears. It may well be that PovStim exists when children can only leverage
certain available data, and doesn’t exist if children leverage other available data. One example of
this is if researchers believe children only leverage direct positive evidence for a particular piece
of linguistic knowledge, as opposed to also leveraging indirect evidence, which I discussed above
in section 1.2. Another example would be if researchers believe children only leverage positive
evidence of the same kind as the target knowledge, such as only relying on syntactic information
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to learn about syntactic knowledge; this contrasts with children relying on semantic, pragmatic,
prosodic, or extralinguistic information for learning about syntactic knowledge (Clark & Lappin,
2011).

More generally, a lot of responses to claimed PovStim scenarios take this form: what previous
researchers assumed was the entire set of available data children can leverage in fact isn’t. Instead,
the data are richer than assumed (particularly if the child is learning a system, rather than just an
isolated piece of knowledge: Perfors, Tenenbaum, & Regier, 2011; Pearl & Mis, 2016; Abend
et al., 2017; Pearl, in press). So, perhaps PovStim isn’t occurring. For me, this is a real benefit
of focusing on particular case studies: I find it easier to engage with available empirical data on
linguistic representation and child development when there’s a specific piece of knowledge we’re
looking at as a possible PovStim scenario. Then, we can examine linguistic theory to tell us
about (i) the correct hypothesis, and (ii) the hypothesis space children are navigating; we can also
examine developmental data to tell us about (iii) what realistic child input data look like for children
trying to learn that piece of knowledge, and (iv) what information children of the appropriate age
are able to leverage from their data. With this in hand, we can more explicitly characterize the
acquisition problem children are facing and determine if PovStim seems to be occurring.

2.3 Specifying how much data is enough
One thorny issue for identifying PovStim scenarios, especially for particular case studies, is that
PovStim is intricately tied to children’s constrained generalization. More specifically, it’s often
tied to how quickly children make these constrained generalizations, given the available data
(Jackendoff, 1994; Laurence & Margolis, 2001; Crain & Pietroski, 2002). Recall from the dis-
cussion in section 1.2 that children’s rapid learning has been used as a signal that PovStim may be
occurring because it seems that children are “computing” something complex very fast (Clark &
Lappin, 2011) – in fact, faster than we would expect, given the available data. So, in practice, it
seems the actual data aren’t often unresolvably ambiguous; rather, the ambiguity is unresolvable
on the basis of those data as fast as children resolve it.

How can we tell that children are resolving the ambiguity faster than expected? What’s ex-
pected? It seems that the expected time to resolve the data ambiguity must be tied to how many
informative data are present. If this amount is less than what children would need to resolve the
ambiguity as fast as they do, then we have PovStim after all. That is, informative data may exist,
but there simply aren’t enough of them for children not to also need some prior knowledge. So,
it seems a crucial component of identifying a PovStim scenario is identifying how much data is
enough.

Developmental benchmarking with unambiguous data. In one lively debate, Pullum and Scholz
(2002) noted that no one was saying how much data was enough, even though many people
were quite convinced PovStim was occurring for various case studies. Legate and Yang (2002)
(L&Y2002) took up that challenge and offered one approach to specifying how much data was
enough for children to make the constrained generalizations they did. L&Y2002’s approach relied
on children primarily leveraging only direct positive evidence that was unambiguous (so, some-
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thing like the data in Figure 2 for hypothesis E).4 Note that to determine data are unambiguous,
we need to have a clear idea of both the correct hypothesis and the hypothesis space children are
navigating, such that those data are in fact unambiguous for the correct hypothesis.

However, once we know what the unambiguous data would be, L&Y2002 suggested that the
quantity of unambiguous data in children’s input for any piece of linguistic knowledge should cor-
relate with the age children figure out that piece of linguistic knowledge (also known as children’s
age of acquisition). In particular, ages of acquisition that were correlated with certain amounts
of unambiguous data could serve as developmental benchmarks. The reasoning was that, all else
being equal,5 linguistic knowledge with less unambiguous data available should be learned later
while linguistic knowledge with more unambiguous data available should be learned earlier. If we
find that something with less unambiguous data available (knowledge Kless) is nonetheless learned
earlier – as early, say, as something with more unambiguous data available (knowledge Kmore) –
this could indicate a PovStim scenario for knowledge Kless.

L&Y2002 then proceeded to explore what was then known about (i) different linguistic knowl-
edge pieces in terms of age of acquisition, (ii) what could plausibly be the unambiguous data for a
particular knowledge piece, and (iii) how frequently those unambiguous data appear in children’s
input. They found support for their suggested developmental correlation in two different linguistic
knowledge pieces that seemed to have the same amount of unambiguous data available in chil-
dren’s input (about 1.2% of children’s input) and also have the same age of acquisition (around 3
years old). Subsequent investigations (Yang, 2004, 2012) found many more example knowledge
pieces that aligned with this idea, with unambiguous input frequencies ranging from 0.2%-25%
of children’s input and ages of acquisition from older than four down to younger than two. These
examples then serve as developmental benchmarks for how fast we should expect children to show
constrained generalizations. More specifically, if we assume unambiguous data drive children’s
acquisition and we can both define what those unambiguous data are and how frequently children
encounter them in the input, we can determine if children are constraining their generalizations
faster than expected.

Information-theoretic approaches. Another approach, which was more recently developed by
Hsu, Chater, and colleagues (Hsu & Chater, 2010; Hsu et al., 2011, 2013; Chater et al., 2015),
draws on information theory to specify how much data would be required for children to constrain
their linguistic generalizations the way they do. The key idea for this approach is known as Mini-
mum Description Length (MDL), and focuses on how compactly a particular representation would
allow the child to represent the data she encounters. That is, an MDL-based learner is choosing
representations based on storage capacity: representations that enable more compact storage are
viewed as better. This is in fact a type of prior knowledge – if two representations are each com-

4I say “primarily” because the variational learner of L&Y2002 actually learns from ambiguous data as well, but is
really driven by unambiguous data. This is because over time, ambiguous data cancel out, leaving the unambiguous
data to drive the learner’s generalizations. See Pearl (in press) for more discussion about why this is.

5It’s important to note that this “all else being equal” assumption does a lot of work. As just one example, we
would need to assume that both knowledge pieces were equally complex from the perspective of the child. If not, it
might be that the simpler one was learned more quickly than the more complex one, even with the same amount of
unambiguous data.
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patible with the available data (i.e., we have PovStim), an MDL learner prefers the one that takes
up less space. Note that this prior knowledge is domain-general, since it could as easily apply to
non-linguistic representations as it could to linguistic representations. So, an MDL learner relies
on non-linguistic nativist knowledge. I should also note that the MDL approach is quite compatible
with linguistic nativist knowledge – for instance, the representations being compared using MDL
might well be generated using linguistic nativist knowledge. But, the fact that the MDL learner
prefers a more compact representation is itself non-linguistic nativist knowledge.

Figure 6: An MDL encoding for hypotheses C
and E, which are both compatible with the avail-
able data (shown as Xs). Over time, the more
complex hypothesis C yields a more compact
representation than the simpler hypothesis E.

More specifically, as shown in the exam-
ple in Figure 6, an MDL learner encodes both
the representation itself and the available data
on the basis of that representation. So, a
more complex representation may take up more
space, but allow more compact encoding of
each data point; in contrast, a simpler repre-
sentation may take up less space, but require
more space for each data point. After enough
data are encountered, this additional cost per
data point can lead to the simpler representa-
tion being less compact than the more complex
representation. This is the key insight of the
MDL approach to diagnosing PovStim: we can
identify when the representation children se-
lect should overtake other competing options,
on the basis of the data children encounter. If
this occurs later than children actually seem
to identify the correct representation, we have
evidence that PovStim is happening and addi-
tional prior knowledge (besides a preference for compactness) is required.

For example, let’s look more closely at the learning scenario in Figure 6, where the child con-
siders a hypothesis space consisting only of representations C and E. C is the correct representation
(i.e., the one we observe children converging on by a certain age), and is more complex, as evi-
denced by its more complex shape – this complexity also shows up as C taking more space to
encode in the top box, compared with the simpler representation E. Now, suppose we believe the
available data are the Xs in Figure 6; they’re clearly compatible with both C and E, and so we
have a classic PovStim problem to begin with. However, remember that an MDL learner has prior
knowledge that causes it to prefer more compact representations. So, initially, this learner will
prefer E – E takes up less space, after all.

Then, some time passes (time 1) and the learner has encountered some quantity of those avail-
able data. When trying to encode those data with each representation, the overall storage required
is shown in the middle box of Figure 6. E is still more compact overall than C, but C is definitely
catching up. Still, an MDL learner prefers E at this point. However, by time 2, when the learner
has encountered twice as much data, the encoding with C is more compact than the encoding with
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E. Therefore, an MDL learner now prefers C.
This demonstrates how a “break even” point can be calculated for an MDL learner – in Figure 6

terms, how many Xs have to be encountered before the encoding with C is more compact than the
encoding with E? Time 1 was too soon, while time 2 was just a bit too late. Using this approach,
we can figure out how many data are required before the encoding with C is the same size as the
encoding with E. Just after that should be when an ideal MDL learner would switch from preferring
E to preferring C. Let’s call this amount of data Dbreakeven.

Now, how do we determine how much time corresponds to Dbreakeven? This is where we turn
to developmental data about how often children hear these data in their input, as well as how much
input children hear over time. We can calculate how often children hear these data by assessing
realistic samples of child interactions: in those interactions, how often do these data show up?
This corresponds to the input rate. Then, we just need to know how much total input children
encounter by certain ages. For this input quantity estimate, we can turn to data like those of Hart
and Risley (1995, 2003), which will tell us how many utterances children hear on average per hour
(e.g., 487 in a professional household for children ages 13-36 months); we can then turn to data
like those of Davis, Parker, and Montgomery (2004) for hours awake per day at each age (e.g.,
11-12.5 hours between the ages of 2 and 5). Multiply utterances per hour by hours per day, and we
have utterances per day at difference ages; multiply utterances per day by the input rate of our Xs,
and we know how many Xs a child of a certain age hears per day. Then, we can multiply by days
per year to estimate how many of these data a child of a certain age hears in a year. That is, with
these input quantity data in hand, we can calculate how many of our Xs from Figure 6 children
of different ages would have encountered. That’s how we translate from a quantity of data to an
estimated age of acquisition. More specifically, we can translate the quantity of data in Dbreakeven

into an estimated age of acquisition, once we know the input rate of the Xs and how much input
children hear over time.

If the age of acquisition indicated by Dbreakeven is later than children’s observed age of acqui-
sition, then we’ve identified a PovStim problem. (Remember, of course, that this is PovStim for a
child using the MDL learner’s preference for compactness. We don’t know if it would be PovStim
for a child using different prior knowledge.) But suppose we don’t know the exact age of acqui-
sition for children – can we still use this MDL approach? The answer is yes, if it turns out that
Dbreakeven translates to a time much longer than childhood. For example, Hsu and Chater (2010)
estimate an age of acquisition that’s thousands of years for learning one piece of linguistic knowl-
edge.6 This is clearly longer than childhood (and human lifespans more generally). Therefore,
even if there’s uncertainty about precisely when children converge on that knowledge, we can be
pretty sure PovStim is happening under this MDL approach because children do in fact converge
on that knowledge before thousands of years have passed.

As with the developmental benchmarking discussed above, the assumptions in place are key:
what the correct hypothesis is, what the space of competing hypotheses is, what the available data
are, and how children leverage their data. For an MDL learner, another major decision is how to

6The particular knowledge was when to contract want to into wanna in English. That is, English speakers know
they can contract Who do you want to rescue? into Who do you wanna rescue?, but not Who do you want to do the
rescuing? into Who do you wanna do the rescuing?
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encode the representations under consideration (that is, the correct hypothesis and the competing
hypotheses) – this is where prior linguistic knowledge (whether innate or derived from experience)
comes in. For the available data, an MDL learner is happy to encode both ambiguous and un-
ambiguous data. What separates this from the developmental benchmarking approach from the
previous section is that an MDL approach will function even if there aren’t any unambiguous data
(as is the case in Figure 6). This is because the MDL learner already assumes prior knowledge
where the learner prefers compactness; so, compactness can decide between representations even
when the data are ambiguous. This in turn relates to how an MDL learner leverages the available
data: this learner is capable of encoding both the representation itself and the data via that rep-
resentation as optimally as possible. The optimal encoding is what makes this approach an ideal
learner analysis of PovStim problems. Then, if there’s a PovStim problem even for an ideal learner,
there’s likely to be a PovStim problem for children, who aren’t obviously ideal learners.

3 Some potential examples and how to interpret them
I now want to step through a few illustrative examples of linguistic knowledge that have been
considered PovStim problems. For each one, I want to highlight what the correct hypothesis is,
what the hypothesis space is, what the available data are, and how children leverage those data.
Where available, I’ll also include what we know about children’s age of acquisition when they
make their constrained generalizations. This makes it easier to see what the original assumptions
were that caused people to think PovStim was occurring, and how those assumptions may have
changed across different PovStim investigations of the same linguistic knowledge piece.

I’ll try to conclude the discussion of each example with what prior knowledge seems to be
required, given the existing investigations, and how this relates to the linguistic vs. non-linguistic
nativist perspective. The investigations I’ll discuss are mathematical or computational approaches
(similar to those discussed in section 2), as these are particularly helpful for investigating an acqui-
sition problem that’s been concretely specified in terms of the hypothesis space, the data available,
and how children leverage the available data (Clark & Lappin, 2011; King, 2015; Chater et al.,
2015; Fodor & Sakas, 2017; Pearl, in press).

I also want to note that PovStim problems are generally discussed for syntactic knowledge (e.g.,
structure dependence, English anaphoric one, syntactic islands, verb-raising, the linking problem,
binding, verb alternations: Baker & McCarthy, 1981; Hornstein & Lightfoot, 1981; Lidz, Waxman,
& Freedman, 2003; Regier & Gahl, 2004; Pearl & Lidz, 2009; Hsu & Chater, 2010; Perfors et al.,
2010; Hsu et al., 2011; Pearl & Sprouse, 2013b; Chater et al., 2015; Han et al., 2016; Pearl &
Mis, 2016; Cole, Hermon, & Yanti, 2017; Pearl, 2017; Pearl & Sprouse, 2018; Pearl, in press).
However, PovStim problems occur all over linguistic development (and cognitive development
more generally), whenever the available data are compatible with more than one hypothesis (Scholz
& Pullum, 2006; Clark & Lappin, 2011). With this in mind, I’ll review a syntactic example
that’s received a lot of attention, a lexical semantic example that’s received some attention, and a
phonological example that hasn’t received much attention yet.
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3.1 Syntactic: Structure dependence
The correct hypothesis and the hypothesis space. Linguistic representations are generally
agreed to be hierarchical, with units inside other units (e.g., phrases inside other phrases). More-
over, rules for manipulating linguistic elements rely on this structure, rather than operating over
simpler representations such as linear word order. A traditional example of this is complex yes/no
question formation in English, where we can think about a yes/no question like (2a) as being a
structure-dependent transformation of the declarative utterance in (2b) that involves the same core
contentful elements.

(2) a. [CP Can the penguin [CP who is on the iceberg ] tcan find a fish ]?
b. [CP The penguin [CP who is on the iceberg ] can find a fish ].

Why do we call this structure-dependent? One common way to describe the transformation in (2)
is with the rule “Move the auxiliary in the main clause to a position at the front of the utterance”.
This rule relies on the structural notion of “main clause”.

Importantly, there are other potential rules that aren’t structure-based (i.e., they’re structure-
independent), such as “Move the last auxiliary”, “Move the first auxiliary”, “Move the auxiliary
that’s fourth from the end of the sentence”, and so on. Structure-independent rules aren’t able to
account for the full range of English complex yes/no questions, though some (like the first two
mentioned above) are often compatible with most yes/no questions in child-directed speech.

So, again, for English yes/no question formation, the correct hypothesis is something like
“Move the main clause auxiliary before the subject to a position at the front of the utterance.”
The hypothesis space consists of all possible rules for transforming (2b) into (2a), including this
structure-dependent one, other structure-dependent ones (e.g., “Move the auxiliary that’s in the
same phrase as the main topic”, where phrase is the structure-dependent component), and structure-
independent ones.

Of course, structure-dependence is meant to apply to the linguistic system as a whole. So, we
can translate this particular yes/no-question correct hypothesis and corresponding hypothesis space
to any other linguistic knowledge piece as well. More generally, the idea would be to translate the
correct hypothesis to something that applies to the entire linguistic system (Scholz & Pullum,
2006): an overhypothesis like “Use structure-dependent rules.” Any specific linguistic knowledge
piece then has a specific correct hypothesis and corresponding hypothesis space that is defined us-
ing this overhypothesis for that knowledge piece (Goodman, 1955; Kemp, Perfors, & Tenenbaum,
2007; Kemp & Tenenbaum, 2008; Perfors, Tenenbaum, & Regier, 2011; Pearl, in press).7

The available data (or so we initially thought). Interestingly, when people first considered
how children would learn that their linguistic system uses structure-dependent rules, the focus was
on the individual knowledge pieces (like complex yes/no questions) rather than the system as a
whole. This initial focus was relaxed later on, as discussed in more detail below. However, this

7Note that overhypotheses are very similar to the traditional notion of linguistic parameters often used by linguistic
nativists, where a linguistic parameter is a piece of abstract structural knowledge that can be applied to may different
linguistic knowledge pieces. See Pearl and Lidz (2013) and Pearl (in press) for more discussion on this point.
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focus meant that the available data initially considered were only those related to English yes/no
questions specifically (e.g., see the discussion in Pullum & Scholz, 2002 and Legate & Yang,
2002). Various analyses of children’s possible input suggested that the vast majority of their data
were ambiguous between the correct structure-dependent rule and other competing rules, including
structure-independent ones.

How children leverage the available data. Initial discussions of structure-dependence assumed
children could only use direct positive evidence (i.e., for this knowledge piece, examples of yes/no
questions); moreover, only unambiguous data were informative (e.g., see the review of prior dis-
cussion in Pullum & Scholz, 2002). Given these assumptions, the lack of sufficient unambiguous
data for structure-dependence when forming complex yes/no questions in English seemed like it
could be a PovStim problem.

Age of acquisition for constrained generalizations. Based on behavioral work by Crain and
Nakayama (1987), English children as young as three years old seem to know that rules con-
trolling complex yes/no question formation in English ought to be structure-dependent. From an
input standpoint, it turns out that English children are likely to encounter very few examples of
complex yes/no questions that would unambiguously indicate that a structure-dependent rule is
required (Pullum & Scholz, 2002; Legate & Yang, 2002). So, English children’s seemingly rapid
development of this structure-dependent knowledge seemed very much a PovStim problem.

The investigations. One early computational investigation by Reali and Christiansen (2005) re-
jected the assumption that children were trying to explicitly learn a particular structure-dependent
rule, given a hypothesis space of both structure-dependent and structure-independent rules. In-
stead, this modeled learner was tuned to children’s observable behavior, and learned to distinguish
grammatical complex yes/no questions like Is the boy who is watching Mickey Mouse happy?
from ungrammatical ones like *Is the boy who watching Mickey Mouse is happy? In addition,
this investigation rejected the assumption that the only available data were those related to yes/no
questions. Instead, this modeled learner learned from all the available utterances, and leveraged
the relative frequencies of 2-word and 3-word sequences (e.g., 2-word: Is-the, the-boy, boy-who;
3-word: Is-the-boy, the-boy-who). These relative frequencies were then used to successfully dis-
tinguish grammatical from ungrammatical complex yes/no questions. This result suggested that
there wasn’t a PovStim problem in principle (once the hypothesis space and available data were
redefined).

However, Kam, Stoyneshka, Tornyova, Fodor, and Sakas (2008) demonstrated that the modeled
learner of Reali and Christiansen (2005) benefited from a “lucky fluke” between the particular
sample of input it learned from and the particular set of complex yes/no questions it had to judge.
When this modeled learner judged a wider range of complex yes/no questions, it failed to make
the distinctions that children were observed to. Therefore, it seemed that the PovStim problem did
still exist, even with the redefined hypothesis space this modeled learner assumed.

A later investigation by Perfors, Tenenbaum, and Regier (2011) broadened the focus back to
structure-dependence in the linguistic system. Here, the modeled learner considered a hypothesis
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space of different representation types (some structure-independent and some structure-dependent,
including the correct structure-dependent one). Of course, these representational hypotheses con-
nected to many individual phenomena, like complex yes/no questions – so, there would be a rep-
resentation of complex yes/no questions for each hypothesized representation type. Importantly,
because the hypotheses weren’t only tied to complex yes/no questions, the modeled learner could
learn from any data that might be informative for choosing among representation types. This meant
the available data for the modeled learner was the set of all utterances children encounter, not just
the set of complex yes/no questions they encounter. Children would then be able to identify the
sequences of syntactic categories that comprise each utterance (e.g., viewing the kitty slept as de-
terminer noun verb). However, the available data were still compatible with all the hypotheses
under consideration (i.e., there was unresolvable ambiguity) – so, a PovStim problem persisted,
despite a wider base of data to learn from.

Perfors, Tenenbaum, and Regier (2011) offered a concrete solution by having their modeled
learner leverage the available data with a simplicity-based approach similar to that of information-
theoretic approaches (Chater et al., 2015). In particular, the learner used Bayesian inference to
identify the representation that balanced the complexity of the representation (called the prior)
with the ability of that representation to encode the data (called the likelihood). With this prior
preference in hand, the modeled learner successfully identified the correct structure-dependent
representation from those available in the hypothesis space, on the basis of the data children en-
counter. So, one solution in principle to the PovStim problem presented by structure-dependence
is for children to have this simplicity bias, and then they can deploy that bias successfully over
their available data. This is non-linguistic knowledge, and so would be compatible with the non-
linguistic nativist perspective. Of course, children also need the ability to define the hypothesis
space so that it includes the correct structure-dependent one. Whether that hypothesis space cre-
ation requires innate linguistic knowledge or not is still an open question.

A subsequent investigation by Abend et al. (2017) also approached the learning problem as
a question of the representation that was appropriate for the larger linguistic system, rather than
for an individual syntactic type like complex yes/no questions. An interesting difference from
the Perfors, Tenenbaum, and Regier (2011) investigation was the nature of the hypothesis space:
rather than explicitly defining several structure-dependent and structure-independent representa-
tions, Abend et al. (2017) implicitly defined a hypothesis space of infinite size via a set of pre-
defined structure-dependent building blocks and constraints on how those building blocks can
combine. In this way, the modeled learner assumed structure-dependence already,8 but didn’t
know which of infinitely many constructable structure-dependent representations was the correct
one. During learning, the modeled learner would generate explicit structure-dependent hypotheses
on the basis of these building blocks and constraints, and then would evaluate those hypotheses on
the basis of the available data.

Importantly, this modeled learner saw syntactic structure as part of a larger system of linguistic
representation, with syntax intimately connected to meaning (in the form of precise logical rep-
resentations). Because of this, the learner of Abend et al. (2017) not only used all the available

8We might imagine this prior knowledge about structure-dependence could result from a Perfors, Tenenbaum, and
Regier (2011) learner who figured out that structure-dependence was the right overhypothesis.
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utterances, but also both the syntactic and meaning information in those utterances, as well as the
meaning information from the surrounding non-linguistic context.

Still, with only this to work with, there seems to be a PovStim problem, because more than
just the correct structure-dependent representation is compatible with the available data. Abend
et al. (2017)’s learner offers a concrete solution that’s similar to that of Perfors, Tenenbaum, and
Regier (2011): the learner has a prior bias to use Bayesian inference, balancing a hypothesis’s prior
and likelihood. Like the learner of Perfors, Tenenbaum, and Regier (2011), this learner assessed
the likelihood of the data given the hypothesis (i.e., how well the hypothesis encodes the data);
however, when calculating the prior of the hypothesis (i.e., how costly the representation itself
was to encode), the learner had an additional bias to prefer hypotheses built from building blocks
that were more frequently used. The intuition is that reusing building blocks that have been used
before is efficient, so representations that reuse more building blocks are more efficient (i.e., less
costly) than representations that don’t reuse building blocks. These combined biases for “simple”
representations and representations that reuse common building blocks is sometimes referred to as
a bias for “rational rules” (Goodman, Tenenbaum, Feldman, & Griffiths, 2008), where “rational”
means optimal. So, a learner with a bias for rational rules, look for “rules”’ (i.e., representations)
that are optimal – here, that means representations that are both as simple as possible and also as
efficient as possible (in the sense of reusing common building blocks).

With these biases, the modeled learner was able to infer the representation (both syntactic and
meaning) that adults use far more often than chance, given just a few thousand utterances of real-
istic child input.9 So, Abend et al. (2017) offer a promising solution in principle to the PovStim
problem occurring over a much larger hypothesis space; this solution relies on both linguistic and
non-linguistic prior knowledge and abilities. In particular, we might classify as linguistic knowl-
edge (i) the structure-dependent building blocks for linguistic representations, (ii) the constraints
on how structure-dependent building blocks can combine, and (iii) the tight connection between
syntactic representations and logical representations. We might classify as non-linguistic knowl-
edge or abilities (i) the ability to perceive meaning from non-linguistic context, (ii) using Bayesian
inference, and (iii) preferring rational rules that maximize simplicity and reuse in potential repre-
sentations.

Another recent approach by Fitz and Chang (2017) also capitalized on the connection be-
tween syntactic representations and meaning. Like Abend et al. (2017), this meant Fitz and Chang
(2017) had their modeled learner use both syntactic and meaning information available in chil-
dren’s utterances, though they focused on a subset of all possible utterances. However, like Reali
and Christiansen (2005), Fitz and Chang (2017) rejected the assumption that children were trying
to learn a particular structure-dependent rule for complex yes/no questions; instead, this modeled
learner was tuned to observable behavior. In particular, if the modeled learner was given a meaning
that adults would express using a complex yes/no question, would it generate the correct complex
yes/no question form (i.e., the correct sequence of words that make up a complex yes/no question)?

Fitz and Chang (2017) provided a concrete solution to this learning problem by creating a
9This investigation was restricted to a small input set due to how long it takes to generate accurate annotations

of available syntactic and logical information for child input utterances. We might reasonably infer that the modeled
learner would show even more impressive performance if it was given a quantity of data more in line with what
children truly learn from.
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learner that (i) knew that meaning representations were hierarchically structured, and (ii) observed
that sequences of words were generated from those underlying meaning representations. A neural
network was used to navigate the space of possible ways to generate observable sequences from
underlying meaning representations, given the available data.10 After training, this modeled learner
was indeed able to generate the appropriate sequence of words for a complex yes/no question, given
the intended question’s meaning representation. This suggests that a learner who knows that (i)
meaning representations are hierarchical, and (ii) meaning representations are used to generate the
observable word sequences can learn to produce specific observable sequences that correspond to
complex yes/no questions. Notably, it’s unclear what the syntactic representation looks like that
mediates between the hierarchical meaning representation and the observed sequence of words –
perhaps it’s the one English adults are thought to use, or perhaps it isn’t. This is one of the tricky
things about using non-symbolic approaches like neural networks to search a hypothesis space –
they’re notoriously difficult to interpret (Dunbar, 2019; Pearl, 2019).

McCoy et al. (2018) also use a neural network approach, but instead keep the assumption that
the learner is trying to identify a particular structure-dependent representation from the hypothesis
space of possible representations. Like the learner of Fitz and Chang (2017), this learner generates
an appropriate sequence of words corresponding to a complex yes/no question; unlike the learner
of Fitz and Chang (2017) however, this learner is given the declarative version of the complex
yes/no question (rather than the meaning representation of the question). The modeled learner was
also given access to a subset of declarative utterances of the form that children might encounter in
their input (both without modifiers like the penguin can laugh and with modifiers like the penguin
that the seals saw can laugh). Given the restricted dataset, the available data were compatible
with many different representations, including both structure-independent and structure-dependent
ones, thereby indicating a PovStim problem.

McCoy et al. (2018) investigated several neural-network-based learners using a variety of ar-
chitectures, and discovered that one modeled learner solved the task of transforming a declarative
utterance into an equivalent complex yes/no question by relying on a structure-dependent represen-
tation. (Other learners relied on structure-independent representations.) This result suggests two
main implications. First, it’s not necessary for the learner to already have an explicit preference for
structure-dependent representations in order to learn them from the available data.11 This is partic-
ularly salient given the restricted input set McCoy et al. (2018) had their learners learn from, and
aligns with the previous results of Perfors, Tenenbaum, and Regier (2011) that relied on Bayesian
inference. Second, because only one of the modeled learners achieved structure-dependent rep-
resentations, this underscores the PovStim problem. To infer structure-dependent representations

10Note that a neural network’s non-linear learning process is another way to navigate a large hypothesis space,
though it’s hard to interpret exactly how that space is being navigated, in contrast with symbolic approaches like
Bayesian inference (Pearl, 2019). Still, neural network results do represent an “in principle” solution to learning
problems, confirming what it’s possible to learn, given certain input and learning constraints (as encoded in the neural
network’s architecture).

11However, the caveat is that the innards of neural networks are hard to interpret, so it’s possible (though perhaps
not highly probable) that an explicit preference for structure-dependent representations was in fact present in the
specific numbers in the vectors inside neural network. It’s just that we as humans can’t yet easily interpret vectorized
representations, and so it’s difficult to tell for sure.
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from the available data, children need some kind of internal bias. Here, it’s whatever was encoded
implicitly in the neural network architecture; for Perfors, Tenenbaum, and Regier (2011), it’s a
bias for overall compactness of the representation and the ability of that representation to encode
the data.

How to interpret these investigations. From this collection of structure dependence investiga-
tions, it seems to me that there are several key takeaways. First, as mentioned above with the
McCoy et al. (2018) investigation, restricting the relevant input easily leads to a PovStim problem
that requires child-internal biases to solve. So, one useful bias on the learner’s part is to consider
any individual linguistic knowledge piece as part of a larger linguistic system (e.g., the syntactic
system as a whole, or the syntactic and semantic system together). Then, many more data are able
to provide information with respect to the preferred underlying representation. A second useful
bias is a non-linguistic one: to prefer “rational rules” that prioritize the compact representations,
the ability of those representations to encode the available data compactly, and representations that
rely on reusable building blocks. Additional useful biases might be construed as linguistic: (i)
which structural building blocks to use (whether syntactic or logical/conceptual), and (ii) know-
ing about the tight relationship between syntax and meaning. To the extent these latter biases are
truly linguistic (i.e., they’re not applicable outside the domain of language), they would represent
innate, linguistic knowledge. However, it remains to be seen if they can perhaps be derived from
other non-linguistic biases children might have. (For example, perhaps the knowledge of the tight
relationship between syntax and meaning is some kind of simplicity bias that assumes maximal
similarity between representational systems, unless shown otherwise. But that’s a question for
future work.)

3.2 Lexical semantic: Exact cardinal number words

Figure 7: A scenario where exact cardinal num-
ber words like eleven and a counting list are help-
ful.

The correct hypothesis and hypothesis
space. Exact cardinal number words are
those like one, two, seven, eleven, five hun-
dred eighty three, and one million seven hun-
dred sixty four thousand three hundred forty
six in English. They refer to specific quanti-
ties, and allow speakers whose languages use
these kinds of terms to answer questions like
“How many penguins are there?” for Figure 7
more precisely than several, some, or a lot. (In
fact, there are eleven penguins.) Moreover, lan-
guages with exact cardinal number terms also
have counting lists that begin with the equiva-
lent of one, and then move through exact car-
dinal number words one by one, with the next
number in the list differing by exactly one from the previous number in the list: two, three, four,
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five,..., eleven, twelve,... and so on, in English. This is a tool speakers can use to answer the “How
many” question. For example, in Figure 7, one strategy is to use the English counting list, where
each word in the counting list is mapped to an individual penguin. When we run out of penguins,
the exact cardinal number in the counting list that we stopped with is eleven, and so that’s how
many penguins we have.

Importantly, adult speakers don’t explicitly know the entire counting list of their language
(e.g., memorizing the lexical items one through one million seven hundred sixty four thousand
three hundred forty six). Instead, adults explicitly know some key items, and then generate the
counting list as needed for a specific situation (like counting lots of penguins). One key intuition
is the successor function (Kripke, 1982; Carey, 2009; Rey, 2014; Sarnecka, 2016): the next exact
number (i.e., the successor of the current exact number) differs from the current exact number
by one. So, to generate the numerical meaning for a particular exact cardinal number word (like
eleven), look to the previous exact cardinal number word on the list (i.e., ten) and add one. This
relationship between exact cardinal number words in the counting list and exact cardinal number
meaning, via the successor function, is also known as the Cardinality Principle (Wynn, 1990,
1992; Sarnecka, 2016).

So, a key element to understanding exact cardinal number words (and generating ones you
haven’t explicitly heard before on the fly) is the Cardinality Principle. The Cardinality Principle
is thus a vital component of the adult representation of all exact cardinal number words, and what
children need to converge on. However, it turns out that the hypothesis space is pretty vast for
what exact cardinal number words could mean. For instance, one hypothesis is that exact cardinal
number words are just related properties, the way color words are. Like number words, color
words can be recited in a certain order in English: red, orange, yellow, green, blue, purple. But,
this doesn’t indicate that red somehow means one unit “more” than orange or that green means one
unit “less” than blue; this situation contrasts with the exact cardinal number words in the English
counting list. Put simply, why should a child assume a successor function for exact cardinal number
words, which are in an ordered list, when color words, which are also in ordered list, don’t use this
function?

Even if the child knows the successor function is a key building block, there are still a variety
of hypotheses using that building block that aren’t right. For example, one hypothesis is to use the
successor function if the number is less than 10, but after that, only use the ones digit to determine
the exact number word meaning. So, one through nine mean what adults think those words mean;
but, two, twenty two, and five thousand six hundred twenty two all mean the same thing, which is
what adults think two means. (This is equivalent to a “mod 10” function.) This might seem like a
strange hypothesis, but timekeeping systems work like this: there are 60 seconds in a minute, but
then we loop back to 0 when counting seconds. So, seconds use a mod 60 function. The same is
true for minutes in an hour, while hours in a day use a mod 24 function (24 hours in a day), and
days in a month use a mod 28, mod 29, mod 30, or mod 31 function (28-31 days in a month),
depending on the month.

The above hypotheses are just two of many. To get a sense of some others, imagine a “mod
X” system, where X can be anything between two and whatever number you like. Then there are
hypotheses which might seem even stranger: assume a successor function, except for the number
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eleven, which gets its meaning by adding two to the previous word, instead of one. (So, eleven
means what adults thinks twelve means.) Once again, substitute any single number word you like
for eleven, and any quantity for two, and you can generate all kinds of different hypotheses.

The available data and how children leverage it. As far as I’m aware, researchers investigating
the acquisition of exact cardinal number words assume children have access to direct positive
examples, such as scenes where there are eleven penguins and someone using the word eleven to
describe how many penguins there are. More generally, the relevant data points are assumed to
be pairings of a specific number of countable things present and a cardinal number word labeling
that set of countable things. Children are then assumed to be able to observe and leverage the
correspondence between the set size and the number word.

Interestingly, Piantadosi, Tenenbaum, and Goodman (2012) found that actual child interactions
involving these data points appear in a power-law distribution, where most instances children hear
are of one or two, with three and above occurring in very, very few data points. As you might
imagine, this means children are primarily inferring what exact cardinal number words mean on
the basis of one and two, with only the occasional higher-number word appearing. So, this seems
like a solid case of PovStim. In particular, even if we had a lot of examples of lots of different
exact cardinal number words, we’d still have the problem of not encountering every cardinal num-
ber word that can be generated (like one million seven hundred sixty four thousand three hundred
forty six). This could cause children to end up with mod 60 systems, or mod 1000 systems, and so
on. But even worse in reality, it seems that children’s input is highly skewed towards a very few
cardinal number words that might well permit additional incorrect hypotheses. So, it seems like
children must have some prior knowledge to help them constrain their generalizations appropri-
ately for what exact cardinal number words mean.

Age of acquisition for constrained generalizations. The acquisition of exact cardinal number
knowledge appears to follow a particular, staged trajectory: children settle on a variety of im-
mature representations before converging on the adult representation that involves the Cardinality
Principle. This is true not just in English but also in Arabic, Japanese, Mandarin Chinese, Russian,
Slovenian, and Tsimane’ (Sarnecka, 2016). Children initially learn the ordered counting list of
their language (e.g., one, two, three,...) without knowing what these words mean (Fuson, 1988;
Piantadosi et al., 2012; Sarnecka, 2016) – children at this stage are sometimes called “pre-number-
knowers”. So, when a pre-number-knower is asked to give someone three penguins, the child
will simply pick out some number of penguins to give, even when told to use the counting list
(Sarnecka, 2016).

Children then progress through several subset-knower stages: one-knower, two-knower, three-
knower, and sometimes even four-knower (Wynn, 1990, 1992; Piantadosi et al., 2012; Sarnecka,
2016). A child at a particular knower stage (e.g., three-knower) seems to have the correct repre-
sentation for each exact cardinal number up to and including that particular number (e.g., one, two,
and three for a three-knower). For instance, if we asked a three-knower to give us three penguins,
she would happily hand us exactly three penguins. However, any numbers beyond that number
(e.g., four for a three-knower) seem to be unknown, despite the child knowing the words in the
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counting list (e.g., four). For instance, if we asked a three-knower to give us four penguins, she’d
give a random number greater than three (e.g., four, seven, or nine penguins).

After the three-knower or four-knower stage, children seem to make the leap to the Cardinality
Principle, where they effectively learn all the rest of the exact number meanings at once (Wynn,
1990, 1992; Sarnecka, 2016). As mentioned above, this new adult-like representation involves
recognizing the relationship of the successor function to the counting list (i.e., the next word on the
counting list is one more than the previous word on the counting list); having this representation
allows children (like adults) to generate the meaning of any particular exact cardinal number word.
Interestingly, the progression from pre-number-knower to knowing the correct representation in-
volving the Cardinality Principle takes a surprisingly long time – for example, it can take several
months to go from being a one-knower to a two-knower in English. In English, children seem to
settle on the Cardinality Principle around age four to five (Sarnecka, 2016).

The investigation. Piantadosi et al. (2012) used an ideal learner model to attempt to understand
why children might have this staged trajectory that then leads to the correct representation in-
volving the Cardinality Principle. That is, how could this very specific trajectory emerge, given
children’s input?

The modeled learner’s hypothesis space was a set of building blocks that could be combined
to generate explicit hypotheses about the meaning of exact cardinal number words in the counting
list. These building blocks were domain-general, in that they weren’t applicable only to language
– in fact, they could be used for learning kinship relations, taxonomies, and theories of causality, in
addition to meaning. The specific building blocks included what might be thought of as conceptual
units (e.g., a function checking whether a set was size one), comparison units (e.g., a function
identifying the intersection of two sets), combinatorial units (e.g., logical and and if ), sequential
relations (e.g., a function that identifies the next word in the counting list), and the ability to
construct recursive relations. Notably, the successor function itself wasn’t a building block – rather,
it could be constructed from the building blocks in the hypothesis space. (Importantly, so could
an infinite number of other hypotheses.) So, the correct representation was merely one of the
explicit hypotheses that could be generated from these building blocks and evaluated; others were
the immature representations of pre-number-knowers, one-knowers, two-knowers, three-knowers,
and four-knowers; and still others were representations that would correspond to five-knowers, or
representations that would correspond to a two-not-one-knower who recognizes the meaning of
two, but not the meaning of one (or numbers higher than two).

The modeled learner was given a realistic sample of English children’s exact cardinal number
input, where a data point was an exact cardinal number word like two paired with two items.
The modeled learner then used the “rational rules” approach (Goodman et al., 2008) to evaluate
which representation was the most probable at different points in time (which corresponded to
different amounts of data). In particular, the learner had built-in biases to prefer both simplicity (in
terms of a compact representation) and reuse (in terms of using building blocks that had been used
before). Moreover, representations involving recursion, like the correct one with the Cardinality
Principle, received an extra penalty – that is, because they involved a more complex building block
(recursion), the modeled learner was biased against them. So, these representations involving
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recursion had to be even better at compactly encoding the data and reusing building blocks in
order to be viewed as more probable than equivalent representations that didn’t involve recursion.

With this setup, the ideal modeled learner was then able to reproduce the specific develop-
mental trajectory for exact cardinal number knowledge. In particular, the learner went through
progressive immature stages corresponding to the different knower levels before converging on the
correct representation involving the Cardinality Principle. Thus, Piantadosi et al. (2012) provided
a concrete strategy for potentially solving the PovStim problem of exact cardinal number words as
children seem to.

How to interpret this investigation. Based on this investigation, I think there are two built-in
components that collectively offer a solution to this PovStim problem. First, the child has to have a
set of useful building blocks for generating specific hypotheses about what exact cardinal number
words mean. The specific collection that Piantadosi et al. (2012) used appears to be domain-general
– that is, while the building blocks were clearly applied to language items (meaning and counting
words), the building blocks themselves weren’t obviously language-specific. (Remember: they
could be used for non-language concept learning.) Second, the child has to have a preference for
“rational rules”: compact representations and representations that reuse building blocks. With this
preference in hand, a child could converge on the correct representation involving recursion, even
if the child views recursive representations as inherently more complex (and so less preferred, all
other things being equal). Because both these components aren’t specific to language, this PovStim
solution is in line with the non-linguistic nativist viewpoint.

3.3 Phonological: Word-final obstruent devoicing
The correct hypothesis and hypothesis space. In response to skepticism that PovStim problems
occur in phonology, Idsardi (2005) notes an example involving particular kinds of consonants that
appear at the end of words. The specific consonants are called obstruents, because they obstruct
the airflow through the vocal tract; obstruents include voiced sounds like /b/ and /v/, as well as
voiceless sounds like /p/ and /f/, which are made the same way in the vocal tract as /b/ and /v/,
except that the vocal folds don’t vibrate as early (or at all) when producing /p/ and /f/.

A certain process can occur when obstruents appear at the end of words (word-finally): if
they’re voiced like /b/ and /v/, they become devoiced, like /p/ and /f/. This word-final devoicing
process occurs in a large number of the world’s languages, including Dutch, Catalan, Bulgarian,
Czech, Macedonian, Armenian, Maltese, Tok Pisin, and Wolof, among many others. So, for exam-
ple, the Dutch word for the singular “wave” is golf, but the plural (“waves”) is golven. Phonologists
have determined that the true underlying form for the singular is in fact golv; the reason it’s pro-
nounced golf is due to word-final obstruent devoicing (i.e., the voiced /v/ becomes voiceless /f/
because it’s word-final).

So, one way to describe the correct rule that children must learn if their language uses this
process is this: if you have a word-final obstruent, devoice it. However, there are certainly many
other plausible hypotheses that seem to be compatible with the available data, as Idsardi (2005)
points out. For instance, a more specific hypothesis might be to devoice specific obstruents only
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(like /b/ and /v/), rather than assuming all obstruents are devoiced. A more general hypothesis
might be devoice the last consonant in a word, even if vowels come after. So, this more-general
hypothesis would turn golv to golf, but would also turn the nonsense Dutch word golve into golfe. A
hypothesis that’s not obviously more specific or more general than the correct representation might
key into the singular vs. plural distinction rather than word-finality: perhaps the last obstruent in a
singular like golv is devoiced to golf, while the last obstruent in a plural like golven isn’t (note that
/n/ is a non-obstruent consonant, so the /v/ would be the last obstruent in golven).

The available data and how children leverage the data. The relevant data for children would
presumably be all words, with the correct rule covering words that show word-final devoicing (like
golf ) and not covering words where devoicing doesn’t occur. To do this, children would need to
recognize that something changed about the way the devoiced forms were pronounced – that is,
they’d have to expect golv and then note that golf is what comes out instead. Children may be
able to make this connection via the similarity in meaning to the plural golven, especially if they
recognize the suffix -en as a plural marker. So, the child reasoning would be something like golven
- en = golv. When golf comes out instead, this is a signal that devoicing happened. In terms of
child capability, this doesn’t seem like an unreasonable realization, depending on the age of the
child. We know that children learn to recognize phonetic features like voicing before one year old
(Maye, Weiss, & Aslin, 2008), and also seem capable of recognizing some regular morphology by
two or three (Brown, 1973).

However, to truly know which specific word forms are available to children at certain ages
for learning about word-final devoicing, a corpus analysis would probably be the best way to
go. As far as I know, this has yet to be undertaken. Depending on what forms are found in
any particular language, it’s very possible a PovStim problem exists for learning about word-final
obstruent devoicing.

Age of acquisition for constrained generalizations. As far as I’m aware, we don’t currently
know a precise age of acquisition for the correct devoicing rule; we’re also unaware of intermediate
stages children might go through when trying to decide what the correct devoicing rule is. But,
there are two pieces of good news. First, Idsardi (2005) notes that adults who speak languages
with this devoicing rule do in fact seem to use it, even on items they haven’t heard before (and so
couldn’t have just memorized). So, no matter what, we know that children eventually do figure out
the correct devoicing rule. Second, there are a lot of data about child pronunciations from a variety
of languages available through the CHILDES PhonBank database (MacWhinney, 2000). So, we
may be able to identify when children seem to produce the correct pronunciations that show word-
final devoicing. Of course, even better would be behavioral studies that test children of different
ages on novel words – then we can be sure the children are relying on whatever internal rule they
have, rather than just repeating what they’ve heard.

Investigations and how to (eventually) interpret them. Investigations of this potential PovStim
problem are, of course, yet to be done. But, it may well be that a rational rules approach might
work well here, especially if we can define useful building blocks from which children could
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generate explicit hypotheses to test. I do note that Idsardi (2005) cautions about how to implement
the “simplicity” component of a rational rules approach; in particular, depending on what form the
representations take, which representation is more compact may not be obvious. More generally,
I think this phonology case is a concrete, potential PovStim problem that we have the tools to
investigate. Depending on what solutions are found, we can see if linguistic or non-linguistic
nativists are more enthusiastic.

4 Conclusion
Here, I’ve tried to give a tears-free overview of PovStim, including what it is and how it relates to
children’s hypothesis spaces, the data available to children, and how children leverage those avail-
able data. Importantly, PovStim is often tied to the fact that children seem to make constrained
generalizations faster than we might expect, given the data available. This constrained generaliza-
tion then implies that children have some kind of prior knowledge that guides them towards the
correct answer. The prior knowledge for a particular PovStim problem is generally believed to
involve some kind of innate knowledge, and the big divide is whether any of that innate knowledge
is language-specific. If so, the linguistic nativists are pleased; if not, the non-linguistic nativists are
pleased.

I also reviewed some approaches to identifying when PovStim is in fact happening, both in
principle and in practice with specific case studies. I then reviewed a few illustrative PovStim
examples, including why these are considered PovStim problems, how different researchers have
approached investigating them (or could in the future), and what we might interpret from current
(or future) results. In my view, these examples highlight a way to make progress on PovStim by
(i) defining the learning problem as precisely as possible, (ii) assessing quantitatively if PovStim is
happening, and (iii) showing how specific learning proposals could solve that particular PovStim
problem. By using this general approach, we’re forced to be explicit about our assumptions –
assumptions about both the problem itself and what goes into a potential solution. We can examine
these assumptions at a later time if we want, either keeping them or adjusting them, based on our
future understanding of the learning problem and/or components of possible learning solutions.
PovStim then becomes an accessible workspace for investigating our ideas about what’s built into
humans when it comes to learning language. Importantly, in my view, all this can be done without
tears.
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