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1. Statistical learning: Experimental evidence 
 
 Statistical learning has long been recognized as being part of the acquisition process 
(Chomsky 1955, Hayes & Clark 1970, Wolff 1977, Pinker 1984, Goodsitt, Morgan, & 
Kuhl 1993, among others), but traditionally it was viewed as playing a secondary role, 
rather than a primary one.  Since young learners were generally perceived as poor 
learners, experience-independent innate knowledge was believed to be the driving force 
behind children’s successful acquisition (Chomsky 1981, Fodor 1983, Bickerton 1984, 
Gleitman and Newport (1995), among others).  Simply put, children were not believed to 
be capable of tracking statistical information in language input to the extent that they 
would need to for learning linguistic knowledge.  
 Saffran, Aslin, & Newport (1996) was a groundbreaking study in this respect, 
because it intended to demonstrate that young children have “powerful mechanisms for 
the computation of statistical properties of language input”. Saffran et al. investigated the 
task of word segmentation, where the child must identify words in a stream of fluent 
speech. They showed that 8-month-old infants were able to track statistical cues between 
syllables, and so segment novel words out from a stream of artificial language speech 
where the statistical information was the only cue to where word boundaries were. Aslin, 
Saffran, & Newport (1998) later affirmed that 8-month-old infants were tracking the 
syllable transitional probability to identify word boundaries.  The transitional probability 
between syllables X and Y (e.g., “pre”, “tty”) is the probability that Y will occur 
following X, computed as the frequency of XY (“pretty”) divided by the frequency of X 
(“pre”).1     
 With respect to word segmentation in natural language, Saffran et al. believed 
transitional probability would be a reliable cue to word boundaries, since the transitional 
probability of syllables spanning a word boundary would be low while the transitional 
probability of syllables within a word would be high.  For example, in the sequence 
“pretty baby”, the transitional probabilities between (1) “pre” and “tty”  and (2) “ba” and 
“by” would be higher than the transitional probability between “tty” and “ba”.  Because 
of this property, they assumed that infants’ ability to track transitional probability would 
be very useful for word segmentation in real languages (as opposed to the artificial 
language stimuli used in their study).  Interestingly, later studies discovered that 
transitional probability is perhaps a less useful cue to segmentation in English child-
directed speech than originally assumed (Brent 1999, Yang 2004, Gambell & Yang 
2006).  However, Pelucchi, Hay, & Saffran (2009a) later found that 8-month-olds prefer 
Italian syllable sequences with a high transitional probability over syllable sequences 
with a low transitional probability, though it was unclear if infants regarded a low 
transitional probability sequence as a word.  The precise way in which infants might use 
transitional probability information for realistic language data remains an open question. 
 Notably, however, the broader claim of Saffran et al. (1996) was not tied to 
transitional probability.  Instead, they proposed that some aspects of acquisition may be 
                                                 
1 This is more standardly known in statistics as the conditional probability of Y given X. 



“best characterized as resulting from innately biased statistical learning mechanisms 
rather than innate knowledge”. More specifically, it could be that humans are innately 
equipped with sophisticated statistical learning abilities which obviate the need for 
sophisticated prior knowledge about language in some cases.  The ability to track 
transitional probabilities between temporally ordered sound sequences (here, syllables) is 
one innately biased statistical learning mechanism, but it need not be the only one.  
Further research has investigated a number of questions raised by these initial studies, 
most notably the following: 

 
1. What kinds of statistical patterns are human language learners sensitive to? 
2. To what extent are these statistical learning abilities specific to the domain of 

language, or even to humans? 
3. What kinds of knowledge can be learned from the statistical information 

available? 
 

 The first question addresses the kinds of biases that are present in the human 
language learning mechanism, while the second question is important for understanding 
whether our linguistic abilities fall out from other cognitive abilities, or are better viewed 
as a cognitively distinct mechanism.  The third question explores what can be gained if 
humans can capitalize on the distributional information available in the data. 

 Many studies have attempted to ascertain the statistical patterns humans are 
sensitive to.  Thiessen & Saffran (2003) discovered that 7-month-olds prefer syllable 
transitional probability cues over language-specific stress cues when segmenting words, 
while 9-month-olds show the reverse preference. Graf Estes, Evans, Alibali, & Saffran 
(2007) found that word-like units that are segmented using transitional probability are 
viewed by 17-month-olds as better candidates for labels of objects, highlighting the 
potential utility of transitional probability both for word segmentation and subsequent 
word-meaning mappings.  Moving beyond the realm of word segmentation, Gómez & 
Gerken (1999) discovered that one-year-olds could learn both specific information about 
word ordering, and more abstract information about grammatical categories in an 
artificial language, based on the statistical cues in the input.  Thompson & Newport 
(2007) discovered that adults can use transitional probability between grammatical 
categories to identify word sequences that are in the same phrase, a precursor to more 
complex syntactic knowledge.  

It is worth pointing out that although most of the experiments described above have 
focused on transitional probability as the statistic of interest, researchers have begun to 
examine a wider range of statistical cues.  These include other simple statistics involving 
relationships of adjacent units to one another, such as backward transitional probability 
(Perruchet & Desaulty 2008, Pelucchi, Hay, & Saffran 2009b) and mutual information 
(Swingley 2005). 

Another line of work focuses on non-adjacent dependencies, and when these are 
noticed and used for learning.  Newport & Aslin (2004) showed that learners were 
sensitive to non-adjacent statistical dependencies between consonants and between 
vowels, using either of these to successfully segment an artificial speech stream.  
However, learners were unsuccessful when the non-adjacent dependencies were between 
entire syllables, suggesting a bias in either perceptual or learning abilities. Work by 



Gómez (2002) has shown that learners are able to identify non-adjacent dependencies 
between words, but only when there is sufficient variation in the intervening word.  This 
idea is similar to the concept of frequent frames introduced by Mintz (2002).  A frequent 
frame is an ordered pair of words that frequently co-occur with one word position 
intervening.  For example, the___one is a frame that could occur with big, other, pretty, 
etc.). Mintz suggests that frequent frames could be used by human learners to categorize 
words because they tend to surround a particular syntactic category (e.g., the___one tends 
to frame adjectives).  Mintz (2002, 2006) demonstrated that both adults and infants are 
able to categorize novel words based on the frames in which those novel words appear.  

In addition, recent experimental studies in learning mappings between words and 
meanings (Yu & Smith 2007, Xu & Tenenbaum 2007, Smith & Yu 2008) suggest that 
humans are capable of extracting more sophisticated types of statistics from their input. 
Specifically, the experimental evidence suggests that humans can combine statistical 
information across multiple situations, and that the statistics they use cannot always be 
characterized as something like transitional probabilities or frequent frames.  
 Yu & Smith (2007) and Smith & Yu (2008) examined the human ability to track 
probabilities of word-meaning associations across multiple trials where any specific word 
within a given trial was ambiguous as to its meaning.  Importantly, only if human 
learners were able to combine information across trials could a word-meaning mapping 
could be determined..  Both adults (Yu & Smith 2007) and 12 and 14-month-old infants 
(Smith & Yu 2008) were able to combine probabilistic information across trials.  So, both 
adults and infants can learn the appropriate word-meaning mappings, given data that are 
uninformative within a trial but informative when combined across trials. 
 Xu & Tenenbaum (2007) investigated how humans learn the appropriate set of 
referents for basic (cat), subordinate (tabby), and superordinate (animal) words, 
something traditionally considered a major challenge for early word learning (e.g., 
Markman1989, Waxman 1990) because these words overlap in the referents they apply to 
(a tabby is a cat, which is an animal).  One sophisticated statistical inference that can help 
with this problem is related to what Xu & Tenenbaum call a suspicious coinicidence, and 
is tied to how well the observed data accord with a learner’s prior expectations about 
word-meaning mappings. For example, suppose we have a novel word blick, and we 
encounter three examples of blicks, each of which is a tabby cat. The learner at this point 
might (implicitly) have two hypotheses (blick = cat, blick = tabby), and expectations 
associated with these two hypotheses. Specifically, if blick = cat, other kinds of cats 
besides tabby cats should be labeled blicks. That is, the set of blicks is larger than just the 
set of tabby cats, and so other cats should also be labeled blicks sometimes. This, 
however, did not happen in the example situation above – three blicks were labeled, and 
all of them were tabby cats. This is, according to Xu & Tenenbaum, a suspicious 
coincidence if blick really means cat.  Instead, it is more likely that blick is a subordinate 
label that is more specific, in this case tabby.  Xu & Tenenbaum (2007) discovered that 
both adults and children between the ages of 3 and 5 are able to notice suspicious 
coincidences like this, and use them to infer the appropriate meaning of a novel word like 
blick.  This suggests that humans are indeed able to perform this sophisticated statistical 
inference. 

Turning to the question of domain-specificity for human statistical learning 
abilities, Saffran et al. (1999) showed that both infants and adults can segment non-



linguistic auditory sequences (musical tones) based on the same kind of transitional 
probability cues that were used in the original syllable-based studies.  Similar results have 
been obtained in the visual domain using both temporally ordered sequences of stimuli 
(Kirkham et al., 2002) and spatially organized visual “scenes” (Fiser and Aslin, 2002).  
Conway & Christiansen (2005) adapted the grammar from Gómez & Gerken’s (1999) 
experiments to explore learning in different modalities: auditory, visual, and tactile.  
They showed that adults could learn grammatical generalizations in all three modalities, 
although there was a quantitative benefit to the auditory modality, as well as some 
qualitative differences in learning.  These results are compatible with the idea that 
humans’ statistical learning abilities are highly domain-general, showing robustness 
across modalities and presentation formats – particularly the results with the tactile 
modality, which is not used in natural languages.  

 Another way of investigating whether particular learning abilities could in principle 
be specific to language is by comparing learning across species.  If non-human animals 
are able to learn the same kinds of generalizations as humans, then whatever cognitive 
mechanism is responsible must not be a linguistic one.  To this end, Hauser et al. (2001) 
exposed cotton-top tamarins to the same kind of artificial speech stimuli used in the 
original Saffran et al. (1996) segmentation experiments, and found that the monkeys were 
able to perform the task as well as infants. Saffran et al. (2008) later found that tamarins 
could also learn some simple grammatical structures based on statistical information, but 
were unable to learn patterns as complex as those learned by infants.  This suggests that 
infants' abilities to extract information from statistical patterns are more powerful than 
those of other animals.  Additional evidence is provided by the experiments of Toro & 
Trobalon (2005), who showed that rats were able to segment a speech stream based on 
syllable co-occurrence frequency, but not transition probability alone.  The rats also 
showed no evidence of learning generalizations from non-adjacent dependencies such as 
those in the Gómez (2002) experiments, or abstract rules as in Marcus et al. (1999). 

The main lesson from the experimental evidence reviewed in this section is that 
children do seem capable of using statistical information in their language input, from 
tracking simple statistical cues like transitional probability to making sophisticated 
inferences that combine ambiguous information from multiple data sources.  To learn 
more about the abilities and biases of human learners, researchers continue to investigate 
the statistical information humans are sensitive to, and what kinds of generalizations are 
learned from them.  In addition, experiments using other modalities, domains, and species 
can help to shed light on the question of whether these abilities are domain-specific or 
domain-general.  

This kind of experimental research is undoubtedly important for our 
understanding of the role of statistical learning in language acquisition.  However, the 
third question of what knowledge can be learned from the statistical information available 
can be addressed more easily, or in a complementary fashion, through other research 
methodologies such as computational modeling.  In the remainder of this chapter, we 
focus on the contributions of computational studies, discussing the kinds of questions 
they can answer and mentioning briefly some of the different computational approaches 
that have been used to answer these questions.  We then focus in more detail on the 
Bayesian approach to computational modeling and provide some in-depth examples of 
work on language acquisition using this approach. 



 
2. Computational models of statistical learning 
 

There has been a great deal of work on computational modeling of language 
acquisition over the last three decades, and researchers have taken a number of different 
approaches.  However, nearly all of these approaches have sought to answer one or more 
of the following questions: 

 
1. What sources of information are available in the language input to children, 

and which of these might be useful in extracting linguistically meaningful 
generalizations?  

2. What kinds of generalizations are learnable in principle (as opposed to being 
necessarily innate) and/or what innate knowledge is necessary? 

3. What kind of mental process or neural architecture might be available and 
sufficient to extract these generalizations? 

 
Different approaches have tended to focus more strongly on one or another of these 

questions, often due to particular theoretical views.  For example, the connectionist 
approach is committed to the idea that language acquisition is entirely supported by 
domain-general learning abilities (Rumelhart and McClelland 1986, Elman et al. 1996). 
As a result, much of the connectionist literature has been devoted to showing that 
particular kinds of linguistic generalizations are learnable without the need for specific 
innate linguistic knowledge, and connectionist researchers do this by implementing 
models that learn those generalizations (e.g., Elman 1990, Elman 1993, Christiansen & 
Chater 1994, Oshma-Takane, Takane & Schultz 1999).  Connectionist modeling research 
also focuses on mental representations and architecture, based on the belief that 
distributed representations and neural network architectures are critical to the success of 
the domain-general learner. 

The connectionist approach to language acquisition is appealing to many 
researchers who do not believe in innate linguistic knowledge, but is typically rejected by 
those who do.  Some of these researchers also reject the entire idea that linguistic 
generalizations may be acquired through statistical learning, but others have chosen to 
work with models that combine strong linguistic constraints with statistical learning.  For 
example, a number of researchers have proposed models of acquisition based on variants 
of Optimality Theory.  These models assume that constraint rankings are located along a 
numerical scale (Boersma 1997, Boersma & Hayes 2001), or that constraints themselves 
are weighted numerically (Goldwater & Johnson 2003, Hayes & Wilson 2008), and that 
evidence from the learner's input data is used to change the constraint rankings or 
weights.  Although there are strong historical and formal connections between Optimality 
Theory and connectionism2, they differ strongly in their view of innateness.  Whereas 

                                                 
2 Harmonic Grammar (Legendre et al. 1990, Smolensky et al. 1992), a precursor to Optimality 

Theory that has recently been regaining popularity among some linguists (Pater 2009, Potts et al. in press), 
was actually conceived of as a hybrid connectionist-symbolic model with a neural network architecture but 
strong linguistic constraints.  This shows that in fact there is nothing inherent about connectionist models 
that forces a domain-general approach to learning. 
 



most connectionist approaches assume language acquisition results from domain-general 
learning mechanisms, OT-based theories are rooted in the idea that the learner comes to 
the task with a set of innate universal linguistic constraints.  Thus, models of learning in 
OT tend to focus on the interaction between the mental processes of learning and the 
universal constraints that are needed. 

Other computational approaches not specifically tied to the two just mentioned have 
focused on identifying the useful statistical information available in the data.  These 
include work by Redington, Chater, & Finch (1998) which examines the usefulness of the 
surrounding context of a word for grammatical categorization, studies by Mintz and 
collagues (Mintz 2003, Wang & Mintz 2008, Chemla et al. 2009) on the usefulness of 
frequent frames for grammatical categorization, and work by Albright & Hayes (2002) 
that investigates the morphological generalizations that can be posited based on 
comparing sets of word pairs. 

Due to space constraints, it is impossible for us to provide a thorough review of 
computational work in all of these different areas.  Rather than giving a cursory overview 
of several different modeling approaches, we focus here on a single one, Bayesian 
modeling.  We do so for several reasons.  First, Bayesian modeling is a relatively new 
approach to language acquisition, so there are few other resources available to those 
interested in learning more about it.  Second, the Bayesian approach offers a concrete 
way to examine what knowledge is required for acquisition, and whether that required 
knowledge is domain-specific or domain-general, without committing to either view a 
priori .  Finally, the Bayesian approach has led to the investigation of a new set of 
questions that previous approaches have not considered; specifically, whether human 
language learners can be viewed as being optimal statistical learners (i.e., making optimal 
use of the statistical information in the data), and in what situations.  Whereas previous 
approaches (e.g., connectionist) have typically focused on how learners process their 
input to form generalizations, a Bayesian model can potentially address the question of 
why they make the generalizations they do, i.e., because these generalizations are 
statistically optimal given the available data and any learning biases, innate or otherwise.  
This view assumes that the learner is in some sense adapted to the task at hand – an 
assumption underlying the so-called rational analysis view of cognition (Anderson 1990, 
Chater & Oaksford 1999).   

Some readers may not be comfortable with this idea, despite its success in modeling 
human behaviors in other areas of cognition such as numerical cognition (Tenenbaum 
1996), causal induction (Griffiths & Tenenbaum 2005), and categorization (Kemp, 
Perfors, & Tenenbaum 2007).  Nevertheless, recent work has begun to provide evidence 
that, in language acquisition as in other areas, humans do exhibit optimal behavior, at 
least in some circumstances (Feldman et al. 2009a, Xu & Tenenbaum 2007).  It has also 
been argued that knowing what optimal behavior would be in a given situation is helpful 
even if humans do not exhibit this behavior, because we can then begin to investigate 
how and why humans might differ from it (Goldwater et al. 2009, Frank et al. in 
submission). 

Put another way, the Bayesian approach to computational modeling investigates the 
problem of language acquisition at the Marr’s (1984) computational level, seeking a 
declarative (rather than procedural) model of the learner. The learner’s behavior is 
viewed as optimizing some set of goals, which are described mathematically using 



Bayesian probability theory (see below).  This contrasts with algorithmic-level 
approaches to understanding the information processing task facing the language learner 
– they hypothesize specific procedures that can be applied to the input to produce 
linguistically meaningful output: For example, learners might segment words by 
identifying syllable sequences with high frequency and mutual information (Swingley, 
2005), define a grammatical category by the group of words clustered together by a 
frequent frame (Mintz 2003, Wang & Mintz 2008, Chemla et al. 2009), or use back-
propagation to change the set of weights in a neural network (Elman 1990, Elman 1993). 

Another feature of the Bayesian approach that sets it apart from most other 
computational modeling approaches is its focus on making the space of hypotheses  
considered by the language learner explicit, and encoding the learner's biases by 
assigning an explicit probability distribution over these hypotheses.  This contrasts with 
neural network models, which have only implicit hypothesis spaces (those functions from 
inputs to outputs that are possible to learn given the structure of the network) and biases 
(functions that are easier or harder to learn), and no probability distribution over 
hypotheses.  The hypothesis space in an OT learner is more explicit (all possible rankings 
of the constraints), but again there is no probability distribution assumed.  Note that the 
Bayesian approach itself is agnostic as to whether the hypothesis space is governed by 
domain-general or domain-specific cognitive constraints, leaving this as an empirical 
question. This makes the approach appealing both to researchers who are interested in 
whether domain-specific constraints are necessary, and increasingly to those who are 
already committed to this position, but wish to investigate specific linguistic constraints.  
In addition, Bayesian models can operate over the kinds of highly structured 
representations that many linguists believe are correct (e.g., Regier & Gahl 2004, Perfors, 
Tenenbaum , & Regier 2006, Foraker et al. 2009, Pearl & Lidz 2009, Perfors et al. to 
appear). 

To formalize the preceding discussion, Bayesian models assume the learner comes 
to the task with some space of hypotheses H, each of which represents a possible 
explanation of the process that generated the data.  Note that the hypothesis space could 
be discrete (e.g., a finite or infinite set of grammars) or continuous (e.g., a set of real-
valued parameters representing the tongue positions necessary to produce a particular set 
of vowels).  Given the observed data d, the learner’s goal is to identify how probable each 
possible hypothesis h is, i.e. to estimate P(h|d), the posterior distribution over 
hypotheses.  Bayes’ Rule states that the posterior can be reformulated as in (1): 

 
(1) Bayes’ Rule 
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where P(d|h), the likelihood, expresses how well the hypothesis explains the data, and 
P(h), the prior, expresses how plausible the hypothesis is regardless of any data. P(d), the 
evidence, is a normalizing factor that ensures that P(h|d) is a proper probability 
distribution, summing to 1 over all values of h.  In any particular situation, P(d) is 
constant, so the denominator can often be safely ignored when comparing the relative 
probability of one hypothesis to another.  Thus, defining a Bayesian model usually 



involves three steps:  
 

(1) Defining the hypothesis space: Which hypotheses does the learner consider? 
(2) Defining the prior distribution over hypotheses: Which hypotheses is the learner 

biased towards or against? 
(3) Defining the likelihood function: How should the learner's input affect the 

learner's beliefs about which hypothesis is correct? 
 
A simple example, adapted from Griffiths and Yuille (2006), should help to clarify 

these ideas.  Suppose you are given three coins, and told that two of them are fair, and 
one produces heads with probability 0.9.  You choose one of the coins and must 
determine whether it is fair or not, i.e., whether θ (the probability of heads) is 0.5 or 0.9.  
Thus, the hypothesis space contains two hypotheses: h0 (θ = 0.5) and h1 (θ = 0.9), with 
P(h0) = 2/3 and P(h1) = 1/3.  Data is obtained by flipping the coin, with the probability of 
a particular sequence d of flips containing s heads and t tails being dependent on θ, as 
P(d|θ) = θs(1-θ)t.  For example, if θ = 0.9, then the probability of the sequence 
HHTTHTHHHT  is .0000531.  If θ = 0.5, then the same sequence has probability 
.000978.  To determine which hypothesis is more plausible given that particular 
sequence, we can compute the posterior odds ratio as in (2):  

 
(2) Posterior Odds Ratio 
 

€ 

P(h1 | d)
P(h0 | d)

=

P(d | h1)P(h1)
P(d)

P(d | h0)P(h0)
P(d)

=
P(d | h1)P(h1)
P(d | h0)P(h0)

=
(.0000531)(1/3)
(.000978)(2 /3)

≈
1
37

 

 
That is, the odds in favor of h0 are roughly 37:1.  Note that the P(d) (evidence) term 
cancels, so we do not need to compute it. 

This very simple example illustrates how to compare the plausibility of two 
different hypotheses, but in general the same principles can be applied to much larger and 
more complex hypothesis spaces (including countably infinite spaces), such as might 
arise in language acquisition.  With minor modifications, we can also use similar methods 
to compare hypotheses in a continuous (uncountably infinite) space (see Griffiths and 
Yuille (2006) for a more explicit description of the modifications required).  Such a space 
might occur in a syntax-learning scenario if we suppose that the hypotheses under 
consideration consist of probabilistic context-free grammars (PCFGs), with different 
grammars varying both in the rules they contain, and the probabilities assigned to the 
rules.3   The input data in this situation could be a corpus of sentences in the language, 
with P(d|h) determined by the rules for computing string probabilities under a PCFG.  
P(h) could incorporate various assumptions about which grammars the learner might be 
biased towards -- for example, grammars with fewer rules, or grammars that incorporate 
linguistically universal principles.  See the discussion of Perfors, Tenenbaum, & Regier 
                                                 
3 Since probabilities are represented using real numbers, the hypothesis space is continuous; if the learner is 
assumed to acquire a non-probabilistic grammar, then the hypothesis space consists of a discrete set of 
grammars 



(2006) and Perfors et al. (to appear) in section 3 below for explicit examples of these 
ideas as applied to language acquisition. 

The hypothesis space of a Bayesian model not only can be very complex and 
structured, but also may contain multiple levels of linguistic representation.  For example, 
the word segmentation model of Goldwater et al. (2006, 2009) contains two levels of 
representation -- words and phonemes -- though only one of these (words) is unobserved 
in the input and must be learned.  However, Bayesian models can in principle learn 
multiple levels of latent structure simultaneously, and doing so can even improve their 
performance.  For example, Johnson (2008) showed that learning both syllable structure 
and words from unsegmented phonemic input improved word segmentation in a Bayesian 
model similar to that of Goldwater et al.  In a study we describe further in Section 3, 
Feldman et al. (2009) compared two Bayesian models of phonetic category acquisition to 
demonstrate that simultaneously learning phonetic categories and the lexical items 
containing those categories led to more successful categorization than learning phonetic 
categories alone.  These types of joint learning models are helpful for understanding the 
process of bootstrapping -- using preliminary or uncertain information in one part of the 
grammar to help constrain learning in another part of the grammar, and vice versa. 

It is worth reiterating that, unlike neural networks and other algorithmic-level 
models such as those of Mintz (2003), Swingley (2005), and Wang & Mintz (2008), 
Bayesian models are intended to provide a declarative description of what is being 
learned, not how the learning is implemented.  Bayesian models predict a particular 
posterior distribution over hypotheses given a set of data, and can also be used to make 
predictions about future data based on the posterior distribution.  If human subjects’ 
performance in a task is consistent with the predictions of the model, then we can 
consider the model successful in explaining what has been learned and which sources of 
information were used in learning.  However, we do not necessarily assume that the 
particular algorithm used by the model to identify the posterior distribution is the same as 
the algorithm used by the humans.  We only assume that the human mind implements 
some type of algorithm (perhaps a very heuristic one) that is able to approximately 
identify the posterior distribution over hypotheses.  

For example, most Bayesian models of language acquisition have used algorithms 
based on Markov chain Monte Carlo methods such as Gibbs sampling to obtain samples 
from the posterior distribution (Gilks et al., 1996; Geman and Geman, 1984; also see 
Resnik and Hardisty (2009) for an accessible tutorial and Knight (2009) for a humorous 
introduction).  These are batch algorithms, which operate over the entire data set 
simultaneously.  This is clearly an unrealistic assumption about human learners, who 
must process each data point as it is encountered, and presumably do not revisit or 
reanalyze the data at a later time (or at most, are able to do so only to a very limited 
degree).  If humans are indeed behaving as predicted by Bayesian models, they must be 
using a very different algorithm to identify the posterior distribution over hypotheses – an 
algorithm about which most Bayesian models have nothing to say. Researchers who are 
particularly concerned with the mental mechanisms of learning often find the Bayesian 
approach unsatisfactory precisely because in its most basic form, it does not address the 
question of mechanisms.  However, it should be noted that a more recent line of work has 
begun to address the question of how learners might implement Bayesian predictions in a 
more cognitively plausible way.  For example, Shi, Griffiths, Feldman, & Sanborn (to 



appear) discuss how exemplar models may provide a possible mechanism for 
implementing Bayesian inference, since these models allow an approximation process 
called importance sampling.  Another example is the work of Pearl, Goldwater, and 
Steyvers (2010) on word segmentation, which we will discuss further in Section 3. 

 One main contribution of Bayesian models is that they provide a way to formally 
evaluate claims about children’s hypothesis space.  For example, they can indicate if 
certain constraints or restrictions are required in order to learn some aspect of linguistic 
knowledge. Section 3 discusses several studies that investigate the prior knowledge 
children would need to learn the required linguistic information from the available child-
directed speech data (e.g., Regier & Gahl 2004, Perfors, Tenenbaum, & Regier 2006, 
Foraker et al. 2009, Pearl & Lidz 2009, Perfors et al. to appear).  In many cases, these 
models allow researchers to determine if the child’s hypothesis space needs to be 
restricted in a specific way, or if it is possible to converge on the correct hypothesis 
within a larger, less restricted hypothesis space.   
 In this way, Bayesian models allow us to investigate if a particular hypothesis space 
is viable for language acquisition. More specifically, if a Bayesian learner looking for the 
optimal hypothesis given the data cannot converge on the correct hypothesis, this 
suggests that the current conception of the hypothesis space cannot be correct.  Instead, 
some additional knowledge is required to successfully navigate the potential hypotheses 
and converge on the correct one.  This additional knowledge may take the form of an 
additional constraint on the hypothesis space that gives preference to certain hypotheses 
over others, or eliminates some hypotheses entirely.  On the other hand, if a Bayesian 
learner can converge on the correct hypothesis given the data, this suggests the 
hypothesis space is viable for children capable of approximating sophisticated statistical 
inference. 
 We should note that a Bayesian model is a tool that can be used to evaluate 
hypotheses in a predefined hypothesis space, but it is not a tool that creates a hypothesis 
space. If a hypothesis space is not already available, a Bayesian model cannot help.  This 
property likely makes Bayesian modeling more appealing to linguists interested in 
learning specific abstract or structured representations of language, since the acquisition 
problem in these cases is often framed as choosing from a set of already existing 
hypotheses.   
 That being said, the predefined hypothesis space can be very broad.  Kemp, Perfors, 
& Tenenbaum (2007) and Kemp & Tenenbaum (2008) discuss overhypotheses in 
Bayesian modeling, where overhypotheses refer to strong inductive constraints on 
possible hypotheses in the hypothesis space (Goodman 1955).  As a simple example 
taken from Goodman (1955) and presented in Kemp, Perfors, & Tenenbaum, suppose 
people are learning the color distribution of marbles in a bag, where marbles can be either 
black or white.  During training, people open bags and find out that the marbles in each 
bag are either all black or all white.  When opening a new bag, they are allowed to draw 
one marble only before inferring the color distribution.  A hypothesis about color 
distribution for this new bag might be that all the marbles are either all black or all white 
(which allows someone to make a strong inference after observing only a single marble 
from the new bag).  An overhypothesis for color distribution is that all bags contain 
marbles that are uniform in their color distribution.  Thus, during training, people learn to 
give this overhypothesis high probability as more and more bags are observed that are 



uniform in color (as opposed to an overhypothesis that allows mixed colors in a bag).  
This overhypothesis in turn constrains the hypotheses for individual new bags observed – 
high probability is given to “all black” and “all white” before ever observing a marble 
from the bag, while low probability is given to hypotheses like “70% black and 30% 
white”.  This example demonstrates how information can be indirectly used to make 
predictions, e.g., observing all black bags and all white bags allows the prediction that a 
bag with mixed black and white marbles has low probability of occurring.  
Overhypotheses can be explicitly instantiated in hierarchical Bayesian models, such as 
the ones discussed in Kemp, Perfors, & Tenenbaum (2007) and Kemp & Tenenbaum 
(2008).  
 In the realm of syntactic acquisition, overhypotheses may correspond to what kinds 
of grammars are likely to be useful for analyzing the observable child-directed speech 
data (see the discussion of research by Perfors and colleagues in section 3 below).  In 
addition, overhypotheses may also naturally correspond to linguistic parameters in 
generative linguistics, where a parameter is an abstract structural property that connects 
to many observable linguistic structures (Chomsky 1981) and thus constrains predictions 
on what structures should be observed in the language. 
  
   
3. Specific example studies 
 
 We now turn to a survey of some specific representative studies in different areas 
of language acquisition, each one demonstrating how sophisticated probabilistic inference 
can be applied to a relevant problem within the chosen linguistic domain.  For each study, 
we will describe the specific problem to be solved, discuss the hypothesis space of 
choices for each problem, and describe how Bayesian inference can operate over this 
hypothesis space to yield the same answers that humans seem to find. Of course, we 
cannot include all relevant studies here, but we hope to present illustrative samples of the 
application of Bayesian inference to problems in language acquisition.  
 
Phonetics and perceptual learning 
 

Feldman, Griffiths, & Morgan (2009b) address the question of phonetic category 
acquisition, specifically the acquisition of vowel categories.  This is a difficult problem 
because of the variation in acoustic properties between different tokens of the same 
vowel, even when spoken by the same speaker.  Although the means of different vowel 
categories are different, there is significant overlap in the distributions, e.g. a particular 
token of /e/ may sound exactly like a token of /ε/, even if spoken by the same individual. 
See figure 1 below for an illustration of this variation in men’s vowels sounds, taken from 
Feldman et al..  

 



    
Figure 1. Example distribution of men’s vowel sounds.  Many vowel sounds have 
overlapping distributions, such as /e/ and / ε/. 

 
 Experimental studies suggest that infants are able to learn separate phonetic 

categories for speech sounds that occur with a clear bimodal distribution (Maye, Werker, 
& Gerken, 2002, Maye & Weiss, 2003), but the extent of overlap between phonetic 
categories in real speech suggests that some categories might be difficult to distinguish in 
this way.  Instead, Feldman et al. hypothesize that learners must make use of an 
additional source of information beyond the acoustic properties of individual sounds; 
specifically, they also take into account the words those sounds occur in.  Of course, 
young infants who are still learning the phonology of their language have very little 
knowledge of the lexicon.  Feldman et al. present evidence from experimental studies 
suggesting that phonetic categorization and word segmentation and learning are acquired 
in parallel, between the ages of 6-12 months.  So, rather than assuming either that 
phonetic categories are acquired first and then used to learn words (lexical items), or that 
words are acquired first and then used to disambiguate phonetic categories, Feldman et 
al. propose a joint model of learning in which phonetic categories and words are learned 
simultaneously.  They compare this model to a simpler baseline model in which phonetic 
categories alone are learned.  We describe each of these models briefly before reviewing 
the results. 

Feldman et al.’s baseline model is a distributional model of categorization: it 
assumes that phonetic categories can be identified based on the distribution of sounds in 
the data.  In particular, it assumes that the tokens in each phonetic category have a 
Gaussian (normal) distribution, and the goal of the learner is to identify how many 
categories there are, and which sounds belong to which categories.  Since the number of 
categories is unknown, Feldman et al. use a Dirichlet process prior (Ferguson, 1973), a 
distribution over categories that does not require the number of categories to be known in 
advance.  The Dirichlet process favors categorizations that contain a smaller number of 
categories, unless the distributional evidence suggests otherwise.  In other words, if there 
is good reason to assume that a set of sounds are produced from two different categories 
(e.g. because they have a strongly bimodal distribution, leading to a low likelihood score 
if collapsed into a single Gaussian category), then the model will split the sounds into two 
categories, otherwise it will assign them to a single category. 

Feldman et al.’s second model is a lexical-distributional model, which assumes 
that the input consists of acoustically variable word tokens rather than phonetic tokens 
(i.e., that the child is able to segment at least some words).  The learner now has two 



goals: to find phonetic categories (as in the distributional learner) but also to categorize 
word tokens into lexical items, grouping together tokens that contain the same sequence 
of phones.  Note that these two tasks are interdependent. On the one hand, the 
categorization of phonetic tokens affects which words are considered to be the same 
lexical item.  On the other hand, if two word tokens are assigned to the same lexical item, 
then their phones should belong to the same categories.  The hypothesis space for this 
model consists of pairs of categorizations (of phones into phonetic categories, and words 
into lexical items).  Since the lexical learning task can also be viewed as categorization, it 
is modeled using another Dirichlet process, which again prefers lexicons containing 
fewer items when possible. 

Using a toy data set, Feldman et al. show that the lexical-distributional model 
makes an interesting and counterintuitive prediction about minimal pairs.  Specifically, if 
a pair of phones (say, B and C) only occur within minimal pairs (say, lexical items AB, 
AC, DB, DC), then they are likely to be categorized as a single phoneme if they are 
acoustically similar, since this would reduce the size of the lexicon, replacing four words 
with two (AX, DX).  On the other hand, if B and C occur in different contexts (say, AB 
and DC only), then they are more likely to be categorized as separate phones.  This is 
because the lexical-distributional learner can use phones A and D to recognize that AB 
and DC are different words, and then use this information to recognize that the 
distribution of B and C are actually slightly different.  This prediction is interesting for 
two reasons.  First, it means that the lack of minimal pairs in early vocabularies (e.g., see 
Dietrich, Swingley, & Werker 2007) may actually be helpful.  Secondly, recent 
experiments by Thiessen (2007) seem to bear out the model’s prediction in a word 
learning task with 15-month-olds: infants are better at discriminating similar-sounding 
object labels (e.g., daw vs. taw) after being familiarized with non-minimal pairs 
containing the same sounds (dawbow, tawgoo). 

In a second simulation, Feldman et al. compared the performance of their 
distributional model, lexical-distribution model, and a second distributional model 
(Vallabha et al. 2007) on a larger corpus containing 5000 word tokens from a 
hypothetical set of lexical items containing only vowels (e.g., "aei" - vowel-only words 
were necessary because the model can only learn vowel categories).  Both of the 
distributional models identified too few phonetic categories, collapsing highly 
overlapping categories into one category.  In contrast, the lexical-distributional learner 
was much more successful in distinguishing between very similar categories.  Although 
these results are preliminary and still need to be extended to more realistic lexicons, they 
provide intriguing evidence that simultaneously learning linguistic generalizations at 
multiple levels (phones and words) can actually make the learning problem easier than 
learning in sequence. 

 
Word segmentation 
 

There have been a number of recent papers on Bayesian modeling of word 
segmentation.  These are all based on the models presented in Goldwater (2006) and 
Goldwater, Griffiths, & Johnson (2009), which make the simplifying assumption (shared 
by most other computational models of word segmentation) that the input to the learner 
consists of a sequence of phonemes, with each word represented consistently using the 



same sequence of phonemes each time it occurs.  Between-utterance pauses are 
represented as spaces (known word boundaries) in the input data, but other word 
boundaries are not represented.  So, the input corresponding to the two utterances "see 
the kitty?  look at the kitty!" would be siD6kIti lUk&tD6kIti (or, represented 
orthographically for readability, seethekitty lookatthekitty).   

The hypothesis space considered by the learner consists of all possible 
segmentations of the data (e.g., seethekitty lookatthekitty, s e e t h e k i t t y l o o k a t t h e 
k i t t y, seet he k itty loo k att he k itty, see the kitty look at the kitty, etc.).  In this model, 
P(d|h) is 1 for all of these segmentations because they are all completely consistent with 
the unsegmented data (in the sense that concatenating the words together produces the 
input data).4  Consequently, the segmentation preferred by the model is the one with the 
highest prior probability.  The prior is defined, as in the Feldman et al. (2009) models, 
using a Dirichlet process, which assigns higher probability to segmentations that contain 
relatively few word types, each of which occurs frequently and contains only a few 
phonemes.  In other words, the model prefers segmentations that produce smaller 
lexicons with shorter words. 
 Goldwater et al.'s (2009) computational studies were purely theoretical, with the 
aim of examining what kinds of segmentations would be preferred by a learner making 
the assumptions above, as well as one of two additional assumptions: either that words 
are statistically independent units (a unigram model), or that words are units that predict 
each other (implemented in this case using a bigram model).  While it is clear that the 
second of these assumptions holds in natural language, the first assumption is simpler 
(because the learner only needs to track individual words, rather than dependencies 
between words).  So if infants' ability to track word-to-word dependencies is limited, then 
it is worth knowing whether the simpler model might allow them to achieve successful 
word segmentation anyway.  Goldwater et al. found that the optimal segmentation for 
their unigram model (in fact for any reasonable unigram model) is one that 
undersegments the input data -- the word boundaries it finds tend to be very accurate, but 
it often does not find as many boundaries as actually exist.  Thus, it produces “chunks” 
that contain more than one word.  The bigram model is nearly as precise when 
postulating boundaries, but identifies far more boundaries overall, leading to a more 
accurate segmentation. 
 This study is a good example of an ideal observer analysis, showing what kinds 
of solutions an idealized learner capable of extracting the necessary statistical cues would 
achieve given the available input and certain assumptions about the capabilities of the 
learner (i.e., whether the learner can track word-to-word dependencies or not).  However, 
it does not tell us whether humans actually behave in ways consistent with the ideal 
learner, or in what situations, or how more limited (non-ideal) learners might differ from 
the ideal.  Follow-up work by Goldwater and colleagues has begun to address these 
questions through experimental and computational studies. 

                                                 
4 In fact, the full hypothesis space for the model consists of all possible sequences of potential words, 
including those that are inconsistent with the observed data, such as have some pizza and gix blotter po 
nzm. However since these sequences are inconsistent with the data, P(d|h) = 0, and these hypotheses can be 
disregarded. 
 



In the work of Frank et al. (in submission), the authors examine the predictions of 
Goldwater et al.'s  unigram word segmentation model, as well as that of several other 
models, and compare these predictions to human performance in several experiments.5 
The experiments are modeled on those of Saffran et al. (1996), and involve segmenting 
words from an artificial language based on exposure to utterances containing no pauses 
or other acoustic cues to word boundaries. Frank et al. performed three experiments, 
manipulating either the number of words in each utterance (1-24 words), the total number 
of words/utterances heard in the training phase (48-1200 words), or the number of words 
in the vocabulary (3-9 words).   

In the experiment that manipulated the length of utterances, Frank et al. found that 
humans had more difficulty with the segmentation task as the utterance length increased, 
with a steep drop-off in performance between one and four words, and a more gradual 
decrease thereafter.  Several of the models captured the general decreasing trend, but the 
Bayesian model correlated better with the human results than all other models tested.  
This can be explained by the fact that longer utterances have more possible 
segmentations, so there is a larger hypothesis space for the model to consider.  Although 
most hypotheses have very low posterior probability, nevertheless as the hypothesis space 
increases, the total probability mass assigned to all the incorrect hypotheses begins to 
grow.  This can be seen as a competition effect. 

In the experiment that manipulated the amount of exposure, subjects' performance 
improved as exposure increased, but again there was a non-linear effect, with greater 
improvement initially followed by a more gradual improvement later on.  Again, the 
Bayesian model captured this effect better than the other models.  The Bayesian model 
incorporates a notion of statistical evidence (more data leads to more certainty in 
conclusions), while many of the other models do not.  For example, Frank et al. tested a 
transitional probability model and found that its performance changes very little over 
time because it only requires a few utterances to correctly estimate the transitional 
probabilities between syllables, after which the transitional probabilities do not change 
with more data. 
 In the experiment that manipulated the number of words in the vocabulary, 
subjects found languages with larger vocabularies more difficult  to segment than those 
with smaller vocabularies.    Although this finding was not surprising, all of the models 
tested predicted exactly the opposite result.  This is because larger vocabularies require 
more memory to store, but they also make the sequences of syllables that are true words 
more statistically distinct from the sequences that are not words.  For example, with a 
three-word vocabulary (words A, B, C), an incorrect segmentation where the 
hypothesized words are all the possible two-word combinations (AB, AC, BA, BC, CA, 
CB) scores not much differently from the correct segmentation under the Bayesian model 
-- one hypothesis has three words in the vocabulary, whereas the other has six.  In 
contrast, if there are nine words in the vocabulary, then the analogous incorrect 
segmentation would require 72 vocabulary items, a much bigger difference from nine.  
Similarly, in a transitional probability model, transitions across words in a three-word 
language have relatively high probability, whereas transitions across words in a nine-
word language have much lower probability, making them more distinct from within-
                                                 
5 The unigram model was used because in these experiments, words really are almost statistically 
independent, so the bigram model would have provided little or no benefit. 



word transitions.  Frank et al. point out that the models under consideration have perfect 
memory, so the statistical properties of larger vocabularies make the task easier.  
Although humans performed most similarly to the Bayesian ideal learner model in the 
first two experiments, the third experiment provides an example where human 
performance differs from the statistically optimal solution assuming perfect memory. 

  The above discussion suggests that in order to successfully model human 
behavior in some language acquisition tasks, it is necessary to account for human 
memory limitations.  Frank et al. present several possible modifications to Goldwater et 
al.'s (2009) Bayesian model that incorporate such limitations through algorithmic means, 
and find that all of these are able to correctly model the data from all three experiments.  
Similar kinds of modifications were also explored by Pearl, Goldwater, & Steyvers 
(2010) in the context of word segmentation from naturalistic corpus data.  The question 
of interest was to examine cognitively plausible algorithms that could be used to 
implement an approximate version of Goldwater et al.'s Bayesian model.  

To simulate limited cognitive resources, all the algorithms explored in Pearl et al. 
(2010) process utterances one at a time, rather than in a batch as the ideal learner of 
Goldwater et al. (2009) did.  Two algorithms used variants of a method called dynamic 
programming, which allows a learner to efficiently calculate the probability of all 
possible segmentations for a given utterance.  A third algorithm attempted to additionally 
simulate the human memory decay process, and so focus processing resources on data 
encountered more recently.  This algorithm was a modified form of the Gibbs sampling 
procedure used for ideal learners, and is called decayed Markov Chain Monte Carlo 
(DMCMC) (Marthi et al. 2002).  Notably, the DMCMC algorithm can be modified so it 
does significantly less processing than the ideal learner’s Gibbs sampling procedure (for 
the simulations in Pearl et al, the DMCMC algorithm did 89% less processing than the 
ideal learner’s algorithm). 

The results of these simulations suggested that constrained learners could be 
nearly as successful at segmentation as the ideal learner in most cases, despite their 
processing and memory limitations.  This suggests that children may not require an 
infeasible amount of processing power to identify words using this kind of sophisticated 
statistical inference.  Moreover, Pearl et al. found that constrained learners did not always 
benefit from the bigram assumption which was helpful to the ideal learner.  This may be 
because those constrained learners lacked sufficient processing resources to effectively 
exploit that information.  So, useful information for an ideal learner may not necessarily 
be as useful for a constrained learner.   

Interestingly, Pearl et al. also found that some of their constrained learners 
actually outperformed the ideal learner when the learners used a unigram assumption.   
This is a somewhat counterintuitive finding, since we might naturally assume that having 
more processing power (like the ideal learner has) is always better.  However, these 
results are compatible with an idea for language acquisition called the “Less is More” 
hypothesis (Newport 1990), which suggests that less processing power may actually be 
beneficial for language acquisition.  Though the Bayesian modeling studies discussed 
here are preliminary and the robustness of the results should be verified on other 
languages, they provide a tantalizing example of this idea that is used to explain 
children’s excellent language acquisition abilities. 

 



 
Word-meaning mapping 
  
 There have been two notable recent studies involving Bayesian models for 
learning word-meaning mappings.  In Section 1 we briefly mentioned some experimental 
results from one of these, Xu & Tenenbaum (2007), and refer the reader to that paper for 
a description of the computational aspects of the study.  Here we discuss instead the work 
of Frank, Goodman, & Tenenbaum (2009).  Frank et al. explore the utility of Bayesian 
inference for word-meaning mappings, incorporating the idea that speaker intention and 
the objects present in the world at the time of the linguistic utterance influence what 
words people choose to say.  More specifically, the process of word-meaning mapping is 
part of a larger process that starts with a speaker’s intention to refer to particular objects 
that are present, incorporates the speaker’s knowledge of lexicon items for her language, 
and ends with the speaker choosing specific lexicon items that refer to specific objects.   
This process can be represented schematically as in Figure 2, where the words uttered by 
the speaker (W) in a given situation depend both on the lexicon items the speaker in 
general knows (L) and the referents presently available that the speaker intends to refer to 
(I).  The intended referents then depend on the set of objects (O) presently available, with 
the intended referents presumably being some subset of the set of objects available.   
 

   
Figure 2. Generative process for producing words in a specific situation.  The words 
uttered (W) depend on both the lexicon (L) and the intended objects (I).  The intended 
objects (I) depend on what objects are current present (O). 
  
 Given realistic child-directed speech in situations with a number of objects 
present for a speaker to refer to, this Bayesian model far out-performed other statistical 
learning methods such as conditional probability and mutual information, identifying the 
most accurate set of lexicon items and speaker-intended objects.  Specifically, given the 
words uttered by a speaker (W) in the presence of a set of objects (O), the model 
simultaneously infers the most probable lexicon items for the speaker (L) and which 
objects in the specific situation that speaker intended those lexicon items to refer to (I).  It 
does this by pooling the data over many observable situations in which a speaker 
intended to refer to objects that were present. 



 Moreover, this Bayesian model is able to produce several known word-learning 
behaviors observed in humans.  When tested with the experimental materials from Yu & 
Smith (2007), the model was able to learn from cross-situational information, as humans 
were.  In addition, the model exhibited a mutual exclusivity preference (Markman & 
Wachtel 1988, Markman 1989, Markman, Wasow, & Hansen 2003) because having a 
one-to-one mapping between a lexicon item and an object referent maximized the 
probability of a speaker using that lexicon item to refer to that object.  That is, because 
word-meaning mapping was part of the larger process that incorporated speaker 
intentions, the mutual exclusivity bias that children show was a by-product of this model 
trying to find the most likely lexicon and the most likely speaker intentions.   
 The Bayesian model can also reproduce a behavior that children show called one-
trial learning (Carey 1978, Markson & Bloom 1997), where it only takes one exposure to  
a word to learn its meaning.  This occurs when the learner’s prior knowledge and the 
current available referents in the situation make one word-meaning mapping much more 
likely than others.  For example, suppose there are two objects in the current situation, a 
bird and an unknown object.  Suppose the word dax is used.  If the child has prior 
knowledge of the word bird and what it tends to refer to, then the model will view the 
lexicon item dax as most likely referring to the unknown object after only this one usage.   
 Another child behavior this model can capture is the use of words for 
individuating objects (Xu 2002).  Xu (2002) found that when infants hear two different 
labels, they expect two different objects and are surprised if only one object is present; 
when only one label is used, they expect only one object to be present.  That is, infants 
have an expectation that words are used referentially. This behavior falls out naturally in 
the Bayesian model because the model has a role for speaker intentions.  Specifically, the 
models used its assumptions about how words work (they are often used referentially) to 
make inferences about the states of the world that caused a speaker to produce particular 
utterances (i.e., one label indicates one object, and two labels indicate two objects).  In 
this way, the model replicated the infant behavior results from Xu (2002).    
 In a similar fashion, this model can directly incorporate speaker intention to 
explain behavioral results such as those of Baldwin (1993).  Baldwin found that children 
could learn the appropriate label for an object even if a large amount of time elapsed 
between the label and the presentation of the object as long as the speaker’s intention to 
refer to the object with that label was clear.  In the Bayesian model, this information can 
be directly incorporated at the level of speaker intentions. 

 
Syntax-semantics mapping 
 
 The meaning of a word is not always directly connected to a referent in the world, 
however.  Some words are anaphoric – that is, they refer to something previously 
mentioned.  For instance, consider an example of anaphoric one in English:  
 
 (3) Example of English anaphoric one 
  “I have a black cat.  He’s wonderful – don’t you want one, too?” 
 
 To interpret the second utterance, we must figure out what one refers to:  Is it a 
black cat or just a cat in general that the speaker thinks we should want?  The linguistic 



antecedent of an anaphoric word can help.  If we know one refers to black cat, we can 
interpret the last part of the second utterance as “don’t you want a black cat, too?”; if we 
know one refers to cat, we can interpret it instead as “don’t you want a cat, too?”.    How 
do we know which one to choose?  
 This is where the category of the anaphoric word can help.  One common 
representation of the syntax of a black cat is shown below in Figure 3.  If one is an N’, it 
can substitute for either node 1a or node 1b; if one is N0, it can substitute for node 2 only.  
These nodes are compatible with different linguistic strings: N’ is compatible with both 
cat and black cat, while N0 is compatible only with cat.  Thus, one way we can decide the 
category of one is by observing the strings it can substitute for. 
 

 
 
Figure 3.  One representation of the syntax of a black cat.  The numbered nodes (1a, 1b, 
2) represent possible structures one might substitute for. 
 
 How then do we tell what strings it substitutes for?  We can observe the intended 
referents.  If one ever has black cat as its antecedent, we know one must be category N’.  
Here is one data point that would allow us to make this inference: 
 
 (4) Example of unambiguous data point for one = black cat 
  “I have a black cat, but you don’t have one – you have a grey cat.” 
  
 This utterance unambiguously indicates that one must have black cat as its 
antecedent. If one had cat as its antecedent, the interpretation would be that the listener 
does not have a cat of any kind.  This would be a strange utterance since the listener 
clearly does have a cat (which is grey).   So, we know that one can have strings like black 
cat as its antecedent, which means one’s category is N’.  By understanding the intended 
referent (the black cat the listener does not have), we infer the linguistic antecedent 
(black cat) and so the syntactic category (N’).  
 Interestingly, even in ambiguous examples like (X1), English adults often prefer 
one to take black cat as its antecedent – that is, they have a preference for one to 
substitute for the larger N’ (node 1a in figure F1) rather than the smaller N’ (node 1b in 
figure 3).  Lidz, Waxman, & Freedman (2003) demonstrated that 18-month-olds appear 
to share these intuitions about anaphoric one’s interpretation, suggesting that children 
have acquired knowledge of one’s syntactic category by this age. This knowledge was 
traditionally considered unlearnable given the sparseness of unambiguous data like (4) 



(Baker 1978, Hornstein & Lightfoot 1981, Crain 1991), which make up about 0.25% of 
children’s anaphoric one input (Lidz, Waxman, & Freedman 2003).  The traditional 
solution was then to assume that children possessed innate linguistic knowledge that 
referential words like one could not be category N0. 
 Regier & Gahl (2004) discovered that a learner using Bayesian inference can 
learn from ambiguous examples like (3), in addition to unambiguous examples like (4).   
Specifically, for examples like (3), the learner observes how often the referent of one is a 
cat that is black.  If the referents keep being black cats, this is a suspicious coincidence if 
one referred to cat, and not to black cat.  The learner capitalizes on this suspicious 
coincidence and soon determines that one takes black cat as its antecedent in these cases. 
Since the string black cat can only be an N’ string (see Figure 3), the learner can then 
infer that one is of category N’ as well.  The only specific linguistic knowledge the 
learner required is (1) the definition of the hypothesis space (hypothesis 1: one = N’ 
category, hypothesis 2: one = N0 category), and (2) knowing to use both the unambiguous 
data and these specific informative ambiguous data. 
 Pearl & Lidz (2009) later explored the consequences of a Bayesian learner that 
did not know this second piece of information, and instead attempted to learn from all 
potentially informative ambiguous data in addition to the unambiguous data.  Pearl & 
Lidz found that this “equal opportunity” learner made the wrong choice, inferring that 
one was category N0 due to the suspicious syntactic coincidences available in the 
additional ambiguous data.   Thus, the second piece of information is vital for success, 
and Pearl & Lidz speculated that it is linguistic-specific knowledge since it requires the 
child to ignore language data containing particular linguistic structures (note, however, 
that it could be derived using a domain-general strategy - see Pearl & Lidz (2009) for 
more detailed discussion of this point).   
 Foraker, Regier, Khetarpal, Perfors, & Tenenbaum (2009) investigated another 
strategy for learning the syntactic category of one, this time drawing only on syntactic 
information and ignoring information about what the intended referent was.  In particular, 
a learner could notice that one is restricted to the same syntactic arguments (called 
modifiers) that words of category N’ are restricted to rather than being able to have both 
modifiers and another syntactic argument (complements) that words of category N0 can 
have.  That is, one, like N’ words, can take only modifiers as arguments, while N0 words 
can take both modifiers and complements as arguments.  This restriction is a suspicious 
coincidence if one is really category N0.  So, a Bayesian learner can infer that one is 
category N’.  Notably, however, the ability to distinguish between modifiers and 
complements requires the child to make a complex conceptual distinction (see Foraker et 
al. (2009) for more discussion on this point), and it is unclear if 18-month-old children 
would be able to do so. 

 
Syntactic structure 

 
 Children must also discover the rules that determine what order words appear in.  
For example, consider the formation of yes/no questions in English.  If we start with a 
sentence like The cat in the corner is purring, the yes/no question equivalent of this 
sentence is Is the cat in the corner purring?  But how does a child learn to form this 
yes/no question?  One rule that would capture this behavior would be “Move the first 



auxiliary verb to the front”, which would take the auxiliary verb is and move it to the 
front of the sentence.  This rule is a linear rule, since it only refers to the linear order of 
words (“first auxiliary”). Another rule that would capture this behavior is “Move the 
main clause auxiliary verb to the front”.  This is a structure-dependent rule, since it refers 
to the structure of the sentence (“main clause”). 
 
 (5) Example of yes/no question formation 
  (i)  Sentence:   
      The   cat  in  the  corner  is    purring. 

  (ii) Linear Rule: Move the first auxiliary verb 
        Is     the     cat   in  the  corner  tis   purring 
  (iii) Structure-Dependent Rule: Move the main clause auxiliary verb 
          Is  [S the     cat   in  the  corner  tis    purring] 
 

 It turns out that while both of these rules will account for simple yes/no questions 
like the one above, only the structure-dependent rule will account for behavior of more 
complex yes/no questions, such as in (6).  
 
 (6) Example of complex yes/no question formation 
  (i)  Sentence:   
      The   cat    who   is  in  the  corner  is  purring. 

  (ii) Linear Rule: Move the first auxiliary verb 
        *Is    the    cat     who  tis  in  the  corner  is  purring 
  (iii) Structure-Dependent Rule: Move the main clause auxiliary verb 
             Is  [S the    cat [S who is  in the  corner]  tis  purring] 

 
 So, children must learn that structure-dependent rules are required to explain 
complex language word order properties like this one.  Crain & Nakayama (1987) 
discovered that English children as young as three years old appear to know that 
structure-dependent rules are required for complex yes/no question formation in English.  
In addition, unambiguous examples like (6iii) that demonstrate this structure-dependent 
rule explicitly are quite rare in child-directed speech (Pullum & Scholz 2002, Legate & 
Yang 2002).   Since the yes/no question data children usually see are compatible with 
both linear and structure-dependent rules, it was therefore surprising that children seemed 
to know the structure-dependent rule for complex yes/no questions at such an early age.    
A standard explanation is that children innately know that language is structure-
dependent, so they never consider the other kinds of analyses for their input, such as 
linear rules (e.g., Chomsky, 1971). 
 Perfors, Tenenbaum, & Regier (2006) investigated whether a Bayesian learner 
that considered both linear and structure-dependent analyses could correctly infer that 
structure-dependent analyses were preferable, given child-directed speech data.  One 
main insight of their approach was that while complex yes/no questions implicating 
structure-dependent analyses might be rare, other data in the input, taken together, might 
collectively implicate structure-dependent analyses for the language as a whole.  This 
could indirectly implicate the correct complex yes/no question structure without the need 
to observe complex yes/no questions in the input.   The hypothesis space of the 



Bayesian learner included both a linear set of rules (a linear grammar) and a structure-
dependent set of rules (a hierarchical grammar) to explain the observable child-directed 
speech data. That is, given data (D), the learner inferred which grammar (G) satisfied two 
criteria:  
 

(1) the grammar best able to account for the observable data, 
(2) the simplest grammar, where a grammar with fewer and/or shorter rules can 

be thought of as simpler.   
 

 This is determined by the posterior probability p(G | D), calculated as in (7). The 
likelihood p(D | G) rewards grammars that are best able to account for the observable 
data, while also rewarding simpler derivations using the available grammar rules. The 
prior p(G) rewards simpler grammars. 
 
 (7) Posterior probability of the grammar G, given the data D 
  
 

€ 

p(G |D)∝ p(D |G)p(G)  
 
   

For data, Perfors et al. used the child-directed sentences from the Adam corpus 
(Brown 1973) of the CHILDES database (MacWhinney 2000), and divided the sentences 
into six groups based on frequency.  The most frequent sentences also tended to be 
simpler.  Perfors et al. found that a hierarchical grammar was optimal for all the data sets 
that included more complex sentence forms, i.e. those that included at least some 
sentences that occurred less frequently than 100 times.  Thus, if the Bayesian learner is 
exposed to enough complex sentences, it can infer that structure-dependent rules are 
better than linear rules, and can apply this knowledge to complex yes/no questions, even 
if no complex yes/no questions have been encountered before.  Interestingly, even the 
earliest data in the Adam corpus shows a diversity of linguistic forms, suggesting that 
young children’s data may be varied enough for them to prefer structure-dependent 
analyses if they are performing something approximating the Bayesian inference 
procedures used by Perfors, Tenenbaum, & Regier.  An open question is whether children 
have the memory and processing capabilities to make these approximations. 
 Perfors and colleagues (Perfors, Tenenbaum, Gibson, & Regier to appear) also 
used Bayesian learners to investigate how recursion might be instantiated in grammars.  
Recursion occurs when a rule has an expansion that eventually can call itself, as in (X4), 
where an S can be expanded into something containing an NP (8i) and an NP can be 
expanded into something containing an S (8ii).   
 
 (8) Recursive rule example 
  (rule i)   S  NP VP 
  (rule ii) NP  N complementizer S  

 
 Recursion is of particular interest, as it has been argued to be a fundamental, 
possibly innate, part of the language faculty (Chomsky 1957) as well as the one of the 
only parts of the language faculty specific to humans (Hauser, Chomsky, & Fitch 2002).  



Perfors et al. (to appear) evaluated grammars with and without recursive rules to decide 
which was optimal for child-directed speech data.  Grammars with recursive rules allow 
infinite embedding (Depth 3+ in 9), while grammars without recursive rules allow 
embedding only up to a certain depth, e.g., 2 clauses deep (Depth 0, 1, and 2 in X5). 
 
 (9)  Embedding 
  (a) Subject-embedding 
  [Depth 0]   [Subj The cat] is purring. 
  [Depth 1]   [Subj The cat that [Subj the girl] petted] is purring. 
  [Depth 2]   [Subj The cat that [Subj the girl that [Subj  the boy] kissed] petted]  
          is purring. 
  [Depth 3+] [Subj The cat that [Subj the girl that [Subj the boy that  [Subj…]  
          kissed] petted] is purring. 
  
  (b) Object-embedding  
  [Depth 0]   The cat chased [Obj the mouse]. 
  [Depth 1]   The cat chased [Obj the mouse that scared [Obj the dog]]. 
  [Depth 2]   The cat chased [Obj the mouse that scared [Obj the dog that  
          barked at [Obj the mailman]]]. 
  [Depth 3+] The cat chased [Obj the mouse that scared [Obj the dog that  
          barked at [Obj the mailman that [Obj…]]]]. 
 
 The Bayesian learner used had the same preferences as the one in Perfors, 
Tenenbaum, & Regier (2006): It attempted to identify the grammar that best balanced 
simplicity and the ability to account for the observed data.  The issue with grammars 
containing recursive rules is that these grammars predict sentences that will rarely or 
never be observed, such as sentences with embedding of Depth 3+ in (9).  So, recursive 
grammars may not be the best at predicting the observed data when compared to 
grammars that contain rules allowing only limited embedding.  In addition, Perfors et al. 
investigated whether it was useful to have separate recursive rule types for subject-NPs 
(as in 9a) as opposed to object-NPs (as in 9b), since embedding is more often observed 
and more easily comprehended when it is object embedding (compare Depth2 in 9a to 
Depth 2 in 9b).   
 The Bayesian learner, when given child-directed speech data, inferred that the 
optimal grammar was one that had separate recursive rules for subject-NPs and object-
NPs.  In particular, the subject-NP rules included rules for limited embedding while the 
object-NP rules included only recursive rules.  This is due entirely to the frequency of the 
recursion observed in object-NPs, as compared to the infrequency of recursion observed 
in subject-NPs.   
 From the perspective of language acquisition, the main result from Perfors et al. 
(to appear) is that a child able to approximate Bayesian inference well enough can 
discover when recursive rules are useful and when they aren’t.  More specifically, 
children do not need to innately know that recursion is required for representing object-
NPs.  Instead, if recursive rules are given as a potential option in their hypothesis space, 
children would be able to infer when recursive rules are most useful based on the data in 
their input. 



 
General summary of studies 
 
 We have tried to review several studies that highlight the contribution of Bayesian 
inference to language acquisition, including studies in the domains of phonetics, word 
segmentation, word-meaning mapping, syntax-semantics mapping, and syntactic 
structure.  Though computational modeling is only one approach to understanding 
language acquisition, it provides a way to investigate questions about the utility of 
statistical information in the data.  In addition, it can often provide a coherent account of 
observed human behavior by demonstrating what a learner using Bayesian inference 
would do with the available data.  

 
 

4. Conclusion 
 In this chapter, we have attempted to provide a historical overview of statistical 
learning within the field of language acquisition, including experimental studies that 
demonstrate humans utilizing statistical information in sophisticated ways.  We then 
discussed how computational modeling studies can contribute to our understanding of 
language acquisition and the role of statistical learning, focusing mainly on Bayesian 
inference.  We also reviewed several computational studies that modeled acquisition of 
knowledge in different domains, specifically using Bayesian inference techniques.  
Sophisticated statistical learning techniques such as Bayesian inference, when coupled 
with well-defined problems and hypothesis spaces, can help us understand both the 
nature of the data available to children and how they may accomplish the feats of 
language acquisition that they do so quickly. 
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