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I. What a parameter is (or is meant to be), and what it’s for 
 A parameter, in it simplest conception, is an abstraction that can account for 
multiple observations in some domain.  A parameter in statistical modeling, for example, 
determines what the model predicts will be observed in the world in a variety of 
situations; a parameter in our minds would determine what we predict will be observed in 
the world in different scenarios.   
 In statistical modeling, there are numerous parameters defined mathematically to 
account for the expected shape of data distributions.  Take the Gaussian distribution, 
sometimes called the “normal distribution” or “bell curve”, which can be used as a simple 
statistical model to explain complex phenomena (such as “how many minutes late to 
class I’ll be”).  In this model, the value of the measured variable (X in figure 1 below) 
tends to cluster around the mean µ. Two parameters are used to determine the shape of 
the curve that represents the expected distribution of data: the mean µ and the variance 
σ2.  These parameters are part of the fixed function ϕ(X) (note the y axis label in figure 1) 
that produces the probability of X having a specific value: 
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While the function itself is invariant, the predictions produced with this function vary 
based on the values of µ and σ2.  Changing the value of these parameters demonstrably 
changes the expectation of how many data points with particular values we expect to see 
(or comparably, how often we expect to see a data point with a particular value). 
 

 
Figure 1. The Gaussian distribution, with different values of µ and σ2.  Courtesy of 
Wikipedia Commons. 
 



 In a related fashion, imagine that we are trying to determine the values of µ and 
σ2 in the function ϕ(X) for some data that we observe. Observing different quantities of 
data with particular values can tell us which values of µ and σ2 are most likely. For 
instance, if we observe 1000 data points whose values are mostly between -3 and -1 
(perhaps producing a curve like the green one in figure 1), we would be more likely to 
think that µ is -2 rather than 0, and that smaller values of σ2 are more plausible than large 
values.  Even if we have never seen a data point with value 5, we can expect that this data 
point is not very likely to occur, given what we have inferred about the data distribution 
and how we can describe that data distribution with the values of µ and σ2.  Importantly, 
we do not see the process that generates the data, but only the data themselves.  This 
means that in order to form our expectations about X, we are, in effect, reverse 
engineering the observable data in order to figure out how these data were generated, 
given what we (perhaps unconsciously) know about function ϕ(X) and variables µ and 
σ2. Our knowledge of the underlying function and the associated parameters that generate 
these data allows us to represent an infinite number of expectations about the behavior of 
variable X.  Indeed, within the cognitive sciences, learning is generally conceived as this 
kind of inverse problem: given a set of observations (e.g., sentences), learning consists in 
identifying the underlying system that determined those observations (e.g., the grammar). 
(Chomsky 1965, Gallistel 1990, inter alia).  Notably, and perhaps particularly relevant for 
the nativist view of language, knowing the function allows us to generate an infinite 
number of expectations that are nonetheless constrained in their behavior (here, 
constrained to obey this underlying function).  Thus, the hypothesis space consisting of 
the infinite expected behaviors given this function is still smaller than the hypothesis 
space consisting of all possible behaviors.  Knowing the function thus narrows the 
hypothesis space of expected behaviors, while still allowing an infinite number of 
expected behaviors. 
 Meanwhile, statistical parameters of a function can help us describe complex 
phenomena in a very compact way.  By knowing one function and the values of only two 
parameters, we can define a Gaussian data distribution that predicts how likely we are to 
see a data point with a particular value (“I’ll be 15 minutes late to class”, X=15), without 
necessarily observing that particular data point a large number of times – or even at all.  
This, of course, is just one example of parameters used in statistical modeling.  There are 
numerous others, some of which have been recently used in statistical modeling of 
language acquisition (see, for example, Tenenbaum, Griffiths, & Kemp (2006), 
Goldwater, Griffiths, & Johnson (2009), and Perfors, Tenenbaum, & Wonnacott (2010) 
for examples of hierarchical Bayesian modeling that use a small number of parameters). 
 In the domain of human language, both principles and parameters are often 
thought of as innate domain-specific abstractions that connect to many structural 
properties about language.  Linguistic principles correspond to the properties that are 
invariant across all human languages.  Using our statistical analogy from before, the 
equation’s form is invariant – it is the statistical “principle” that explains the observed 
data.  Linguistic parameters correspond to the properties that vary across human 
languages.  Again using our statistical analogy, the statistical parameters of µ and σ2 
determine the exact form of the curve that represents the likelihood of observing certain 
data.  While different values for these parameters can produce many different curves, 
these curves share their underlying form due to the common invariant function in (1).   



 Since linguistic principles do not vary, they might not need to be learned by the 
child.  Parameter values, on the other hand, must be inferred from the language data since 
languages do not all have the same parameter values.  As with the statistical parameters 
above, children must reverse engineer the observable data to figure out the most likely 
way these data were generated. Even given knowledge of linguistic principles and 
linguistic parameters, children must still decide the most likely value for any parameter. 

The fact that parameters connect to multiple structural properties then becomes a 
very good thing from the perspective of someone trying to acquire language.  This is 
because a child can learn about that parameter’s value by observing many different kinds 
of examples in the language. As Hyams (1987) notes, “the richer the deductive structure 
associated with a particular parameter, the greater the range of potential ‘triggering’ data 
which will be available to the child for the ‘fixing’ of the particular parameter.”  

This idea figures prominently in hierarchical Bayesian models (see Kemp, 
Perfors, & Tenenbaum (2007) for an accessible overview), where a learner can make 
generalizations about the observable data at different levels of abstraction.  To take a 
non-linguistic example from Kemp et al. (2007), suppose a learner must learn something 
about bags containing marbles.  Suppose this learner observed twenty bags, each of 
which is filled with 100 black marbles or 100 white marbles.  This learner then sees a 
new bag, and is only shown one marble from it, which happens to be purple.  A 
hierarchical Bayesian learner will likely make the following inference at this point: All 
the marbles in the new bag are purple.  The learner can make this inference because it is 
able to learn something about properties of bags in general, sometimes called an 
“overhypothesis” (Kemp et al. 2007), instead of only about bags containing black or 
white marbles.  Specifically here, bags seem to contain only one color of marble.  That is, 
by observing individual bag examples, the hierarchical Bayesian learner has learned 
something about how to compactly represent the structure of those bags’ composition – 
and it infers this property will apply to bags in general.  In this way, more abstract 
knowledge of marble bag composition has been triggered by many individual examples 
of marble bags.  More interestingly, this learner was able to have certain expectations 
about a marble bag containing a novel marble color by learning from bags containing 
only black or white marbles. 
 Translating this to a linguistic example, suppose the marble bags are individual 
sentences.  Some sentences contain verbs and objects, and whenever there is an object, 
suppose it appears after the verb (e.g., see the penguin, rather than the penguin see).  
Other sentences contain modal verbs and nonfinite main verbs, and whenever both occur, 
the modal precedes the main verb (e.g., could see, rather than see could). A learner could 
be aware of the shared structure of these sentences – specifically that these observable 
forms can be characterized as the head of a phrase appearing before its complements 
(specifically [VP V NP] and [IP Aux VP]) –  and could encode this “head-first” knowledge 
at the level that describes sentences in general, akin to a hierarchical Bayesian learner’s 
overhypothesis.  This learner would then infer that sentences in the language generally 
have head-first structure.  If this learner then saw a sentence with a preposition 
surrounded by NPs (e.g. rooms in jails are small), it would infer that the preposition 
should precede its object ([NP rooms [PP in jails]] and not [NP [PP rooms in] jails]), even if it 
had never seen a preposition used before with an object. In this way, the notion of a head-
directionality parameter (discussed further in section 3) can be encoded in a hierarchical 



learner.  More broadly, parameters are similar in spirit to the overhypotheses in a 
hierarchical Bayesian learner: Inferences (e.g., about prepositional phrase internal 
structure) can be made on the basis of examples that bear on the general property being 
learned (e.g., head directionality), even if those examples are not examples of the exact 
inference to be made (e.g., verb phrase examples). 
 Parameters can be especially useful when a child is trying to learn the things 
about language structure that are otherwise hard to learn, perhaps because they are very 
complex properties themselves or because they appear very infrequently in the available 
data.  The way it would work is this: each hard-to-learn property is linked to a parameter 
that has at least one easy-to-observe property connected to it. Through the easy-to-
observe property, children learn about the value of the parameter that is connected to it.  
Through the parameter, the hard-to-learn property follows, perhaps even without seeing 
any data that directly instantiate it.  Thus, the parameter would allow children to observe 
data that fix the value of the hard-to-learn property. So, structures that may not have been 
directly observed can nonetheless be generated by the grammar. 
 If we think about the hypothesis space of a child trying to acquire language, 
having parameters has been argued to make acquisition a lot easier (Chomsky 1981, 
1986).  Instead of needing to identify the language properties individually, the child now 
has a built-in shortcut since some properties are connected to other properties, and can 
thus be acquired on the basis of fewer (and perhaps less varied) observations.  For 
example, suppose we have 5 different structural properties in the language, each of which 
is binary.  If each property has to be learned individually, there are 25 possible ways these 
5 structural properties may be set.  So, the child’s hypothesis space contains 25 
hypotheses of how the language could work. To learn each property, the child must see 
data pertaining to each property. (This many not seem so bad right now, but languages 
clearly have many more properties than this. See section 3 for some suggested 
parameters.)  Suppose now that there is one binary parameter connected to each of these 
5 binary language properties.  This means that if that one parameter is set to “yes”, all 5 
connected properties have their values set definitively one way (either to “yes” or to 
“no”, depending on the property).  If the parameter is instead set to “no”, the 5 connected 
properties have their values set definitively the other way.  So, the child’s hypothesis 
space now contains only 2 hypotheses of how language could work, one with the 
parameter set to “yes” and one with the parameter set to “no”.  Moreover, the child can 
learn about properties 2, 3, 4, and 5 by observing data only for property 1 and learning 
what the parameter’s value is.  This would seem to be much easier than learning each 
property individually. 
 So, in sum, the word “parameter” is simply the name given to those abstract 
features of grammar (a) that govern many different observable structures and (b) that 
vary from language to language.  Its use in both the theory of language acquisition and 
the theory of grammar typology is to condense the representation of the language, thereby 
structuring the learning task for the child in such a way as to reduce the range of 
observations required to construct a grammar. In theory, this works by connecting 
together observations that might otherwise need to be accounted for independently from 
each other. 
 
 



2. How do we tell what counts as a parameter? 
 Parameters seem useful in the abstract, but how do we define what a parameter is? 
How do we recognize when we have found one? 
 Chomsky (1981) imagines parameters much as we have discussed them above: 
“…we hope to find that complexes of properties…are reducible to a single parameter, 
fixed in one way or another”.  That is, a parameter should connect to many different 
properties about a language, and not simply apply only for one property. Safir (1987), in 
fact, cautions against “describing any sort of language difference in terms of some ad hoc 
parameter” in order to prevent a parametric theory from “licensing mere description”.  
The point of parameters is to make the description of language structure more compact in 
some sense.  Having a parameter for each point of variation in a language wouldn’t 
accomplish this very well. Smith & Law (2009) note that parameters that connect to a 
variety of linguistic properties are often referred to as “macro-parameters” while “micro-
parameters” are those that connect to only a few properties.  Macro-parameters seem to 
be more in line with the original spirit of linguistic parameters. 
 Given that positing an independent parameter for each point of variation would 
undercut the explanatory value of parameters, it is important to determine just what the 
right parameters are. Ideally, this will come from the theory of comparative grammar and 
there are many proposals, which vary in their success at capturing the full range of 
observed variation (Newmeyer 2005).  
 One of the earliest parameters proposed concerned the nature of overt subjects. 
Rizzi (1982) argued that a cluster of properties varied predictably with whether overt 
subjects were obligatory. For example, languages that do not require overt subjects in 
simple declaratives allow postverbal subjects, do not exhibit expletive subjects, and do 
not exhibit that-trace effects (see 2a below). Languages that require a subject in all 
simple declaratives, however, do not allow postverbal subjects, do exhibit expletive 
subjects, and do exhibit that-trace effects (see 2b below).  
 
(2) Italian vs. English 
(a) Italian 
 (i) -overt subject:   verrá 
     3rd-sg-fut-come 
     “He will come” 
 (ii) +postverbal subject:  verrá         Gianni 
     3rd-sg-fut-come    Gianni 
     “Gianni will come” 
 (iii) -expletive subjects: piove 
     “3rd-sg-rain” 
     “It’s raining” 
 (iv) -that-trace effect  Che   credi                   che    verrá? 
     who   2nd-sg-think       that    3rd-sg-fut-come 
     “Who do you think that will come”1 
(b) English 
 (i) +overt subject:   He will come. 
     *Will come. 
                                                 
1 Note that this is ungrammatical in English, which does show a that-trace effect. 



 (ii) -postverbal subject:  Jack will come. 
* Will come Jack. 

 (iii) +expletive subjects: It’s raining. 
     * Is raining. 
 (iv) +that-trace effect  Who do you think will come? 
     * Who do you think that will come? 
 

This proposal illustrated the potential benefits of parameters because it solved 
what was believed at the time to be a poverty of the stimulus problem for that-trace 
effects.  Specifically, the problem was that English-learning children could observe the 
optionality of complementizers in declaratives and even in object wh-questions (3). They 
might then reasonably extend this optionality to subject wh-questions (2b iv).   

 
(3) Optionality of complemetizers 
(a) declaratives:     Jack thought (that) Lily would eat lunch. 
(b) object wh-questions:  What did Jack think (that) Lily would eat?   

 
Such an extension would be problematic because complementizers are disallowed 

in subject wh-questions in the adult English grammar.  However, a child with an over-
general grammar (which allowed a complementizer in subject wh-questions) would never 
receive direct evidence that complementizers in subject wh-questions were not allowed – 
the few subject wh-questions they encountered (which would not have a complementizer) 
would be compatible with their incorrect grammar.  Thus, to the extent that English 
speakers exhibit the that-trace effect, a poverty of the stimulus problem exists because the 
input data are compatible with a grammar that exhibits that-trace effects and also with a 
grammar that does not. 
 However, if the presence of that-trace effects followed from the same parameter 
setting that determined the nature of subjects, then there simply would be no learnability 
problem. The relevant data for determining the obligatory absence of complementizers in 
subject wh-questions would come from the requirement of overt subjects in declaratives 
and the necessity of expletive subjects.  Observing those data, children would set the 
parameter to the correct value, and then predict that complemetizers were not allowed in 
subject wh-questions.  There would be no overgeneralization based on the optionality of 
complemetizers in declaratives and object wh-questions, because children would already 
have knowledge pertaining to complemetizers in subject wh-questions due to this 
parameter’s value, and would thereby circumvent the poverty of the stimulus problem. 
 The generalization that that-trace effects are linked to the nature of subjects has 
been questioned (Gilligan 2000, Newmeyer 2005), but for our purposes the example 
serves to illustrate the potential explanatory power of parameters. A parameter is best 
posited when (a) a cluster of seemingly unrelated properties varies in a systematic way 
across languages and (b) the parameter solves potential poverty of the stimulus problems. 

Sometimes, suggested parameters only seem to connect to a single simple 
structural variation (for example, object before verb or verb before object in main 
clauses, or whether the main stress of a word is on the left or the right).  Hopefully, at 
least one of the following happens: (1) these simple structural parameters turn out to be 
connected to other structural properties in the language (for example, perhaps object-verb 



order is connected to the order of heads and complements of phrases in general)  and/or 
(2) these parameters are still a more compact representation of the generative system used 
to produce the language data than alternative options (for example, perhaps having stress 
parameters is simpler than individually memorizing stress contours for every word and 
using analogy to generate new stress contours).  By doing either of these things, such 
parameters may help aid acquisition. 
 
3. Using parameters to learn 
 Of course, even if the child’s hypothesis space is constrained by parameters, this 
doesn’t mean that the language acquisition problem is solved. Parameters do solve the 
problem of what hypotheses to consider about how a language works, and if they can be 
set correctly, they may alleviate certain poverty of the stimulus problems.  Still, children 
must decide among the available alternatives – and this has proved to be a difficult 
decision process to model.  As an example, suppose children’s hypothesis space is 
defined by n binary parameters.  This leads to a hypothesis space of 2n possible 
grammars, one for each setting of the n parameters.  If n is small, say 5, perhaps this 
doesn’t seem so bad: 25 is only 32 options, after all.  But given the variety of linguistic 
properties that appear cross-linguistically (see Baker (2001) for an accessible survey of 
some), n is likely to be larger than this.  If n includes only 25 parameters, we already 
have a hypothesis space of 33,554,432 (225) grammars, which seems like a much more 
difficult acquisition problem indeed. To converge on the right grammar in, say, eight 
years, a child would have to eliminate just under 11,500 potential grammars every day.   
 The simple fact is that, while parameters may help constrain the hypothesis space, 
every time we add a new one the hypothesis space doubles in size (e.g., a parameter 
space with 5 binary parameters is half the size of a parameter space with 6 binary 
parameters (25 = 32, 26 = 64)).  Clearly, the more we can reduce the number of 
parameters, the easier the acquisition problem will be.  Still, from the learner’s 
perspective this is better than an unconstrained hypothesis space, where the number of 
potential grammars is potentially infinite. 
 Yet the number of parameters is not the only difficulty. Children must also decide 
among the grammars defined by these parameters using the available data, and this turns 
out not to be so easy sometimes. Because the parameters are abstract and govern a wide 
range of surface phenomena, it is not always obvious which data uniquely determine any 
particular parameter setting (Clark 1992, Gibson & Wexler 1994, Niyogi & Berwick 
1996, Pearl 2008, Pearl 2009, Pearl forthcoming). Some parameters may interact, 
meaning that the effect of one parameter masks the effect of another parameter for a 
particular data point.   

For example, consider the domain of metrical phonology, which describes the 
system for generating stress contours for words (that is, what makes ‘EMphasis’ different 
from ‘emPHAsis’).  Some researchers (Dresher 1999, Halle & Vergnaud 1987, Halle & 
Idsardi 1995, among others) believe that stress contours are generated by grouping 
syllables together into larger units called metrical feet, and then stressing various 
syllables based on properties of those metrical feet.  Languages vary in the way that they 
form metrical feet and in the way they assign stress to metrical feet.  Two parameters 
commonly associated with this view are extrametricality and feet headedness, shown in 
(4). 



 
(4) Some metrical phonology parameters 
(a) Extrametricality: whether all syllables are included in metrical feet, or whether some 
are left out (and are therefore “extra”metrical). 
(b) Feet Headedness: whether the rightmost or leftmost syllable of a metrical foot is 
stressed (and so whether the “head” of the metrical foot is to the right or to the left) 
 

Suppose a child is trying to determine both whether her language allows 
extrametrical syllables and what syllable within a foot is stressed.  Suppose she hears the 
word “giRAFFE”. She might come up with the following analyses for explaining why 
that stress contour is observed: 
 
(5) Analyses for “giRAFFE"2 
(a)  +extrametrical (leftmost syllable), metrical feet headed on the left:  The syllable “gi” 
is extrametrical and not included in a metrical foot.  There is one metrical foot, and it 
includes “raffe”. As it is the leftmost syllable in the metrical foot, it is stressed. 
Analysis:    gi   raffe 
(i) +extrametrical (left) gi  (raffe) 
(ii) feet-headed-left  gi (RAFFE) 
 
(b) +extrametrical (leftmost syllable), metrical feet headed on the right: The syllable “gi” 
is extrametrical and not included in a metrical foot.  There is one metrical foot, and it 
includes “raffe”. As it is the rightmost syllable in the metrical foot, it is stressed. 
Analysis:    gi   raffe 
(i) +extrametrical (left) gi  (raffe) 
(ii) feet-headed-right  gi (RAFFE) 
 
(c) –extrametrical, metrical feet headed on the right:  There is one metrical foot, and it 
includes “gi” and “raffe”.  “raffe” is the rightmost syllable of the metrical foot, so it is 
stressed. 
Analysis:     gi   raffe 
(i) -extrametrical   (gi   raffe) 
(ii) feet-headed-right  (gi RAFFE) 
 
 Here, extrametricality seems to be masking whether the language has metrical feet 
headed on the left or on the right, and feet headedness seems to be masking whether the 
language has extrametricality.  If the child knew the language was –extrametrical, the feet 
headedness value would be known (feet headed on the right (4c)); conversely, if the child 
knew that language had feet headed on the left, then the extrametricality value would be 
known (+extrametrical on the leftmost syllable (4a)).  However, neither value is known, 
and so it is difficult to tell what parameter combination generated this data point. 
 We can find a similar situation in syntax if we look at the parameters some 
researchers have called verb-second movement and head directionality.  First, verb-
second movement: Several linguists (Chomsky 1981, Cook & Newson 1996, Guasti 
2002, Sakas 2003, Yang 2004, among others) have described a parameter that leads to the 
                                                 
2 Metrical feet are indicated by parentheses (…), while stress is indicated by CAPITAL LETTERS henceforth. 



transposition of subjects and auxiliaries in English questions (6) and to the tensed verb 
always being in second phrasal position in languages like German (7a,b).  It should be 
noted that while English has this verbal movement for questions, it does not require the 
tensed verb to be in second phrasal position in declarative clauses (8).  Thus, this verb 
movement parameter has different effects on observable word order, depending on clause 
type (declarative vs. interrogative). 
  
(6) Transposition of the subject and auxiliary verb in English question formation 
(a) Underlying sentence:  The penguin must eat fish. 
(b) Yes/No question:  Must the penguin eat fish?  
 
(7) Second phrasal position of the tensed verb in German  
(a)  Der Pinguin  isst  Fisch. 
 the  penguin eats  fish  
 “The penguin eats fish” 
(b)  Fisch  isst  der Pinguin. 
 fish    eats  the penguin 
 “The penguin eats fish” 
(c)  Der Pinguin muss Fisch essen. 
 The penguin must fish    eat 
 “The penguin must eat fish” 
(d) Fisch muss der Pinguin essen. 
 fish   must   the penguin eat  
 “The penguin must eat fish” 
 
(8) Non-second phrasal position of the tensed verb in English 
(a) The penguin usually eats fish. 
(b) Sometimes the penguin eats fish. 
 

The head directionality parameter (Baker 2001, Cook & Newson 1996), concerns 
the position of phrasal heads (for example, the verb in a verb phrase) with respect to the 
phrasal complement (for example, the object of the verb in the verb phrase).  The idea is 
that a language consistently has the heads of its phrases all on the same side of the 
complements of all its phrases, whether the head is first in the phrase (head-first: English, 
Edo, Thai, Zapotec) (9a) or the head is last in the phrase (head-last: Lakhota, Japanese, 
Basque, Amharic) (9b). 
 
(9) Head-first vs. head-last languages 
(a) English is head-first 
 for the penguin: the preposition for is before its object the penguin in the   
      preposition phrase 
 hugged the penguin: the verb hugged is before its object the penguin in the verb  
             phrase 
(b) Lakhota is head-last 
 Jack  wowapi  k’uhe oyu7ke  ki    ohlate   iyeye. 
 Jack  letter      that     bed    the   under   found 



 “Jack found that letter under the bed” 
 The verb iyeye is after its objects (wowapi k’uhe and oyu7ke ki ohlate) and the  
 preposition ohlate is after its object (oyu7ke ki). 
 
Suppose a German child hears the sentence in (10) and is trying to determine the value of 
the verb-second and head-directionality parameters. 
 
(10) Example German sentence 
 Ich   liebe  Pinguine. 
 I  love-1ST-SG penguins 
 SUBJECT VERB  OBJECT 
 “I love penguins.” 
 
 Here, the verb’s complement is the object (“Pinguine”), and the child might come 
up with the following analyses to explain the observed word order: 
 
(11) Analyses for “Ich liebe Pinguine” 
(a) –verb-second, heads precede their complements:  
 Underlying order:   Ich liebe  Pinguine 
      Subj Verb  Obj 
 Observable order:   Ich liebe  Pinguine 
      Subj Verb  Obj 
(b) +verb-second, heads precede their complements: 
 Underlying order:   Ich liebe  Pinguine 
      Subj Verb  Obj 
 Observable order: Ich liebe  tIch tliebe  Pinguine 
    Subj Verb tSubj tVerb  Obj 
(c) +verb-second, heads follow their complements: 
 Underlying order:   Ich Pinguine liebe 
      Subj Obj  Verb 
 Observable order: Ich liebe  tIch Pinguine tliebe 

    Subj Verb tSubj Obj  tVerb 
 
 We again find that one parameter seems be masking the effects of the other.  If 
the child knew the language was –verb-second, then the value of the head directionality 
parameter would be clear for this data point (heads precede their complements (11a)); 
conversely, if the child knew heads followed their complements, then the value of the 
verb-second parameter would be clear for this data point (the language has verb-second 
movement (11c)).  Since both parameters are undetermined, however, extracting the right 
values for them from this data point is not straight forward.   
 As we noted in the introduction, the main trouble is that children don’t see the 
process that produces the data – they only see the data themselves.  Children must infer 
the most likely parameter values from the observable data, and the observable data may 
be (and often are) ambiguous as to which parameter values were used to generate them.  
So, even if children know the set of parameters and the potential values these parameters 
might take, acquisition still has some obstacles left. 



 This leaves open a number of questions about the parameter-setting process, 
which we explore in the remainder of this section: 
 

• Are parameter settings represented as deterministic or probabilistic? More 
specifically, at any one stage, does the child maintain a single hypothesis about 
which way the parameter is set (like a light switch)? Alternatively, does the child 
maintain multiple hypotheses along with a confidence value (more like a dimmer 
switch between extremes)?  
 

• Do children make inferences from a large quantity of data all at once, or do they 
make inferences incrementally as they encounter the data? 

 
• Do children attempt to learn parameters individually, or are parameters learned 

only as part of an entire grammar that succeeds or fails at analyzing the 
observable data? If parameters are learned individually (rather than as an 
ensemble), what causes a change in a child’s hypothesis for a parameter value? 
 

• Which data are used to set parameters? 
 

• Do children need to follow particular parameter-setting orders? 
 

• What happens when children do not encounter sufficient informative data? 
 
 
3.1  Light switches or light dimmers? 
 Suppose a child is attempting to learn the value for a particular parameter, such as 
extrametricality in the metrical phonology system.  Two main options exist: the language 
either has extrametricality or it does not.  We could imagine at least two ways children 
might explore the different hypotheses.  Perhaps they choose a parameter value to start 
off with at random, maintain that value as their working hypothesis, and only discard it 
for the alternative hypothesis if it fails to analyze the input data successfully (Fodor & 
Sakas 2004, Gibson & Wexler 1994, Niyogi & Berwick 1996, Sakas 2003, Sakas & 
Fodor 2001, Sakas & Nishimoto 2002).  Parameter-setting behaves as a light switch that 
can only choose one option at a time.  One issue with this approach is that it predicts that 
the child’s learning behavior should exhibit abrupt changes with each change in 
parameter value – once the correct parameter value is acquired, the child should use it all 
the time.3  We would never expect children to continue using the incorrect hypothesis if 
they are only maintaining the single correct hypothesis.  This does not seem to map well 
to what we know of children’s behavior – the trajectory of acquisition appears to be more 
gradual, with children intermixing correct and incorrect linguistic behavior for a period of 

                                                 
3 This is true even if it takes some time for children to choose the correct parameter value (perhaps because they will not change their 
current hypothesis unless they are sure that it is really unable to analyze the input).  No matter when they decide to choose the correct 
parameter value, once they choose it, they should continue to use it exclusively. 



time before they converge on the correct hypothesis alone (see, for example, Hochberg 
(1988)).4 

An alternative is that perhaps children place some belief in both hypotheses to 
begin with, and gradually alter their belief in which hypothesis is correct based on the 
ability of each hypothesis to account for the input data (Clark 1992, Legate & Yang 2007, 
Pearl 2009, Pearl forthcoming, Pearl & Lidz 2009, Pearl & Weinberg 2007, Yang 2002, 
Yang 2004).  Parameter-setting here behaves more like a light dimmer, with the “switch” 
resting at a position between two options and its relative position indicating which option 
is more likely.  If this is more similar to how children set their parameters, children’s 
learning behavior can easily intermix different parametric options.  The different options 
are simply accessed probabilistically, depending on the belief the child has in each 
option.  For example, if a child places 60% probability in the language being 
extrametrical and 40% probability in the language not being extrametrical, this child 
might choose to produce linguistic data that use extrametricality 60% of the time and 
linguistic data that do not use extrametricality 40% of the time.  As children are exposed 
to more input, they alter their beliefs in the different options until the correct option is 
most likely (a probability near 100%) and the incorrect option is not at all likely (a 
probability near 0%).  Notably, this takes some time, during which the child will 
probabilistically access both hypotheses and so use both parameter values.   This account 
thus seems to accord better with observable child language acquisition behavior. 
 
3.2 Batch learning or incremental learning? 
 When children are updating their hypothesis about the correct parameter value, do 
they amass a quantity of data points and then update based on the inferences that come 
from those data as a group (batch learning) or do they update as the data come in 
(incremental learning)?  The question of batch vs. incremental learning is really dealing 
with a larger issue in the language acquisition literature, specifically what question we are 
trying to answer about language acquisition.   

The question of learnability is asking what is, in principle, possible to learn given 
the available data.  This concerns what information may be useful given the available 
data and the knowledge that must be learned, but typically without considering 
constraints that humans have when learning the knowledge from the data.  Models 
answering this question are called “ideal learner”, “rational”, or “computational-level” 
models (Foraker, Regier, Kheterpal, Perfors, & Tenenbaum 2009, Goldwater, Griffiths, 
& Johnson 2009, Hsu & Chater 2010, Perfors, Tenenbaum, & Regier 2006).  Because 
these models assume no memory constraints and no processing constraints, they use 
batch learning (usually over an entire corpus’s worth of data) and may use inference 
procedures that are unlikely to be used by humans.   
 The question of acquirability is asking what is possible to learn given the 
available data, and the constraints children have when they use that available data to 
learn.  Models answering this question are sometimes called “algorithmic-level” models 
(Fodor & Sakas 2004, Gibson & Wexler 1994, Legate & Yang 2007, Niyogi & Berwick 
1996, Pearl 2009, Pearl forthcoming, Pearl, Goldwater, & Steyvers 2010, Pearl, 

                                                 
4 Note, however, that the “light switch” account may be able to produce more gradual-seeming behavior if it used for learning entire 
grammars rather than individual parameter values.  See section 3.3 for more discussion of learning grammars vs. learning individual 
parameters. 



Goldwater, & Steyvers submitted, Pearl & Lidz 2009, Pearl & Weinberg 2007,  Sakas 
2003, Sakas & Fodor 2001, Sakas & Nishimoto 2002, Yang 2002, Yang 2004) referring 
to Marr’s second level of representation for questions of information processing (Marr 
1982).  Because these models assume children have memory constraints, they often make 
the simplifying assumption that children process data as they are encountered 
(incremental learning), rather than storing any data for analysis later on.  These models 
also typically assume children have processing constraints and try to use inference 
algorithms or inference algorithm approximations that are more likely to be feasible 
given these processing constraints.   

If we are interested in explaining children’s observable behavior, computational-
level models can help us determine if the acquisition problem is solvable in principle 
when framed a particular way (ex: Can children learn the correct setting of the 
extrametricality parameter, given these data?).  If the acquisition problem is not solvable 
even in principle, this suggests that something is amiss in the formulation of the 
acquisition problem – perhaps the knowledge to be attained is not what we think it is, or 
the child has additional restrictions on potential hypotheses that we are not considering 
(see Pearl (forthcoming) for more discussion of this point for metrical phonology 
parameters).  Once we determine that an acquisition problem is solvable in principle, we 
can then use algorithmic-level models to determine if it is solvable by constrained 
learners such as children.   This allows us to explore what is required to make knowledge 
that is learnable in principle acquirable in practice. 
 
3.3 Parameters: ensembles or individuals? 
 Several researchers have viewed the acquisition problem as a search problem 
within the hypothesis space of possible grammars (Clark 1992, Gibson & Wexler 1994, 
Niyogi & Berwick 1996, Pearl 2009, Pearl forthcoming, Yang 2002) – which of these 
grammars are able to account for the data in the input, and which aren’t?  A learning 
algorithm like this is error-driven, with grammars treated as atomic units that either 
perform well on the data or perform poorly.  While children recognize that grammars are 
comprised of parameters with particular values, and these values can be changed, the 
performance of the grammar as a whole is what counts.  In essence, the child rewards a 
successful grammar and punishes an unsuccessful one. 
 Computational-modeling researchers have instantiated this idea in various ways.  
Clark (1992) imagines the child scoring grammars based on their relative “fitness”; 
grammars able to account for more data are viewed as more fit and rewarded, while 
grammars able to account for less data are less fit and punished.  The child rewards and 
punishes grammars as a whole, rather than keeping track of the fitness of the parameters 
within the grammars. Gibson & Wexler (1994) and Niyogi & Berwick (1996) view the 
child as rewarding or punishing individual parameters within grammars, based on the 
grammars’ ability to account for the data.  If the current grammar cannot account for the 
current data point, the child may choose to consider a new grammar that differs from the 
old one by a single parameter value as long as this new grammar accounts for the data 
point in question. In this way, parameters that were not the problem do not get punished.   
 Pearl (2009, forthcoming) and Yang (2002) extend this idea by allowing 
parameter values to be rewarded or punished probabilistically, based on the performance 
of grammars using these values.  Rather than getting rid of a parameter value if a new 



grammar without it can account for the data, the child simply lessens her confidence in 
that parameter by lessening her confidence in all the parameters involved in the 
unsuccessful grammar.  Some parameter values are certainly unfairly punished this way, 
but the idea is that those unfairly punished will be part of successful grammars later on 
and be rewarded, while the real culprits will only be part of unsuccessful grammars, and 
so continually be punished.  The upshot is that the child does not necessarily know which 
parameter was the culprit for any given failure of a grammar to account for data, but can 
still track how confident she is that any given parameter value is a good one for the 
language by the performance of grammars as a whole on the data she encounters.  This 
can skirt the issue of blame assignment (sometimes known as the credit problem (Dresher 
1999)) that arises for ambiguous data (see examples (5) and (11) above).  Specifically, 
the child does not need to pinpoint which parameter is at fault in order to get information 
out of an ambiguous data point.  She simply observes if the current parameter values 
under consideration are able to collectively analyze the data point, and updates her 
confidence in those parameter values accordingly. 
 This last part about tracking individual parameters (even indirectly) is quite useful 
because it helps reduce the hypothesis space for acquisition.  To illustrate this, suppose a 
child knows there are 25 binary parameters.  If the child views the problem as a search 
among grammars made up of these 25 parameters, there are 225 (33,554,432) hypotheses.  
If instead the child views the problem as setting 25 parameters in one of two ways, the 
hypothesis space is more like 25*2 = 50.  That is, there are 25 choices with 2 options 
each.  Of course, these 25 choices can produce 225 different grammars, but that is not 
what the child is explicitly tracking: She only cares which way each parameter is set.  So, 
if the child focuses instead on what the choice is for each parameter, rather than on how 
grammars as a whole perform, the hypothesis space is much smaller. 
 
3.4 Getting the most out of your data? 
 Several researchers have considered how children might explicitly track the 
values for specific parameters.  Based on computational modeling results like Gibson & 
Wexler (1994) and Niyogi & Berwick (1996), researchers such as Fodor (1998), Dresher 
(1999), and Lightfoot (1999) propose that children are specifically keying into parts of 
the observable data that are linked to a specific parameter value.  In particular, children 
are waiting for data that are unambiguous with respect to a given parameter.  This 
requires that children already know what parts of the observable data are important for a 
given parameter, or can derive it for each parameter value in some way5.  Still, once they 
have this knowledge, acquisition is much simpler.  The main point is that the process of 
acquisition is inherently different for a child interested only in identifying the correct 
parameter values for her language: She is scouring the data for the relevant pieces, rather 
than worrying about which grammar can account for the most observed data.   
 Of course, this doesn’t mean children would ignore the available data.  Rather, 
they scour the data for the unambiguous “cues” (Dresher 1999, Lightfoot 1999) or 
designated structures (Fodor 1998), and reward parameter values that are best able to 

                                                 
5 Fodor (1998) and Lightfoot (1999) suggest that children might be able to discover the relevant unambiguous cues by a process they 
already use for comprehension: parsing the incoming data. To “parse” a data point is to know the underlying structure for a data point, 
i.e., to know what parameter values generated it.  If a particular parameter value is required for a successful parse of a given data 
point, that data point is unambiguous for that parameter value.  



account for the distribution of these specific data.  The difference is subtle, but important.  
A child interested in matching the data with an entire grammar will, naturally, choose the 
parameter values that belong to the grammar that fits the data the best.  A child interested 
in tracking cues within the data for different parameter values may end up choosing a 
grammar comprised of parameter values that individually match the data the best, but 
which, when combined into a grammar, are less compatible with the data.  
 Let’s consider an example from metrical phonology that demonstrates this from 
Pearl (2008).  The English metrical phonology system is thought to have the rightmost 
syllable of the word be extrametrical (+extrametrical) (Dresher 1999). If a child tracks 
which grammar as a whole is compatible with the most English child-directed speech 
data, the answer is a grammar that has no extrametricality (-extrametricality).  However, 
if a child is searching for unambiguous data regarding extrametricality, the cues for 
+extrametricality are more frequent than the cues for -extrametricality6.  In this way, a 
child looking at overall grammar “fitness” can end up with a different answer than a child 
looking for unambiguous cues to parameter values in the data – and in this case, we think 
it is the child using unambiguous data who ends up with the right answer for English. 
 
3.5 Who goes first? 
 A factor that appears when the child is considering parameters individually this 
way is the “learning path” (Dresher 1999, Lightfoot 1989, Lightfoot 1999, Baker 2005, 
Pearl 2008), which is the order in which the child learns the values of the parameters.  If 
the child is comparing grammars as a whole, this does not matter – parameters function 
solely as part of a grammar, and the grammar either succeeds or doesn’t.  However, when 
a child is learning parameters values individually, there are a variety of orders parameter 
values might be learned in.  Because parameters interact, learning the value of one 
parameter may influence the child’s interpretation of the data to come.  Let’s consider an 
example from before, (5) repeated (more briefly) here as (12). 
 
(12) Analyses for “giRAFFE" 
(a)  +extrametrical (leftmost syllable), feet-headed-left:  
Analysis:    gi   (RAFFE) 
 
(b) +extrametrical (leftmost syllable), feet-headed-right:  
Analysis:    gi (RAFFE) 
 
(c) –extrametrical, feet-headed-right:  
Analysis:    (gi RAFFE) 
 
 Suppose the child did not know whether the metrical feet in the language were 
headed on the left or headed on the right. Given that lack of knowledge, this data point is 
ambiguous for extrametricality, since there are analyses for both +extrametricality and –
extrametricality.  A child learning from unambiguous data therefore learns nothing from 
this data point.  However, suppose that same child encountered this data point after 
learning that the language had metrical feet headed on the left.  Then, the only analysis 
                                                 
6 This is true provided that the value for the extrametricality parameter is learned after the value of the quantity sensitivity parameter.  
See discussion below regarding the learning path. 



remaining is (12a), with +extrametricality.  This same data point is now perceived as 
unambiguous for the extrametricality parameter, where before it was not.   
 The learning path turns out to be crucial for learning the English metrical 
phonology systems using parameters.  Pearl (2008) discovered that a child tracking 
unambiguous data probabilities will decide on the correct parameter values for English, 
but only if the parameters are learned in particular orders.  This has a direct implication 
for acquisition – not only do English children need to know the parameters and values 
these parameters can take, but they also need to know what order to learn parameters in.  
Fortunately, the learning path knowledge sometimes turns out to be derivable from 
properties like the distribution of data in the input (see Pearl (2007) for discussion).  And 
perhaps this is a small price to pay for being able to reduce the hypothesis space by 
learning about parameters individually. 
 One reason why unambiguous data are so useful is that they provide maximally 
informative data.  Since unambiguous data, by definition, are compatible with only one 
value for a parameter, they strongly signal that this parameter value is the right one.  This 
leads to another good reason to consolidate current ideas about parameters, so that more 
structural properties about the language are connected.  If structural properties are linked 
through a parameter, unambiguous data for one structural property serve as unambiguous 
data for all the rest of the structural properties linked by that parameter. For example, 
suppose our current conception of language parameters results in the following situation: 
parameter P1 has some unambiguous data while parameter P2 does not.  This is 
problematic for an unambiguous learner.  However, suppose that parameters P1 and P2 
are really related, and so actually are both instances of parameter P*.  Since unambiguous 
data exist for P1, and P1 tells us about P*, we then have unambiguous data for P2 (which 
is also an instance of P*). In general, consolidating parameters seems to be a good idea, 
as unambiguous data are not all that common. Pearl (2008) shows that the most frequent 
unambiguous data for parameters in the metrical phonology domain investigated made up 
less than 5% of the child’s available input.  In fact, one of the criticisms of the 
unambiguous data approach was that unambiguous data may not really exist for all 
parameters.  At that point, a child learning only from unambiguous data would be in big 
trouble. 
 One solution would be to back off on the claim that children only learn from 
unambiguous data, under the assumption that unambiguous data really are non-existent 
(or at least very rare) for some parameters.  While children probably should not learn 
from the data if said data are completely ambiguous, there may be many data points that 
are only somewhat ambiguous, rather than completely ambiguous.  For example, consider 
again our metrical phonology analyses for “giRAFFE”, repeated here as (13): 
 
(13) Analyses for “giRAFFE" 
(a)  +extrametrical (leftmost syllable), feet-headed-left:  
Analysis:    gi   (RAFFE) 
 
(b) +extrametrical (leftmost syllable), feet-headed-right:  
Analysis:    gi (RAFFE) 
 
(c) –extrametrical, feet-headed-right:  



Analysis:    (gi RAFFE) 
 
 A child considering these three analyses does not unambiguously know which 
value is correct for extrametricality and feet headedness.  However, she still might be 
able to place some confidence in one value over the other based on the number of 
analyses that include one value vs. the other. In this case, since two of  the three analyses 
involve +extrametricality, she might  believe that +extrametricality is more likely than –
extrametricality; similarly, since two of three analyses involve metrical feet headed on 
the right, she might believe right-headed metrical feet are more likely than left-headed 
metrical feet for the language.  So, while an unambiguous learner would ignore this data 
point as uninformative, a child leveraging whatever information is available might find 
this data point partially informative.  This means that even if no unambiguous data exist 
for a given parameter, some informative data may still exist.  A child willing to learn 
from any informative data is not in nearly so tough a spot as a child waiting for 
unambiguous data (cf. Fodor & Sakas (2004) for a striking example of this in syntactic 
acquisition).  Recent computational modeling research  has shown that this is a powerful 
idea for learning structural properties such as the fact that language has hierarchical 
structure (Perfors, Tenenbaum, & Regier 2006) and the structure that the English 
referential element one has (Pearl & Lidz 2009, Regier & Gahl 2004). 
 
3.6 Insufficient data: Does not compute? 
 
 Still, there may be some cases where a language provides no unambiguous data 
and also has very little informative data of any kind.  This can happen when a parameter 
is not used in a particular language.  While all parameters may be available in all human 
minds, some may only come into play when certain other structural properties of the 
language hold.  For example, Baker (2001) describes a parameter known as “adjective 
neutralization” which determines whether adjectives are treated like verbs or like nouns 
in the language.  Importantly, this is only relevant for polysynthetic languages like 
Mohawk and Walpiri.  Non-polysynthetic languages, like English, do not use this 
parameter.  So, perhaps unsurprisingly, English does not include informative data that 
show adjective neutralization.  Another example of a parameter with very little 
informative data in a given language is verb-raising in Korean.   
 Verb-raising concerns the position of the tensed verb with respect to 
adverbs/negative elements (Baker 2001, Cook & Newson 1996, Yang 2004, among 
others).  When a clause has both tense (e.g., +present) and an adverb or negative element 
(e.g., “often”, “not”), languages vary on the position of the verb.  In some languages, 
such as French, the verb “raises” or is “attracted” to the structural position of the tense, so 
that it ends up as a tensed verb preceding adverbs or negative elements (14a).  In other 
languages, such as English, this does not happen, and the verb appears to follow adverbs 
or negative elements (14b).  However, in a head-final language like Korean, very few 
data points distinguish whether Korean is +verb-raising or –verb-raising (14c), since the 
verb occurs in the same linear position independent of its structural height (see Han, Lidz, 
& Musolino (2007)). 
 
(14) Verb-raising variation 



(a) + (French)   
 Underlying:   Jean  [+present]  souvent/pas    voir  Marie 
   Jean        often   /not      see-infinitive Marie 
 Observable:   Jean     voit  souvent/pas   Marie 
   Jean    see-present often    /not   Marie 
   “Jean often sees Marie”/ “Jean does not see Marie.” 
 
(b) – (English) 
 Underlying: John [+present] often  see  Mary. 
 Observable: John     often  sees  Mary. 
 
 Underlying: John [+present] not  see  Mary. 
 Observable: John     does  not  see  Mary. 
 
(c) ? (Korean) 
(i) Underlying: Yuri  cacwu      Toli-lil    ttyali         [-n-ta]  
   Yuri  often     Toli-acc   hit         [pres-decl] 
(ii) Observable Yuri      cacwu      Toli-lul          ttayli-n-ta  
   Yuri  often     Toli-acc           hit-pres-decl 
   “Yuri often hits Toli.” 
(iii) Analysis 1:  

+verb-raising Yuri      cacwu      Toli-lul    tttayli         ttayli-n-ta  
   Yuri  often     Toli-acc   thit         hit-pres-decl 
   “Yuri often hits Toli.”   
(iiv) Analysis 2: 

-verb-raising  Yuri      cacwu      Toli-lul    ttayli-n-ta tn-ta  
   Yuri  often     Toli-acc   hit-pres-decl tpres-decl  
   “Yuri often hits Toli.” 
 

Except in very rare constructions, the effects of verb-raising are masked in 
Korean due to other structural properties of the language.  Because of this, children and 
most adults may not encounter enough data to decide whether their language has verb-
raising or not.  More specifically, almost all data are compatible with both raising the 
verb and not raising the verb.  What does this mean for Korean speakers?  Do they simply 
pick one value in the absence of any informative data?  Or do they leave it as undecided, 
so that if pressed to show knowledge of the parameter, they would flip flop between the 
two options with some probability? In the case of Korean, Han, Lidz, & Musolino (2007) 
found that there seemed to be two groups of adult speakers: those that raise their verb and 
those that do not.  Very few speakers were willing to allow both options with some 
probability.  So, this seems to indicate that Korean speakers had selected a parameter 
value despite having very little informative data.  Still, perhaps the few data points they 
encountered in their lifetimes were enough to influence their choice – some statistical 
learning techniques are able to capitalize on very small amounts of data in the input (see 
Foraker et al. (2009) for an example of this).  However, when Han, Lidz, & Musolino 
examined children’s knowledge, children too seemed to split into a group that raises their 
verbs and a group that does not.  It is possible that these children also may have all 



encountered just enough informative data, but the likelihood is much less.  Instead, it may 
be that children really were choosing one parameter value in the absence of informative 
data.  If so, this tells us something very interesting about how the human mind functions 
during language acquisition.  Specifically, this suggests that the human mind prefers to 
make decisions and set a parameter– even for seemingly irrelevant parameters – rather 
than allow optionality to exist at this structural level of representation.  That is, even if a 
parameter does not appear to be used in a language, the human mind prefers to set it than 
leave it unset. 
 An increasingly common way to explore how exactly the human mind learns with 
parameters is to use computational modeling.  Computational modeling gives us very 
precise control over the language acquisition process, including what hypotheses the 
child entertains, what data are considered relevant, and how the child changes belief in 
different hypotheses based on the data.  For learning with parameters, we can control 
which parameters are considered, and which values of those parameters are considered.  
We can also control if children learn only from unambiguous data, or consider other 
kinds of data informative.  In addition, we can control if data are immediately influential, 
or if a child waits until she has some confidence that the data really do indicate a 
particular parameter value is correct.  A variety of data are available from experimental 
studies that show us what a child’s input data really look like, and we can ground our 
models with this empirical data to make them as much like a child’s language acquisition 
process as possible.  When we have a model like this, we can embody ideas like “learning 
only from unambiguous data” and “waiting until the data are really conclusive”.  If some 
of these ideas are required for the model to behave like children do, this tells us that these 
ideas may do a good job of describing how the human mind acquires language.  For 
instance, if we find that, when given Korean data, one model ends up setting the verb-
raising parameter while another model prefers to leave it unset, this suggests that the first 
model is a more accurate representation of the language acquisition process. 
 This last point is relevant for computational models that use statistical analyses 
such as Bayesian inference when compared to models that use update algorithms such as 
linear-reward penalty (e.g., see work by Pearl (Pearl 2009, Pearl forthcoming) and Yang 
(Legate & Yang 2007, Yang 2002, Yang 2004)).  Suppose a learner begins with two 
hypotheses, and gives each a probability of 0.5.  A Bayesian inference model that 
receives no input will not update the probabilities since both hypotheses are still equally 
likely.  In contrast, a learner using a variational learning update process (see discussion of 
this update process in section 4 below) will end up converging to one hypothesis or the 
other.  This is due to the random fluctuations that are part of this style of update, with 
small random preferences being magnified over time.  Still, it should be noted that very 
little data is much different than no data for a Bayesian learner, while this difference is 
not so dramatic for a linear reward-penalty learner.  Thus, to decide between these two 
kinds of updating processes, it may matter very much that there is very little data that 
children could notice, as opposed to there actually being no informative data in the input. 
 
4. Specific examples of learning with parameters 
 Let’s now look at a few examples of computational models that investigate 
language acquisition using parameters. We will look within the domains of syntactic 
acquisition and metrical phonology, and find that the same considerations seem to arise 



about what the relevant data are and how the learning algorithm should work, even if the 
hypothesis space (consisting of particular parameters) is agreed upon.  In addition, all 
these models share something besides using parameters to define the hypothesis space: 
They all seek to combine insights from statistical learning into a cognitively-plausible 
model. 
 For syntactic acquisition, work by Yang (2002, 2004) has examined the problem 
of learning the correct parameter values from the data children encounter, such as 
whether or not the language has verb-second movement and movement of wh-words to 
the front of the clause in questions.  All of Yang’s models use the frequencies of data 
found in child-directed speech samples.  As mentioned in the previous section, Yang’s 
models, often called “variational learners”, do not specifically look for highly informative 
data; instead, they consider all data relevant for learning.  The particular algorithm used 
by Yang incorporates a model from mathematical psychology called the linear reward-
penalty scheme (Bush & Mosteller 1951).  The algorithm recognizes that each parameter 
has two competing values (e.g., +/- wh-fronting). Initially, the model associates a 
probability of 0.5 with each, representing its belief that each parameter value is equally 
likely.  This probability is then altered, based on the data encountered. 
 For each data point, the variational learner generates a grammar based on the 
current probabilities associated with all parameter values. For instance, when generating 
the value for the wh-movement parameter, the model uses the probabilities associated 
with +wh-movement and –wh-movement.  Suppose they are 0.40 and 0.60 respectively; 
then, the model will use the +wh-movement value with 40% probability and the –wh-
movement value with 60% probability.  This value selection process continues until all 
parameter values have been selected and a complete grammar is formed. Using the 
probabilistically generated grammar, the model then generates a structure for the data 
point (e.g., generating the structure for a question and the word order associated with that 
structure).  If the generated word order matches the observed word order for the data 
point, all parameter values that were selected to participate in the grammar are rewarded; 
if the generated order does not match, all participating parameter values are punished.  
Notably, this model does not attempt to assign credit of blame to a particular parameter 
value within the grammar.  Instead, all participating values are rewarded or punished 
together.  The model them moves on to the next data point. 
 Updating (whether rewarding or punishing) is specified by the linear reward-
penalty scheme. The update equation involves a parameter γ that determines how liberal 
the model is.  The larger γ is, the more probability the model shifts for a single data point. 
 
(15) Updating using the linear reward-penalty scheme 
 pv = previous probability of parameter value  
 po = previous probability of opposing parameter value 

(a) generated word order matches observed word order (reward) 
 

€ 

pvnew  = pv + γ(1- pv)  
 

€ 

ponew  = (1- γ)po7
 

(b) generated word order does not match observed word order (punish) 

                                                 
7 This can also be calculated as 1-
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pvnew  since there are only two parameter values available.  The same is true for the punishment 
calculation. 
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pvnew  = (1- γ)pv  
 

€ 

ponew= γ + (1- γ)po 
 

As an example, suppose we consider the probabilities of +wh-movement and –wh-
movement for the wh-movement parameter.  Initially, they are both 0.5. For the first data 
point, suppose –wh-movement is chosen to be part of the grammar and that grammar fails 
to generate the observed word order (e.g., the observed data point is “Who is that?” and 
the generated word order is “That is who?”).  The –wh-movement value (and all other 
participating values) are punished.  Suppose γ is 0.01.  The new value of –wh-movement 
would be (1-0.01)*0.5 = 0.495 and the new value of +wh-movement would be 0.01 + (1-
0.01)*0.5 = 0.505. 

If the model rewards or punishes parameter values every time a data point is 
encountered, this is known as the Naïve Parameter Learner (Yang 2002).  The idea, 
discussed in the previous section, is that the incorrect parameter values will be punished 
more often than the correct parameter values since the correct parameter values are the 
ones that should be compatible with the language data.  Yang also advocates a variant of 
this model called “batch learning” that is more conservative about changing its beliefs – 
instead of updating after every data point, the model waits to update a parameter value 
until a string of failures or successes has been observed for that value. It does this by 
keeping count of how many successful and unsuccessful parses a parameter value has 
been involved in. So perhaps a more transparent name for it is a “counting learner”.  The 
benefit of a counting learner is that it smoothes the acquisition trajectory when 
parameters that interact are involved.  Instead of jumping to conclusions after 
encountering ambiguous data, the counting learner waits for awhile to see if it’s really 
true that a particular parameter value works or doesn’t work. 

Let’s look at an example of this.  Suppose we have a counting learner that has a count 
size of 5.  If the count for a parameter value reaches 5, the parameter value is rewarded.  
If the count reaches -5, the parameter value is punished.  Every time the parameter value 
is part of a grammar that generates a structure that matches the observed data point, the 
counter is increased; conversely, every time the parameter value is part of a grammar that 
generates a structure that mismatches, the counter is decreased.  After the reward or 
punishment, the parameter value’s counter is reset to 0.  Suppose now we again consider 
the probabilities of the values for the wh-movement parameter.  Initially, both + and –wh-
movement have a probability of 0.5, and their counters are both 0.  For the first data 
point, suppose +wh-movement is chosen to be part of the grammar and that grammar 
fails to generate the observed word order.  The counter for +wh-movement is now -1.  
For the next three data points, suppose –wh-movement is chosen for the grammar and 
those grammars succeed at generating the observed word order.  The counter for –wh-
movement is +3 and the counter for +wh-movement is -1. Suppose the next two data 
points use +wh-movement and those grammars succeed: -wh-movement’s counter is still 
+3, but +wh-movement’s counter is now +1. Suppose then that the next six data points 
use +wh-movement and those grammars fail: -wh-movement’s counter is still +3, but 
+wh-movement’s counter is now -5, which is the count limit.  The +wh-movement value 
is then punished using the appropriate update equation for the model.  If the model uses a 
γ of 0.01, the new probability of +wh-movment is 0.495 and the new probability of –wh-
movement is 0.505. The counter for +wh-movement is then reset to 0.   



The conservativity of this learning model can be seen from the previous example - 
instead of updating for each of the twelve individual data points (punishing +wh-
movement once, rewarding –wh-movement three times, rewarding +wh-movement two 
times, and then punishing +wh-movement six times), the model only punishes +wh-
movement once.  Importantly, this is only after the +wh-movement value has been 
involved in a string of failures, and so is more likely to really be failing. 
 Using this kind of learner, Yang discovered that a strong gauge of acquisition 
success was the quantity of unambiguous data for each parameter value in the input, even 
though his learners weren’t specifically looking for just unambiguous data. The intuition 
is that ambiguous data for a parameter can be parsed by either parameter value, and so 
neither value is guaranteed to be punished (although either might be if some other 
parameter interacts and causes a mismatch with the data point).  However, for 
unambiguous data, one parameter value is guaranteed to be punished every single time – 
by its very nature, an unambiguous data point is compatible with only one parameter 
value, no matter what other parameters are involved.  Taking the idea that unambiguous 
data for parameters value is a key notion, Yang (2004) investigated the age of acquisition 
for a number of parameter values and the amount of unambiguous data available in child-
directed speech for these parameter values.  He found a strong correlation, where the 
more frequent unambiguous data was, the earlier a parameter value seemed to be 
acquired by children (16).  This suggests that unambiguous data certainly are quite 
important for learning with parameters, even though they may not be the only data 
children use. 
 
(16) Correlations between age of acquisition and unambiguous data frequency8 
(a) wh-fronting in English questions (+wh-movement) 
 Example unambiguous data:   “Who did you see?’ 
 Unambiguous data frequency: 25% of input 
 Age of acquisition: As early as children can be tested  
(b) verb-raising in French (+verb-raising) 
 Example unambiguous data type:  Jean voit souvent Marie. 
      Jean sees often     Marie 
      “Jean often sees Marie.” 
 Unambiguous data frequency: 7% of input 
 Age of acquisition: 1 year, 8 months 
(c) obligatory subject in English (-pro-drop) 
 Example unambiguous data:   “There’s a penguin on the ice.” 
 Unambiguous data frequency: 1.2% of input 
 Age of acquisition: 3 years 
(d) verb-second in German (+verb-second) 
 Example unambiguous data:   Pinguine liebe ich. 
      Penguins like  I. 
      “I like penguins.” 
 
 Unambiguous data frequency: 1.2% of input 
 Age of acquisition: 3 years 
                                                 
8 The underlined portion of the example unambiguous data represents the most relevant portion of the data point. 



(e) no medial-wh in English (-medial-wh) 
 Example unambiguous data type: “Who do you think is on the ice?” 
 Unambiguous data frequency: 0.2% of the input 
 Age of acquisition: after 4 years 
 
 A complementary line of computational work by Sakas and Fodor (Fodor 1998b, 
Fodor & Sakas 2004, Sakas 2003, Sakas & Fodor 2001, Sakas & Nishimoto 2002) 
investigates other learning strategies a child might have for acquisition, with particular 
concern for how much time it would take for a child to converge on the right grammar.  
They quantified the general notion of time as how many data points a child would need to 
observe.  To provide their models with a realistic acquisition problem, they required their 
models to set 13 binary parameters that interact, for a hypothesis space of 3072 possible 
grammars.  The data the models learned from represented the sentence types that could 
occur in the language, such as “Subject Verb” (a data point fitting this description in 
English would be “I laughed”).  All of the strategies they investigated were also based on 
the idea previously discussed that the child is attempting to generate a structure that 
matches the observable word order. A summary of some of the different strategies is 
shown in (17) below.  The learning strategies are divided into those that only learn when 
there is a failure to match the observed data (error-driven models (17a-c)), and those that 
are sensitive to whether the current data point is ambiguous for which grammar generated 
it (structural triggers models (17d-f)). 
 
(33) Acquisition strategies 
(a) Error-Driven Blind Guess: Only change the current guess for the grammar if that 
grammar cannot generate the observed word order.  At this point, make a new guess 
randomly for what the entire grammar is. 
(b) Trigger Learning Algorithm: Only change the current guess for the grammar if that 
grammar cannot generate the observed word order.  At this point, optionally change some 
parameter values. 
(c) Error-Driven Variational Learner: Only change the current guess for the grammar if 
that grammar cannot generate the observed word order. At this point, probabilistically 
generate a new grammar based on probabilities associated each parameter value.  If the 
new grammar can generate the observed word order, reward all participating parameter 
values; otherwise, punish all participating parameter values. 
(d) Strong Structural Triggers Learner: The learner is aware of all possible structures 
capable of generating the observed word order.  Only parameter values required by all 
these structures are selected as the correct one for the language, as the data point is 
unambiguous for these values 
(e) Waiting Structural Triggers Learner: The learner is aware if more than one structure is 
capable of generating the observed word order, and where exactly the ambiguities in 
structure are. It only adopts parameter values that correspond to parts of the structure that 
occur before any ambiguities, and are therefore unambiguous. 
(f) Guessing Structural Triggers Learner: The learner is aware if more than one structure 
is capable of generating the observed word order, and where exactly the ambiguities in 
structure are.  For the ambiguous parts, it chooses one parameter value, based on some 
structural heuristic. 



 
 Sakas and Fodor find that error-driven learners generally fare much less well than 
learners that care about the ambiguity of the data. Specifically, the error-driven learners 
(17a-c) take longer to converge on the correct grammar for the language.  However, 
among the learners that are sensitive to the ambiguity in the data, it turns out that there is 
a tradeoff between learners who only learn from unambiguous data and learners that are 
willing to make a guess even when the data are ambiguous.  While the unambiguous 
learners (17d-e) will sometimes converge very quickly if the data distribution is favorable 
(that is, contains unambiguous data), they will take a very long time to converge if the 
data distribution is unfavorable.  The less conservative learner (17f) may take longer on 
average to converge, but this learner type doesn’t have the extremes in variation because 
it does not depend on unambiguous data being available.  What this tells us is that 
unambiguous data may be very useful, but if a child is attempting to generate the data she 
encounters rather than identify cues for parameter values, she may need to rely on 
somewhat ambiguous data as well.   
 Another line of computational work in the metrical phonology domain by Pearl 
(Pearl 2007, Pearl 2008, Pearl 2009, Pearl forthcoming) examines an additional 
complication for the acquisition problem.  In the models previously discussed, there has 
been very little noise in the input data – that is, there are very few misleading data points 
for the correct grammar of the language (which might occur as speaker errors, or as part 
of different dialects).  However, in metrical phonology, this is not always the case.  It 
may very well be that there is a set of data that are exceptional, but still part of the 
language.  For example, Daelemans et al. (1994) note that 20% of the Dutch data they 
consider are irregular according to a generally accepted metrical analysis and so must be 
dealt with in terms of idiosyncratic lexical marking.  When Pearl examined English 
metrical phonology data, she discovered that at least 27% of the English child-directed 
speech data were irregular with respect to the metrical analysis for English derived from 
Dresher (1999), Halle & Vergnaud (1987), and Halle & Idsardi (1995), again because of 
lexical exceptions.  This makes acquisition a bit tougher than before – not only are the 
data often ambiguous, but some of them may be inconsistent with the target grammar 
because of lexically listed exceptions.   

 Pearl (2009, forthcoming) examined how well learners that probabilistically learn 
from all data would do on this dataset, since this seemed another realistic example of the 
data children encounter.  The learning models examined were the variational learner from 
Yang (2002) and an incremental Bayesian model, both non-counting and counting 
versions.  The variational model uses the update equations described in (15), while the 
incremental Bayesian model uses the update equations shown in (18) 9. If a parameter 
value participates in a grammar that generates a stress contour that matches the observed 
stress contour, the number of successes for that parameter value is incremented by 1.  If a 
parameter value participates in a grammar that does not, the number of successes is left 
alone.  Either way, the total data seen is incremented by 1 if the parameter value was part 
of the grammar used to generate the stress contour.  The probabilities for opposing 
parameter values are then calculated and all probabilities are normalized so they sum to 

                                                 
9 We note that the equation for pvnew includes numbers in the numerator (1.5) and denominator (3) that represent the learner bringing 
minimal prior knowledge about which parameter value is correct, believing in both equally at the start.  This learner is strongly driven 
by the data points encountered.  See Pearl (forthcoming) for a more detailed discussion of the intuitions behind this equation. 



1. So, for each parameter value, the model tracks (a) the current probability, (b) the 
number of matching stress contours that parameter value has been involved in generating, 
and (c) the total number of stress contours that parameter value has been involved in 
generating. 
 
(18) Update equations for incremental Bayesian learning model 

 pv = previous probability of parameter value 
 po = previous probability of opposing parameter value 

€ 

pvnew =
1.5 + successes

3+ total data seen
 

€ 

pvnew , normalized =
pvnew

pvnew + po
 

 

€ 

ponew , normalized =
po

pvnew + po
 

 
As an example, suppose we look at the extrametricality parameter.  Initially, the 

probabilities for both + and –extrametricality are 0.5.  For the first data point, suppose 
+extrametricality is chosen to be part of the grammar and that grammar fails to generate 
the observed stress contour.  The +extrametricality value (and all other participating 
values) are punished. The non-normalized probability for the +extrametricality value is 
(1.5+0)/(3+1) = 0.375.  The non-normalized probability for the -extrametricality value 
has not changed from 0.5 since it was not used for this data point.  The normalized 
probability of +extrametricality is then 0.375/(0.375 + 0.5) = 0.429 while the normalized 
probability of -extrametricality is then 0.571. 
 Pearl found that none of these learners succeeded with any kind of reliability, 
perhaps a somewhat disheartening discovery. The trouble turned out to be that the 
English grammar as a whole was compatible with less data than other grammars available 
in the hypothesis space, even though the individual parameter values may have been 
compatible with more data.  This is again the problem of tracking overall grammar 
“fitness” with the data compared to identifying the parameter values involved in the 
system, based on cues from the data. If we believe children do end up choosing the 
parameter values in the English grammar, they must have some way of viewing the 
acquisition problem such that these parameter values are the most optimal ones for 
explaining the data that are relevant.  
 One idea is that children are sensitive to the unambiguous data, and the ability of 
the parameter values to account for the unambiguous data are what matters – not the 
overall fitness with the entire dataset.  Pearl (2008) found that children would choose the 
English grammar (and more particularly, the parameter values that make up the English 
grammar) if they specifically track the unambiguous data distributions.  This was far 
more heartening news for acquisition for two reasons.  First, it showed that unambiguous 
data do indeed exist in a very realistic acquisition scenario, which is always a concern if 
we believe children rely on them.  Second, it showed that they appeared in the correct 
distributions to lead a child to the right parameter values. The reason why learning from 
unambiguous data worked is because the unambiguous data favor the English parameter 
values when the parameters are acquired in particular orders.  So, if the parameters are 
acquired in one of those orders, the English parameter values are the fittest for the 



unambiguous data.  In that case, a probabilistic learning algorithm that prefers the 
optimal values (as most do) will converge on the English grammar.  Interestingly, 
additional simulations suggested that it is not the ordering alone that causes the English 
parameter values to be optimal. When parameters were set in similar orders by the 
models that learn from all data (both ambiguous and unambiguous), there was no reliable 
convergence on the English grammar.  Among the learners that do converge, there 
seemed to be no common learning path.  This suggested that the culprit was the 
ambiguous data.  Learning from these data  (though granted in a rather naïve way) will 
mislead an English learner.  These simulations also have led to a testable prediction about 
children’s acquisition trajectory: If children are using parameters and relying on 
unambiguous data, they must learn parameter values in certain orders.  This prediction 
remains to be tested, but the key point is that it has a given us something to look for in 
children’s behavior that we didn’t know to look for before. 
 These three sets of modeling studies have all investigated the acquisition of 
language using parameters in different ways.  Though their general strategies of 
investigation differed somewhat, they all demonstrated both how useful unambiguous 
data can be and also some of its potential pitfalls for a parameter-setting learner. We have 
also seen how computational modeling not only assesses different learning strategies but 
also how it can generate testable predictions about acquisition. 
   
IV. Conclusion 
 In this chapter, we have discussed some ideas for what linguistic parameters are 
intended to be, highlighting their similarity to statistical parameters and describing how 
and why they would be beneficial for language acquisition. We have tried to emphasize 
that using parameters to characterize the space of possible languages does not in itself 
provide a model of learning. In addition, a learning theory needs a mechanism for 
drawing inferences from observed data to particular parameter values. A number of 
alternative approaches to parameter-setting highlighted the learning choices that remain, 
such as why learning by using individual parameters might be better than learning 
parametrically-defined grammars that are treated as atomic units, and whether and how 
learners rely on strictly unambiguous data.  We subsequently reviewed several 
computational modeling studies to demonstrate the contribution computational modeling 
can make to the parameter-setting enterprise.  Specifically, we can use computational 
modeling techniques to explore what learning strategies make a parametric grammar 
acquirable.  If we find certain parametric grammars are not acquirable from available 
child input, this can bear on the validity of the proposed parameters that comprise those 
grammars (cf. Frank & Kapur 1996).  Even with the correct parameters, children may 
still need to bring additional learning biases to the task of language acquisition in order to 
correctly set their parameters – another possibility that can be explored easily within a 
computational modeling framework.  One of the benefits of explicit computational 
modeling approaches to parameter-setting is that alternatives may differ in the predictions 
they make about the time course of acquisition (e.g., based on the amount of data 
required to set the parameters as in Yang (2004)), which makes it possible to test the 
validity of parametric approaches against the behavior of actual learners. We hope that 
this chapter inspires continued research into the linguistic parameters that could make 
acquisition as swift and relatively easy as it seems to be. 
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