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Abstract

A controversial claim in linguistics is that children learning their native language face an in-

duction problem: the data in their input are insufficient to identify the correct language knowledge

as rapidly as children do. If this is true, children must bring some helpful learning biases to the

problem, and the nature of these biases is often debated. In particular, induction problems are

often used to motivate innate, domain-specific biases (sometimes called Universal Grammar). We

examine the case study of English anaphoric one, an induction problem receiving recent attention

in the computational modeling literature, and consider whether indirect evidence leveraged by an

online probabilistic learner from a broader input set could be effective. We find our learner can

reproduce child learning behavior, given child-directed speech. We discuss what is required for

acquisition success, and how this impacts the larger debate about Universal Grammar.
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1 Induction problems in language acquisition

One of the most controversial claims in developmental and theoretical linguistics is that children

learning their native language face an induction problem, often called the “Poverty of the Stimu-

lus” (Chomsky, 1980a, 1980b; Crain, 1991; Lightfoot, 1989), the “Logical Problem of Language

Acquisition” (Baker, 1981; Hornstein & Lightfoot, 1981), or “Plato’s Problem” (Chomsky, 1988;

Dresher, 2003). Simply put, this is the claim that the data in children’s input are insufficient to

identify the correct language knowledge - or at least, to identify the correct knowledge as quickly

as children seem to (Legate & Yang, 2002; Lightfoot, 1982).

If this is true, then children must bring something to the language acquisition problem - and

the nature of this “something” is often debated (e.g., see Crain and Pietroski (2002); Fodor (1998a,

1998b); Foraker, Regier, Khetarpal, Perfors, and Tenenbaum (2009); Lidz, Waxman, and Freed-

man (2003); McMurray and Hollich (2009); Pearl (2007); Pearl and Lidz (2009); Perfors, Tenen-

baum, and Regier (2011); Pullum and Scholz (2002); Regier and Gahl (2004); Scholz and Pullum

(2002); Soderstrom, Conwell, Feldman, and Morgan (2009), among others). There at least three

dimensions we can consider about the nature of children’s learning biases:

(i) Are they domain-specific (and are only used for learning language) or domain-general (and

are used when learning anything)?

(ii) Are they innate (and so part of the human biological endowment) or derived from prior

experience (probably prior experience with language data)?

(iii) Are they about what to learn (and so may restrict the learner’s hypotheses explicitly) or

about how to learn (and so may restrict the learner’s hypotheses implicitly)?

These questions are particularly important, as induction problems in language acquisition are

often used to motivate innate, domain-specific knowledge about language (sometimes called Uni-

versal Grammar (Chomsky, 1965)). However, as we can see from the distinctions above, there

are clearly other kinds of learning biases that might be used. So, if Universal Grammar is to be
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supported, it is worth discovering if induction problems require innate, domain-specific learning

biases.

1.1 Induction problems and data

Traditionally when identifying potential induction problems in language acquisition, it has been

assumed that only directly related data are informative to the child. We might call this the direct

evidence assumption. The basic intuition of the direct evidence assumption is that in order to

learn some linguistic knowledge L, a learner observes examples of L in the linguistic input. It’s

also possible that a learner (particularly a statistical learner) can be sensitive to indirect negative

evidence related to the directly informative data, and so will notice what direct evidence examples

are missing from the input.

For example, when learning how to form complex yes/no questions in English, a learner pays

attention to examples of complex yes/no questions like (1a) and potentially notices the absence of

ungrammatical complex yes/no questions like (1b).

(1) Complex yes/no question examples

(a) Is the boy who is in the corner tis happy?

(b) *Is the boy who tis in the corner is happy?1

When learning the representation of English anaphoric one, a learner pays attention to exam-

ples of one being used anaphorically (2a) and potentially notices the absence of ungrammatical

uses of one like (2b).

(2) Anaphoric one examples

(a) Look - a red bottle. Oh, look! Another one.

(b) *She sat by the side of the river, and he sat by the one of the road.

1The * will be used to indicate ungrammaticality.
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When learning to form complex wh-questions in English, a learner pays attention to examples

of complex wh-questions in English (3a-c) and potentially notices the absence of ungrammatical

examples like (3d).

(3) Complex wh-question examples

(a) What did the teacher think twhat inspired the students?

(b) Who did the teacher think the letter from the soldier inspired twho?

(c) Who twho thought the letter from the soldier inspired the students?

(d) *Who did the teacher think the letter from twho inspired the students?

However, there is another kind of data that could be informative to a learner: indirect positive

evidence. This refers to observable data that may not be directly informative for the linguistic

knowledge in question, but can nonetheless be informative if viewed the correct way by the learner

(for example, due to a learner’s helpful learning biases). If children can recognize and use indirect

positive evidence, this broadens the set of informative data and may help solve some of the induc-

tion problems facing children. In fact, some recent computational modeling approaches have been

exploring the utility of this kind of indirect evidence for different induction problems (e.g., see

Foraker et al. (2009); Kam, Stoyneshka, Tornyova, Fodor, and Sakas (2008); Perfors et al. (2011);

Reali and Christiansen (2005)).

Given this, there are two broad questions we can explore with respect to language acquisition.

First, when induction problems exist, what does it take to solve them? We can examine not only

the direct positive evidence and indirect negative evidence available, but also the indirect positive

evidence available that a learner could recognize and use. Given this expanded data set, we can

then explore the nature of the learning biases necessary to solve the induction problem.

Related to this is the second broad question: How can the necessary learning biases inform

us about the process of acquisition? If we understand the data and the learning biases a child has

to work with, then we have a clearer picture of the trajectory of acquisition, as defined by the
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sequence of knowledge states a child passes through. More specifically, given the data and the

learning biases we believe the child has available, we can predict what knowledge the child should

have at a given point during learning. Different knowledge states predict different observable

behavior, and we can then see whether the predicted behavior matches empirical observations of

children’s behavior. If it does, then we know more about the learning process that could lead to

that observable behavior because we know how the child could use the available data to produce

that observable behavior.

1.2 Case study: Anaphoric one

The potential induction problem presented by English anaphoric one (from example (2) above) has

received considerable recent attention (e.g., Akhtar, Callanan, Pullum, and Scholz (2004); Foraker

et al. (2009); Lidz et al. (2003); Lidz and Waxman (2004); Pearl (2007); Pearl and Lidz (2009);

Pullum and Scholz (2002); Regier and Gahl (2004); Tomasello (2004); among others). The original

proposal for learning anaphoric one required children to have innate domain-specific knowledge

about the structure of language, as part of the child’s Universal Grammar (Baker, 1978). However,

more recent studies have suggested alternative solutions involving innate domain-general statistical

learning abilities, usually coupled (either implicitly or explicitly) with input restrictions that arise

from domain-specific learning constraints (Foraker et al., 2009; Pearl & Lidz, 2009; Regier &

Gahl, 2004) and sometimes also with knowledge that is likely to be innate and domain-specific

(Foraker et al., 2009). Here, we consider whether indirect evidence leveraged from a broader input

set could lead children to the correct knowledge about anaphoric one. If so, we can then refine

the current views on the learning biases required for successful acquisition - and specifically, the

nature of those biases.

We first briefly discuss adult and child knowledge of anaphoric one, and then highlight what the

learning problem is - in particular, why anaphoric one has been considered an induction problem

for language acquisition. We then review previous proposals for how to learn the correct represen-
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tation of anaphoric one from the available input. Following this, we motivate why a child might

view a broader input set as informative for anaphoric one, and discuss the different kinds of infor-

mation that are available in informative data points. We then present an online Bayesian learner

adapted from Pearl and Lidz (2009) that uses this broader data set, and find that our learner is

indeed capable of reproducing the child behavior associated with correct knowledge of anaphoric

one - notably, without imposing any domain-specific input restrictions. In addition, we compare

our learner’s performance on the broader data set to performance on the restricted datasets previ-

ously proposed, and find that it is the broader data set that produces the correct learning behavior

rather than something inherent in the probabilistic learning model.

Our model also provides a way to explicitly test the assumption in the behavioral study by

Lidz et al. (2003) that correct behavior during an experiment testing children’s interpretation of

anaphoric one indicates the child has the correct representation for anaphoric one. We find that

our modeled learner would both produce the correct behavior in that experiment and infer the

correct representation at the time it produces that behavior - surprisingly, even if the learner does

not generally have the correct representation for one. We conclude with discussion of what a child

requires in order to solve the induction problem for anaphoric one, what this tells us about the

acquisition trajectory for one, and how this impacts the larger debate about Universal Grammar.

2 English anaphoric one

2.1 Adult knowledge

An example of anaphoric one and the various components involved in its interpretation is in (4).

(4) Situation: Two red bottles are present.

Utterance: “Look - a red bottle! Oh, look - another one!”

Interpretation of one:
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syntactic antecedent of one = “red bottle”

semantic referent of one = RED BOTTLE

The adult representation of English anaphoric one has both a syntactic and semantic compo-

nent. In order to interpret an utterance like (4) (“Look - a red bottle! Oh, look - another one!”),

the listener must first identify the syntactic antecedent of one, i.e., what string one is standing in

for. In (4), adults generally interpret one’s syntactic antecedent as “red bottle”, so the utterance is

equivalent to “Look - a red bottle! Oh, look - another red bottle!”.2

Then, the listener uses this syntactic antecedent to identify the semantic referent of one, e.g.,

what object in the world one is referring to. Given the syntactic antecedent “red bottle”, adults

interpret the referent of one as a bottle that is red (RED BOTTLE), as opposed to just any bottle

(BOTTLE). That is, the one the speaker is referring to is a bottle that specifically has the property

red and this utterance would sound somewhat strange if the speaker actually was referring to a

purple bottle.

According to standard linguistic practice, the string “red bottle” has the structure in (5), while

“a red bottle” has the structure in (6). The bracket notation corresponds to the syntactic phrase

structure tree in figure 1.

(5) [N′ red [N′ [N0 bottle]]

(6) [NP a [N′ red [N′ [N0 bottle]]]

The syntactic category N0 can only contain noun strings (e.g., “bottle”), and the category NP

contains any noun phrase (e.g., “a bottle”, “a red bottle”). The syntactic category N’ is larger

than N0 but smaller than NP, and can contain both noun strings (e.g., “bottle”) and noun+modifier

strings (e.g., “red bottle”). Note that the noun-only string “bottle” can be labeled both as syntactic

category N’ (7a) and syntactic category N0 (7b) (this also can be seen in figure 1, where “bottle”

2There are cases where the “bottle” interpretation could become available (and so a purple bottle would be a valid
referent since it is in fact a bottle), and these often have to do with contextual clues and special emphasis on particular
words in the utterance (Akhtar et al., 2004). The default interpretation, however, seems to be “red bottle”. We discuss
these non-default interpretations more in section 6.2.
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Figure 1: Phrase structure tree corresponding to the bracket notation in examples (5) and (6).

projects to both N0 and N’).3

(7a) [N′ [N0 bottle]]

(7b) [N0 bottle]

Linguistic theory posits that anaphoric elements (like one) can only have antecedents of the

same syntactic category. Since one’s antecedent can be “red bottle”, then one should be category

N’ in these cases. Notably, if the syntactic category of one were instead N0, one could not have

“red bottle” as its antecedent; instead, it could only have noun-only strings like “bottle”, and we

would interpret (4) as “Look - a red bottle! Oh, look - another bottle!” In that case, we should be

perfectly happy to have one’s referent be a purple bottle. Since we do not have this interpretation

in (4) and instead prefer one’s antecedent to be “red bottle” (and its referent to be a RED BOTTLE),

one’s syntactic category must be N’ here.

One way to represent adult knowledge is as in (8). On the syntax side, the syntactic category

of one is N’ and so one’s antecedent is also N’. On the semantic side, the property mentioned in

3We note that while we use the labels N’ and N0, other theoretical implementations may use different labels to
distinguish these hierarchical levels. The actual labels themselves are immaterial - it is only relevant for our purposes
that these levels are distinguished the way we have done here, i.e., that “red bottle” and “bottle” are the same label (N’
here), while “bottle” can also be labeled with a smaller category label (N0 here). However, see discussion in section
6.2 for what happens with alternate theoretical representations that additionally differentiate “red bottle” from “bottle”.
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the potential antecedent (e.g., “red”) is important for the referent to have. This has a syntactic

implication for one’s antecedent: the antecedent is the larger N’ that includes the modifier (e.g.,

“red bottle”, rather than “bottle”).

(8) Adult anaphoric one knowledge in utterances like

“Look - a red bottle! Do you see another one?”

(a) Syntactic structure: category N’

(b) Semantic referent and antecedent: The mentioned property (“red”) in the potential

antecedent is relevant for determining the referent of one. So, one’s antecedent is

[N′ red [N′ [N0 bottle]]] rather than [N′ [N0 bottle]].

2.2 Child knowledge

Behavioral evidence from Lidz et al. (2003) (henceforth LWF) suggests that young children also

have this same interpretation for utterances like (4).4 Using an intermodal preferential looking

paradigm (Golinkoff, Hirsh-Pasek, Cauley, & Gordon, 1987; Spelke, 1979), LWF examined the

looking behavior of 18-month-olds when hearing an utterance like “Look, a red bottle! Do you see

another one?”. The 18-month-olds demonstrated a significant preference for looking at the bottle

that was red (as compared to a bottle that was some other color), just as adults would do. Thus

LWF interpreted this to mean that by 18 months, children have acquired the same representation

for anaphoric one that adults have. We note that it is an assumption that correct behavior in this

experiment indicates the correct representation for one - it is possible that children could produce

that behavior even if they have a different representation for one (as we will explore below in

section 5.3). However, the empirical fact is that children’s behavior appears adult-like at 18 months

when interpreting anaphoric one utterances like these.

4Though see Tomasello (2004) for a critique of LWF’s interpretation of their experiment and Lidz and Waxman
(2004) for a convincing rebuttal.
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3 Learning anaphoric one

3.1 The learning problem

Learning the correct representation for anaphoric one is difficult because many anaphoric one data

are ambiguous with respect to what syntactic category one is, even if children already know that

the choice is between N’ and N0. Moreover, as we see in figure 1, sometimes there is more than

one N’ antecedent to choose from (e.g., “red bottle”: [N′ red [N′ [N0 bottle]]] vs. “bottle”: [N′

[N0 bottle]]), which means that there is also ambiguity with respect to the semantic referent (e.g.,

RED BOTTLE vs. any BOTTLE). Examples (9) and (10) demonstrate two kinds of ambiguous data,

one which is ambiguous syntactically (9) and the other which is ambiguous both semantically and

syntactically (10).

(9) Syntactic (Syn) Ambiguity

Situation: There are two bottles present.

Utterance: “Look, a bottle! Oh look - another one!”

(10) Semantic and Syntactic (Sem-Syn) Ambiguity

Situation: There are two red bottles present.

Utterance: “Look, a red bottle! Oh look - another one!”

Syn ambiguous data like (9) do not clearly indicate the category of one, even though the se-

mantic referent is clear. In (9), the semantic referent must be BOTTLE since the antecedent can

only be “bottle”. But, is the syntactic structure [N′ [N0 bottle]] or just [N0 bottle]? Notably, if the

child held the mistaken hypothesis that one was category N0, this data point would not conflict

with that hypothesis since it is compatible with the antecedent being [N0 bottle].

Sem-Syn ambiguous data like (10) are unclear about both the referent and the category of one.

In (10), if the child held the mistaken hypothesis that the referent is simply BOTTLE (unlike the

adult interpretation of RED BOTTLE), this would not be disproven by this data point - there is in fact
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another bottle present. That it happens to be a red bottle is merely a coincidence. The alternative

hypothesis is that the referent is RED BOTTLE (this is the adult interpretation), and it’s important

that the other bottle present have the property red. Since both these options for semantic referent

are available, this data point is ambiguous semantically. This data point is ambiguous syntactically

for the same reason Syn data like (9) are: if the referent is BOTTLE, then the antecedent is “bottle”,

which is either N0 or N’.

Fortunately, there are some unambiguous data available like (11), but these require a very

specific conjunction of situation and utterance.

(11) Unambiguous (Unamb) data

Situation: Both a red bottle and a purple bottle are present.

Utterance: “Look - a red bottle! There doesn’t seem to be another one here, though.”

In (11), if the child mistakenly believes the referent is just BOTTLE, then the antecedent of one

is “bottle” and it’s surprising that the speaker would claim there’s not “another bottle here”, since

another bottle is clearly present. Thus, in order to make sense of this data point, it must be that the

property “red” is important, so the semantic referent must be RED BOTTLE (and indeed, there isn’t

another red bottle present, so the utterance is then a reasonable thing to say). The corresponding

syntactic antecedent is “red bottle”, which has the syntactic structure [N′ red [N′ [N0 bottle]]] and

indicates one’s category is N’.

Unfortunately, unambiguous data were presumed to be very rare. LWF discovered in their

corpus analysis that a mere 0.25% of child-directed anaphoric one utterances were unambiguous

data. For this reason, the debate has arisen about how children might solve this acquisition problem

as rapidly as they do.
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3.2 Innate, domain-specific knowledge

An early proposal (Baker, 1978) (henceforth, Baker) assumed that only unambiguous data were

informative. Given the sparsity of these data, it was assumed that children could not learn the

correct representation from the data available - there was an induction problem. Instead, it was

proposed that children possess domain-specific knowledge about the structure of language. In

particular, children innately know that anaphoric elements (like one) cannot be syntactic category

N0. Instead, children automatically rule out that possibility from their hypothesis space, and simply

know that one is category N’.5 Thus, this proposal assumes an innate, domain-specific learning bias

concerning the knowledge being acquired.

3.3 Domain-general learning abilities and domain-specific knowledge

3.3.1 Regier & Gahl 2004

Regier and Gahl (2004) (henceforth R&G) noted that Sem-Syn data like (10) could be leveraged to

learn the correct representation for anaphoric one. Specifically, a probabilistic learner could track

how often a property that was mentioned was important for the referent to have (e.g., when “red”

was mentioned, was the referent just a BOTTLE or specifically a RED BOTTLE?). If the referent

keeps having the property mentioned in the potential antecedent (e.g., keeps being a RED BOTTLE),

this is a suspicious coincidence unless one’s antecedent actually does include the modifier describ-

ing that property (e.g., “red bottle”). If the antecedent includes the modifier, this then indicates that

one’s antecedent is N’, since N0 cannot include modifiers. One would then be N’ as well, since it

is the same category as its antecedent.

The R&G data set consisted of both unambiguous data and Sem-Syn ambiguous data, and their

online Bayesian learner was able to learn the correct interpretation for anaphoric one. No innate,

5Note that this proposal only deals with the syntactic category of one and does not provide a solution for how to
choose between two potential antecedents that are both N’, such as “red bottle”: [N′ red [N′ [N0 bottle]]] vs. “bottle”:
[N′ [N0 bottle]]. It does, however, rule out the potential antecedent [N0 bottle].
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domain-specific knowledge was required to converge on the correct representation for anaphoric

one. Instead, once the hypothesis space was defined, a learner with innate domain-general statisti-

cal learning abilities could succeed by leveraging this particular set of ambiguous data.

3.3.2 Pearl & Lidz 2009

Pearl and Lidz (2009) (henceforth P&L) noted that if the child had to learn the syntactic category

of one, then an “equal-opportunity” (EO) learner able to leverage ambiguous data (like R&G’s

learner) would view Syn ambiguous data like (9) as informative. Unfortunately, P&L found that

Syn ambiguous data lead an online Bayesian learner to the wrong syntactic category for one (i.e.,

one=N0), and in fact far outnumber the Sem-Syn ambiguous and unambiguous data combined

(about 20 to 1 in their corpus analysis). Thus, a probabilistic learner like R&G proposed would

need to explicitly filter out the Syn ambiguous data. P&L suggested that this kind of filter is

domain-specific, since it involves ignoring a specific kind of linguistic data. However, they specu-

late how this restriction could be derived from innate domain-general learning preferences.6 Thus,

P&L find that a probabilistic learner using innate domain-general learning abilities also needs a

domain-specific input restriction to succeed, though this input restriction may be derived from

other innate domain-general learning biases.

3.3.3 Foraker et al. 2009

Foraker et al. (2009) (henceforth F&al) focused on identifying the syntactic category of one, the

original problem considered by Baker, and applied an ideal Bayesian learner to the syntactic input

alone. In order to leverage the distributional information in the syntactic input, their learner em-

ployed subtle conceptual knowledge to identify the likely syntactic category for one. Specifically,

their learner was able to distinguish syntactic complements from syntactic modifiers, where a syn-

6In particular, they suggest that a learner who learns only in cases of uncertainty in the local context would ignore
Syn ambiguous data while still heeding unambiguous and Sem-Syn ambiguous data (see Pearl and Lidz (2009) for
more explicit discussion of this proposal).
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tactic complement is “conceptually evoked by its head noun” and indicates the noun string is N0,

while a modifier is not and indicates the noun string is N’. Figure 2 shows the syntactic structure

associated with modifiers and complements, where a modifier like “with dots” is sister to N’ and a

complement like “of the road” is sister to N0.

Figure 2: Phrase structure trees corresponding to a modifier and a complement.

Because of this, one (being N’) cannot appear with complements, since complements adjoin

with N0. This is why “one of the road” is ungrammatical (12a), while “one with dots” is grammat-

ical (12b).

(12a) *Lily waited by the side of the building while Jack sat by the one of the road.

(12b) Lily was fond of the ball with stripes while Jack preferred the one with dots.

Thus, simple nouns (known to be N0 and project to N’) can appear with both complements

(“side of the road”) when they are N0 and modifiers (“ball with dots”) when they are N’, while one

only occurs with modifiers (“one with dots”). F&al’s learner uses this indirect negative evidence,

and notes the absence of one being used with complements. This then indicates that one is not N0,

but rather the larger syntactic category N’.

While there were not many informative one data points in their data, F&al’s ideal learner was
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able to learn the correct syntactic category for one. In order to do this, their learner appears to

require a domain-specific input restriction to syntactic data (rather than also using semantic infor-

mation, as Baker, R&G, and P&L’s learners do). In addition, the specific syntactic information

their learner leverages appears to require (possibly innate) domain-specific knowledge in order to

both realize the subtle semantic distinction between complements and modifiers and this distinc-

tion’s implication for the syntactic category of the corresponding noun.

3.3.4 Comparison of previous proposals

Table 1 compares the learning biases required by previous proposals for how to learn anaphoric

one, including a description of the bias, and where it falls on the different dimensions of innate

vs. derived, domain-specific vs. domain-general, and what to learn vs. how to learn. Note that

only two biases (the one proposed by Baker, and potentially one proposed by F&al) are innate and

domain-specific.

Table 1: Learning biases required by previous proposals.

Proposal Bias Innate Derived Dom-Spec Dom-Gen What To Learn How To Learn
Baker know one is not N0 ∗ ∗ ∗
R&G, recognize suspicious

∗ ∗ ∗P&L filtered coincidence of
antecedent property

R&G, ignore Syn ambig data ∗ ∗ ∗
P&L filtered ∗ ∗ ∗

F&al
know what syntactic

? ∗ ∗complements vs.
modifiers imply

F&al leverage complement ∗ ∗ ∗vs. modifier distribution
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4 A broader view of informative data

Instead of restricting the input set, we consider expanding it beyond Unambiguous (11), Sem-Syn

Ambiguous (10), and Syn Ambiguous (9) data. Consider that there are other anaphoric elements in

the language besides one, such as pronouns like it, him, her, etc. - thus, the ability for a linguistic

element to stand in for something else is not unique to one. These other pronouns are category NP,

since they replace an entire noun phrase (NP) when they are used (13):

(13) “Look at the cute penguin. I want to hug it/him/her.”

≈ “Look at the cute penguin. I want to hug the cute penguin.”

Here, the antecedent of the pronoun it/him/her is the NP “the cute penguin”:

(14) [NP the [N′ cute [N′ [N0 penguin]]]]

In fact, it turns out that one can also have an NP antecedent:

(15) “Look! A red bottle. I want one.”

≈ “Look! A red bottle. I want a red bottle.”

We note that the issue of one’s syntactic category only occurs when one is being used in a

syntactic environment that indicates it is smaller than NP (such as in utterances (4), (9), (10), and

(11)). However, since one is similar to other pronouns semantically (by being anaphoric) and

shares some syntactic distribution properties with them (since it can appear as an NP), a learner

could decide that information gleaned from other pronouns is relevant for interpreting one.

Following R&G’s idea of tracking suspicious coincidences, a learner could track how often a

property mentioned in the potential antecedent (e.g., “red” in “a red bottle” in (15)) is important

for the referent to have. Crucially, we can apply this not only to data points where one is <NP ((9)

and (11)), but also to data points where pronouns are used anaphorically and in an NP syntactic

environment ((13) and (15)). When the potential antecedent mentions a property and the pronoun

is used as an NP, the antecedent is necessarily also an NP, and so necessarily includes the men-
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tioned property (e.g., “a red bottle”). Data points like (13) and (15) are thus unambiguous both

syntactically (category=NP) and semantically (the referent must have the mentioned property). We

will refer to them as unambiguous NP (Unamb NP) data points, and these are the additional data

points our learner (the P&M learner) will learn from.

Like the R&G and P&L learners, our learner differs from the Baker learner by learning from

data besides the unambiguous <NP data. However, our learner differs from the learners in R&G

and P&L by learning from data containing anaphoric elements besides one.7 Table 2 shows which

learners use which data.

Table 2: Data sets used by learners.
Data type Example Learners

Unamb <NP
“Look - a red bottle! There doesn’t seem to be

Baker, R&G, P&L’s EO, P&M
another one here, though.”

Sem-Syn Ambig “Look - a red bottle! Oh, look - another one!” R&G, P&L’s EO, P&M
Syn Ambig “Look - a bottle! Oh, look - another one!” P&L’s EO, P&M
Unamb NP “Look a red bottle! I want it/one.” P&M

4.1 Information in the data

There is a variety of information in referential data points. Figure 3 represents the information

dependencies in any data point where a pronoun is used anaphorically and there is a potential

antecedent that has been mentioned recently.8

Under SYNTACTIC USAGE, a learner can observe which pronoun is used (e.g., it, one, etc.).

The syntactic category depends on which pronoun is used (e.g., NP, N’, or N0 for one). The learner

can also observe the syntactic environment in which the pronoun is used, which depends on the

latent syntactic category (e.g., “another one” indicates a syntactic environment of <NP, which
7Our learner also differs from the F&al learner by leveraging both syntactic and semantic information, instead of

just syntactic information.
8Note that this represents a generative model for a referential data point, rather than a decision tree a learner would

use to make inferences. That is, inferences flow both directions along the information dependencies.
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Figure 3: Information dependencies in referential data points.

means the category is N’ or N0). The syntactic category also determines whether the antecedent

string can contain a modifier (e.g., category N0 cannot, since it only allows noun-only strings like

“bottle”).

Under REFERENTIAL INTENT, a learner can observe whether the potential antecedent in the

previous context mentioned a property or not (e.g., “a red bottle” vs. “a bottle”). If a property was

mentioned, it is a latent variable whether the mentioned property was important for the referent of

the pronoun to have. This then determines whether the antecedent string must include that property

(e.g., it must if the property is important, and it must not if the property is not important).

Both the antecedent string variables determine the content of the actual antecedent string (e.g.,

if both a modifier and a property must be included, the antecedent would be “red bottle” rather

than simply “bottle”). Finally, the antecedent string determines what object is being referred to,

and whether that object has the mentioned property (e.g., whether it’s a RED BOTTLE when the
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previous context was “a red bottle”). This is observable (e.g., the learner can ascertain if the bottle

that one refers to is in fact red).

These variables can take on the values shown in table 3.9 The data types used by the different

learning proposals have the observable and latent values in Table 4.

Table 3: Variable values in informative referential data points.

REFERENTIAL INTENT

property mentioned? ∈ {Yes, No}
property important ∈ {Yes, No, N/A}

antecedent string includes property? ∈ {Yes, No, N/A}

SYNTACTIC USAGE

pronoun used ∈ {one, it, him, her, etc.}
syntactic category of pronoun ∈ {NP, N’, N0}

syntactic environment ∈ {NP, <NP}
antecedent string includes modifier? ∈ {Yes, No, N/A}

COMBINED
actual antecedent string ∈ {“red bottle”, “bottle”, etc.}

object referred to ∈ { has property,
does not have property, N/A}

Table 4: Data types and variable values.

Observable

Variable Unamb <NP Sem-Syn Ambig Syn Ambig Unamb NP
Prop Mentioned Yes Yes No Yes
Pronoun one one one it, one, etc.
Syn Env <NP <NP <NP NP
Object has property has property N/A has property

Latent

Prop Important Yes Yes, No N/A Yes
Antec Has Prop Yes Yes, No N/A Yes
Syn Category N’ N’, N0 N’, N0 NP
Antec Has Mod Yes Yes, No N/A Yes
Antec String ex: “red bottle” ex: “red bottle”, “bottle” ex: “bottle” ex: “a red bottle”

Unambiguous < NP data have a property mentioned in the potential antecedent (e.g., “Look -

a red bottle!”), use the pronoun one (e.g., “There doesn’t seem to be another one here, though.”),

9Note that if no property was mentioned, the decision as to whether the mentioned property was important (property
important?) is moot, and hence has the value N/A. This same logic applies to the decision about whether the antecedent
string includes the modifier (antecedent string includes modifier?), whether the antecedent string includes the property
(antecedent string includes property?), and whether the observed object has the property (object referred to).
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have a syntactic environment that indicates the pronoun is smaller than NP (e.g., “another one”),

and refer to an object that has the property mentioned (e.g., RED BOTTLE). Because these data

are unambiguous, the learner can infer that the antecedent string includes the property (e.g., “red

bottle”), which means the antecedent has a modifier (from the syntactic perspective) and also has a

property (from the referential perspective). This indicates that the mentioned property is important

and the syntactic category of the antecedent (and so of one) is N’.

Sem-Syn ambiguous data have a property mentioned in the potential antecedent (e.g., “Look - a

red bottle!”), use the pronoun one (e.g., “Look - another one!”), have a syntactic environment that

indicates the pronoun is smaller than NP (e.g., “another one”), and refer to an object that has the

property mentioned (e.g., RED BOTTLE). Because these data are ambiguous both semantically and

syntactically, the antecedent is unclear (e.g., “red bottle” or “bottle”). This means it is also unclear

whether the antecedent includes a modifier and a property, whether the mentioned property is

important, and what the syntactic category is (N’ or N0).

Syn ambiguous data do not have a property mentioned in the potential antecedent (e.g., “Look

- a bottle!”), use the pronoun one (e.g., “Look - another one!”), have a syntactic environment

that indicates the pronoun is smaller than NP (e.g., “another one”), and refer to the object that

is mentioned without indicating a property of that object. Because these data do not mention a

property in the potential antecedent, they are uninformative about whether the antecedent should

have a modifier that indicates the property, and whether a mentioned property is important. In

addition, while the antecedent is unambiguous (e.g., “bottle”), the syntactic category is not (it

could be N’ or N0).

Unambiguous NP data have a property mentioned in the potential antecedent (e.g., “Look - a

red bottle!”), use a number of different referential pronouns (e.g., “I want it/one”), have a syntactic

environment that indicates the pronoun is category NP (e.g., “want one”), and refer to an object

that has the property mentioned (e.g., RED BOTTLE). Because these data are unambiguous, the

learner can infer the antecedent string is the entire NP (e.g., “a red bottle”), and note that the

21



antecedent string includes a modifier indicating the property (e.g., “red”). This in turn indicates

that the property is important.

5 The online probabilistic learning framework

We now present an online probabilistic learning framework that uses the different kinds of infor-

mation available in referential data points.

5.1 Important quantities

The two components of the correct representation for anaphoric one are (a) that a property men-

tioned in the potential antecedent is important for the referent of one to have (more specifically,

p(property important=yes | property mentioned=yes)), and (b) that one is category N’ when it is

not an NP (more specifically, p(category=N’ | syntactic environment=<NP)). These correspond to

“property important?” and “syntactic category of pronoun” in Figure 3. We represent the probabil-

ity of the former as pI and the probability of the latter as pN′ . Note that pI can only take the values

Yes and No and pN′ can only take the values N’ or N0.

We follow the update methods in P&L, and use equation (16) adapted from Chew (1971),

which assumes p comes from a binomial distribution and the beta distribution is used to estimate

the prior:

px =
α+datax

α+β+ totaldatax
,α = β = 1 (16)

Parameters α and β represent a very weak prior when set to 1. The variable datax represents

how many informative data points indicative of x have been observed, while totaldatax represents

the total number of potential x data points observed. After every informative data point, datax and
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totaldatax are updated as in (17), and then px is updated using equation (16). The variable φx indi-

cates the probability that the current data point is an example of an x data point. For unambiguous

data, φx = 1; for ambiguous data φX < 1.

datax = datax +φx (17a)

totaldatax = totaldatax +1 (17b)

Probability pI is updated for Unambiguous <NP data, Sem-Syn Ambiguous data, and Unam-

biguous NP data only - Syn Ambiguous data do not mention a property, and so are uninformative

for pI . Probability pN′ is updated for Unambiguous <NP data, Sem-Syn Ambiguous data, and Syn

Ambiguous data only - Unamb NP data indicate the category is not <NP, and so are uninformative

for pN′ .

The value of φx depends on data type. We can derive the value of φI by using the information

dependencies in Figure 3, and the basic Bayes equation. φI uses equation (18), which includes

π (what pronoun was mentioned), σ (what the syntactic environment is), µ (whether the previous

context mentioned a property), ω (whether the object has the mentioned property), and I (property

important=yes). Note that pI is predicated on a property being mentioned, which is why µ = yes.

φI = p(I|π,σ,µ = yes,ω) =
p(π,σ,ω|I,µ = yes)∗ pI

p(π,σ,ω|µ = yes)
(18)

Unambiguous <NP and Unambiguous NP data end up having φI=1, which is intuitively sat-

isfying since they unambiguously indicate that the property is important for the referent to have.

Sem-Syn ambiguous data end up having φI calculated as in (19):
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φI =
ρ1

ρ1 +ρ2 +ρ3
(19)

where

ρ1 = pN′ ∗ m
n+m ∗ pI (20a)

ρ2 = pN′ ∗ n
n+m ∗ (1− pI)∗ 1

t (20b)

ρ3 = (1− pN′)∗ (1− pI)∗ 1
t (20c)

In (20), m and n refer to how often N’ strings are observed to contain modifiers (m) (e.g.,

“red bottle”), as opposed to containing only nouns (n) (e.g., “bottle”). These help determine the

probability of observing an N’ string with a modifier (20a), as compared to an N’ string that

contains only a noun (20b). Parameter t indicates how many property types there are in the learner’s

hypothesis space, which determines how suspicious a coincidence it is that the object just happens

to have the mentioned property when there are t properties (types of objects) the learner is aware

of.

The quantities in (20) correlate with anaphoric one representations. For ρ1 (which is the adult

representation), the syntactic category is N’ (pN′), a modifier is used ( m
n+m ), and the property

is important (pI). For ρ2, the syntactic category is N’ (pN′), a modifier is not used ( n
n+m ), the

property is not important (1- pI), and the object has the mentioned property by chance (1
t ). For ρ3,

the syntactic category is N0 (1-pN′), the property is not important (1- pI), and the object has the

mentioned property by chance (1
t ). The numerator of (19) contains the only representation that has

the property as important, while the denominator contains all three representations.

The value of φN′ also depends on data type. We can derive the value of φN′ similarly to φI ,

except that µ is not set to yes since pN′ is not predicated on a property being mentioned. Instead,
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σ is set to <NP since pN′ is predicated on the syntactic environment indicating the category is

smaller than NP. In addition, N′ (syntactic category=N’) is the variable of interest.

φN′ = p(N′|π,σ =< NP,µ,ω) =
p(π,µ,ω|N′,σ =< NP)∗ pN′

p(π,µ,ω|σ =< NP)
(21)

Unambiguous <NP data end up having φI=1, which is again intuitively satisfying since they

unambiguously indicate that the category is N’ when the syntactic environment is <NP. Sem-Syn

ambiguous data end up having φN′ as in (22):

φN′Sem−Syn =
ρ1 +ρ2

ρ1 +ρ2 +ρ3
(22)

where ρ1, ρ2, and ρ3 are the same as in (20). Equation (22) is intuitively satisfying as only ρ1 and

ρ2 are representations with syntactic category N’.

Syn Ambiguous data end up having φN′ as the following:

φN′Syn =
ρ4

ρ4 +ρ5
(23)

where

ρ4 = pN′ ∗ n
n+m (24a)

ρ5 = 1− pN′ (24b)

The quantities in (24) intuitively correspond to representations for anaphoric one when no

property is mentioned in the previous context. For ρ4, the syntactic category is N’ (pN′) and the

N’ string uses only a noun ( n
n+m ). For ρ5, the syntactic category is N0 (1-pN′), and so the string is
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noun-only by definition. The numerator of equation (23) contains the representation that has the

category as N’, while the denominator contains both possible representations.

Table 5 shows the different model parameters updated for each data type, as well as sample

updates for pI and pN′ , showing the value of each probability after one data point is seen at the

beginning of learning when pI = pN′ = 0.50. Other parameters take the following values for the

sample updates, based on estimates from P&L: m = 1, n = 3, and t = 5. The values for m (number

of modifier strings that are N’) and n (number of noun-only strings that are N’) are based on empir-

ical estimates from corpus data, while t is a low estimate of the number of properties present in the

learner’s environment at the time the data point is encountered. When t is low, the beneficial impact

of ambiguous data points on pI is less, since each data point is less of a suspicious coincidence.

For example, if there are five properties in the learner’s environment (e.g., SILLY, STRIPED, NEXT

TO THE DOLLY, BOUNCY, BEHIND MOMMY’S BACK), then it is less of a suspicious coincidence

that the item in question happens to be STRIPED (1/5) than if there were twenty properties (1/20).

A learner using this low t value thus boosts the value of pI less for each informative ambiguous

data point. Thus, by using low t values, we are biasing our learner away from a higher pI (and so

the learner is less likely to think the mentioned property is important and thus less likely to learn

the correct representation of anaphoric one).

Table 5: Values for model parameters for each data type, and sample updates for pI and pN′ ,
showing the value of each probability after one data point is seen at the beginning of learning
when pI = pN′ = 0.50, α = β = 1, m = 1, n = 3, and t = 5.

datax = datax +φx px = α+datax
α+β+totaldatax

, α = β = 1

Data type φI φN′ pI pN′

Unamb <NP 1 1 0.67 0.67

Sem-Syn Amb ρ1
ρ1+ρ2+ρ3

ρ1+ρ2
ρ1+ρ2+ρ3

0.47 0.56

Syn Amb N/A ρ4
ρ4+ρ5

0.50 0.48

Unamb NP 1 N/A 0.67 0.50
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For Unamb <NP data, both φI and φN′’s phi values are 1, and so datax is increased by 1. This

leads to pI and pN′ both being increased. This is intuitively satisfying since unambiguous <NP

data by definition are informative about both pI (the mentioned property is indeed important) and

pN′ (the syntactic category is N’).

For Sem-Syn Amb data, both pI and pN′ are altered, based on their respective φ values, which

are less than 1 but greater than 0. The exact φ value depends on current values of pI and pN′ . After

one Sem-Syn Amb data point, pI is lowered slightly (to .47), since the coincidence of the referent

having the mentioned property is not suspicious enough. This is due to t being low.10 However,

pN′ is increased slightly (to .56) since the current probabilities of the two representations that have

the syntactic category as N’ (ρ1 and ρ2) outweigh the current probability of the representation that

has the syntactic category as N0 (ρ3).

Syn Amb data are only informative with respect to syntactic category, so only pN′ is updated

and only φN′ has a value. Here, we see the misleading nature of the Syn Amb data that P&L

discovered - the value of pN′ is lowered because the representation using syntactic category N0

(ρ5) currently has a higher probability than the representation using category N’ (ρ4). This is

because the N’ representation in ρ4 must include the probability of choosing a noun-only string

(like “bottle”) from all the N’ strings available in order to account for the observed data point

( n
n+m ), while the N0 category by definition only includes noun-only strings.

Unamb NP data are only informative with respect to whether the mentioned property is impor-

tant, so only pI is updated and only φI has a value. Since these data are unambiguous, φI=1, which

is intuitively satisfying. This leads to an increase in pI .

5.2 Learner input sets & parameter values

Table 6 indicates the availability of different data types in the learner’s input, based on a corpus

analysis on the Brown-Eve corpus (Brown, 1973) from the CHILDES database (MacWhinney,

10With t=20, for example, pI = 0.58 and pN′ = 0.62 after one Sem-Syn Amb data point.
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2000). We chose the Eve corpus since it included naturalistic speech directed to a child starting at

the age of 18 months and continuing through 27 months, containing 17,521 child-directed speech

utterances.11

Table 6: Data type frequencies

Data type Brown-Eve
Unamb <NP 0.00%
Syn-Sem Amb 0.66%
Syn Amb 7.52%
Unamb NP 8.42%
Uninformative 83.4%

We note that we did not find any Unamb <NP data, which accords with Baker’s original intu-

ition that such data are very scarce. We note also that uninformative data includes ungrammatical

uses of anaphoric one, uses of one where no potential antecedent was mentioned in the previous

linguistic context (e.g., “Do you want one?” with no previous linguistic context), and uses of pro-

nouns as NPs where the antecedent did not contain a modifier (e.g., “Mmm - a cookie. Do you

want it?”). This last kind of data is viewed as uninformative because NP data points can only help

indicate whether a mentioned property is important. If no property is mentioned in the antecedent,

then the data point is uninformative as to whether a referent must have the mentioned property.

Following P&L, we posit that the anaphoric one learning period begins at 14 months, based on

experimental data supporting infant recognition of the category Noun and the ability to distinguish

it from other categories such as Adjective at this age (Booth & Waxman, 2003). If children hear

approximately 1,000,000 sentences from birth until 18 months (Akhtar et al., 2004), then we can

use the data frequencies in table 6 to estimate the expected distribution of anaphoric one data during

the learning period that spans from 14 to 18 months. Based on our analysis, we estimate that the

child hears approximately 36,500 referential pronoun data points during the learning period. Table

11See Appendix A for a more thorough breakdown of the corpus analysis we have conducted here. See Appendix
B for a comparison of the LWF corpus analysis to our corpus analysis.
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7 below shows the input sets we will use to test the different learning proposals for anaphoric one.

Table 7: Input sets for different anaphoric one proposals

Data type Baker R&G, P&L P&L’s EO P&M
Unamb <NP 0 0 0 0

Sem-Syn Ambig 0 242 242 242
Syn Ambig 0 0 2743 2743
Unamb NP 0 0 0 3073

Uninformative 36500 36258 33515 30442

For the free parameters in the model, we will follow the corpus-based estimate P&L used for

m and n, which is approximately equivalent to m = 1 and n = 3.12 These parameters matter when

the learner is trying to decide whether the syntactic category should be N’ or N0, given that it is

smaller than NP (i.e., pN′). The smaller m is compared to n, the less that Syn ambiguous data cause

a Bayesian learner to (incorrectly) favor the N0 category over the N’ category. P&L discuss why

Syn ambiguous data have this effect in more detail, but for our purposes it suffices that if a learner

using Syn Amb data cannot succeed with these values of m and n, the learner will not fare any

better with other estimates that make m larger and/or n smaller.

We will also follow an estimate P&L used for t: t = 5. This is a lower estimate of t, which min-

imizes the benefit to any learners who heed suspicious coincidences (in particular, the suspicious

coincidence of the referent just happening to have the mentioned property) for the reason discussed

in 5.1. Heeding suspicious coincidences specifically aids the learner in deciding that the mentioned

property is important (i.e., pI is near 1). By making t low, we are biasing the learning environment

against learners deciding the mentioned property is important. Thus, any learners who end up with

a probability pI near 1 with this low t value should end up with a pI near 1 with higher t values.

12The actual numbers P&L found from their corpus analysis of N’ strings were 119 noun+modifier N’ strings to
346 noun-only N’ strings, which is a ratio of 1 to 2.9.
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5.3 Measures of success

One way to assess acquisition success is to measure pI and pN′ at the end of the learning period,

since we would want these values to be near 1 for an adult representation.13 In addition, we can

also assess how likely a learner would be to reproduce the observed infant behavior from the LWF

experiment. In particular, when presented with a scenario with utterances like “Look - a red bottle!

Do you see another one?”, how often will the learner look to the bottle with the mentioned property

(RED)?

We can calculate the probability (pbeh) of the learner looking at the referent that has the men-

tioned property when given a choice between two referents. As before, π refers to what pronoun

was mentioned, σ refers to what the syntactic environment is, µ refers to whether the previous con-

text mentioned a property, and ω refers to whether the object has the mentioned property. Thus, the

probability of reproducing the infant behavior in the LWF experiment is the probability of looking

to the object that has the mentioned property (ω = hasproperty), given that the observed pronoun

is one (π = one), the syntactic environment indicates the pronoun is smaller than NP (σ =< NP),

and a property has been mentioned (µ = yes).

pbeh = p(ω = hasproperty|π = one,σ =< NP,µ = yes) (25)

Using the information dependencies in figure 3, this works out to

pbeh =
ρ1 +ρ2 +ρ3

ρ1 +2∗ρ2 +2∗ρ3
(26)

where ρ1, ρ2, and ρ3 are defined as in (20), m = 1, n = 3, and t = 2 (since there are only two objects

present in the experimental setup). As before, these quantities intuitively correspond to the differ-

13We note that this is the default adult representation, though there may be other pragmatic factors that impact the
final adult representation. This is discussed further in section 6.2.
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ent outcomes. For the correct representation where the property is important and the category is

N’ (ρ1), the learner must look to the object with the property. For any of the incorrect representa-

tions (ρ2 and ρ3) where the antecedent string is effectively just the noun (e.g., “bottle”), the learner

has a 1 in 2 chance of looking at the correct object by accident. The numerator represents all the

outcomes where the learner looks to the correct object, while the denominator also includes the

two additional outcomes where the learner looks to the incorrect object (ρ2 and ρ3 with incorrect

behavior).

In addition, we can also assess the assumption LWF made about their experiment - in particular,

if infants look at the object adults look at when adults have the correct representation of anaphoric

one, it means that the children also have the correct representation. While this does not seem

like an unreasonable assumption, it is worth asking if this is true. It is possible, for example, that

children have an incorrect representation, but look at the correct object by chance (represented in

the numerator of (26) as ρ2 and ρ3). Given this, there are two related questions that we can ask.

First, is it possible to get the correct behavior in the LWF experiment without having the correct

representation for one in general (as represented by pI and pN′)? To answer this question, we

can simply look at pbeh compared to pI and pN′ . If pbeh is high when either pI or pN′ is low,

this suggests that the correct behavior may not necessarily implicate the correct representation in

general.

Second, is it possible to get the correct behavior in the LWF experiment without having the

correct representation for one at the time the behavior is being generated? To answer this question,

we can calculate calculate the probability (prep|beh) that the learner has the correct representation,

given that the learner has produced the correct behavior (e.g., looking at the RED BOTTLE) in

the experiment. This is, in effect, the contextually-constrained representation the learner is using,

where the context is defined as the experimental setup.
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prep|beh = p(N′, I|π = one,σ =< NP,µ = yes,ω = hasproperty) (27)

As before, π refers to what pronoun was mentioned, σ refers to what the syntactic environ-

ment is, µ refers to whether the previous context mentioned a property, and ω refers to whether the

object has the mentioned property. In addition, N’ refers to the syntactic category being N’ (syn-

tactic category = N’, given that it is smaller than NP) and I refers to the property being important

(property important = yes, given that a property has been mentioned). Thus, the probability of the

learner having the correct representation, given that the learner has produced the correct behavior,

is equivalent to the probability that the learner believes the syntactic category is N’ (N’) and the

mentioned property is important (I), given that the pronoun used was one (π = one), the syntac-

tic environment indicates the category is smaller than NP (σ =< NP), a property was mentioned

(µ = yes), and the selected object has that property (ω = hasproperty).

Using the information dependencies in figure 3, this works out to

prep|beh =
ρ1

ρ1 +ρ2 +ρ3
(28)

where ρ1, ρ2, and ρ3 are calculated as in (20), but with t = 2 (again, because there are only two

objects to choose from in the LWF experimental setup). More specifically, given that the correct

object has been looked at (whether on purpose (ρ1) or by accident (ρ2 and ρ3)), we calculate the

probability that the look is due to the correct representation (ρ1).14

6 Results

Table 8 shows the results of the learning simulations over the different input sets, with averages

over 1000 runs reported and standard deviations in parentheses.

14Note that this is the same equation as (19) (the only difference is the value of t). This has some intuitive appeal
since ρ1 in (20) corresponds to the correct representation which has the mentioned property as important, while the
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Table 8: Probabilities after learning

Prob Baker R&G, P&L P&L’s EO P&M
pN′ 0.50 (<0.01) 0.97 (<0.01) 0.17 (0.02) 0.37 (0.04)
pI 0.50 (<0.01) 0.95 (<0.01) 0.02 (0.01) >0.99 (<0.01)
pbeh 0.56 (<0.01) 0.93 (<0.01) 0.50 (<0.01) >0.99 (<0.01)
prep|beh 0.22 (<0.01) 0.92 (<0.01) <0.01 (<0.01) >0.99 (<0.01)

Focusing first on pN′ and pI , we can see that our online learning model is producing results

similar to what previous studies found when using the data sets proposed by those previous studies.

Learning from unambiguous data alone does not work, as Baker supposed (pN′ = 0.50, pI = 0.50).

Including Sem-Syn ambiguous data will lead to the correct representation, as R&G and P&L found

(pN′ = 0.97, pI = 0.95). Additionally including Syn ambiguous data, as P&L’s EO learner did, leads

to the incorrect representation (pN′ = 0.17, pI = 0.02).

The new result we have found is that expanding to unambiguous NP data (P&M) does not lead

to the correct representation, since the learner’s belief that the syntactic category is N’ is low in

general (pN′ = 0.37). However, perhaps surprisingly, this turns out not to matter for producing

the correct behavior in the LWF experiment (pbeh >0.99). That is, the learner could have the

incorrect representation in general but still produce the correct behavior in that experimental setup

with very high probability. How could this be? It turns out this is due to the high value of pI ,

i.e., the learner’s strong belief that a mentioned property is important. If the learner believes a

mentioned property is important, then the object must have that property (e.g., be a RED BOTTLE

when “red” was mentioned in the potential antecedent). So, the learner looks to the referent that

has the property and this produces the correct behavior. Thus, it seems that LWF’s assumption

does not hold - producing adult-like behavior does not necessarily indicate that the learner has the

correct representation in general.

However, a relaxed version of the LWF assumption does appear to hold. In particular, when

other two representations do not.
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the child produces the correct behavior, the probability that the child has the correct representation

at the time the interpretation is being made is very high (prep|beh > 0.99). This is again due to

the learner’s strong belief that the mentioned property is important. If the property is important,

then the object must have that property (e.g., be a RED BOTTLE), which means the antecedent of

one must include the mentioned modifier (e.g.,“red bottle” instead of just “bottle”). Since only

category N’ can contain modifiers, then one must be category N’ in this context.

Thus, even though the learner has a incorrect representation in general, in the context where a

modifier is present, the learner will end up with the correct interpretation and the correct represen-

tation. LWF were not wrong to assume correct behavior was due to a correct representation - it’s

simply that the correct representation may not apply generally. In particular, the P&M learner will

have the incorrect representation when given Syn ambiguous data like “Look, a bottle! Do you see

another one?” Since no property is mentioned, the high pI value cannot help. Instead, the learner

falls back on the pN′ value alone, which is low (pN′ = 0.37), and so the learner will end up with

one as N0 for that data point.15

We note that this result is due to the input set the P&M learner is using - the learners using

restricted input sets behave exactly as LWF would expect. When they have the correct representa-

tion in general (R&G, P&L), they produce the correct behavior and have the correct representation

when producing that behavior. When they have the incorrect representation in general (Baker,

P&L’s EO), they produce chance behavior and likely have the incorrect representation if they hap-

pen to produce the correct behavior.

15Note however that the P&M learner would have the correct behavior when no property was mentioned, even
with the incorrect representation. This is because the antecedent is clear (e.g., “bottle”) and so the incorrect syntactic
representation ([N0 bottle]) has no effect on identifying the correct referent.
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6.1 Discussion

6.1.1 General discussion of results

Through our modeling study, we have learned several things about the acquisition of anaphoric

one. First, indirect positive evidence can indeed aid a learner. Children may be able to learn the

correct interpretation for one in certain situations (like the LWF experiment) by broadening the

set of data they consider relevant, such as the Unambiguous NP data the P&M learner considered

here. Second, we have discovered that the link between observed behavior, interpretation, and

representation may not be so clear cut. Just because children demonstrate they have the correct

interpretation some of the time (by displaying correct behavior) does not necessarily mean they

have the correct representation all of the time. We have provided an example learner that would

have the correct interpretation in the the context of the LWF experiment, but would not have the

correct representation for other utterances, like those in Syn ambiguous data.

This discovery then tells us something about the acquisition process for anaphoric one. In

particular, it suggests that while children must eventually learn that one is N’, they do not need

to do so by 18 months. Infants that learn as the P&M learners do here could produce the correct

behavior even when they believe one is N0 in general. This means that children just need to

learn that one is N’ sometime before they become adults, so that they find “side of the building”

grammatical while finding “one of the road” ungrammatical.16

Since children do not need to have this syntactic category knowledge by 18 months, this may

allow them time to develop the knowledge they need to follow the strategy proposed by F&al. In

particular, recall that F&al’s learner relied on subtle conceptual distinctions to leverage the syntac-

tic distribution of one and learn that one is N’: complements (indicating category N0) conceptually

evoke the head noun while modifiers (indicating category N’) do not. While it is difficult to imag-

ine 18-month-olds capable of making this subtle distinction, it is easier to imagine older children

16When this distinction is acquired by children is left to future experimental work.
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doing so.

This would then lead to a more complex acquisition trajectory. Initially, children could use

a broader input set (like the P&M learner) and learn the correct interpretation for one in most

contexts, even if they believe one is N0 by default. Later, children could be sophisticated enough

to leverage the information in the syntactic distribution and identify one as definitively N’. The

overall acquisition trajectory would look something like the one in Table 9.

Before 18 months, a learner using indirect positive evidence like the P&M learner would need

to recognize that one is similar to other referential pronouns. This is domain-specific knowledge

(since it refers to referential elements of the language), but it can likely be derived from the in-

put by leveraging the distribution of referential elements. Though one does not have an identical

distribution to other referential elements like it (e.g., “another one”, but *“another it”), the distri-

bution overlaps significantly (e.g., “I see one”, “I see it”, etc.). A learner can likely use innate,

domain-general statistical learning abilities to leverage this distribution and learn this domain-

specific knowledge.

Before 18 months, a P&M learner would then track how often a property mentioned in the

potential antecedent is important for a referent to have (e.g., when hearing, “Look, a red bottle! Oh

look, another one.” or “Look, a red bottle! I want it.”, how often is the bottle RED?). A Bayesian

learner would track these suspicious coincidences using innate, domain-general statistical learning

abilities.

At 18 months, a P&M learner can then produce the observed behavior in the LWF experimental

context because the learner believes a mentioned property is important (even if the learner believes

one is more likely to be N0 in general). After 18 months, the learner could follow the F&al strategy,

and leverage the syntactic distribution of one. Specifically, the learner keys into the subtle semantic

distinction between complements and modifiers and knows the syntactic category implications for

complements and modifiers. Leveraging the syntactic distribution likely involves innate, domain-

general, statistical learning abilities, but recognizing the syntactic implications of complements
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and modifiers may involve innate, domain-specific knowledge about language. While there may

be a way to derive this domain-specific knowledge, we could not think of any obvious ways to

do so (though of course it may be possible). However, to the extent that this innate domain-

specific knowledge is required, acquisition of anaphoric one would then seem to require what is

traditionally described as Universal Grammar.

Table 9: Learning trajectory for anaphoric one and learning biases required.

When Bias Innate Derived Dom-Spec Dom-Gen What To Learn How To Learn
one is like ∗ ∗ ∗

Before other referential ∗ ∗ ∗18 months elements
recognize suspicious

∗ ∗ ∗Before coincidence of
18 months antecedent property

know what syntactic
? ∗ ∗After complements vs.

18 months modifiers imply

∗ ∗ ∗After leverage complement
18 months vs. modifier distribution

With respect to the process of acquisition, we have shown that there may be a two-stage ac-

quisition trajectory for anaphoric one. The first stage involves learning the correct representation

in certain contexts, while the second stage involves learning the correct representation for all con-

texts. Though a variety of different learning biases are required, only the second stage may need a

bias that is innate and domain-specific.

6.1.2 Broader implications

The results here also offer answers to some of the larger questions we’re more generally interested

in with respect to language acquisition. First, when induction problems exist, what does it take to

solve them? We have provided a case study suggesting that broader data sets may be additional

sources of information, providing indirect positive evidence. Thus, relaxing the direct evidence
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assumption can be useful for understanding how children solve acquisition problems.

Second, when there is an induction problem, what learning biases are needed to solve it and are

any of them part of Universal Grammar? Here, we have looked at a number of different learning

biases a learner would need to match the behavior observed in children and (eventually) adults for

anaphoric one. Only one bias seemed to be a candidate for an innate, domain-specific learning

bias, and so something that would be part of Universal Grammar.

Third, can we learn anything about the acquisition trajectory by exploring the learning biases

needed to solve induction problems? Through this case study, we have provided an example that

does this. We identified learning biases that a learner might use to produce the behavior observed

in 18-month-olds, and implemented them in a learning model. This allowed us to identify the

knowledge state a learner using those biases would have when producing that observed behavior.

Because this knowledge state did not match the adult knowledge state, this suggested a two-stage

learning process.

6.2 Future directions

There are a number of ways to extend the research here, looking at the information sources avail-

able, the overall problem to be solved, and alternate learning strategies a learner might use.

6.2.1 Additional Sources of Information

Our learning model here was a Bayesian learning model that was able to track suspicious coinci-

dences. Specifically, our learning model looked at the referent and the properties that referent had,

comparing them to the property that was mentioned. The magnitude of the suspicious coincidence

was determined only by how many other properties there were in the learner’s consideration (i.e.,

the impact was inversely proportional to the chance that the referent had the mentioned property

out of all the properties it could have had, implemented with parameter t).
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However, there may be more nuanced ways to interpret how suspicious a coincidence is.17 For

example, consider Sem-Syn ambiguous data (e.g., “Look - a red bottle! Oh look - another one!”,

when the referent is a red bottle). These data may present a stronger suspicious coincidence if

another object is present that does not have the mentioned property (e.g., a purple bottle), but the

speaker specifically indicates (say, by gesture or gaze) that the object with the mentioned property

is intended (e.g., a red bottle). This could be an additional cue that the mentioned property is

relevant (“red”), because there was another object present that didn’t have that property and the

speaker specifically didn’t pick that other object. Given this, data points like this might have update

values closer to that of unambiguous data (which has φI = φN′ = 1), since it is more likely that the

mentioned property is important (pI) and so more likely that the category is N’ (pN′). Without a

corpus analysis that includes this kind of situational information, it is unclear how frequent these

“more influential” Sem-Syn ambiguous data are. However, see Appendix C for one way to estimate

the impact these kind of data could have on learning anaphoric one.

Another source of information involves more sophisticated contextual cues. Some examples

are shown below in (29):

(29a) “I hate that red bottle - do you have another one?”

(29b) “I want this red bottle, and you want that one.” (italics indicate emphasis)

Most adults would interpret the referent of one in both cases as a BOTTLE that is not red. For

(29a), this is perhaps based on the verb “hate”, and the inference that someone would not ask for

another of something they hate . For (29b), this is perhaps based on the contrastive focus that occurs

between “red” and “that”. In both cases, this involves an inference that draws from information

beyond the default syntactic and semantic representation. In (29a), this is an inference about when

a speaker would use “hate” in this way; in (29b), this is an inference about when speakers use

contrastive focus. The default interpretation of one seems to include the modifier (see 30). In

(30a), it seems the speaker is requesting another red bottle. In (30b), while there is contrastive
17Thanks to the UChicago audiences for pointing the ideas in this section out.
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focus with “that”, it doesn’t interfere with the interpretation of one’s antecedent as “red bottle”.

(30a) “I love that red bottle - do you have another one?”

(30b) “I want this red bottle, and you want that one.” (italics indicate emphasis)

We note that we did not find any occurrences of data like (29) in our corpus analysis, which

suggests that young children probably do not encounter these data very often. In addition, it is

unclear how sensitive very young children (younger than 18 months, for example) would be to

this additional contextual information, and how well they would be able to make the pragmatic

inferences that adults would make. Incorporating this additional contextual information when

forming an interpretation is clearly something children must eventually learn to do since adults

do it, but we speculate that the initial target state for learning is the default interpretation where

the mentioned property is important. It would be useful to assess when children have the adult

interpretations for non-default anaphoric one examples like those in (29), as this would allow us to

further fine-tune the acquisition trajectory.

6.2.2 Alternate forms of the learning problem

In the present study, we have examined learning the representation of anaphoric one assuming

one standard syntactic structure. In particular, we assumed the following: (i) noun phrases are

category NP, (ii) modifiers are sister to N’, and (iii) complements are sister to N0. This would give

the structure for the noun phrase “a delicious bottle of wine” represented in the left side of figure

4, and shown in bracket notation in (31). However, an alternate representation of noun phrases is

available18, shown in (32) and the right side of figure 4. It assumes the following: (i) noun phrases

are category DP (Determiner Phrase), (ii) modifiers are sisters to N’ and children of NP, and (iii)

complements are sisters of N’.

18Thanks to Greg Kobele for noting this.
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(31) [NP a [N′ delicious [N′ [N0 bottle] [PP of wine]]]]

(32) [DP a [NP delicious [N′ [N′ [N0 bottle]] [PP of wine]]]]

Figure 4: Phrase structure trees corresponding to the bracket notation in examples (31) and (32)
for “a delicious bottle of wine”.

Practically speaking, this means that the learner must learn that the antecedent of anaphoric

one can be category NP (e.g., “delicious bottle of wine”) or category N’ (e.g., “bottle of wine”)

but never category N0 (e.g., “bottle” in (33)). This means there are three syntactic categories

smaller than an entire noun phrase (DP), and a child must learn that only two of them are valid

antecedents for one. Moreover, in the LWF experiment, a child should have the preference that

one’s antecedent is category NP, so that it can include the modifier (i.e., “red bottle” is an NP in

this representation).

(33) “I have a delicious bottle of wine...

(a) ...and you have one, too.” [one = “delicious bottle of wine”, category NP]

(b) ...and you have a flavorful one, too.” [one = “bottle of wine”, category N’]

(c) ...*and you have a flavorful one of beer. [one 6= “bottle”, category N0]

While we have not implemented a model that uses this syntactic representation, we can spec-

ulate on the results we might find. First, when faced with Syn ambiguous data (e.g., “Look - a
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bottle! Oh, look - another one!”), there is a three-way ambiguity (NP vs. N’ vs. N0) instead of a

two-way ambiguity. Since a Bayesian learner will prefer the smallest syntactic category consistent

with the data point19, the learner will still prefer N0 as our learner did here. Thus, Syn ambiguous

data remain misleading about the syntactic category of one (i.e., category = N0).

Second, both Sem-Syn ambiguous data and Unamb NP data would lead a learner to assume the

category is NP when a modifier is present (e.g., “red bottle”). This is because both these data types

increase the probability that the mentioned property is important for one’s referent to have (pI). In

this syntactic representation, only category NP can include modifiers. Therefore, the learner will

likely perform well in the LWF experiment, as long as pI is high.

Because no data favor N’, we would expect that the learner disprefers one as N’ at the end of

learning. Instead, the learner assumes one is NP (e.g., antecedent = “red bottle”) in contexts like

the LWF experiment that have a property mentioned and assumes one is N0 in general when no

property is mentioned. This is qualitatively the same result that we have found here, and would

still predict a two-stage acquisition trajectory. Learning in the second stage might again be able to

make use of the complement vs. modifier distinction, though not quite as directly. In particular, in

this representation, both modifiers and complements are sisters to N’, as shown in the right side of

Figure 4. However, complements are sisters to an N’ whose only child is N0. The learner would

thus need to connect the subtle semantic distinction between complements and modifiers to the

syntactic structure shown on the right side of Figure 4, which involves the syntactic knowledge

that complements are sisters to particular kinds of N’. For the same reasons discussed in section

6.1.1, this knowledge may be a good candidate for Universal Grammar. So, a learner using this

syntactic representation would likely still need to rely on innate, domain-specific knowledge, as

we found with the learner implemented in the present study.

19This is due to the Size Principle (Tenenbaum & Griffiths, 2001). In particular, the set of strings covered by
category N0 is smaller than the set of strings covered by category N’, which is smaller than the set of strings covered
by category NP. A noun-only string like “bottle” is consistent with all three categories, and so the category covering
the smallest set of strings is favored.
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6.2.3 Alternate learning strategies

We have explored learners that use a particular probabilistic learning strategy (Bayesian learning)

that implicitly favors the smallest set compatible with the observable data (Tenenbaum & Griffiths,

2001). However, there are alternate strategies learners might use. For example, a learner might

have an explicit bias to prefer the largest set compatible with the observable data.20 For instance,

given a noun-only string like “bottle” that is compatible with category N’ and category N0, this

learner would prefer to choose the larger syntactic category (N’).

We speculate that this kind of bias could lead to the correct representation at 18 months. To

briefly sketch how this would work, consider that the misleading Syn ambiguous data cause the

current learner to prefer category N0 over category N’. However, a learner who prefers the larger

structure will not be led astray the same way - that learner would prefer category N’ in this situation,

which is the correct representation. In fact, a learner with that bias would not even need to use

indirect positive evidence as the P&M learner does here - using only the Unambiguous <NP, Sem-

Syn ambiguous, and Syn ambiguous data should lead this learner to the correct representation.

So how could a learner come to have this kind of learning strategy? It must be explicit because

it does not implicitly fall out from the mechanics of Bayesian inference. For the dimension of what

to learn vs. how to learn, it clearly is a bias about how to learn (choose the largest set/structure

compatible). For the dimension of domain-specific vs. domain-general, it could be domain-general

if it applies to other data besides language data, but domain-specific if it only applies to learning

language knowledge. For the dimension of innate vs. derived, it could certainly be an innate

preference (though it would go against the implicit preference to choose the smallest compatible

set that comes from Bayesian inference). On the other hand, it may be possible to derive this

preference if other data demonstrate that choosing the larger set/structure is the correct answer.

Something in the linguistic domain that does this is verb phrase ellipsis, such as “I promised to

help him and you did, too.” Most adults interpret this as “I promised to help him and you promised

20Thanks to Ming Xiang for suggesting this.
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to help him, too”, rather than “I promised to help him and you helped him, too.” This suggests

that did is replacing the larger verb phrase, rather than the smaller one. However, it is unclear how

frequently verb phrase ellipsis occurs in child directed speech - if it occurs less frequently than

anaphoric one, it may not be a good way for children to derive that useful learning strategy in time

to learn anaphoric one.

7 Conclusion

We have demonstrated that indirect positive evidence can be leveraged effectively by an online

probabilistic learner in order to produce behavior consistent with young children’s anaphoric one

behavior, even if the learner does not achieve the adult representation. This suggested that the

acquisition process may require more than one stage. Though the first stage would not require

innate domain-specific knowledge, a subsequent acquisition stage might.

Indirect evidence does not necessarily negate the need for learning biases - it may, however,

alter the nature of the necessary learning biases. Considering indirect evidence and its impact on

acquisition can help define concrete proposals of the contents of Universal Grammar. We believe

this general approach of looking at broader input sets for learning linguistic phenomena may be

fruitful for identifying what is and is not necessarily part of Universal Grammar. Knowing the

impact of the necessary learning biases on acquisition may also inform us about the acquisition

trajectory, and provide guidance for additional experimental investigation.
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A Frequency of different pronouns in the input

Since the P&M learner uses all informative referential pronoun data, we included all available

referential pronouns in our corpus analysis instead of focusing only on anaphoric one. Table 10

shows the breakdown of the pronouns observed in the Eve corpus (Brown, 1973). We note that not

all these pronouns belonged to informative data points (where informative is defined as in section

5.2).

Table 10: Pronoun frequencies in Eve corpus

Pronoun Frequency %
it 1538 53.7%
he 321 11.2%
one<NP 302 10.5%
them 182 6.4%
she 165 5.8%
they 142 5.0%
her 80 2.8%
him 76 2.7%
one=NP 52 1.8%
itself 3 0.1%
himself 1 <0.1%
total 2862 100%

From this distribution, we can see that it is the most frequent pronoun, which makes up the bulk

of the Unamb NP examples in the P&M input set.

B Corpus analysis comparison

LWF conducted a corpus analysis on the Suppes (Suppes, 1974) and Brown-Adam (Brown, 1973)

corpora from CHILDES (MacWhinney, 2000), which contained approximately 54,800 child-directed

utterances total, but they did not include the Unamb NP data points that the P&M learner uses.

Given this, we also conducted an analysis on the Brown-Eve corpus (Brown, 1973), which in-
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cluded all four data types. Table 11 compares the availability of different data types in the learner’s

input, based on the two corpus analyses. Note that because we included Unamb NP data points,

LWF’s uninformative data points proportion was much lower than ours - specifically, only ungram-

matical <NP data points where uninformative for their analysis while ungrammatical data points,

data points that didn’t have a mentioned antecedent (e.g. “Do you want one?” with no previous lin-

guistic context), and NP data points where the antecedent did not contain a modifier (e.g., “Mmm

- a cookie. Do you want it?”) were uninformative for our analysis.

Table 11: Data type frequencies

Data type
LWF: P&M:

Suppes & Brown-Eve
Brown-Adam

Unamb <NP 0.25% 0.00%
Syn-Sem Amb 4.56% 0.66%
Syn Amb 94.72% 7.52%
Unamb NP N/A 8.42%
Uninformative 0.47% 83.4%

Comparing the two corpus analyses, one striking observation is that we were unable to find any

Unamb <NP data in our analysis (P&M). This is perhaps not so surprising, given that such data

require a specific conjunction of utterance and situation (and this lack of Unamb <NP data cor-

relates with Baker’s original intuition that these data are very rare). In the original LWF analysis,

only 0.25% of the data were of this type.

If we look at the other data types both analyses looked at, i.e., the Sem-Syn Amb and Syn Amb

data, we find that the Syn Amb data points outnumber the Sem-Syn Amb data points in both corpus

analyses. The main difference is that LWF found a higher ratio (about 21 Syn Amb to 1 Sem-Syn

Amb) than we did (about 11 Syn Amb to 1 Sem-Syn Amb).

For the Unamb NP data in our analysis, we find that such data are fairly similar in quantity to

the Syn Amb data in our analysis (about 11 Unamb NP data points for every 10 Syn Amb data
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points).

C More influential data

A certain subset of Sem-Syn ambiguous data may be more influential than how we’ve implemented

them here. Recall that Sem-Syn ambiguous data involve utterances like “Look - a red bottle! Oh,

look - another one!” when a red bottle is present. If another non-red bottle is also present, but the

speaker indicates the red bottle (say, by gesture or gaze), this seems like an additional source of

information that the property is important - namely, given the choice between a referent with the

property and a referent without the property, the speaker chose the referent with the property. This

additional information should increase the learner’s belief that the property is important, above and

beyond the increase that comes just from the suspicious coincidence of picking a a referent that

has the property.

Without a corpus analysis (presumably including video files that show the child’s learning

environment when referential data examples are uttered), it is unclear how frequently data like

these appear. However, one way to explore the effect of these kind of data would be to treat some

proportion of the Sem-Syn ambiguous data as if they were as influential as Unambiguous <NP

data. Treating these special Sem-Syn ambiguous data as Unambiguous <NP data allows them

to have the maximal effect they could have - in reality, they would likely not be as influential as

Unambiguous <NP data. Table 12 shows the effect of treating all (100% of) Sem-Syn ambiguous

data as if they were as influential as Unamb <NP data - this is the maximal amount of Sem-Syn

ambiguous data that could have this additional influence. In reality, it is more likely that only

a subset of the Sem-Syn ambiguous data are of this kind. Thus, we provide an estimate of the

best learning performance scenario. Results are the average of 1000 simulations per learner, with

standard deviations shown in parentheses. Note that results for the Baker learner remain the same

as in Table 8 because that learner does not heed Sem-Syn ambiguous data and so cannot treat them
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as if they were Unambiguous <NP data.

Table 12: Probabilities after learning, assuming all Sem-Syn ambiguous data are as effective as
Unambiguous <NP data.

Prob Baker R&G, P&L P&L’s EO P&M
pN′ 0.50 (<0.01) >0.99 (<0.01) 0.38 (0.05) 0.38 (0.05)
pI 0.50 (<0.01) >0.99 (<0.01) >0.99 (<0.01) 1.00 (<0.01)
pbeh 0.56 (<0.01) >0.99 (<0.01) 0.98 (<0.01) >0.99 (<0.01)
prep|beh 0.22 (<0.01) >0.99 (<0.01) 0.98 (<0.01) >0.99 (<0.01)

We can observe that the results do not change qualitatively for three of the learners: the Baker

learner still fails, the R&G (equivalent to the filtered P&L learner) still succeeds, and the P&M

learner succeeds in the LWF experimental context (pbeh = prep|beh >0.99) but has the incorrect

representation in general (pN′ = 0.38). The main change we see is that P&L’s EO learner now

appears to have the same performance as the P&M learner, where before P&L’s EO learner failed.

In particular, if we look at Table 8 for the P&M results with no highly influential Sem-Syn ambigu-

ous data, we see they are nearly identical to the results from P&L’s EO learner here. This tells us

that having just a few “unambiguous” data points (here, P&L’s EO learner’s influential Sem-Syn

ambiguous data) has the equivalent effect of learning from Unambiguous NP data (which is what

the P&M learner does).

Of course, this is the best possible learning scenario; in reality, less of the Sem-Syn ambiguous

data will be highly influential and the subset that is more influential will likely not be as influential

as true Unambiguous <NP data. However, this tells us that even in that best case scenario, we

would still expect a two-stage acquisition trajectory: Learners who do not implement a filter to

ignore Syn ambiguous data (P&L’s EO, P&M) do not learn the correct representation by 18 months.

Being sensitive to this additional influence of some Sem-Syn ambiguous data does not negate the

impact of the Syn ambiguous data.

51


