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Abstract
Learning theory and computational accounts suggest that learning depends on errors in outcome
prediction as well as changes in processing of or attention to events. These divergent ideas are
captured by models, such as Rescorla-Wagner (RW) and temporal difference (TD) learning on one
hand, which emphasize errors as directly driving changes in associative strength, versus models
such Pearce-Hall (PH) and more recent variants on the other hand, which propose that errors
promote changes in associative strength by modulating attention and processing of events.
Numerous studies have shown that phasic firing of midbrain dopamine neurons carries a signed
error signal consistent with RW or TD learning theories, and recently we have shown that this
signal can be dissociated from attentional correlates in the basolateral amygdala and anterior
cingulate. Here we will review this data along with new evidence 1) implicating habenula and
striatal regions in supporting error signaling in midbrain dopamine neurons and 2) suggesting that
central nucleus of the amygdala and prefrontal regions process the amygdalar attentional signal.
However while the neural instantiations of the RW and PH signals are dissociable and
complementary, they may be linked. Any linkage would have implications for understanding why
one signal dominates learning in some situations and not others and also for appreciating the
potential impact on learning of neuropathological conditions involving altered dopamine or
amygdalar function, such as schizophrenia, addiction, or anxiety disorders.
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Over the past four decades, the development of animal learning models has been constrained
by the need to account for certain cardinal traits of associative learning, such as cue
selectivity (e.g. blocking) and cue interactions (e.g. overexpectation). One effective way of
accounting for these traits has been to implement Kamin's dictum that, for learning to occur,
the outcome of the trial must be surprising (Kamin, 1969). Formally, this dictum is captured
in many influential models by the notion of prediction error, or discrepancy between the
actual outcome and the outcome predicted on that trial (Rescorla & Wagner, 1972; Pearce &
Hall, 1980; Pearce et al., 1982; Sutton, 1988; Lepelley, 2004; Pearce & Mackintosh, 2010;
Esber & Haselgrove, 2011).

Despite their widespread use, prediction errors do not always serve the same function across
different models. For example, the Rescorla-Wagner (RW; Rescorla & Wagner, 1972) and
temporal difference learning models (TD; Sutton, 1988) use errors to drive associative
changes in a direct fashion. Large errors will result in correspondingly large changes in
associative strength, but no change will occur if the error is zero (i.e. the outcome is already
predicted). Furthermore, the sign of the error determines the kind of learning that takes
place. If the error is positive, as when the outcome is better than predicted, the association
between the cues and the outcome will strengthen. If the error is negative, on the other hand,
as when the outcome is worse than expected, this association will weaken or even become
negative.

In contrast to these models, others such as Pearce and Hall's (PH; Pearce & Hall, 1980;
Pearce et al., 1982), utilize the absolute value of the prediction error to modulate the amount
of attention devoted to the cues on subsequent trials, which in turn dictates how much will
be learned about them. Large errors will result in a boost in the attention paid to the cues that
accompanied the errors, thereby facilitating subsequent learning, whereas small errors will
weaken that attention, hampering learning. (Since the cue-specific attention learned by PH
modulates subsequent associative learning about the cue, it is also known as the cue's
associability. We use the terms interchangeably in this review.) On this view, therefore, by
modulating associability, unsigned prediction errors ultimately determine the amount of
learning.

Although initially conceived as mutually exclusive, evidence that prediction errors may well
promote learning directly and by altering the attention to cues has gradually rendered these
views compatible, as reflected in more recent learning models (Lepelley, 2004; Pearce &
Mackintosh, 2010; Esber & Haselgrove, 2011). Indeed, the two mechanisms may serve
complementary roles. For example, the degree to which associations in the RW and TD
models are updated following a prediction error is scaled by free “learning rate” parameters,
but the theories contain no explicit account of what factors or mechanisms influence them.
The attentional allocation learned by PH could address this point, since PH's associabilities
play the same role as learning rates, but are learned from experience rather than entirely free.
Indeed, a separate family of Bayesian theories has studied how learning rules of this sort can
be derived from principles of sound statistical reasoning; these considerations typically lead
to models containing both a RW-like error-driven update, scaled by a PH-like associability
mechanism (Sutton, 1992; Dayan & Long, 1998; Kakade & Dayan, 2002; Courville et al.,
2006; Behrens et al., 2007; Bossaerts & Preuschoff, 2007). Yet even if RW and PH learning
are viewed as competing rather than complementary, it might still be useful for the brain to
employ multiple mechanisms to promote flexibility in different situations and robustness in
the face of damage or other interference affecting either mechanism.

Consistent with this proposal, numerous studies have shown that phasic firing of midbrain
dopamine neurons carries a RW or TD-like error signal (see Bromberg-Martin et al., 2010b
for review), and recently we have shown that this signal can be dissociated from a PH
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attentional correlate in the basolateral amygdala (Roesch et al., 2010). Below we will
describe this evidence along with new data implicating habenula and striatal regions in
supporting error signaling in midbrain dopamine neurons and central nucleus and prefrontal
regions in processing this attentional signal. We will also suggest that while the RW and PH
signals are dissociable, they are likely linked. Thus while the brain utilizes both signals, they
may not be fully independent. Interdependence has implications for understanding why one
signal dominates learning in some situations versus others and also for appreciating the
potential impact of pathological conditions such as schizophrenia, anxiety disorders, or even
addiction on learning mechanisms.

Dopamine neurons signal bidirectional prediction errors
According to the influential RW (Rescorla & Wagner, 1972) model, prediction errors are
calculated from the difference between the outcome predicted by all the cues available on
that trial (ΣV) and the outcome that is actually received (λ). If the outcome is
underpredicted, so that the value of λ is greater than that of ΣV, the error will be positive and
learning will accrue to those stimuli that happened to be present. Conversely, if the outcome
is overpredicted, the error will be negative and a reduction in learning will take place. Thus
the magnitude and sign of the resulting change in the cues' associations (ΔV) is directly
determined by prediction error according to the following equation:

Eq. 1

wherein α and β are constants referring to the salience of the cue and the reinforcer,
respectively, included to control the learning rate. This basic idea is also captured in
temporal difference learning models – TD – which extend the idea to apply recursively to
learning about cues from other cues' previously learned associations (Sutton, 1988).

Dopamine neurons of the midbrain have been widely reported to signal signed errors in
reward, and more recently punishment, prediction that are consistent with RW and TD
models (Mirenowicz & Schultz, 1994; Houk et al., 1995; Montague et al., 1996; Hollerman
& Schultz, 1998; Waelti et al., 2001; Fiorillo et al., 2003; Tobler et al., 2003; Ungless et al.,
2004; Bayer & Glimcher, 2005; Pan et al., 2005; Morris et al., 2006; Roesch et al., 2007;
D'Ardenne et al., 2008; Matsumoto & Hikosaka, 2009). Although this idea is not without
critics, particularly regarding the precise timing of the phasic response (Redgrave & Gurney,
2006) and the classification of these neurons as dopaminergic (Ungless et al., 2004;
Margolis et al., 2006), the evidence supporting this proposal is strong, deriving from
multiple labs, species, and tasks. These studies demonstrate that a large proportion of
putative dopamine neurons exhibit bidirectional changes in activity in response to rewards
that are better or worse than expected. These neurons fire to an unpredicted reward and
firing declines when the reward becomes predicted and is suppressed when the predicted
reward is not delivered. This is illustrated in the single unit example in Figure 1. Moreover,
the same neurons display activity in response to unpredicted cues, if those cues had been
previously associated with reward. Although these cue-evoked responses might initially
seem like they carry qualitatively different information from the error-related responses to
primary rewards, TD models explain them both as instances of a common prediction error
signal. In TD, unexpected reward-predictive cues induce a prediction error because they
reflect a change from the expected value, just as delivery of a primary reward does earlier in
learning. Of course, signed prediction errors do not necessarily have to be represented in the
form of bidirectional phasic activity within the same neuron; however the occurrence of
such a firing pattern in some dopamine neurons does serve to rule out other competing
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interpretations such as encoding of salience, attention or motivation, or even simple
habituation.

Although much of this evidence has come from primates, similar results have been reported
in other species. For example, functional imaging results from many groups indicate that the
BOLD response in the human ventral striatum also displays all the hallmarks of prediction
errors seen in primate dopamine recordings, such as elevation for unexpected rewards and
suppression when expected rewards are omitted (McClure et al., 2003; O'Doherty et al.,
2003; Hare et al., 2008). Although the BOLD response is a metabolic signal and not specific
to any particular neurochemical, several results support the inference that BOLD correlates
of prediction errors in striatum may in part reflect the effect of its prominent dopaminergic
input (Pessiglione et al., 2006; Day et al., 2007; Knutson & Gibbs, 2007). Also, although
technically more challenging to image unambiguously, BOLD activity in the human
midbrain dopaminergic nuclei also appears to reflect a prediction error (D'Ardenne et al.,
2008).

Similarly, Hyland and colleagues have reported signaling of reward prediction errors in a
simple Pavlovian conditioning and extinction task (Pan et al., 2005) in rodents. Putative
dopamine neurons recorded in rat VTA initially fired to the reward. With learning, this
reward-evoked response declined and the same neurons developed responses to the
preceding cue. During extinction, activity was suppressed on reward omission. Parallel
modeling revealed that the changes in activity closely paralleled theoretical error signals in
their task.

Prediction error signaling has also been reported in VTA dopamine neurons in rats
performing a more complicated choice task. In this task, reward was unexpectedly delivered
or omitted by altering the timing or number of rewards delivered (Roesch et al., 2007). This
task is illustrated in Figure 2, along with a heat plot showing population activity on the
subset of trials in which reward was delivered unexpectedly. Dopamine activity increased
when a new reward was instituted and then declined as the rats learned to expect that
reward. Activity in these same neurons was suppressed later, when the expected reward was
omitted. In addition, activity was also high for delayed reward, consistent with recent reports
in primates (Fiorillo et al., 2008; Kobayashi & Schultz, 2008). Furthermore, the same
dopamine neurons that fired to unpredictable reward also developed phasic responses to
preceding cues with learning, and this activity was higher when the cues predicted the more
valuable reward. These features of dopamine firing are entirely consistent with prediction
error encoding (Mirenowicz & Schultz, 1994; Montague et al., 1996; Hollerman & Schultz,
1998; Waelti et al., 2001; Fiorillo et al., 2003; Tobler et al., 2003; Bayer & Glimcher, 2005;
Pan et al., 2005; Morris et al., 2006; Roesch et al., 2007; D'Ardenne et al., 2008; Matsumoto
& Hikosaka, 2009).

Where do dopamine neurons get information relevant to predicting reward
and where do these signals go?

The latter question is easier to address, since the working hypothesis for all intents and
purposes has been “everywhere”. Error signals are found prominently in both substantia
nigra and ventral tegmental area, and since dopamine neurons project widely and nearly
every brain region is thought to be involved in some form of associative learning, a
reasonable hypothesis might be that these signals could be important anywhere.

However while this may be a reasonable starting point, recent and not-so-recent evidence
suggests it is an (obvious) over-simplification. First while dopamine neurons may project
widely, their inputs are particularly concentrated on striatal regions, which are heavily
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implicated in associative learning. This combined with converging evidence from imaging
and computational neuroscience have led to the suggestion that these regions are particularly
receptive to the dopaminergic teaching signals. Second there has been increasing emphasis
on whether the dopaminergic error signal (and dopamine neuron population it is contained
in) is truly homogenous. While the signal seems to be present in the majority of dopamine
neurons identified by waveform, this still leaves a substantial number of these neurons that
are not coding errors. Further traditional waveform criteria may fail to identify at least some
TH+ neurons (Margolis et al., 2006; Margolis et al., 2008); indeed there may be a particular
sampling bias against those that project to prefrontal regions (Lammel et al., 2008). Given
that prediction errors do not appear to be present in neurons that fail to show the classical
waveform criteria (Roesch et al., 2007), this suggests an interesting possibility that
dopaminergic prediction error signals may have their primary impact on subcortical
associative learning nodes, such as striatum and amygdala, and much less impact on
prefrontal executive regions. Of course this is largely speculative; until it is possible to
directly tag specific neurons during extracellular recording, in order to identify their
projection targets, it will be difficult to conclusively identify which projections carry these
signals and for what purposes.

More developed ideas exist regarding where information to support dopaminergic error
signals originates. One set of ideas has focused on the information content of this signal. In
order to generate a prediction error, one must have a prediction - the overall expected value
based on the summed values of the cues present in the environment. This summed value is
similar to the overall expected value in RW. Based on anatomical and imaging data, it has
been suggested that the ventral striatum serves this role, providing information about the
summed expected value given current circumstances to the midbrain (O'Doherty et al.,
2004). Other accounts have suggested that value predictions may also be derived from the
amygdala (Belova et al., 2008). Notably, these are both limbic areas that are clearly
implicated in signaling cue values. An interesting outstanding question is whether
information impacting the dopamine signal also comes from prefrontal regions (Balleine et
al., 2008), thought to represent task structure in so-called model-based reinforcement
learning models (Daw et al., 2005). Some evidence exists suggesting that dopamine signals
(or error-related BOLD responses in striatal regions) may reflect this type of information
(Bromberg-Martin et al., 2010d; Daw et al., in press; Simon & Daw, in press). Consistent
with this, we have recently shown that input from the orbitofrontal cortex, a key region in
encoding such model-based associative structures (Pickens et al., 2003; Izquierdo et al.,
2004; Ostlund & Balleine, 2007; Burke et al., 2008), is necessary for expectancy-related
changes in phasic firing in midbrain dopamine neurons (Takahashi et al., in press).

A second set of ideas has focused on locating the error signal itself in upstream structures. In
particular, considerable focus has been on lateral habenula (LHb)(Matsumoto & Hikosaka,
2007; Bromberg-Martin et al., 2010c; Hikosaka, 2010), which is thought to receive error
information from globus pallidus (GP)(Hong & Hikosaka, 2008). Activity in LHb reflects
signed prediction errors the same as activity of DA neurons, but remarkably, in the opposite
direction. That is, activity is inhibited and excited by positive and negative prediction errors,
respectively. Consistent with the idea that LHb is feeding DA neurons this information,
activity of DA neurons is inhibited by LHb stimulation and prediction error signaling in
LHb occurs earlier than those in DA neurons (Matsumoto & Hikosaka, 2007; Bromberg-
Martin et al., 2010a). DA neurons are likely to receive this information via indirect
connections through midbrain GABA neurons in VTA and the adjacent rostromedial
tegmental nucleus (RMTg), which has similar response properties as LHb neurons and have
heavy inhibitory projections to midbrain DA neurons (Ji & Shepard, 2007; Jhou et al., 2009;
Kaufling et al., 2009; Omelchenko et al., 2009; Brinschwitz et al., 2010; Hong et al., 2011).
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How to integrate these two stories is not clear. One possibility is that the GP-LHb-midbrain
circuit forms an “error-signaling axis” that information relevant to determining the value
expected in a particular state, provided by limbic and perhaps prefrontal regions, feeds into
at multiple levels. Whatever the case, the emerging picture suggests a widespread error-
signaling circuit, in position to receive a torrent of information regarding value, arising from
nearly all the brain systems we would currently think of as important for valuation and
decision-making.

Amygdala neurons signal shifts in attention
While the amygdala has often been viewed as critical for learning to predict aversive
outcomes (Davis, 2000; LeDoux, 2000), the last two decades have revealed a more general
involvement in associative learning (Gallagher, 2000; Murray, 2007; Tye et al., 2008).
Although the mainstream view holds that amygdala is important for acquiring and storing
associative information (LeDoux, 2000; Murray, 2007), there have been hints in the
literature that amygdala may also support other functions related to associative learning and
error signaling. For example, damage to central nucleus disrupts orienting and increments in
attentional processing after changes in expected outcomes (Gallagher et al., 1990; Holland
& Gallagher, 1993b; 1999), and other studies have proposed a critical role for amygdala –
particularly central nucleus output to subcortical areas – in mediating vigilance or surprise
(Davis & Whalen, 2001).

Consistent with this idea, Salzman and colleagues (Belova et al., 2007) have reported that
amygdala neurons in monkeys are responsive to unexpected outcomes. However this study
showed minimal evidence of negative prediction error encoding or transfer of positive
prediction errors to conditioned stimuli in amygdala neurons, and many neurons fired
similarly to unexpected rewards and punishments. This pattern of firing does not meet the
criteria for a RW or TDRL prediction error signal.

Similar firing patterns have also been reported in rat basolateral amygdala (ABL). For
example, Janak and colleagues examined activity of neurons in ABL during unexpected
omission of reward during the extinction of reward-seeking behavior (Tye et al., 2010). Rats
were first trained to respond at a nosepoke operandum for partial reinforcement (50%). After
several training sessions, the sucrose reward was withheld during extinction. Rats quickly
learned to stop nosepoking during extinction, and many neurons in ABL started to fire to the
empty port. Importantly, these changes were correlated with the response intensity and the
extinction resistance of the rat and fit well with several lesion studies demonstrating the
importance of the ABL in altering behavior when expected values change (Corbit &
Balleine, 2005; McLaughlin & Floresco, 2007; Ehrlich et al., 2009)

Modulation of neural activity in lateral and basal nucleus of amygdala by expectation has
also been described during fear conditioning in rats (Johansen et al., 2010). In this procedure
shock to the eye lid was induced after presentation of an auditory conditioned stimulus.
Recordings were conducted during initial CS-UCS pairings and showed that shocks elicited
stronger neural responses early during learning than later after learning. For these cells,
responses evoked by the shock were inversely correlated with freezing to the conditioned
stimulus, suggesting that diminution of shock-evoked activity was related to the changes in
expectation. Overall, activity was stronger for unsignalled versus signaled shock, consistent
with amygdala encoding the surprise induced by unexpected shock.

The patterns observed in these studies do not appear to be fully consistent with what is
predicted by RW or TD, and instead seem more like a correlate of surprise or attention.
However it is unclear if they fully comply with predictions of the PH theory for an
attentional correlate, since in most cases they were recorded in settings that make it difficult
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to identify whether they are unsigned, either because recordings were done across days or
without both types of errors or due to potential confounds between aversive positive errors
with appetitive negative errors (or vice versa). In order to fully address this question, it
would be useful to record these neurons in a task already applied to isolate RW or TD-like
signed errors in midbrain dopamine neurons.

Data from such a study are presented in Figure 2. In this experiment, neural activity was
recorded from ABL neurons in rats during performance of the same choice task used to
isolate prediction error signaling in rat dopamine neurons (Roesch et al., 2010). As in
monkeys, many ABL neurons increased firing when reward was delivered unexpectedly.
However such activity differed markedly in its temporal specificity from what was observed
in VTA dopamine neurons. This is evident in Figure 2, where the increased firing in ABL
occurs somewhat later and is much broader than that in dopamine neurons.

Moreover activity in these ABL neurons was not inhibited by omission of an expected
reward. Instead, activity was actually stronger during reward omission, and those neurons
that fired most strongly for unexpected reward delivery also fired most strongly after reward
omission.

Activity in ABL also differed from that in VTA in its onset dynamics. While firing in VTA
dopamine neurons was strongest on the first encounter with an unexpected reward and then
declined, activity in the ABL neurons continued to increase over several trials after a shift in
reward. These differences and the overall pattern of firing in the ABL neurons are
inconsistent with signaling of a signed prediction error as envisioned by RW and TD, at
least at the level of individual single-units. Instead such activity in ABL appears to relate to
an unsigned error signal, or more particularly, to an associability or attention variable
derived from unsigned errors.

That is, theories of associative learning have traditionally employed unsigned errors to drive
changes in stimulus processing or attention, operationalized as an associability parameter
controlling learning rate (Mackintosh, 1975; Pearce & Hall, 1980). According to this idea,
the attention that a cue receives is equal to the weighted average of the unsigned error
generated across the past few trials, reflecting the idea that cues that have been accompanied
by either positive or negative errors in the past are more likely to be responsible for errors in
the future, and thus should be updated preferentially. Mathematically, according to one
variant of PH (Pearce et al., 1982), the associability of a cue on trial n (αn) is updated
relative to its previous level (αn-1) using the absolute value of the prediction error on that
trial. Thus:

Eq. 2

where (λn-1 - ΣV n-1) is defined as the difference between the value of the reward predicted
by all cues in the environment (ΣV n-1) and the value of the reward that was actually
received (λn-1), and γ is a weighting factor ranging between 0 and 1, which serves to account
for the observed gradual change in attention or associability. The resultant quantity—
termed attention (α)—can then be used to scale the update of a cue's value. PH's version of
this rule is:

Eq. 3
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where S and λ represent the intrinsic salience (e. g. intensity) of the cue (S) and the reward,
respectively.

Of course, the same associability term can be used, in principle, with RW (Eq. 1) to
modulate learning rate (Lepelley, 2004). Interestingly, hybrid RW/PH mechanisms of this
sort also emerge in Bayesian models that attempt to explain learning in conditioning as
arising from normative principles of statistical reasoning. In these models, learning about a
cue is often driven by prediction error (as in RW) but the learning rate is not a free
parameter. Instead, it should be determined by uncertainty about the cue's associative
strength: all else equal, if you are more uncertain about a cue's value, you should be more
willing to update it. In these models, then, uncertainty plays a role like associability, in
controlling learning rates. In these models, uncertainty is determined by a rule strikingly
similar to Eq 2. This is because an important determinant of uncertainty is the variance of
the prediction error, of which the unsigned (in this case, squared rather than absolue) error is
a sample (Dayan & Long, 1998; Courville et al., 2006; Bossaerts & Preuschoff, 2007).
Thus, Bayesian models offer a normative interpretation for Eq 2 and the attentional factor it
describes, and motivate its use in hybrid models together with RW-like mechanisms.

The activity of the ABL neurons in Figure 2 appears to provide an associability signal
similar to that proposed by PH and these other models to underlie surprise and attentional
modulation in the service of associative learning. As predicted by these theoretical accounts,
this pattern is clearly unlike that of a signed error contained in the firing of the VTA
dopamine neurons. A similar dissociation between the BOLD signal in ventral striatum and
amygdala has also been reported in humans during aversive learning (Li et al., 2011). In this
study, subjects performed a reversal task in which two visual cues were initially partially
paired with an electrical shock or nothing, respectively, and then the associations were
reversed. Changes in skin conductance response during presentation of the two cues
indicated that subjects learned not only the value of the cues but also represented the cues
associability or salience as predicted by the PH model. Subsequent analyses of BOLD
response at the time of cue termination (when the outcome was delivered or not) showed
that activity in the ventral striatum was positively correlated with the aversive prediction
error (Figure 3), whereas activity in the amygdala was positively correlated with
associability (Figure 3). Given results implicating the dopamine system in signaling aversive
errors (Ungless et al., 2004; Matsumoto & Hikosaka, 2009; Mileykovskiy & Morales,
2011), these results are at least consistent with a neural dissociation between dopaminergic
error signaling and amygdalar signaling of attention.

Where do amygdala neurons get information relevant to modulating
attention and where do these signals go?

As with the dopamine neurons, it is simpler to address where the signal might go, and what
its impact might be than to identify where the information to support the signal originates.
Two major circuits appear to be the most likely recipients of the attentional signal from the
basolateral amygdala. The first is a circuit running through the central nucleus of the
amygdala (CeA). The central nucleus receives information from the basolateral areas and it
has been strongly implicated in surprise and vigilance (Davis & Whalen, 2001) as well as in
modulating attention for learning during unblocking procedures (Holland & Gallagher,
1993a; b). These and other related findings (Holland & Gallagher, 1993a; b; Holland &
Kenmuir, 2005) demonstrate that CeA is essential for the enhancement of attention that
results from the unexpected omission of an outcome (negative error). The specificity of this
effect suggests a special role of CeA in processing the absence of an expected event;
consistent with this we have found that neurons in central nucleus provide a signal that
specifically increases when an expected reward is omitted (Calu et al., 2010). Whether the
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partial representation of a PH signal in the central nucleus reflects a filtering of the fuller
signal from basolateral amygdala will require a causal disconnection to demonstrate,
although recent data from Holland and colleagues implicating the ABL in attentional
function during unblocking procedures would favor this hypothesis (Chang et al., 2010).

The second circuit that may be receive information from basolateral amygdala regarding
attentional modulation are prefrontal areas. As outlined above, these regions may not receive
a dopaminergic error signal, since it has been reported that prefrontal-projecting dopamine
neurons lack the characteristic waveform features that characterize error-signaling
dopaminergic neurons in our work (Roesch et al., 2007; Lammel et al., 2008). Yet prefrontal
regions - particularly the orbital and cingulate regions that receive input from amygdala - are
generally implicated in learning and processes that would benefit from input highlighting
particularly cues for attention.

The anterior cingulate (ACC) is a particularly likely candidate to receive error information
from ABL; it has strong reciprocal connections with ABL (Sripanidkulchai et al., 1984;
Cassell & Wright, 1986; Dziewiatkowski et al., 1998) and has already been shown to be
involved in number of functions related to error processing and attention (Carter et al., 1998;
Scheffers & Coles, 2000; Paus, 2001; Holroyd & Coles, 2002; Ito et al., 2003; Rushworth et
al., 2004; Walton et al., 2004; Amiez et al., 2005; 2006; Kennerley et al., 2006; Magno et
al., 2006; Matsumoto et al., 2007; Oliveira et al., 2007; Rushworth et al., 2007; Sallet et al.,
2007; Quilodran et al., 2008; Rudebeck et al., 2008; Rushworth & Behrens, 2008;
Kennerley et al., 2009; Kennerley & Wallis, 2009; Totah et al., 2009; Hillman & Bilkey,
2010; Wallis & Kennerley, 2010; Hayden et al., 2011; Rothe et al., 2011).

Although most of this research has focused on the role of the ACC in the detection of errors
of commission (Ito et al., 2003; Amiez et al., 2005; Quilodran et al., 2008; Rushworth &
Behrens, 2008; Totah et al., 2009), more recent work has suggested that ACC does not
simply detect errors, but is important for signaling other aspects of behavioral feedback
(Kennerley et al., 2006; Oliveira et al., 2007; Rothe et al., 2011), including prediction error
encoding similar to what we find in ABL. For example, Hayden and colleagues showed that
activity in monkey ACC was high when rewards were delivered and omitted unexpectedly
in a task in which rewards were delivered at predetermined probabilities. These changes in
ACC firing occurred regardless of valence at the single cell level, consistent with encoding
of surprise or attentional variables (Hayden et al., 2011).

To more directly address how activity related to changes in reward in ACC compares to that
in other areas, we have recently recorded in ACC in rats in the same task in which we
characterized firing in ABL and VTA. Importantly this task allows us to examine neural
activity in ACC during trials after reward prediction error signals occur in a setting in which
animals learn from detection of such errors. Consistent with previous findings we found that
ACC detects errors of commission and reward prediction at the time of their occurrence
(Bryden et al., in press). However, we also found that activity in ACC was elevated in
anticipation of and during cue presentation on trials after reward contingences changed.
Such an elevation, which was not observed in ABL, could reflect increased processing of
cues on subsequent trials, as predicted by the PH theory. Consistent with this proposal,
changes in firing were correlated with behavioral measures of attention to the cues evident
on these trials. These effects are illustrated in a single cell example and across the
population in Figure 4. Thus ACC is not only involved in detecting errors but in utilizing
that information to drive attention and learning on subsequent trials. Detection of prediction
errors and the subsequent changes in attention critical for learning might be dependent on
connections between ABL and ACC.
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Where information supporting these signals originates is again a more complex question,
particularly since these signals have only been recently uncovered. Like RW or TD error
signals, the attentional signals carried by neurons in basolateral and central amygdala also
depend on information about expected value, in order to calculate the prediction error that
forms the basis of the PH effect. The amygdala is a major associative learning node, thus it
is well positioned to compute an error signal internally, utilizing associative information
coded locally and sent to it by other regions, such as prefrontal regions or hippocampus.

However an alternative, intriguing possibility is that the PH signal in the amygdala is
dependent on an external prediction error signal. An obvious candidate to provide this signal
would be the midbrain dopamine neurons. These neurons already have access to the
information necessary to compute this quantity and project strongly into basolateral
amygdala. Indeed, although learning as in Eq. 2 could in principle be implemented using a
signed error signal of the sort associated with dopamine (e.g., if the rules governing
plasticity at target neurons effect the absolute value), recent work suggests that some
dopamine neurons may provide an unsigned error signal. Specifically, in monkeys, some
putative dopamine neurons increase firing when either an appetitive (juice) or aversive (air-
puff) outcome is delivered unexpectedly (Matsumoto & Hikosaka, 2009). These results have
yet to be shown clearly in rats, but would be consistent with a linkage between
dopaminergic and amygdalar teaching signals.

Although speculative, we recently repeated our earlier experiment, recording in both
controls and rats with ipsilateral 6-OHDA lesions (Esber et al., Society for Neuroscience
Abstracts, 2010). These rats performed normally on the task, presumably utilizing the intact
hemisphere, and amygdala neurons recorded in these rats showed robust reward-evoked
activity. However unlike neurons in controls and in our prior experiment, neurons deprived
of dopamine input failed to modulate firing in response to surprising upshifts or downshifts
in reward. Thus removal of dopamine input disrupted error-related modulations in the
activity of these neurons. This result provides evidence linking the RW signal computed by
the dopamine neurons with the PH attentional signal in basolateral amygdala neurons.

The significance for normal and pathological learning
If single-unit activity in amygdala contributes to attentional changes, then the role of this
region in a variety of learning processes may need to be reconceptualized or at least
modified to include this function. This is particularly true for ABL. ABL appears to be
critical for encoding associative information properly; associative encoding in downstream
areas requires input from ABL (Schoenbaum et al., 2003; Ambroggi et al., 2008). This has
been interpreted as reflecting an initial role in acquiring the simple associative
representations (Pickens et al., 2003). However an alternative account – not mutually
exclusive – is that ABL may also augment the allocation of attentional resources to directly
drive acquisition of the same associative information in other areas. As noted above, the
signal in ABL, identified here, may serve to augment or amplify the associability of cue-
representations in downstream regions, so that these cues are more associable or salient on
subsequent trials. Such an effect may be evident in neural activity prior to and during cue
sampling reported here in ACC.

A role in attentional function for ABL would also affect our understanding of how this
region is involved in neuropsychiatric disorders. For example, amygdala has long been
implicated in anxiety disorders such as post-traumatic stress disorder (Davis, 2000). While
this involvement may reflect abnormal storage of information in ABL, it might also reflect
altered attentional signaling, affecting storage of information not in ABL but in other brain
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regions. This would be consistent with accounts of amygdala function in fear that have
emphasized vigilance (Davis & Whalen, 2001).

Understanding how RW and PH signaling are linked in the brain will also be important. One
possibility, which we have suggested several times here and elsewhere (Lepelley, 2004;
Courville et al., 2006; Li et al., 2011), is that the RW/TD and PH mechanisms effectively
comprise the associative learning and learning rate control components of a single hybrid
learner. Thus the associabilities learned by PH may serve to scale the associative TD updates
driven by dopaminergic prediction errors. The demonstration that signaling related to
associability in ABL depends on a dopaminergic input would support such an integrated
view, since it is consistent with the possibility that the error terms in Eqs. 1 and 2 derive
from a common source.

Even if the two mechanisms are tightly interacting in many circumstances, they may also
contribute separately or independently to other behaviors. Indeed, there do exist some
behavioral phenomena that are difficult to explain by the simple composition of RW and PH
mechanisms into a single hybrid learner, at least in the form described here, but instead may
be consistent in various circumstances with the mechanism described by one or the other
model can operate more or less independently. For example, when rewards are omitted
unexpectedly, rats typically show increased responding to added cues (Holland & Gallagher,
1993a), which is consistent with the original PH models but not RW or TD learning (even
when augmented by PH attentional updates; see Dayan and Long 1996). However if
switches involving omission or reward downshift occur repeatedly, rats show less or slower
responding (Roesch et al., 2007; Roesch et al., 2010), consistent with RW but not with
naked PH. These considerations suggest that the two classical conditioning mechanisms may
contribute to different degrees in different circumstances, much as has been suggested for
different instrumental learning mechanisms (Dickinson & Balleine, 2002; Daw et al., 2005).
In the case of PH and RW, the factors governing the relative contribution of the mechanisms
are not yet as well understood.

Finally it is worth noting that a linkage (or lack thereof) between dopaminergic RW signals
and PH signals in ABL and elsewhere has significance for our understanding of altered
learning in neuropathological conditions. For example, some symptoms of schizophrenia
have been proposed to reflect the spurious attribution of salience to cues (Kapur, 2003).
These symptoms might be secondary to altered signaling in ABL (Taylor et al., 2005) under
the influence of aberrant dopaminergic input. Such alterations could drive frank attentional
problems as well as positive symptoms such as hallucinations and delusions. The amygdala
has also been central to ideas about addiction, where it is proposed to mediate craving and
the abnormal attribution of motivational significance to drug-associated cues and contexts.
Again such aberrant learning may reflect, in part, disrupted attentional processing,
potentially under the influence of altered dopamine function.
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Figure 1.
Changes in firing in response to positive and negative reward prediction errors (PE's) in a
primate dopamine neuron. Figure shows spiking activity in a putative dopamine neuron
recorded in the midbrain of a monkey performing a simple task in with a conditioned
stimulus (CS) is used to signal reward. Data is displayed in a raster format in which each tic
mark represents an action potential and each row a trial. Average activity per trial is
summarized in a peri-event time histogram at the top of each panel. Top panel shows
activity to an unpredicted reward (+PE). Middle panel shows activity to the reward when it
is fully predicted by the CS (no PE). Bottom panel shows activity on trials in which the CS
is presented but the reward is omitted (−PE). As described in the text, the neuron exhibits a
bidirectional correlate of the reward prediction error, firing to unexpected but not expected
reward and suppressing firing on omission of an expected reward. The neuron also fires to
the CS; in theory such activity is thought to reflect the error induced by unexpected
presentation of the valuable CS. This feature distinguishes a TDRL signal from the simple
error signal postulated by Rescorla-Wagner. Figure adapted from Schultz, Dayan, and
Montague (Schultz et al., 1997).
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Figure 2.
Changes in firing in response to positive and negative reward prediction errors (PE's) in rat
dopamine (DA) and basolateral amygdala (ABL) neurons. Rats were trained on a simple
choice task in which odors predicted different rewards. During recording, the rats learned to
adjust their behavior to reflect changes in the timing or size of reward. As illustrated in the
left panel, this resulted in delivery of unexpected rewards (+PE) and omission of expected
rewards (−PE). Activity in reward-responsive DA and ABL neurons is illustrated in the heat
plots to the right, which show average firing synchronized to reward in the first and last 10
trials of each block, and in the scatter/histograms below, which plot changes in firing for
each neuron in response to +PE's and −PE's. As described in the text, neurons in both
regions fired more to an unexpected reward (+PE, black arrow). However only the DA
neurons also suppressed firing on reward omission; ABL neurons instead increased firing
(−PE, gray arrows). This is inconsistent with the bidirectional error signal postulated by
Rescorla-Wagner or TDRL and instead is more like the unsigned error signal utilized in
attentional theories, such as Pearce-Hall. Figure adapted from Roesch, Calu, and
Schoenbaum (Roesch et al., 2007) and Roesch, Calu, Esber, and Schoenbaum (Roesch et
al., 2010).
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Figure 3.
Neural correlates of associability and prediction error term. (a) BOLD in the ventral
striatum, but not amygdala, correlated with prediction error. (b) BOLD in the bilateral
amygdala, but not ventral striatum, correlated with associability regressor (p < 0.05, SVC).
(c) Differential representations of associability (α) and prediction error (δ) in striatum and
amygdala BOLD (± s.e.m). Figure adapted from Li, Schiller, Schoenbaum, Phelps, and Daw
(Li et al., 2011).
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Figure 4.
Activity in ACC is stronger on trials after errors in reward prediction. a-b, Histogram
represents firing of one neuron during the first 10 (dark gray) and last 10 (light gray) trials
after up- and down-shifts in value aligned on odor onset. c, Heat plot shows the average
firing, of the same neuron, across shifts during the first and last 10 trials after reward
contingencies change. d, Average normalized neural activity for all task-related neurons
(odor onset to fluid well entry) comparing the first 10 trials in all blocks (early; solid black)
to the last 10 trials in all blocks (late; dashed gray). e, Distribution reflecting the difference
in task related firing rate between early and late in a trial block (early-late)/(early+late)
following either up-shifts (top) or down-shifts (bottom). f, Correlation between light-on
latency (house light on until nose poke; y-axis) and firing rate (x-axis) either early or late
within a block ((early-late)/(early+late)). N = 4 rats. Figure adapted from Bryden and
Roesch (Bryden et al., in press).
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