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Abstract

The question of how human beings acquire exact-number concepts has interested
cognitive developmentalists since the time of Piaget. The answer will owe something
to both the rationalist and constructivist traditions. On the one hand, some aspects of

1 This work was supported by NSF grant DRL-0953521 to the first author.

Advances in Child Development and Behavior, Volume 43 © 2012 Elsevier Inc. 237
ISSN 0065-2407, All rights reserved.
http://dx.doi.org/10.1016/B978-0-12-397919-3.00009-5

Rational Constructivism in Cognitive Development, First Edition, 2012, 237-268
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numerical cognition (e.g. approximate number estimation and the ability to track small
sets of one to four individuals) are innate or early-developing and are shared widely
among species. On the other hand, only humans create representations of exact, large
numbers such as 42, as distinct from both 41 and 43. These representations seem to be
constructed slowly, over a period of months or years during early childhood. The task
for researchers is to distinguish the innate representational resources from those that
are constructed, and to characterize the construction process. Bayesian approaches can
be useful to this project in at least three ways: (1) As a way to analyze data, which may
have distinct advantages over more traditional methods (e.g. making it possible to find
support for a null hypothesis); (2) as a way of modeling children’s performance on
specific tasks: Peculiarities of the task are captured as a prior; the child’s knowledge is
captured in the way the prior is updated; and behavior is captured as a posterior
distribution; and (3) as a way of modeling learning itself, by providing a formal account
of how learners might choose among alternative hypotheses.

1. THE PROBLEM
1.1. Exact-Number Concepts

This chapter is concerned with how children learn concepts for exact
numbers, especially numbers above four. Other writing on this topic has
used the terms “natural numbers” or “positive integers,” both of which are
also correct. The natural numbers are the “counting numbers”—one, two,
three, . . . and so on. They are a subset of the whole numbers (which are
comprised of the natural numbers and zero), which in turn are a subset of the
integers (the whole numbers plus negative numbers, excluding fractions and
decimals), which are a subset of the rational numbers (i.e. anything that can
be expressed as a ratio of two integers), which are a subset of the real
numbers (i.e. anything that can be plotted a number line, including all
rational numbers, plus nonterminating, nonrepeating decimals such as 7 and
the square root of 2).

We use the term “exact numbers” for a few reasons. First, the term
“natural number” is occasionally (and mistakenly) taken to mean that these
concepts are “natural” in the sense of being innate, unlearned, or shared with
other species. Not so. Exact numbers such as 42 (and even those as low as
five and six) are not “natural” in that sense. They are constructed during
childhood, based on cultural input. And as far as we know, they are unique
to humans (really large number concepts, such as the concept 2014, certainly
seem unique to humans).

The terms “natural number” and “positive integer” may also leave some
readers confused about what, exactly, we think children know. Adults with
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some mathematical training may have an explicit concept “natural number,”
which includes beliefs such as, “The natural numbers start at one and go on
forever; there is no highest natural number” or, “Adding or multiplying any
two natural numbers together produces another natural number.” But we
want to be clear in this chapter that we are not claiming that children have
such explicit knowledge about “natural numbers” or, “positive integers” as
mathematical objects.

Instead, we are interested in children’s ability to represent exact
numerical quantities of five or more. How can a child represent the infor-
mation that there are, for example, 8 blocks in a tower, 12 friends on the
playground, or 24 cookies in the oven? That is, how are the words “eight,”
“twelve” and “twenty-four” understood by the child?

Children do represent and reason about numbers long before they
understand the formal properties of the natural numbers or the positive
integers in an explicit, mathematical sense. Consider the following quota-
tions, both from the same child (the first author’s 6-year-old son, JS). The
first quotation demonstrates that JS represents at least some natural numbers.
The second demonstrates his confusion about countable infinity, which is
a property of the natural numbers.

(1) JS (age 5 years, 11 months): “If you have a thousand dollars and you lose

a hundred, that’s the same as if you have ten dollars and you lose one.”
(2) JS (age 6 years, 6 months): "Luca said that a googolplex is the highest

number, but he was wrong. There is no highest number.”

BWS: “Yes, because you can always add one to any number and get
a higher one."

JS: "Until infinity."

BWS: "Yes."

JS: "And after infinity, it starts from the highest negative number, and

counts back."

BWS: "It does what?"

JS: “It counts all the way back to zero. It’s a big loop. And infinity and

zero are the ends.”

As these examples show, a child can represent natural-number concepts
without explicitly representing the formal properties of the natural
numbers as a set. To avoid giving the impression that we are talking about
the latter, meta-numerical type of knowledge, this chapter uses the terms
exact numbers and “exact-number concepts” for the mental representations
of exact numerical quantities such as five, six, seven, eight, and higher
natural numbers.
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1.2. What Makes the Acquisition of Exact-Number
Concepts Interesting?

Are numbers a cultural invention? It seems indisputable that at least some
are. Take the number T, for example. No one knows anything about T
until they hear about it from someone else, and there are plenty of people in
the world who never acquire a concept of T at all. (Of course, whoever
originally formulated the concept 70 was an exception to this statement, but
it is true for all the rest of us.)

On the other hand, research over the past 40 years has shown that other
types of numerical concepts are not cultural inventions, but are the outputs
of cognitive systems that have evolved through natural selection. Most
obviously, the approximate number system (often abbreviated ANS) allows
humans and other animals to represent approximate numerical quantities of
at least up to several hundred.

Separately from the ANS, humans and other animals also have the ability
to create mental models for small sets of up to three or four individuals. This
ability is sometimes called parallel individuation. As that name suggests, this
is not a number system, but a system for identifying and tracking individuals
(which may be objects, noises, actions, etc.) It is not a number system
because it does not include any symbol for the number of objects in the set.
Instead, it maintains a separate symbol for each individual being tracked.
Number is represented only implicitly.

What makes exact-number concepts interesting is that a number like 42
cannot be represented by either of these innate systems. The ANS is only
approximate, and parallel individuation only works for up to three or four
items. So, how can numbers like “exactly 42” be represented? The answer is
that the representational system supporting the concept “exactly 42 is
constructed over a period of months or years during early childhood.

This is why any plausible account of the origins of exact, large number
concepts must be both rationalist and constructivist. It must be rationalist in
specifying the role played by those innate systems that represent some
numerical content, and it must be constructivist in explaining how we go
beyond those innate systems. Following Carey (2009), we will argue that
exact-number concepts are a cultural invention, which must be redis-
covered/reconstructed by each individual child during development, based
on cultural input. The exact-number system, once acquired, has vastly more
representational power than the innate systems, and forms the basis for all
later-acquired number concepts (e.g. negative numbers, rational numbers,
real numbers, etc.).
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Finally, we take up the question of how Bayesian inference can be
useful to this project, and we discuss three ways that it has already been
used (Table 9.1). First, Bayesian methods can be used to analyze data.
Depending on the data set and the question being addressed, these methods
may have advantages over more traditional, frequentist methods. In the
example we discuss, Bayesian inference makes it possible to find positive
support for the null hypothesis, rather than simply rejecting or failing to
reject the null. This can sometimes be a distinct advantage. Second,
Bayesian methods can be used to model subjects’ performance on specific
tasks. In this case, peculiarities of the task are captured as a prior; the
subject’s knowledge is captured in the way the prior is updated; and the
subject’s observed behavior is captured in the posterior distribution. Third,
Bayesian methods can be used to model learning itself. In this case, Bayes
provides a formal account of how learners might choose among alternative
hypotheses.

Table 9.1 Three ways of using Bayesian inference in this research

Application Prior Evidence Posterior
Bayesian data Prior belief about Data collected in an  Updated belief
analysis (to population experiment about what
understand parameters (means, the population
data) standard parameters are
deviations, etc.) likely to be
Bayesian task Contaminant The child’s Probabilistic
modeling (to influences on the knowledge and/ description of
understand child’s behavior: or perceptions how a child
a task) task demands, will behave in
pragmatics, order the task with
effects, etc. a given state of
knowledge
and/or
perceptions
Bayesian concept- Prior preferences in  Typical input that Inferences about
creation a space of possible a child would the world that
modeling (to truths about the receive the child is
understand world likely to
how a concept make (i.e.
could be knowledge
acquired) that the child
develops)
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2. WHY ANY REASONABLE ACCOUNT OF THESE
PHENOMENA MUST BE RATIONALIST

2.1. The Innate, Approximate Number System

Any effort to understand human numerical cognition must begin with the
ANS. Readers who are already familiar with the ANS should feel free to skip
the following section, which provides a brief description of the ANS in
nonhuman animals, human infants, and adults.

The ANS is cognitive system that yields a mental representation of the
approximate number of individuals in a set (e.g. Feigenson, Dehaene, &
Spelke, 2004). Number is represented by a physical magnitude in the brain,
and this magnitude is proportional to the actual number of individuals
perceived. For example, if a person sees sets of 20 and 40 items, the neural
magnitude for the set of 40 will be about twice as large as the neural
magnitude for the set of 20 (e.g. Nieder & Miller, 2003). For this reason,
representations of number in the ANS are often called “analog-magnitude”
representations.

A key signature of the ANS (across development and across species) is
that the discriminability of any two set sizes is a function of the ratio between
them (for review, see Carey, 2009). It is equally as difficult to tell 8 from 16
items as it 1s to tell 16 from 32 items, or 50 from 100, or 80 from 160,
because all of these cases compare sets with a ratio of 1:2.

Note that the discriminability of set sizes is not determined by their
absolute difterence. The comparison 8 versus 16 has a ratio of 1:2 and an
absolute difference of 8. This is of the same difficulty as the comparison 80
versus 160, because the ratio in the latter case is still 1:2, even though the
absolute difference (80) is ten times greater. On the other hand, discrimi-
nating 8 versus 16 is much easier than discriminating 152 versus 160. In this
case, the absolute differences are both 8, but the ratio in the second
comparison is much smaller (approximately 1:1.05).

This property of ratio dependence gives rise to two effects often
mentioned in the literature. The first is the magnitude effect, which says that
if the absolute difference between two set sizes is held constant, lower
numbers are easier to discriminate than higher ones. For example, 5 and 10
are easier to tell apart than 105 and 110. The second is the distance effect,
which says that if you are comparing two numbers to the same target, the
one that is farther away from the target should be easier to discriminate from
it. For example, it is easier to tell the difference between 10 and 15 than
between 10 and 11. Both of these eftects reflect the fact that discriminability
in the ANS is a function of ratio.
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2.1.1. Approximate Number Representation in Nonhuman Animals
The mental representation of approximate numbers is widespread among
species. In a landmark study by Platt and Johnson (1971), rats were trained to
press a bar some number of times in order to receive a food reward. After the
rat had pressed the bar the required number of times, a food pellet would
appear in the feeder. The rat had to leave the bar and run over to the feeder
to find out whether the food was there. If the rat stopped pressing too soon,
no reward would be in the feeder. If the rat pressed the bar more than the
required number of times, the reward would be there, but the rat would
have wasted some effort by pushing the bar more times than necessary. In
this way, rats were motivated to press the bar just the number of times
needed to get the food.

Difterent groups of rats were trained on difterent numbers. For
example, one group was trained to press the bar 4 times, another group was
trained to press it 8 times, and still other groups of rats were trained on the
numbers 16 and 24. The results were clear. Each group of rats learned to
press the bar as many times as needed. The mean number of presses in each
group was actually one to two presses higher than the number trained,
reflecting the fact that the rats were a little bit conservative. (Better to press
the bar an extra time or two than to risk an empty feeder.)

In Platt and Johnson’s (1971) study, number was correlated with other
variables. Other studies deconfounded those variables and showed that rats
do actually represent the number of presses and not just the total amount of
energy expended in pressing the bar, or the total time spent pressing the
bar. In a creative and early example, Mechner and Guevrekian (1962)
showed that depriving rats of water makes them respond faster and with
greater energy, but does not make them change the number of presses. To
do this, the rat must represent number separately from duration and energy
expenditure (see Meck & Church, 1983, for a related finding).

Note that rats do not perform perfectly. They do not press the bar exactly
the right number of times on every trial. And the distribution of their errors is
an important clue that the system they are using is the same ANS found in
humans and other animals. The errors reveal scalar variability—a key signa-
ture of the ANS. Formally, scalar variability means that the ratio of the
standard deviation of the subject’s estimates to the mean of those estimates is
a constant. In the case of the ANS, the mean estimate is equal to the target
number (i.e., the number that the subject is trying to guess), so the spread of
errors around each target number is a fixed proportion of the target number
itself (see Fig. 9.1). This proportion differs for different subjects. The smaller it
is, the more accurate the subject’s estimation ability.
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Figure 9.1 On top is an idealized set of distributions with scalar variability. The line with
the “1” above it is the distribution of perceptions when a participant is shown 1 item,
the line with a “2" is a response curve to 2 items, and so on. Note that the mean is equal
to the correct number and the standard deviation increases linearly with the mean. On
the bottom are some actual responses taken from adults (Negen & Sarnecka, under
review). Participants were asked to tap a space bar 1, 2, 3,4, 5,6, 9, 12, and 15 times.
Again, the lines are labeled with the correct responses. Though the real data are much
noisier, one can still see the mean approximately matches the correct number and the
standard deviation increases with the mean.

Looking at Fig. 9.1, we can see that errors on ANS estimation tasks follow
a predictable pattern: The mean of guesses for every target number is the same
as the target number itself because errors fall symmetrically above and below
the target. In the case of Platt and Johnson’s (1971), rats, the mean fell slightly
above the target because task incentivized conservative behavior, as
mentioned above. Butin studies without such a reward structure, the mean of
estimates is typically equal to the target. Also, errors close to the target are
more frequent than errors far away from it. For example, if the target number
is 32, then 31 will be a more common error than 21.

These signatures—the symmetrical distributions of estimates, the mean
of estimates for each target being the same as the target itself, and the scalar
variability in the estimates—are characteristic of the ANS. These same
signatures, have been found in the numerical cognition of a variety of other
species including crows, pigeons, monkeys, apes, and dolphins (Dehaene,
1997; Gallistel, 1990).

Rational Constructivism in Cognitive Development, First Edition, 2012, 237-268



A Number of Options: Rationalist, Constructivist, and Bayesian Insights 245

2.1.2. Approximate Number Representation in Human Infants

Given that this very useful cognitive system is widely shared among verte-
brate species, it is not surprising that humans also have it. Researchers from
several different laboratories have shown that preverbal human infants
represent approximate numerical quantities using the ANS system (e.g.,
Brannon, Abbot, & Lutz, 2004; McCrink & Wynn, 2004; Xu & Spelke,
2000).

Rather than making infants press bars for food rewards, these studies rely
on infants’ tendency to get bored, or “habituate” when they see the same
thing over and over again. In these studies, infants are shown different sets of
a particular number, over and over until they get bored. The infants’
boredom is measured by how long they look at the display. For example,
many studies use a criterion of half'the initial looking time. This means that if
the infant initially looks at the display for 6 seconds, the researchers keep
showing the same display until the infant only looks at it for 3 seconds (or
less). At that point, the test trials are begun. If the infant looks at the new
(test) display significantly longer than 3 s, the researchers conclude that the
infant noticed some difference between the old, habituation displays and the
new, test display.

In one important study of infant number representation, Xu and
Spelke (2000) habituated one group of 6-month-old infants to displays
containing 8 dots and another group of infants to displays containing
16 dots. Xu and Spelke made sure to test infants’ representation of
number rather than other correlated variables (e.g. the sizes of individual
dots, the total area covered by each display, the total summed perimeter
length of the dots, etc.).

Results showed that infants do represent number. Those who were
habituated to the 8-dot displays recovered interest when they were shown
a 16-dot display; those who were habituated to the 16-dot displays
recovered interest when they were shown an 8-dot display. Later studies
showed that 6-month-old infants also discriminate 16 from 32 dots and
4 from 8 dots (Xu, 2003; Xu, Spelke, & Goddard, 2005; see also Lipton &
Spelke, 2004).

Supporting the idea that infants were using the ANS, infants’ success was
a function of the ratio between the two set sizes. Six-month-old infants
succeedata 1:2ratio (4 vs. 8,8 vs. 16, or 16 vs. 32 dots), but they fail ata ratio of
2:3 (4 vs. 6, 8 vs. 12, or 16 vs. 24 dots). By 9 months of age, infants succeed at
the 2:3 ratios but fail at 3:4 (e.g. they fail to discriminate 6 vs. 8, 12 vs. 16, or 24
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vs. 32 dots). Thus, human infants form analog representations of approximate
numbers long before they learn anything about counting or number words.

2.1.3. Exact-Number Concepts are Connected to the Approximate
Number System

The fact that approximate number representation is innate in humans does
not necessarily mean that it underlies the acquisition of exact-number
concepts. But there is evidence from both adults and children to suggest that
exact-number concepts, once they are acquired, are mapped onto analog
representations in the ANS.

For example, many studies (e.g. Moyer & Landauer, 1967) have shown
adults pairs of written Arabic numerals (e.g. 7 and 9) and asked them to
indicate which was numerically greater. Participants’ responses show both
distance and magnitude effects in terms of reaction times (and sometimes in
terms of error rates, though performance is often at ceiling in terms of
accuracy). In other words, it takes people longer to judge that 8 > 7 than
that 7 > 6 (magnitude effect). It also takes people longer to judge that 7 > 6
than that 8 > 6 (distance eftect).

Recent studies have tried to specify the kinds of mappings that exist
between ANS representations and exact-number words in adults (Izard &
Dehaene, 2008; Sullivan & Barner, 2010). In one such study, Jessica Sullivan
and David Barner asked adult participants to estimate (by saying a number
word) the number of dots in an array. The arrays were too large for parallel
individuation and were shown too fast for verbal counting, forcing partici-
pants to rely on the ANS. Results suggested that for relatively low number
words (up to 30 or so0), adults seemed to have a direct, individual ANS
mapping for each number word. (That is, people have an ANS-based esti-
mate of how many “twelve” is, how many “twenty-one” is, and so on, up to
about 30.) This was indicated by the fact that estimates for numbers below
30 were not biased when participants were given misleading information
about the range of set sizes used in the experiment. On the other hand,
estimates for larger numbers were biased by this type of information. For
example, if participants were told to expect arrays of up to 750 dots, when in
fact the most numerous array shown had only 350, participants’ estimates of
numerosity were systematically biased upward, but only for arrays of more
than about 30 dots. This suggests that words for numbers higher than about
30 are mapped to the ANS, but they are mapped in terms of an overall
structure. That is, people know the order of the number words, and they
expect later numbers to be mapped onto larger ANS magnitudes, but they
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don’t maintain a separate representation of the magnitude of each individual
number.

Recent evidence suggests that an ANS-to-number-word mapping
emerges soon after children have learned the first few exact numbers. We
(Negen & Sarnecka, under review) showed 3- and 4-year-old children cards
with pictures of one to four items. The children’s task was to say how many
pictures were on the card. (These children did not yet understand how to
use counting to solve the problem.) Using Bayesian methods of data analysis
(discussed in more detail in Section 5), we found evidence that children’s
answers were drawn from an underlying distribution in which variability was
scalar. In other words, we found evidence for a mapping between ANS
representations and the number words “one” through “four”. Later (about 6
months after acquiring all of the counting principles), children learn to
extend this mapping out to all of the number words they know (Le Corre &
Carey, 2007). By around 5 to 6 years old, children map number words to
ANS magnitudes much as adults do.

Thus, in both adults and children, exact-number concepts are mapped to
magnitude representations in the ANS. For this reason, any plausible theory
of how exact-number concepts are acquired must be somewhat rationalist. It
must at least recognize that exact numbers are mapped to the ANS ideally, it
would offer an account of how and when ANS representations (which are,
by definition, approximate) become connected to representations of exact
numbers.

2.2. Another Innate System Relevant to Exact-Number
Concepts

Infants also create and maintain working-memory models of small sets of
individuals (objects, sounds, or events). Up to three individuals at a time can
be represented this way. For example, when infants are habituated to
displays of two objects, they recover attention when shown one or three
(Antell & Keating, 1983; Bijeljac-Babic, Bertoncini, & Mehler, 1991; Fei-
genson, 2005; Starkey & Cooper, 1980; Wood & Spelke, 2005; Wynn,
1992a, 1996). Unlike the ANS, this is not a system that represents number
per se. It is a system that represents individuals. The system does not include
any symbols for “two” or “three,” but instead maintains a separate symbol
for each individual. Other information about the individual (such as its type
and properties) can also be bound to these symbols. Thus, whereas the ANS
system could represent the content “approximately 10,” the parallel
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individuation system could represent the content, “big duck, little car, little
doll.”

Because it maintains a separate symbol for each individual, only a limited
number of individuals can be represented at any one time. For infants,
constraints on attention and working memory seem to place this limit at
three (e.g. Feigenson, Carey, & Hauser, 2002). That is, up to three indi-
viduals can be tracked at once. If four or more individuals are presented, the
infant is not able to track them. When this constraint is exceeded, perfor-
mance falls to chance in many tasks. For example, Feigenson et al. (2002)
found that children could correctly discriminate that 2 <3 but not 2 < 4.
This is especially odd because if they simply failed to represent the fourth
item in the set of 4, the 2 < 4 problem would reduce to 2 < 3, which they
pass. Presenting more than three items seems to make the system simply
“shut off” and fail to produce any useful output.

Although it does not include any symbols for numbers, this parallel
individuation system is relevant to exact-number concepts for several
reasons. First, exact-number concepts require some notion of individual or
one, and this notion comes from the attention and memory mechanisms that
identify and track individuals. (No representation of exactly one exists in the
ANS, where number is always approximate.)

Second, the parallel individuation system supports judgments of
numerical identity: Is this object or sound or event the same one, or a different
one than the object/sound/event that came before it? Number concepts
require that different individuals can be identified as such because number is
a property of sets, which are comprised of separate individuals. Without
criteria for individuation and some representation of the separateness of
different individuals (i.e. some criteria for determining numerical identity),
no numerical content could be represented at all.

Finally, parallel individuation supports at least some rudimentary
“chunking” of individuals into sets. As described above, infants generally
fail to track sets of more than three items. For example, if an infant sees
one, two, or three toy cars placed inside a box and is allowed to reach
inside the box to retrieve the toys, the infant’s search behavior shows
that the infant remembers whether there are one, two, or three items in
the box. However, if four items (e.g. four cars) are placed in the box, the
infant searches no longer than if only one car had been placed there,
indicating that the infant can represent the information “car, car, car” but
fails to represent “car, car, car, car.” This is the set-size limit of three
individuals, described above.
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However, recent work by Feigenson and Halberda (2008) shows that if’
infants are shown two shoes and two cars going into the box, they will
search for all four items—something about having two different types of
item helps the infants to create two representations of two individuals each,
rather than directly representing all four items. These abilities—to identify
and track individuals, and to create higher-order, “chunked” representations
of sets of individuals—are required for the representation of exact, large
numbers.

3. CAREY’S RATIONALIST, CONSTRUCTIVIST ACCOUNT
OF HOW EXACT-NUMBER CONCEPTS ARE ACQUIRED

3.1. Why Any Reasonable Account of these

Phenomena must be Constructivist
Given these innate capacities, the reader might wonder whether it makes
sense to talk about the “construction” of exact-number concepts at all. Is it
likely that exact-number concepts themselves are innate? The answer is no,
it is not likely, for the simple reason that none of the innate capacities are up
to the job of representing exact, large numbers.

The system of exact numbers has enormous representational power.
Using exact numbers, we can represent very large numbers, very precisely.
On the day of this writing, J.S. (the 6-year-old mentioned in the anecdotes
above) was heard complaining that, “The American flag is super hard to
draw,” because it has 50 stars, 13 stripes “and the blue!” He added in an irate
tone that this totaled “64 things to draw!” and went on to express his sincere
admiration for the Japanese flag.

The concepts of exactly 50, exactly 13, and exactly 64 simply cannot be
formulated over ANS representations, which have approximate, real-
number values, rather than exact, natural-number values. In other words,
there is no way to represent “64 things” as distinct from 63.9 things, or 64.5
things, in the ANS. On the other hand, the parallel individuation system has
no explicit representation of number at all. Number is represented only
implicitly because there is a symbol maintained for each individual in the set.
Because more attentional resources are required to represent each additional
individual, the number of individuals that can be represented is strictly
limited to three or four. Thus, parallel individuation cannot, on its own,
support the representation of exact large numbers. This is why a theory of
the construction of exact-number concepts is needed.
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3.2. Conceptual-Role Bootstrapping

Carey has put forward an in-depth proposal for how exact-number concepts
could be constructed, through a uniquely human kind of learning called
conceptual-role bootstrapping (Carey, 2009; see also Block, 1986; Quine,
1960). Conceptual-role bootstrapping is not to be confused with semantic
bootstrapping or syntactic bootstrapping, both of which are ways of solving
mapping problems in the domain of word learning.

Conceptual-role bootstrapping is a way of solving a different problem—
the problem of how to construct a representational system (for a given
domain of knowledge) that is discontinuous with the representational system
that the learner had before. “Discontinuous” means that the content of the
new conceptual system cannot be formulated over the vocabulary of the old
conceptual system. In practice, this may happen for either of two reasons: (1)
The new system is incommensurable with the old one, in the sense that most
or all of the old conceptual framework must be discarded to make way for
the new one, or (2) The new system has massively greater representational
power than the old one. Exact-number concepts fall into this second
category; they are not incommensurable with the antecedent representations
of the ANS and parallel individuation, but they have massively greater (not
just incrementally greater) representational power.

3.3. Bootstrapping Exact-Number Concepts

Episodes of conceptual-role bootstrapping happen as follows. The learner
first acquires a placeholder structure—a set of symbols that are structured
(i.e. they have some fixed relation to each other) but are not initially defined
in terms of the learner’s existing vocabulary of concepts. In this case, the set
of placeholder symbols is the list of counting words and the order of the list is
its structure. Importantly, the words are not (and cannot be) initially defined
in terms of the learner’s existing vocabulary of number concepts, which
include only approximate representations of number from the ANS. (Recall
that the parallel individuation system contains no explicit representation of
number at all.) Thus, the first step in bootstrapping exact-number concepts is
to learn the placeholder structure—the list of number words and the
pointing gestures that are deployed along with it. But these words and
gestures are initially just placeholders, devoid of exact-number content.
Over a period of many months (often more than a year), the child
gradually fills in these placeholder symbols (the counting words and gestures)
with meaning. For example, children must learn that number words are
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about quantity (Sarnecka & Gelman, 2004); that they are specifically about
discontinuous quantity (i.e. discrete individuals such as blocks, rather than
continuous substances such as water, Slusser, Ditta, & Sarnecka, under
review; Slusser & Sarnecka, 2011a); and that numerosity (as opposed to, e.g.
total spatial extent) is the relevant quantitative dimension (Slusser & Sar-
necka, 2011b).

Of course, children must also learn the exact meaning of each
number word, and how they do this is very interesting. Recall that
parallel individuation supports mental models of one to three individuals
and that children can under some circumstances “chunk” individuals
into nested representations. In order to learn the meaning of the word
“one,” the child must create a summary symbol for states of the nervous
system when exactly one individual is being tracked (Le Corre & Carey,
2007).

The role of the ANS in this process is a matter of some debate. On the
one hand, the ANS contains no representation (not even an implicit
representation) of exactly 1. On the other hand, the ANS does contain
summary symbols for numerosities, and 1 is discriminable from 2 in this
system, even if the representations of 1 and 2 are real-number approxima-
tions rather than natural numbers. Furthermore, recent evidence suggests
that even those children who know only a few number words (e.g. “one,”
and “two”) do have ANS representations defined for those number words
(Negen & Sarnecka, under review). All of which suggests that ANS
representations are somehow recruited even in the early stages of exact-
number-concept construction.

Children take a long time to learn the meanings of number words.
Their progression is most clearly illustrated by the changes in their
performance on the Give-N task (Wynn, 1992b). In this task, the child is
given a set of objects (e.g. a bowl of 15 small plastic bananas) and is asked
to give a certain number of them to a puppet. For example, the child
might be asked to “Give five bananas to the lion.” The somewhat
surprising finding is that many young children who count perfectly well
(i.e., they recite the counting list correctly while pointing to one object at
a time) are unable to give the right number of bananas to the lion. Instead
of counting to determine the right set size, they just grab one banana, or
a handful, or they give the lion all the bananas. Even when children are
explicitly told to count the items, they do not use their counting to
create a set of the requested size (Le Corre, Van de Walle, Brannon, &
Carey, 2006).
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Studies using the Give-N task have shown that children move through
a predictable series of performance levels, often called number-knower
levels (e.g. Condry & Spelke, 2008; Le Corre & Carey, 2007; Le Corre et al.,
2006; Lee & Sarnecka 2010, 2011; Negen & Sarnecka, in press; Sarnecka &
Gelman, 2004; Sarnecka & Lee, 2009; Slusser & Sarnecka, 2011a, 2011b;
Wynn, 1990). These number-knower levels are found not only in child
speakers of English but also in Japanese and Russian (Sarnecka et al., 2007).

The number-knower levels are as follows. At the earliest (i.e. the “pre-
number-knower”) level, the child makes no distinctions among the
meanings of different number words. On the Give-N task, pre-number
knowers might always give one object or might always give a handful, but
the number given is unrelated to the number requested. At the next level
(called the “one-knower” level), the child knows that “one” means 1. On
the Give-N task, this child gives exactly 1 object when asked for one and
gives 2 or more objects when asked for any other number. After this comes
the “two-knower” level, when the child knows that “two” means 2. Two
knowers give 1 object when asked for “one” and 2 objects when asked for
“two,” but they do not reliably produce the right answers for any higher
number words. The two-knower level is followed by a “three-knower” and
then a “four-knower” level.

After the “four-knower” level, however, it is no longer possible to learn
the meanings of larger number words (five, six, seven, etc.) in the same way
as the small numbers have been learned. This is because the innate systems of
number representation do not support the mental representation of 5 in the
way that they support the representation of 1 through 4. Specifically, parallel
individuation does not allow for the tracking of five individuals at a time,
and the difference between 5 and 6 is not easily discriminable by young
children via the ANS.

Thus, the meaning of “five” must be learned differently from how the
meanings of “one” through “four” were learned. Carey’s proposal is that
children learn the meanings “five” and all higher numbers when they induce
the cardinal principle of counting (Gelman & Gallistel, 1978; Schaeffer,
Eggleston, & Scott, 1974). The cardinal principle of counting makes the
cardinal meaning of every number word dependent on its ordinal position in
the counting list. (In other words, the cardinal principle guarantees that for
every list of counting symbols, the fifth symbol must mean 5, 13th symbol
must mean 13, the 64th symbol must mean 64, etc.) At this point the
meaning of the ordered list of placeholder symbols (i.e. the counting words)
becomes clear.
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To understand the cardinal principle, is to understand the logic of exact
numbers. This requires an implicit understanding of succession (the idea that
each number is formed by adding one to the number before it) and of
equinumerosity (the idea that every set of numerosity N can be put into
one-to-one correspondence with any other set of numerosity N; Izard, Pica,
Spelke, & Dehaene, 2008). Supporting this idea, recent empirical studies
find that children who understand the cardinal principle of counting (as
measured by the Give-N task) do indeed show an implicit understanding of
succession and equinumerosity as well. Only cardinal-principle knowers
know that adding one item to a set means moving one word forward in the
counting list; whereas adding two items to a set means moving two words
forward in the list (Sarnecka & Carey, 2008). Similarly, only cardinal-
principle knowers show a robust understanding that two sets with perfect 1-
to-1 correspondence must be labeled by the same number word, whereas
two sets without 1-to-1 correspondence must be labeled by different number
words (Sarnecka & Wright, in press).

4. THREE WAYS THAT BAYES CAN HELP WITH
THIS PROJECT

Research exploring the development of exact-number concepts can make
use of Bayesian inference in different ways. Here, we discuss three of them:
Bayesian data analysis, Bayesian task modeling, and Bayesian concept-
creation modeling. What all of these Bayesian approaches have in common
is that they involve some sort of prior information, which is weighted against
some form of evidence to form a posterior distribution. The approaches
differ in the kinds of information captured by the prior, the evidence, and
the posterior.

4.1. Using Bayes to Analyze Data (Agnostic Bayesianism)

The first approach is Bayesian data analysis. Of the three, this is the one
supported by the largest statistical literature (e.g. Gelman, Carlin, Stern, &
Rubin, 1995; 2003). It requires no theoretical commitments about the
developing mind, because Bayesian methods are used only to analyze data.
This is sometimes called Agnostic Bayes (e.g. Jones & Love, 2011) because it
does not require any commitment to the idea that the mind itself makes
inferences in a Bayesian way.
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In Bayesian data analysis, priors are formulated over things that
researchers want to estimate in a data set, such as the rate of correct responses
to a question or the effect size of a given between-group difterence. The
evidence is the set of sample observations. The posterior is an updated belief
about the population.

For example, imagine that we have a sample of 24 children, and we ask
each of them the same question about whales: Is a whale a mammal, or
a fish? We will accept only two possible responses—*“mammal” (the correct
answer) or “fish” (the incorrect answer). In this group of children, 22 answer
“mammal” and the other 2 answer “fish”. We want to estimate how many
children in the population of interest will say that whales are mammals. To
do this, we first set a prior, saying that the set of responses can equally be
anything from 0% correct to 100% correct. This distribution is known as
a flat prior or Beta(1,1).

Our data are the 22 “mammal” and 2 “fish” responses that we collected
from the children. These data combine with the prior to form the posterior,
Beta(23,3). This posterior is a probability distribution for the rate of “whales-
are-mammals” responses in the population of interest, given our data and the
prior, and assuming that our sample was randomly drawn from that pop-
ulation. This posterior distribution is shown in Fig. 9.2.

This posterior allows us to interpret the data without calculating
a p-value. The probability density around a 50% correct-response rate in the
population (i.e. the probability that the children in the population have no
knowledge of what whales are, and that they children in our sample

Posterior Probability
IS [}

o8]
T

D 1 1 1 1 1 1
0 gr 02 03 04 05 06 07 08 08 1

"Mammal"-Response Rate

Figure 9.2 The posterior distribution over rates of “whales-are-mammals” responses in
the population, given a flat prior and 22/24 “yes” answers in our data set. Intuitively, it
should make sense that the highest probability is at 22/24 and very little probability
exists below about 70% correct.
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answered randomly) is extremely low (less than 0.001) compared to the
peak. From this, it is already reasonable to infer that the data do not reflect
chance responding. Furthermore, a 95% credible interval stretches from
about 74% to 97% on this posterior distribution, meaning that we can
conclude with 95% certainty that somewhere between 74% and 97% of
children in the population of interest actually will say that whales are
mammals. Further reinforcing this, we can calculate a Bayes factor, which is
an expression of preference for one hypothesis over another. In this case, the
alternative hypothesis (the rate could be anything from 0% to 100%) is
preferred over the null (a correct-response rate of 50%, indicating chance
responding) by a factor of 2431. This is considered extremely strong
evidence. Space precludes a review of all of the ways that posteriors can be
formed and interpreted (for review, see A. Gelman et al., 1995; 2003). But
this basic approach—forming priors, calculating posteriors, looking at
confidence intervals, and calculating Bayes factors—can be applied in
virtually any case where researchers would otherwise use t-tests, analyses of
variance (ANOV As), regressions, and so on.

One clear advantage of this type of data analysis over more traditional
methods is that the Bayesian methods make it possible to find positive
support for the null hypothesis, rather than simply rejecting or failing to
reject it. In classical hypothesis testing (using t-tests, ANOVAEs, etc.), a null
hypothesis can be rejected if enough evidence is found against it, but
evidence can never be found for the null.

With a Bayesian approach, it is actually possible to use a prior as the alter-
native hypothesis in a way that allows either hypothesis (the null or the alter-
native) to be preferred after the data are taken into account. This is particularly
well understood in the case of t-tests, for which there even exists a simple online
calculator (Rouder, Speckman, Sun, Morey, & Iverson, 2009). There is also an
excel sheet available for approximating this kind of approach for ANOVAEs,
though it requires researchers to separately calculate sums of squares used in the
usual F-tests (Masson, 2011; for technical details, see Dickey and Lientz, 1970).

We know of only one number-concept development study using this
type of agnostic Bayesian method (Negen & Sarnecka, under review). The
paper asks whether children who know the meanings of only a few number

EEINT3

words (e.g. “one,” “two,” and “three”) have already mapped those words to
representations in the ANS. Operationally, the question is whether chil-
dren’s responses on a number-word task are drawn from an underlying
distribution with scalar variability. (As mentioned above, scalar variability is

a key signature of the distribution of ANS representations in the brain.)

Rational Constructivism in Cognitive Development, First Edition, 2012, 237-268



256 Barbara W. Sarnecka and James Negen

Previous studies (e.g. Cordes, Gelman, Gallistel, & Whalen, 2001) have
only been able to test for the absence of this signature. To test whether the
signature could actually be inferred from the data, we calculated a Bayes
factor. The null hypothesis (i.e. that variability was scalar) was preferred by
a factor of about 14. In other words, it was 14 times more likely that the data
came from an underlying distribution with scalar variability than that the
data came from an underlying distribution where variability was (linearly)
non-scalar. This 1s very strong evidence for the null hypothesis. In general,
this type of analysis is useful in situations where researchers want to present
evidence for the null hypothesis—for example, to argue that subjects are
guessing at random, that two means are the same, that variables are unrelated,
and so on.

Because Bayesian data analysis tends to result in the calculation of Bayes
factors, it is also useful when several models are being compared frequently.
A current example is the debate over logarithmic and linear performance in
bounded number-line tasks (e.g. Siegler, Thompson, & Opfer, 2009). Most
studies to date have compared linear and logarithmic models by (1) calcu-
lating the median response for each child, (2) finding the best fit for the
linear and logarithmic models, and (3) counting the number of children fit
better by each model.

If one considers only the relatively simple log and linear models, this
method seems adequate. However, it would be more formally rigorous to
use a Bayes factor. This would also allow for the strength-of-preference to
be calculated for each individual child, which may be useful. Finally, a Bayes
factor naturally punishes models that make over-broad predictions, so it
would allow for rigorous comparisons between the simple log and linear
models and also models that have more parameters in them (e.g. Barth,
Slusser, Cohen, & Paladino, 2011; Cohen & Blanc-Goldhammer, 2011;
Slusser, Santiago & Barth, under review).

At the moment, the use of Bayesian data analysis is not widespread
among developmental scientists. We see at least three reasons why this is so.
First, there is very little training available in how to use these methods,
although some progress has been made on this front with a few authors
posting free, online training books (e.g. Wagenmaker & Lee, in
preparation).

Second, because the methods are relatively unfamiliar to reviewers,
authors are required to explain the analysis at much greater length than
would be needed for traditional, frequentist methods; they must explain
both how the analysis was done and why they used Bayesian methods
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instead of frequentist ones. This turns every paper into something of
a statistics tutorial—even when the authors are not interested in convincing
anyone else to use Bayesian methods but simply want to present their
empirical work. This problem would presumably decrease over time, if the
methods were used more widely.

Third, virtually nothing exists in the way of “friendly” software (GUI-
based, standardized, professionally supported) to help with the analysis in any
but the simplest of cases. (E.g., there is no Bayesian equivalent of SPSS.) This
problem does not even seem to be recognized as a problem; most statistical
software is still being developed and released in R, which is text based and
largely decentralized.

4.2. Using Bayes to Model Subjects’ Behavior on a Task

A second way to adopt a Bayesian approach to studying number-concept
development is to use Bayesian task modeling. This method allows us to
separately model the demands of a task and the knowledge state of the
subject and to think about how those combine to create the observed
behavior.

This method has been used to model children’s behavior on the Give-N
task (Lee & Sarnecka, 2010, 2011). In this task, the child is asked to produce
sets of a certain number (e.g. “Please put three bananas on the lion’s plate.”).
The prior captures the base rate of responses for each task. This is roughly
how children would respond in the absence of any numerical information.
For example, if you could somehow ask for “banana(s)” in a way that did not
provide any singular/plural or other cues about how many bananas were
wanted.

Lee and Sarnecka (2011) inferred their prior from a large set of Give-N
data, by aggregating across all the wrong guesses that children made. The
resulting prior is shown in Fig. 9.3 (left panel). Children have a high
probability of giving just 1 item, a somewhat lower probability of giving 2,
still lower and approximately equal probabilities of giving 35, and signif-
icantly lower probabilities of giving any number larger than that. However,
there is a bump up at 15.

This distribution is intuitively sensible. If children understand that they
should give something from the bowl but have no information about how
many things they should give, it seems reasonable that they should give one
item or a handful of items (each object is about 2 ¢m in diameter, so children
can typically grab two to five objects at once). Nor does it seem surprising (to

Rational Constructivism in Cognitive Development, First Edition, 2012, 237-268



258 Barbara W. Sarnecka and James Negen

Probability

123 456 7 8 9101112131415 1 10 20 30 40 50 60 70 80 90 100
Give—-N Number WOTC Number

Figure 9.3 Inferred base rates (i.e. priors) for the Give-N task and What's-On-This-Card
tasks from Lee & Sarnecka, 2011

anyone who has spent time with preschoolers) that it is relatively common
for children to give the entire set of 15 items, either by dumping them all
onto the lion’s plate at once or by placing one item at a time on the plate
until there are none left.

If the child knows the exact meanings of any exact number words (e.g.
one, two, and three), this information changes the base rate for that child. A
three-knower will usually give the correct number of items when asked for
“one,” “two,” or “three” and will very rarely produce those set sizes when
asked for any other number. The intuitive operation of the model is illustrated
in Fig. 9.4. The child depicted is a three-knower, reflected by the fact that the
numbers 1, 2 and 3 are underlined in the first thought bubble, representing
the prior. The prior probability of any given set size being produced (as shown
in Fig. 9.3) is represented here by the size of each numeral, with numerals for
higher-probability set sizes appearing in larger type.

If the child hears the request, “Give me fwo,” the posterior probability
(illustrated in the thought bubble on the upper right) is very high for 2 and
very low (too small to be pictured) for any other number. In other words,
this simplified model predicts that children who are three-knowers will
always give 2 objects when asked for two.

If the request is, “Give me five,” then the probabilities for 1, 2, and 3
immediately drop to very near zero. (In the figure, these numerals do not
appear in the lower-right thought bubble.) This reflects the fact that the
child is a three-knower, and three-knowers know that whatever “five”
means, it cannot mean 1, 2, or 3 (Wynn, 1992b). What remains are all the
other numbers of objects the child could give, each of which has the same
probability (relative to all the alternatives) as it did in the prior. Chances are
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Give Me

“TWO”
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“Five”

Figure 9.4 Intuitive operation of Lee and Sarnecka’s (2011) model, showing a child who
is a three-knower responding to instructions to “give two” or to “give five” (Lee &
Sarnecka, 2011). For color version of this figure, the reader is referred to the online
version of this book.

that the child will produce a set of 4, 5, or 15 in response to this request.
Other set sizes are less likely to be produced, as reflected by their smaller
numerals.

The key point here is that the base rate has a large impact on the observed
performance. It answers the question, for example, why might a child give
four items instead of six for a given request, if that child does not know what
either “four” or “six” mean? The answer is, because the prior (base-rate)
probability of giving four items is higher.

Note that this kind of modeling does not commit the user to the idea that
children make any of the calculations involved, either explicitly or implic-
itly. Formally, this is a computational model (a2 model of how cognitive
parameters and task demands lead to observed behavior) rather than an
algorithmic model (a model of exactly how the various cognitive processes
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are implemented). A Bayesian operation takes a base rate of responding (the
prior) and updates it using the child’s knowledge (the data) to produce an
actual, observed rate of responding (the posterior). This does not imply that
the child represents any of these concepts. It is simply a description of how
task demands and different states of knowledge combine to form different
patterns of behavior in the task.

One way that Bayesian task modeling can be very useful is in allowing
researchers to investigate the “psychological reality” of theoretical constructs
across tasks. Using this type of modeling, we can assess children on multiple
tasks that are believed to tap the same underlying knowledge and then
compare performance across tasks, even if the task demands and resulting
performance data are very different.

To continue with the earlier example, Lee and Sarnecka (2011) tested
children on two tasks, both of which are supposed to reveal the child’s
number-knower level. One was the Give-N task mentioned above; the
other was the What’s-On-This-Card task (Gelman, 1993; Le Corre &
Carey, 2007; Le Corre et al.,, 2006). The Give-N task asks children to
produce the set corresponding to a given a number word; the What’s-On-
This-Card task asks children to produce the number word for a given set.

The priors for each task were different because the kinds of behavior
possible on each task were different. For example, the What’s-On-This-
Card prior (Figure 9.3, right panel) did not have a bump up at 15 because the
bump up at 15 was an artifact of the Give-N task. It reflected the fact that
there were 15 items in the bowl set before the child and that children often
dumped out and handed over all the items. On the other hand, any number
word a child could think of was a possible response on the What’s-On-This-
Card task, whereas on the Give-N task, the only possible responses were the
numbers 1-15.

Number-knower levels are most often assessed using the Give-N task.
But if they are a psychologically “real” phenomenon (rather than an artifact
of Give-N task demands), then the number-word knowledge inferred for
children on the Give-N and What’s-On-This-Card tasks should be the
same, despite the different task demands. And indeed, this is what Lee and
Sarnecka found for most children. Furthermore, by combining information
from the two different tasks, Lee and Sarnecka’s (2011) model was able to
diagnose the knower levels of many children with a much higher degree of
certainty than was possible using the data from either task alone.

In practice, it is often the case that researchers who use Bayesian task
modeling will also want to use Bayesian data analysis. Some authors have
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argued that this is necessary to realize the full potential of the approach (e.g.
Kruschke, 2010; Lee, 2010, 2011a, 2011b). Estimating the parameters of
a model like the one described above is actually a very hard problem. A
widely accepted alternative is to sample from the posterior (rather than
attempting to fully describe it) and then examine the samples. This process,
known as Markov-Chain Monte-Carlo, 1s well studied and is implemented
in several free software packages (e.g. WinBUGS; Thomas, 1994).

4.3. Using Bayes to Model Learning Itself

The third way to adopt a Bayesian approach in this research is to use Bayesian
concept-creation modeling, where Bayesian methods are used to model the
creation of a new concept. Here, the prior is some set of beliefs in a model
learner’s virtual mind—some set of bets or preferences about what is
probably true in the world. If the model is to be cognitively plausible, these
prior beliefs should be ones that could plausibly be attributed to human
learners at the outset of the learning episode. In the case of exact-number
concept creation, for example, priors should reflect the known limits of the
ANS and/or parallel individuation system.

The evidence is the input received by the learner. Here, the requirement
for a cognitively plausible model is that the input must match real-world
experiences that children actually have. For example, researchers trying to
model word learning might base the input on transcripts of natural, child-
directed speech.

The posterior is a distribution over various inferences a child could make.
The explanatory value of the model depends on this posterior distribution
giving most of its mass to inferences that children actually do make. In other
words, at the end of the learning episode, the model learner must represent
the knowledge in question. For example, a model learner acquiring English
count/mass syntax should agree that number words cannot quantify over
mass nouns (e.g. *the three furniture). That is, any rule that accepts *the three
furniture should have low posterior probability.

This approach is particularly helpful for addressing arguments over
learnability. Philosophers have famously argued that any set of data can be fit
equally well by an infinite space of hypotheses. For instance, the English
language could be a subject-verb-object language up until January 1, 2025,
and then suddenly switch to being a verb-subject-object language. All the
data available at the time of this writing are equally consistent with this
2025-change hypothesis and the alternative, no-change hypothesis. The
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intuition that this 2025-change hypothesis is silly, counterproductive,
needlessly complex, and/or confusing is met with the counterargument that
(1) these objections just reflect a bias toward what we already somehow
know and (2) there is no formal way to measure complexity.

Rips, Asmuth, and Bloomfield (2006, 2008) have put forward such an
argument about the development of exact-number concepts. Specifically,
researchers are challenged to explain how young children (who know only
some exact numbers) could infer that numbers keep going in a linear
progression, rather than following a modular principle, such that at some
arbitrary number (e.g. 10), the numbers stop counting up and start over
again at 1. (Rips and colleagues point out that some notational systems, such
as days of the week, months of the year, and hours of the day, do have
a modular structure—so modular systems must in principle be learnable by
children.) In other words, the numbers the child knows are like all the years
in which English has been a subject-verb-object language. No matter how
many there have been, the next one could be different.

Recent work by Piantadosi, Tenenbaum, and Goodman (in press) has
shown that a Bayesian model learner can overcome this hurdle and construct
exact-number concepts with a linear progression, even when the evidence is
theoretically consistent with either a modular or a linear system. The model
works by describing various systems for matching number words with
meanings as lambda calculi. An example of a one-knower might be

AS . (if (singleton? S) “one” “two”),

which outputs “one” if given a set S with 1 item and otherwise outputs
“two”. The prior favors calculi that (a) are short, (b) use fewer elements of
recursion, and (c) re-use primitives. In many ways, this formally captures the
intuition of certain systems being “simpler”.

Piantadosi and colleagues address the question of how children could
infer a linear number system, given the available evidence, rather than
a modular number system. The answer is that the model’s prior prefers
systems that can be described in a shorter calculus, with fewer primitives.
(Note that this is a formal definition of “simpler,” undermining the claim
that there is no way to measure complexity.)

By this definition, linear systems are less complex than modular
systems, which require all the machinery of a linear system in order to get
from 1 to 10 (or whatever the highest number of the module is), and then
additional machinery to tell the user to stop and start again from 1. When
fed true-to-life number-word input, Piantadosi’s model learner selects the
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correct (linear) hypothesis because it has the greatest posterior likelihood
given the data and the prior, even against the infinite space of other
hypotheses.

It is not that Piantadosi’s model learner cannot learn a modular system—it
is just that positive evidence for a modular system must be provided in order
to overcome the simpler, linear hypothesis. When the learner is fed modular
information (real-world number-word input that has been altered to reflect
a modular system), a modular system is indeed what it learns. This is intu-
itively appealing when one considers the learning trajectories of real chil-
dren: Children represent at least some exact numbers by about age 4; at that
age, most of them have not yet learned the cycles of hours in a day, days in
a week, or months in a year. However, they are not fundamentally incapable
of learning the cyclical systems and neither is the model learner. It just takes
the model longer to learn modular systems (“longer” meaning that it
requires more data), which mimics the learning trajectories of real children.

One objection to Piantadosi’s model might be that it simply does not
consider a very rich space of hypotheses. But the same general method can
be used to address a space of hypotheses of any size. For example, the model
does not consider that the meaning of number words might change at some
specified future date, because the model learner does not have access to date
information. However, even if the model were modified to include this
information, the date-change hypothesis would be doomed from the outset
because it would require an expression such as “if the date is before X and
then two full models of number-word meanings (one for all dates before the
change and another one for all later dates). Such a model would be much less
likely under the prior (which prefers shorter descriptions with fewer
primitives) and thus would not be selected. This argument holds equally true
for any other alternative that would encumber the correct system with
conditional variance, for which there is no negative evidence.

In very general terms, Bayesian concept-creation modeling provides
a way of separately modeling prior biases and observations and for both of
these to be interesting, well-specified, research-supported, necessary
components of the concept-creation process. This is exciting because
a similar approach has been useful in explaining human induction in other
areas (e.g. Perfors, Tenenbaum, Griftiths, & Xu, 2011). Indeed, the
approach seems so flexible across domains that in some cases, domain-
general priors may eventually replace domain-specific constraints.

Thus, Bayesian concept-creation modeling represents a convenient way
of formally describing what we know to be true about development: That

Rational Constructivism in Cognitive Development, First Edition, 2012, 237-268



264 Barbara W. Sarnecka and James Negen

the rationalists and the constructivists have always both been right (at least in
part) because both priors and evidence matter. Even if a human infant and
a puppy are raised by the same, loving human family, the baby will grow
up to speak a human language and the dog will not, because of prior
constraints. On the other hand, if a Japanese baby and a French baby are
switched at birth, it is the baby raised in Japan who will learn to speak
Japanese, and the one raised in France who will learn to speak French,
because of the evidence in the environment. By creating models that take
both these aspects of development seriously, Bayesian concept-creation
modeling allow us to move beyond tiresome debates where each side
emphasizes either prior constraints or learning, but no theory seems able to
accommodate both.

Finally, it is worth mentioning that for all three types of Bayesian
approaches discussed here, it would be possible to take a similarly proba-
bilistic approach that retains much of the power of these models without
using Bayes’ rule. For instance, the model by Piantadosi and colleagues (in
press) could rank hypotheses by some criterion other than posterior prob-
ability. One could design a scoring system wherein hypotheses earned points
for good fit and desirable calculi, and the hypothesis earning the most points
would be the winner. Such a model would likely lead to very similar
conclusions but would not technically be Bayesian. The appeal of Bayesian
formalisms is that they are already very well studied and well described and
are therefore most convenient for researchers to use.

5. SUMMARY

The study of early number concepts is a thriving field that provides
many insights into the developing mind. As the search for the origins of
numerical thought continues, the future researcher has many options.
A complete theory must be somewhat rationalist, because children are
genetically endowed with at least some abstract numerical concepts. A
complete theory must also be somewhat constructivist, because children
clearly move beyond the innate building blocks of number, eventually
acquiring much more complicated mathematical constructs such as inte-
gers, rational numbers, and so on. Bayesian approaches hold great promise
in this area, whether as a way of analyzing data, of modeling subjects’
performance on individual tasks or of modeling the creation of number
concepts themselves.
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