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Abstract

Understanding what numbers are means knowing several things. It means knowing how count-

ing relates to numbers (called the cardinal principle or cardinality); it means knowing that each

number is generated by adding one to the previous number (called the successor function or suc-
cession), and it means knowing that all and only sets whose members can be placed in one-to-one

correspondence have the same number of items (called exact equality or equinumerosity). A previ-

ous study (Sarnecka & Carey, 2008) linked children’s understanding of cardinality to their under-

standing of succession for the numbers five and six. This study investigates the link between

cardinality and equinumerosity for these numbers, finding that children either understand both car-

dinality and equinumerosity or they understand neither. This suggests that cardinality and equi-

numerosity (along with succession) are interrelated facets of the concepts five and six, the

acquisition of which is an important conceptual achievement of early childhood.

Keywords: Bootstrapping; Cardinality; Children; Concepts; Counting; Development; Early child-

hood; Exact equality; Equinumerosity; Kindergarten; Linear mixed models; Math; Number; Piaget;

Preschool

What does it mean to say that a child understands numbers? There are many early

milestones in number learning, and parents sometimes say that a toddler who can count

to five or ten “knows” those numbers. Similarly, young children in literate environments

learn to identify the written digits 0–9 along with letters of the alphabet and thus, in a

sense, “know” the numbers. But what does it mean to understand numbers, in some

important conceptual way? One operational definition comes from Piaget (1952). In the

Piagetian tradition, children understand numbers when they pass the conservation-of-num-

ber task, around age 5 or 6 years. For Piaget, the key number concept is equinumerosity
(sometimes called exact equality)—the idea that two sets have the same number of items,
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if and only if their members can be placed in perfect one-to-one correspondence (Frege,

1980 [1884]). The child’s understanding of equinumerosity as an abstract principle is

what the conservation task is supposed to measure.

A different operational definition of number knowledge arises in more recent work

(e.g., Carey, 2009; Hurford, 1987; Klahr & Wallace, 1976). In this newer literature, chil-

dren are said to understand numbers when they apply the cardinality principle of counting

(Gelman & Gallistel, 1978) on the Give-N task (e.g., Condry & Spelke, 2008; Le Corre,

Van de Walle, Brannon, & Carey, 2006; Sarnecka & Lee, 2009; Wynn, 1990, 1992). The

cardinality principle states that the last word uttered in a (correct, rule-governed) count

expresses the number of items in the whole set. It is the cardinality principle that gives

number words their meanings, by making the cardinal meaning of any number word

knowable from that word’s ordinal position in the counting list. (For example, readers

who do not speak Japanese—but do understand cardinality—can easily guess the meaning

of the Japanese number word nijuuichi if they are told that it is the twenty-first word in

the Japanese counting list.)

One current proposal about number development (Carey, 2009) is that children who

understand cardinality (as measured by the Give-N task) also understand the key numeri-

cal concept of succession (often called the successor principle or successor function)—the

idea that each number is generated by adding one to the previous number (Dedekind,

1901 [1872/1888]). One empirical study (Sarnecka & Carey, 2008) supports this claim

for the numbers 5 and 6, although another study (Davidson, Eng, & Barner, 2012) finds

that this early understanding is less robust for higher numbers, such as 25.

Integrating the older and newer notions of what it means to “understand” numbers,

Izard and colleagues identified equinumerosity and succession as “two key concepts on

the path toward understanding exact numbers” (Izard, Pica, Spelke, & Dehaene, 2008).

But how do these concepts interact in development? Our proposal in this study is that

children’s understanding of cardinality (as measured by the Give-N task) predicts their

understanding of equinumerosity (at least for the numbers five and six).
Note that this connection is not obvious. The traditional litmus test for understanding

equinumerosity is Piaget’s conservation-of-number task, which children pass at age 5 or

6. As Muldoon, Lewis, and Freeman (2009) noted,

The developmental puzzle is that up to the age of six, even some 2 years after they

have mastered procedural counting, many children have yet to grasp that two sets with

the same cardinal number must, by virtue of logical necessity, be equivalent, and that

sets with different cardinals must by the same logic be numerically different.

(pp. 203–204)

We will argue that Piaget’s classic conservation-of-number task underestimated chil-

dren’s knowledge because it asked children about the abstract entity number, rather than
about particular numbers such as five and six. (In other words, Piaget asked questions

such as “Are there the same number of flowers and vases?” rather than “There are five

flowers. Are there five vases, or six?”)
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Piaget, of course, asked the question this way because he was interested in abstract

and explicit knowledge that the child could articulate. But more recent theories of num-

ber-concept development (e.g., Carey, 2009) hold that children first learn about particular
number words, and only later generalize their knowledge to the superordinate category of

numbers. The counting list (one, two, three, etc.) is learned as a placeholder structure

(something like the chant eenie, meenie, minie, mo), with little or no numerical content.

The child acquires the deep numerical concepts (e.g., cardinality, equinumerosity, succes-

sion) during the process of assigning (or constructing, or discovering, depending on your

theoretical bent) meanings for those number words. This is the process known as concep-
tual-role bootstrapping (Carey, 2009; Block, 1986; see also Quine, 1960). If children first

learn about equinumerosity in the context of particular number words such as five and

six, then measuring equinumerosity knowledge outside the context of particular number

words (e.g., using only the word “number” as Piaget did) may obscure the early develop-

ment of this knowledge.

There are hints of this in the findings reported by Sarnecka and Gelman (2004). That

study investigated children’s understanding of the specificity of number words. This is the

idea that every number word picks out a specific, unique numerosity (Wynn, 1990,

1992). Some proposals had claimed that children did not understand this property of num-

ber words until they mastered the cardinality principle of counting (as measured by the

Give-N task). Sarnecka and Gelman developed three new tasks to measure children’s

knowledge of specificity, two of which children passed before understanding the cardinal-

ity principle. Thus, Sarnecka and Gelman concluded that children understood specificity

before cardinality.

This article revisits the third task—the one children failed until they understood

cardinality. This was the “Compare-Sets” task. In it, children were shown two pictures,

representing the snacks given to a pair of animals. The pictures were either identical or

differed by one item. The children were told how many items one set had, and then

were asked about the other set (e.g., “Frog has five peaches. Does Lion have five, or

six?”).

The authors intended the Compare-Sets task to measure the child’s knowledge that

number words are specific. When non-CP-knowers (children who do not yet understand

cardinality as measured by the Give-N task) passed two other “specificity” tasks but

failed Compare-Sets, the authors concluded that the task was simply too difficult, and

predicted that if the procedural demands could be reduced, the performance gap between

CP-knowers and non-CP-knowers would disappear.

The present work tests that prediction and concludes that it was wrong. A new, simpli-

fied version of the Compare-Sets task actually makes the performance gap between CP-

knowers and non-CP-knowers even more obvious. In light of this finding, we revisit the

question of what the Compare-Sets task actually measures and argue for an answer that

was not considered in the 2004 study: that the task does not primarily measure the child’s

knowledge of specificity, but of equinumerosity. So while children may indeed see num-

ber words as specific (or simply as being about quantity—another possibility consistent

with the 2004 results), they do not understand equinumerosity (i.e., that any and only two
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sets with the same number word can be placed in one-to-one correspondence with each

other) until they become CP-knowers.

Earlier studies have reported findings that are consistent with this possibility, although

none have tested it directly. For example, Sophian (1988) presented 3- and 4-year olds

with two sets of objects (e.g., a group of jars arranged in a circle, with a pile of spoons

in the middle). In half the trials, children were told the number of each set, and then

asked about their correspondence. For example, “There are n jars. There are m spoons.

Can every jar have its own spoon?” In the other trials, children were told about the corre-

spondence and given the number of one set, and then were asked about the number of

the other set. For example, “Every jar has its own spoon. There are n jars. Are there n
spoons?” Sophian reported that about 30–40% of 3-year-olds, and 70–75% of 4-year-olds,

succeeded on both types of trial. These are approximately the proportions of Sophian’s

(relatively high-SES) sample that we would expect to be CP-knowers if they were tested

on the Give-N task.

Frydman and Bryant (1988) reported a similar finding. In that study, 4-year-olds

were asked to divide (“share out”) a set fairly, and to count one of the resulting portions.

Having done that, many of the 4-year-olds were able to infer the number of another,

uncounted portion. (See Izard et al., 2008 for another related finding.)

This study revisits the Compare-Sets task and tests Sarnecka and Gelman’s (2004)

explanation for the performance gap between CP-knowers and other children (i.e., that

the task was too procedurally difficult). A simplified version of the task greatly reduces

the burden on attention and memory by leaving the sets visible the whole time.1 But

contrary to Sarnecka and Gelman’s prediction, simplifying the task does not eliminate the

performance gap between CP-knowers and other children.

In light of these findings, we reconsider how this task should be interpreted. We sug-

gest that the gap in performance between CP-knowers and non-CP-knowers may reflect

CP-knowers’ understanding of equinumerosity—and that equinumerosity itself may be

(along with understanding of the cardinality principle and the successor function) a mani-

festation of a broad conceptual achievement: the “exact numbers” idea—or at least the

idea of the exact numbers five and six.

1. Method

1.1. Participants

Participants included 51 children (30 girls, 21 boys). Their ages ranged from 2 years

7 months to 4 years 1 month (Mage = 3;4). All children were monolingual speakers of

English. Children were recruited by mail and phone using public birth records in the

greater Boston area, and were tested at a university child development laboratory in Cam-

bridge, Massachusetts. Parents who brought their children in for testing received reim-

bursement for their travel expenses and a token gift for their child. No questions were

asked about socio-economic status, race, or ethnicity, but participants were presumably
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representative of the upper middle SES, predominantly white and Asian communities in

which they lived.

1.2. Procedure

1.2.1. Give-N task
The purpose of this task was to determine the child’s number-knower level (i.e., to

determine which exact number word meanings the child knew) and specifically to deter-

mine whether the child understood the cardinality principle of counting. Materials

included a stuffed animal (e.g., a bunny, ~20 cm high), a plastic plate (~11 cm in diame-

ter), and a set of 15 plastic counters (e.g., apples, each ~3 cm in diameter). The experi-

menter began the task by placing the animal on the table and saying, for example, “In

this game, we give things to the bunny, like this…” (here the experimenter mimed plac-

ing something on the plate and sliding the plate across the table to the animal). The

experimenter then placed a bowl of 15 apples on the table in front of the child and said,

“Can you give the bunny one?” After the child put one or more apples on the plate and

slid the plate over to the animal, the experimenter asked a single follow-up question,

which repeated the original number word asked for (e.g., “Is that one?”) If the child said

“yes,” then the experimenter said, “Thank you!” and placed the apple(s) back in the bowl.

If the child said “no,” then the experimenter repeated the original request.

The child was always asked for 1 on the first trial, and for 3 on the second trial. If the

child succeeded on both of those trials, the third request was for 5. Otherwise, the third

request was for 2. Further requests depended on the child’s answers: If a child succeeded

at giving some number N, the next request was for N + 1; the highest number requested

was 6. If the child failed at giving N, the next request was for N�1; the lowest number

requested was 1. The task ended when the child had a least 67% successes (with a mini-

mum of two trials) at a given number N, and at least 67% failures (with a minimum of

two trials) at N + 1. This pattern was the basis for sorting into number-knower levels:

Children who succeeded at 1 (but failed at 2 and higher) were called one-knowers; chil-

dren who succeeded 1 and 2 (but failed at 3 and higher) were called three-knowers, and

so forth. Children who were able to generate all set sizes up to and including 6 were

called cardinality-principle-knowers. Failures were counted against both numbers

involved. For example, if a child gave four apples when asked for “two,” that was

counted as failure on both “two” and “four.” (This replicates the diagnostic criteria used

by Sarnecka & Gelman, 2004; as well as the criteria used by Le Corre et al., 2006; Le

Corre & Carey, 2007; Lee & Sarnecka, 2010; Sarnecka & Carey, 2008; Sarnecka & Lee,

2009; and Wynn, 1990, 1992.)

1.2.2. Compare-sets task
The purpose of this task was to test whether children could extend a number word

from one set to another on the basis of one-to-one correspondence between the sets. It is

based on the task used by Sarnecka and Gelman (2004). Materials for this task included

two stuffed animals (a frog and a lion) and eight pairs of picture cards, depicting the
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animals’ snacks. Each card showed a homogeneous row of five or six food items (e.g.,

peaches). Each pair of cards was either identical (e.g., five peaches and five peaches) or

differed by one item (e.g., six cupcakes and five cupcakes). When the sets were different,

there was an empty circle at one end of the row, highlighting the place where one item

was missing.

The experimenter introduced the task in the following way. “This is a story about when

Frog and Lion came to my house, and I gave them some snacks. I tried to make their

snacks just the same, because they like their snacks to be the same. But sometimes I made

a mistake, and their snacks were not the same. The first snack I gave them was peaches…”

Here, the experimenter placed the first pair of cards on the table, one in front of each

animal, and asked the first control question, “Are their snacks just the same, or did I

make a mistake?” Trials where children answered this question incorrectly were excluded

from the analysis. The vast majority of “incorrect” answers occurred on the first trial

where the sets differed, because the child often said that the snacks were “the same,”

meaning that they were the same kind of food (e.g., the child often said something like

“Yes, they both got peaches”). In this case, the experimenter emphasized the discrepancy

by saying, for example, “Well, they both got peaches but… oh no! Look! I forgot to put

a peach there! Doh! (slapping forehead) That’s not right! I made a mistake! I’m so silly!”
After the child’s attention had been drawn to the same-ness or difference of the two

sets, the experimenter either removed the cards (“hidden” trials) or left them sitting in

full view (“visible” trials) and asked the test question, which gave the child the number

of one set and asked about the other. In the “hidden” trials, the question was of the form,

“Frog had five cupcakes. Did Lion have five, or six?” In the “visible” trials, the question

was of the form, “This (pointing to Frog’s snack) is six peaches. Is this (pointing to

Lion’s snack) five, or six?”

Children kept their hands in their lap and did not count the items on the cards. (In the

“hidden” trials, the cards were removed from view before the test question, so there was

nothing to count anyway.) On “visible” trials, if a child made any move to count (e.g.,

by pointing to an item), the experimenter removed the cards from view and said, “This is

not a counting game. You can just guess” and then waited for the child to return hands

to lap before laying the cards back on the table. Such exchanges were rare, because

children rarely made any attempt to count the items.

On the “hidden” trials, the test question was followed by a final control question,

“And were their snacks just the same, or did I make a mistake?” Trials where children

failed this final control question were also excluded from the analysis.

Each child completed a block of four “visible” trials and a block of four “hidden”

trials, for a total of eight trials. Within each block, the set sizes given to Frog/Lion were

5/5, 6/6, 5/6, and 6/5. Order of blocks, and order of trials within each block, was counter-

balanced across subjects.

1.2.3. Data analysis
Responses were binary (correct/incorrect) and each child could contribute up to eight

valid responses, one for each trial. A common way to analyze such data is to collapse
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across the levels of some factors (e.g., to add up each child’s responses, creating a score

of 0–4 for visible trials and a score of 0–4 for hidden trials). However, in this case, we

chose not to collapse across different trial types because we did not want to assume that

any factors were unimportant. Instead, we analyzed these data by fitting generalized, lin-

ear, mixed-effects models (McCulloch, 2003) with a logit link function. In the interest of

clarity, our presentation of these results will only include the details of the fitting process

where those details are critical to understanding or evaluating the results. The actual fits

were done using the lme4 (Bates, 2005) package in R (version 2.10.1; R Development

Core Team, 2006).

2. Results

2.1. Give-N task

Based on their performance in the Give-N task, children were identified as either cardi-

nality-principle-knowers (CP-knowers, n = 22) or non-cardinality-principle-knowers (non-

CP-knowers, n = 29). Among the non-CP-knowers, there were five pre-number-knowers,

five-one-knowers, nine-two-knowers, seven-three-knowers, and three-four-knowers. There

was a strong relationship between age and knower level, r(51) = .66, p = .000, reflecting

the fact that older children knew more than younger children. There was no evidence of

differences in the knower levels of boys versus girls, F(1,49) = 0.713. Except where

noted, the non-CP-knowers were collapsed into a single group in the analyses reported

below.

2.2. Compare-sets task

The initial control question, “Are their snacks just the same, or did I make a mistake?”

was asked before the test question on all trials. On the “hidden” trials only, the control

question was repeated again after the test question, to check that the child still remem-

bered whether the sets had been identical. As described in the method section above, chil-

dren often misunderstood the control question at first, taking it to mean “same type of

food” rather than “same amount of food.” All together, one or both control questions

were answered incorrectly on 32% of trials. There was a statistically reliable tendency for

the same children to miss control questions in both the hidden and visible conditions,

r(51) = .311, p = .027. There were just three instances in which a child answered the

control question correctly and then refused to answer the test question. All subsequent

analyses excluded trials on which the child either failed to answer one or both control

questions correctly, or did not answer the test question (e.g., trials that were not com-

pleted because the child decided to quit playing).

These exclusions eliminated one child from the data set: a female two-knower, age

3;1. We considered also dropping the data from four other children. After the exclusions,

these children had no responses on all four trials in either the “hidden” or “visible” block
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(two children each). However, the data from these four children were retained after we

determined that this did not qualitatively alter any of our conclusions. After these exclu-

sions, there were 273 responses in the data.

The analysis of the remaining data from the Frog-and-Lion task focused on the effects

of five factors. “Participants” was the one random factor. There was one two-level,

between- participant, fixed effect: “CP-knower status” (CP-knower/non-CP-knower). And

there were three two-level, within-participant, fixed effects: “visibility” (hidden/visible),

“N-first” (5/6 objects in the first set presented), and “same-different” (identical sets/dis-

crepant sets). The model based on these factors that best fit the data was one that

included the main effect of CP-knower status (z = 4.033, p = .000), and the main effect

of visibility (z = 2.044, p = .041), and that allowed the variance of the random effect of

participants to differ across the levels of the visibility factor. The interaction of these two

factors was not statistically reliable (z = 1.587, p = .113). Collapsing over the visibility

factor, children in the non-CP-knower group performed better than chance (z = 6.149,

p = .000).

However, being a CP-knower increased the average probability of responding of

responding correctly from .59 to .85. Collapsing over CP-knower status, having the sets

visible rather than hidden increased probability of responding correctly from .67 to .80.

This final model was simpler because none of the potential terms involving either of the

presentation variables (N-first or same-different) did much to improve the fit of the

model. In other words, it made little difference whether the first set size presented was

five or six; nor did it matter much whether the sets were identical or different. For these

terms the most significant had z = �1.367, p = .172 and most were substantially less

important.

We also re-ran the analysis to include the 70 trials on which the child missed the first

control question, because Sarnecka and Gelman (2004) did include such trials in their

analysis. (“Hidden” trials on which the child missed the second control question were still

excluded.) Results were similar to the first analysis, showing main effects of CP-knower

status (z = 4.962, p = .000) and visibility (z = 2.350, p = .019). However, in this analysis

the interaction of these two factors was also statistically significant (z = 2.046, p = .041),

meaning that having the sets remain visible was more helpful to CP-knowers than to

non-CP-knowers.

2.2.1. Analysis of age effects
Before accepting that this model provided an appropriate summary of these data, we

felt it was important to explore two plausible alternatives. The first is that CP-knower sta-

tus and success in this task both may reflect a developing maturity that can be indexed

by age. Certainly, as reported in the previous section, number-knower level in these data

was strongly correlated with age (see Fig. 1a). However, when the model was expanded

to include linear, quadratic, and cubic age terms, the fit was improved no more than if

these had been random predictors (v2(3) = 2.097, p = .553), and the size of the

coefficient in the model associated with CP-knower status was attenuated by less than 1%

and remained statistically significant (z = 3.770, p = .000). In other words, despite the
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correlation between knower level and age, it was CP-knower status (and not age) that

predicted success on the task (see Fig. 1b).

2.2.2. Analysis of differences among the non-CP-knower levels
The second alternative explored whether differences in number-knower level, other

than the distinction of CP- knower/non-CP-knower, explained any variation in

performance. Including number-knower level (i.e., pre-knower, one-knower, two-knower,

three-knower, or four-knower) instead of CP- knower-status (i.e., CP-knower or non-

CP-knower) as a factor in the model did not substantially improve the model fit

(v2(4) = 6.765, p = .149). As it happened, the only non-CP-knower level with perfor-

mance that differed reliably from the overall average was three-knowers, who did signifi-

cantly worse than the average (z = �2.827, p = .005; lacking any principled explanation

for this anomaly, we assume that it was a fluke.) In the model that included number-

knower level as a factor, there was still a reliable difference between CP-knowers and the

overall average, z = 3.866, p = .000 (see Fig. 2).

3. Discussion

These results suggest a number of things. First, Sarnecka and Gelman’s (2004) inter-

pretation of their Compare-Sets results was incorrect. In that paper, the task was seen as

a way of measuring the child’s knowledge that each number word picks out a specific,
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unique numerosity. But if that is what the task measures, then why shuuld CP-knowers

(i.e., children who have already figured out the cardinality principle of counting) perform

so much better than non-CP-knowers on the Compare-Sets task?

Sarnecka and Gelman’s (2004) answer was that the task was too procedurally difficult,

too taxing on attention and memory. According to that explanation, if the task could be

made simpler, then non-CP-knowers should do fine. But the present data do not bear out

this prediction. We gave children the original version of the task (where the sets were

hidden) as well as a new, simpler version of the task where the sets remained visible the

whole time. If Sarnecka and Gelman’s prediction had been correct, then non-CP-knowers

should have performed substantially better on the simplified, “visible” version of the task

than on the older “hidden” version—but that was not the case. In fact, the one analysis

that showed an interaction found that keeping the sets visible was actually more helpful

to the CP-knowers than to the non-CP-knowers. We must conclude that Sarnecka and

Gelman’s original understanding of what the task measured was incorrect. It does not

measure the child’s knowledge that number words are specific, but rather the knowledge

that the members of any two sets with the same number word can be placed in one-to-

one correspondence. In other words, the task measures the child’s understanding of equi-
numerosity, at least for the numbers five and six.
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The data present two patterns that seem to require explanation: First, the non-CP-

knowers (as a group) performed slightly better than chance. Second and more striking,

the CP-knowers performed much better than the non-CP-knowers not only at the group

level but also at the individual level. In fact, every single CP-knower outperformed every

single non-CP-knower (see Figs. 1b and 2).

Any explanation for these patterns is necessarily speculative, but the lack of overlap in

performance by CP-knowers and non-CP-knowers seems consistent with the possibility

that the two groups are using different strategies on the task.

For example, the non-CP-knowers could perform slightly better than chance because

some implicit pragmatic bias led them to repeat the same word when the sets were

termed “the same,” and to choose the other word when the sets were termed “not the

same.” Such a rule need not be specific to number words and could apply in the absence

of any conceptual understanding of what makes two sets numerically “the same”—that is,

without the child having any understanding of equinumerosity. (Of course, a child who

represented this rule explicitly, and applied it consistently, would get every trial correct.

Because no non-CP-knower even approached perfect performance, it might make more

sense to think of such a pragmatic constraint as operating subtly and implicitly on

children’s behavior.

The more interesting question is, why do CP-knowers (and only CP-knowers) perform

so well on this task? What number knowledge do they have, that non-CP-knowers lack?

Obviously, CP-knowers (by definition) understand how counting works. But children were

not allowed to count the items in the Compare-Sets task, so counting skill alone cannot

directly explain the CP-knowers’ success.

It has previously been argued that only CP-knowers understand how the successor

function generates one set size to go with the number word five, and another set size to

go with the word six (Sarnecka & Carey, 2008). But this does not explain the present

results, because the Compare-Sets task does not directly measure understanding of succes-

sion (e.g., it does not measure the child’s knowledge that the set is increased by exactly

one item with each word in the list).

What the task does measure is the child’s knowledge of equinumerosity. This may be

(like cardinality and succession) a concept that CP-knowers have—at least for the num-

bers five and six—and non-CP-knowers lack. If so, then the conceptual achievement that

has long been called the cardinality-principle induction might be better termed the cardi-
nality-principle-successor-function-equinumerosity induction, an unwieldy term indeed.

Following Izard et al. (2008), we prefer to use a simpler term: the “exact numbers” idea.

There is another possibility to consider. CP-knowers might succeed on the Compare-

Sets task, not because they understand equinumerosity, but because they have mapped the

number words “five” and “six” to quantity representations in the innate approximate num-

ber system. Le Corre and Carey (2007) showed that non-CP-knowers do not have such

mappings, and that children construct them several months after making the CP-induction.

If the CP-knowers (and only the CP-knowers) were able to estimate five and six items

without counting, then they might be able to answer the question “Does Lion have five,

or six?” simply by looking at (or remembering) Lion’s snack and estimating how many
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items were in it. This might also explain why keeping the sets visible was more helpful

to CP-knowers than to non-CP-knowers.

However, there are two problems with this explanation. First, it would require that all
the CP-knowers in our study had mapped “five” and “six” to the approximate number

system (ANS), because all the CP-knowers performed quite well on the task. But Le

Corre and Carey (2007) found that children do not construct such mappings until some

6 months after making the CP-induction. This would lead us to expect that at least some

of the CP-knowers (i.e., the ones who had not been CP-knowers for very long) would still

be what Le Corre and Carey called “non-mappers.” The fact that in our study, every CP-

knower performed well suggests that their performance was tied more directly to the

CP-induction itself. The other problem with the ANS-mapping explanation is that the

CP-knowers’ performance is just more accurate than would be expected under an estima-

tion account. Even if all the CP-knowers in our sample had constructed ANS mappings

for the number words, previous research suggests that these mappings would not be

precise enough to allow the children to correctly discriminate 5 from 6 some 85% of the

time (Halberda & Feigenson, 2008; Piazza et al., 2010). For these reasons, we tend to

favor the idea that the present results reflect CP-knowers’ greater understanding of equi-

numerosity (relative to non-CP-knowers) rather than differences in the ANS acuity of the

two groups, or in their mapping of number words to ANS representations.

To us, the most important implication of the present work is educational. One of the

main goals of pre-kindergarten math education should be to make sure that all children

understand exact numbers. That is, children need to understand the principles of cardi-

nality, equinumerosity, and succession (for some portion of the counting list, say up to

10) before they start kindergarten. Children who lack these concepts really do not know

what numbers are. Without that understanding, they cannot make sense of number

operations, greater than/less than comparisons, or other content in the early elementary

math curriculum. We hope that the present work will help to clarify the importance of

the “exact numbers” idea as a conceptual-development milestone of the preschool

years.
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