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Abstract

Psychological experiments have revealed remarkable regulari-
ties in the developmental time course of cognition. Infants gen-
erally acquire broad categorical distinctions (i.e., plant/animal)
before finer ones (i.e., bird/fish), and periods of little change
are often punctuated by stage-like transitions. This pattern of
progressive differentiation has also been seen in neural net-
work models as they learn from exposure to training data. Our
work explains why the networks exhibit these phenomena. We
find solutions to the dynamics of error-correcting learning in
linear three layer neural networks. These solutions link the
statistics of the training set and the dynamics of learning in the
network, and characterize formally how learning leads to the
emergence of structured representations for arbitrary training
environments. We then consider training a neural network on
data generated by a hierarchically structured probabilistic gen-
erative process. Our results reveal that, for a broad class of
such structures, the learning dynamics must exhibit progres-
sive, coarse-to-fine differentiation with stage-like transitions
punctuating longer dormant periods.
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Introduction

Our world is characterized by a rich, nested hierarchical
structure of categories within categories, and one of the most
remarkable aspects of human semantic development is our
ability to learn and exploit this structure. Experimental work
has shown that infants and children acquire broad categorical
distinctions before fine categorical distinctions (Keil, 1979;
Mandler & McDonough, 1993), suggesting that human cat-
egory learning is marked by a progressive differentiation of
concepts from broad to fine. Furthermore, humans can ex-
hibit stage-like transitions as they learn, rapidly progress-
ing through successive levels of mastery (Inhelder & Piaget,
1958; Siegler, 1976).

Many neural network simulations have captured aspects of
these broad patterns of semantic development (Rogers & Mc-
Clelland, 2004; Rumelhart & Todd, 1993; McClelland, 1995;
Plunkett & Sinha, 1992; Quinn & Johnson, 1997). The inter-
nal representations of such networks exhibit both progressive
differentiation and stage-like transitions. However, the the-
oretical basis for the ability of neuronal networks to exhibit
such strikingly rich nonlinear behavior remains elusive. What
are the essential principles that underly such behavior? What
aspects of statistical structure in the input are responsible for
driving such dynamics? For example, must networks exploit
nonlinearities in their input-output map to detect higher order
statistical regularities to drive such learning?
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Figure 1: The three layer network analyzed in this work.

Here we analyze the learning dynamics of a linear three
layer network and find, surprisingly, that it can exhibit highly
nonlinear learning dynamics, including rapid stage-like tran-
sitions. Furthermore, when exposed to hierarchically struc-
tured data sampled from a hierarchical probabilistic model,
the network exhibits progressive differentiation of concepts
from broad to fine. Since such linear networks are sensitive
only to the second order statistics of inputs and outputs, this
yields the intriguing result that merely second order patterns
of covariation in hierarchically structured data contain statis-
tical signals powerful enough to drive certain nontrivial, high
level aspects of semantic development in deep networks.

We outline our approach here in brief. We begin by de-
composing the training set to identify important dimensions
of variation using the singular value decomposition (SVD),
which will turn out to be fundamental to our analysis. Next,
we examine the equations governing gradient descent learn-
ing and show that they can be solved in terms of the SVD
of the training set. This solution analytically expresses the
weight values of the neural network at any point in time dur-
ing learning as a function of the input training set. Finally, we
consider generating the training set from a hierarchical prob-
abilistic generative model. We analytically calculate the SVD
of training sets so generated, which in combination with our
previous results gives a formal grounding for how neural net-
works will learn about hierarchical categorical structure. We
show that networks must exhibit progressive differentiation of
categorical structure and stage-like transitions for any train-
ing set generated by a class of hierarchical generative models.

Decomposing the training set

Our fundamental goal is to understand the dynamics of learn-
ing in neural networks as a function of the training set. To-
ward this goal, in this section we introduce the singular



value decomposition, which identifies important dimensions
of variation in the training set. The SVD will turn out to be
fundamentally linked to learning dynamics, a connection we
develop in the next section. We wish to train a neural network
to learn a particular input-output map from a set of P training
examples {x*,y*} , u=1,...,P. These P pairs of vectors con-
stitute the training set. In the model of semantic development
introduced by Rumelhart and Todd (1993), for instance, ele-
ments of x* correspond to input units representing items such
as Canary or Rose. The elements of y* correspond to out-
put units representing possible predicates or attributes such
as can Fly or has Petals that may or may not apply to each
item. Hence each example links a particular item to a set of
properties, and the training set contains the semantic content
in the world to be learned by the network.

For concreteness, we consider a simple example dataset
with four items (Canary, Salmon, Oak, and Rose) and five
properties. The two animals share the property that they can
Move, while the two plants cannot. In addition each item has
a unique property: can Fly, can Swim, has Bark, and has
Petals, respectively. In a more natural data set, the plant-
animal, bird-fish, and tree-flower distinctions are based on
clusters of covarying properties, for which the single proper-
ties identified here serve as proxies.

An important function of the training set is the input-output
correlation matrix
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For our example dataset, this matrix is shown in Fig. 2. Each
column corresponds to an item, and denotes the properties
possessed by that particular item.

Our example dataset contains important shared structure.
The Canary and Salmon, for instance, both can Move, and
hence may naturally be grouped together. Intuitively, they are
both animals, and as a consequence have certain properties
in common that are typical of animals. How can we identify
these coherently covarying groups of items and their proper-
ties? We will show that the singular value decomposition of
the input-output correlation matrix accomplishes exactly this.

The singular value decomposition (SVD)
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decomposes any matrix into the product of three matrices.
Each of these matrices has an important real world interpre-
tation. We call the N; x N; orthogonal matrix V!! the object
analyzer—it determines the position of a particular item along
a number of important dimensions of the training set. The
first row of V“T, for instance, determines where items sit on
an animal-plant dimension, and hence has positive values for
the Canary and Salmon and negative values for the plants. In
our example dataset, the three dimensions identified by the
SVD are animal-plant, bird-fish, and flower-tree.
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Figure 2: First three modes of the singular value decompo-
sition of a toy dataset. Left: The learning environment is
specified by an input-output correlation matrix. Right: The
SVD decomposes X! into modes that link a set of coherently
covarying items (object analyzer vectors in the rows of V1) to
a set of coherently covarying properties (feature synthesizer
vectors in the columns of U). The overall strength of this
link is given by the singular values lying along the diagonal
of S. In this toy example, mode 1 distinguishes plants from
animals; mode 2 birds from fish; and mode 3 flowers from
trees.

The N3 x N3 orthogonal matrix U3 can be interpreted as a
feature synthesizer—it contains those features typical of a par-
ticular dimension in each column. Hence the feature synthe-
sizer associated with the animal-plant dimension has positive
values for can Move, since animals typically can move while
plants cannot.

Finally the N3 x Ny association strength matrix S3! cap-
tures the overall strength of the association between an in-
put dimension and output dimension. It is nonzero only on
the diagonal; these elements are the singular values sq, 0t =
1,...,Ny ordered so that s; > s > --- > sy,. The large as-
sociation strength for the animal-plant dimension reflects the
fact that this one dimension explains more of the training set
than the finer-scale dimensions like bird-fish and flower-tree.

In a larger training set, the SVD will extract modes that
capture patterns of coherent covariation in the properties of
items in the training set. The quantities defining each mode,
{5q, u®,v*}, are connected to the learning dynamics of neural
networks in the next section.

Gradient descent dynamics in multilayer
neural networks

We examine learning in a three layer network (input layer
1, hidden layer 2, and output layer 3) with linear activation
functions, simplifying the network model of Rumelhart and
Todd (1993). Let N; be the number of neurons in layer i, W?!
be an N, x Ni matrix of synaptic connections from layer 1
to 2, and similarly, W32 an N3 x N, matrix of connections
from layer 2 to 3. The input-output map of the network is
y = W¥W?2!x, where x is an N; dimensional column vector
representing inputs to the network, and y is an N, dimensional
column vector representing the network output (see Fig. 1).
Training is accomplished in an online fashion via stochas-



tic gradient descent; each time an example u is presented, the
weights W32 and W2! are adjusted by a small amount in the
direction that minimizes the squared error Hy“ — W3ZW 2l | | :
between the desired feature output, and the network’s feature
output. This gradient descent procedure yields the standard
back propagation learning rule
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for each example u, where # = W32W?2!x* denotes the output
of the network in response to input example x*, #* = W2 x#
is the hidden unit activity, and A is a small learning rate.
Here W32T(y“ — ") in (3) corresponds to the signal back-
propagated to the hidden units through the hidden-to-output
weights. These equations emphasize that the learning pro-
cess works by comparing the network’s current output $* to
the desired target output y*, and adjusting weights based on
this error term.

By a substitution and rearrangement, however, we can
equivalently write these equations as
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This form emphasizes two crucial aspects of the learning dy-
namics. First, it highlights the importance of the statistics
of the training set. In particular, the training set enters only
through two terms, one related to the input-output correla-
tions y“x*7 and the other related to the input correlations
x“x*T  Indeed, if A is sufficiently small so that weights change
only a small amount per epoch, we can rewrite these equa-
tions in a batch update form by averaging over the training
set to obtain the mean change in weights per learning epoch,

d 2 32T (31 3221 y11

W =W (' —wrEwsth (7)

d 3 31 3221511y yr21T

IEW = (& -wrwzhw" 8)
where 2! = ¥, #x*" = E[xx"] is an Nj x Nj input corre-

lation matrix, X3! is the N3 x N; input-output correlation ma-
trix defined previously, and T = % Hence we see that linear
networks are sensitive only to the second order statistics of
inputs and outputs. In general the learning process is driven
by both the input and input-output correlation matrices. Here
we take the simplifying assumption that these input corre-
lations are insignificant; formally, we assume s =17 the
identity matrix. Concretely, this assumption corresponds to
the supposition that input representations for different items
are highly differentiated from, or orthogonal to each other.
While this is unlikely to hold exactly in any natural domain,
we take this assumption for two reasons. First, it was used in
prior simulation studies (Rogers & McClelland, 2004), and
hence our attempt to understand their results is not limited
by this assumption. Second, Rogers and McClelland (2004)

have shown that relaxing this assumption to incorporate more
complex input correlations leaves intact the basic phenom-
ena of progressive differentiation and stage-like transitions
in learning. Nevertheless, understanding the impact of input
correlations is an important direction for further work.

Second, the form of Eqns. (7)-(8) highlights the coupling
between the two equations: to know how to change W?2! we
must know W32, and visa versa, since each appears in the
update equation for the other. This coupling is the crucial
element added by the addition of a hidden layer, and as we
shall see, it qualitatively changes the learning dynamics of
the network compared to a “shallow” network with no hid-
den layer. Intuitively, this coupling complicates the learn-
ing procedure since both weight matrices must cooperate to
produce the correct answer; but crucially, it enables knowl-
edge sharing between different items, by assigning them sim-
ilar hidden unit representations. Without this coupling, the
network would learn each item-property association indepen-
dently, and would not be sensitive to shared structure in the
training set.

The temporal dynamics of learning To understand the
connection between learning dynamics and training set statis-
tics, then, we can solve Eqns. (7)-(8). We have found a class
of exact solutions (whose derivation will be presented else-
where) that describe the weights of the network over time
during learning, as a function of the training set. In partic-
ular, the composite mapping at any time ¢ is given by
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where the function a(t,s,a’) governing the strength of each
input-output mode is given by
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That is, the network learns about the N, strongest input-
output modes identified by the singular value decomposi-
tion, progressively incorporating each mode into its repre-
sentation. The coefficient a(z,s%,ap) describes how strongly
input-output mode o has been learned by time ¢, starting
from some small initial value of qg. As can be seen from
Fig. 3, this function is a sigmoidal curve, capturing the fact
that the network initially knows nothing about a particular
dimension (the animal-plant dimension, say), but over time
learns the importance of this dimension and incorporates it
into its representation, ultimately reaching the correct asso-
ciation strength s*. At this point the network correctly maps
items onto the animal-plant dimension using the object an-
alyzer vector v*', and generates the corresponding correct
features using the feature synthesizer vector u®.

Eqns. (9)-(10) describe the fundamental connection be-
tween the structure of a training set and learning dynamics.
In particular, the dynamics depends on the singular value
decomposition of the input-output correlation matrix of the
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Figure 3: Close agreement between theoretically predicted
time course and numerical simulations. Simulations were
performed with a dataset sampled from the hierarchical diffu-
sion process described in detail in a later section, with D =3
hierarchical levels, binary branching, flip probability € = 0.1,
and N = 10,000 sampled features. This data set had 3 unique
singular values. Red traces show ten simulations of the singu-
lar value dynamics of W32(¢£)W?!(¢) in Eqns. (7)-(8) starting
from different random initializations, and blue traces show
theoretical curves obtained from (10).

training set. Further, they reveal important properties of these
learning dynamics.

First, each input-output mode is learned on a different time
scale, governed by its singular value sq. To calculate this
time scale, we can assume a small initial condition ag = €
and ask when a(¢) in (10) rises to within € of the final value
So» 1.e. a(t) = s — €; then the timescale of learning in the
limite — 0 is T s

t(s,e)—saln = (11)
Hence up to a logarithmic factor, the time required to learn
an input-output mode is inversely related to its association
strength, quantified through its singular value.

Second, these dynamics reveal stage-like transitions in
learning performance. Intuitively, this property arises from
the sigmoidal transition in (10) from a state in which the net-
work does not represent a particular input-output relation at
all, to a state in which the network fully incorporates that rela-
tion. Because of the sigmoidal shape, the solution can remain
very small for a long period of time before rapidly transition-
ing to mastery. To formalize this, we note that the time it
takes to reach half mastery (i.e. “(thalf) =s5/2)is
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thalf = 5108 (ao—1>. (12)

In contrast, the duration of the transition period in which the
weights change rapidly is t7qn5 = ZTT (using a linear approx-
imation). Thus, by starting with a very small initial condition
for the weights (i.e. ag = 0), it is clear that one can make
the ratio tyrgns/ "half arbitrarily small, i.e., the transition pe-
riod can be very brief relative to the long initial period of
dormancy. Hence the learning dynamics of (7)-(8) exhibit

sharp stage-like transitions. Importantly, we can prove that
networks with only direct input-output connections and no
hidden layer are not capable of such stage-like transitions.
Their existence is an emergent property of nonlinear learning
dynamics in deep networks with at least one hidden layer.

The result in (9) is the solution to (7)-(8) for a special class
of initial conditions on the weights W2! and W32, However
this analytic solution is a good approximation to the time evo-
lution the network’s input-output map for random small ini-
tial conditions, as confirmed in Fig. 3.

Summary of learning dynamics The preceding analyses
have established a number of crucial features of gradient de-
scent learning in a simple linear network, making explicit the
relationship between the statistical structure of training exam-
ples and the dynamics of learning. In particular, the learning
dynamics depend crucially on the singular values of the input-
output correlation matrix. Each input-output mode is learned
in time inversely proportional to its associated singular value,
yielding the intuitive result that stronger input-output associ-
ations are learned before weaker ones.

The singular values and vectors of
hierarchically generated data

In this section we introduce a hierarchical probabilistic gen-
erative model of items and their attributes that, when sam-
pled, produces a dataset that can be supplied to our neural
network. By analytically calculating the SVD of this data, we
will be able to explicitly link hierarchical taxonomies of cat-
egories to the dynamics of network learning. A key result in
the following is that our network must exhibit progressive dif-
ferentiation with respect to any of the underlying hierarchical
taxonomies allowed by our generative model.

Hierarchical feature vectors from a branching diffusion
process We propose a simple generative model of hierar-
chical data {x",y*}, and compute for this model the input-
output modes (sq,u*,v*) which drive learning. The hierar-
chical structure in the generative model is represented by a
tree (see e.g. Fig. 4). Each leaf node of this tree corresponds
to an item in the dataset. Our generative process assigns fea-
tures to these items such that items with more recent common
ancestors are more likely to share features. For instance, our
example dataset might have been generated by a three level
binary tree with four leaf nodes. The top level would separate
the animals from the plants, while the next level would sepa-
rate the birds from the fish and the flowers from the plants.

In detail, to sample one feature’s value across items, the
root node is randomly set to =1 with equal probability %;
next this value diffuses to children nodes, where its sign is
flipped with a small probability €. This process continues
until the leaf nodes have been assigned values. These assign-
ments yield the value of this feature on each item.

Under this process, the can Move feature, for example,
might have arisen as follows: randomly the root node of the
three level binary tree was assigned a value of 1. This value



diffused down to the two second level nodes, maybe in this in-
stance changing sign to —1 for the parent node of the plants,
but not changing for the parent node of the animals. Then
these values diffused down to the leaf nodes representing the
individual items, perhaps not flipping sign for any of them.
Hence the ultimate feature assignment would be +1 on the
Canary and Salmon and —1 on the Flower and Tree. This
is just one possible sample from the generative model, but
serves to illustrate how hierarchical structure arises from the
feature generation process. To generate more features, the
process is repeated independently N times.

For simplicity, we consider trees with a regular branching
structure. The tree has D levels indexed by [ =0,...,D —
1, with M, total nodes at level . Every node at level / has
exactly B; descendants. Thus M; = MOHfC_:%)B;. The tree has
a single root node at the top (My = 1), and again P leaves at
the bottom, one per example in the dataset (Mp_; = P).

We have thus far described the output feature vectors y*. To
complete the specification of the training set, we assume that
the input vectors x* are simply chosen to be highly distinct
(i.e., orthogonal). One such choice is a localist coding scheme
in which a different element is active to represent the presence
of each item.

Input-output modes of hierarchical data How will our
neural network learn about training sets generated as just de-
scribed? To understand this, we calculate the SVD of such
training sets. We will see that the input-output modes identi-
fied by the SVD exactly mirror the tree structure used to gen-
erate the dataset. The feature generation process described
in the previous section generates a training set with N fea-
tures. In the limit of large numbers of features, we obtain the
following (the full derivation to be presented elsewhere):

The object analyzer vectors exactly mirror the tree struc-
ture, as shown in Fig. 4. One mode will correspond to a
broad, high level distinction (e.g., animal-plant) near the root
of the tree, while another will correspond to a more detailed
distinction (e.g., bird-fish). For binary trees, each object an-
alyzer vector will have positive weights on all items on one
side of a binary distinction, and negative weights on all items
on the other side. The rest of the entries will be zero. Hence
this object analyzer vector will only be able to tell items apart
with respect to this one distinction. It contains no information
about higher or lower level distinctions in the tree. For trees
with other branching factors, the situation is the same: ad-
ditional object analyzer vectors are introduced to permit dis-
tinctions between more than two options, but these vectors
contain no information about distinctions at other levels in
the tree.

The association strength or singular value s; associated
with level [ of the binary tree is

13)

where g, = (1 —4e(1—¢))P~'"*and A; = ¢; — g;_, with the
caveat that g_; = 0.
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Figure 4: Statistical structure of hierarchical data. (a) Ex-
ample hierarchical diffusion process with D = 4 levels and
branching factor B = 2. (b) Analytically derived input singu-
lar vectors, or modes, (up to a scaling) of the resulting data,
ordered top-to-bottom by singular value. Besides mode 0,
each mode, or object analyzer, can discriminate objects, or
leaves of the tree, whose first common ancestor arises at a
given level of the tree. This level is 0 for mode 2, 1 for modes
3 and 4, and 3 for modes 5 through 8. Singular modes cor-
responding to broad distinctions (higher levels) have larger
singular values, and hence will be learned earlier. (c) The co-
variance matrix between pairs of objects in the output feature
space consists of hierarchically organized blocks.

While this equation gives the correct quantitative value for
the association strength in terms of the parameters of the
generative process, its most important property is its qual-
itative behavior: it is a decreasing function of the hierar-
chy level [ (see, e.g., Fig. 5). Crucially, this means that the
input-output modes corresponding to broader distinctions like
animal-plant have a stronger association strength than those
corresponding to finer distinctions like bird-fish. Since we
have previously shown that modes with stronger association
strengths are learned more quickly, this immediately implies
that broader distinctions among examples will be learned
faster than fine-grained distinctions among examples.
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Figure 5: Agreement between theoretically computed singu-
lar values in the limit of large numbers of features (obtained
from (13)) and simulation for hierarchically structured data.
The simulations show singular values arising from sampling
200 features from a hierarchical generative model with six
levels, binary branching, and € = 0.1. The singular values
are a decreasing function of the hierarchy level, implying
that finer distinctions among examples will be learned more
slowly.

Summary of the statistics of hierarchical data Thus we
have shown that the singular vectors of data from a hierarchi-
cal diffusion process correspond exactly to the hierarchical
distinctions in the underlying tree, and furthermore, that sin-
gular vectors corresponding to broader hierarchical distinc-
tions have larger singular values than those corresponding to
finer distinctions (Fig. 4AB). In combination with the preced-
ing analysis of neural network learning dynamics, this result
shows that our deep neural network must exhibit progressive
differentiation on any dataset generated by an instance of this
class of hierarchical, branching diffusion processes.

Discussion

Our results explore the rich dynamics arising from gradient
descent learning in a deep neural network, despite a com-
pletely linear input-output mapping. We have shown that
these dynamics, driven solely by second order statistics, iden-
tify coherently covarying input and output modes in the learn-
ing environment, and we expressed the full time course of
learning in terms of these modes. Finally, we moved beyond
particular datasets to extract general principles by analyzing
the covariance structure of hierarchical probabilistic models,
showing that progressive differentiation is a general feature of
learning hierarchically structured training data in deep neural
networks.

We have focused our analysis on a few notable features of
the learning dynamics—progressive differentiation and stage-
like transitions—but our framework yields insights (to be pre-
sented elsewhere) into many other phenomena in semantic
development such as, erroneous “illusory correlations” early
in learning, familiarity and typicality effects, inductive prop-
erty judgements, and the impact of perceptual correlations on
learning dynamics. Moreover, this approach enables quanti-
tative definitions of important intuitive notions like “category
coherence”, and yields precise theorems delineating how cat-
egory coherence controls network learning rates.

By connecting probabilistic models and neural networks,
our framework quantitatively links structured environments
to learning dynamics. In future work, it will be important to
compare the features of our neural network learning model
with those of structured probabilistic learning models (e.g.,
Kemp and Tenenbaum (2008). Like structured models, neu-
ral networks can learn a range of different structure types, but
unlike structured models, networks can learn without prior
enumeration of such structures. Furthermore, networks can
easily learn to represent data that are approximations or hy-
brids of different structure types—features that, we believe,
characterize natural domains, such as the domain of living
things considered here.

Acknowledgments

S.G. thanks DARPA, BioX, Burroughs-Wellcome, and Sloan

foundations for support. J.L.M. was supported by AFOSR.

A.S. was supported by a NDSEG Fellowship and MBC

Traineeship. We thank Juan Gao and Jeremy Glick for useful

discussions.

References

Inhelder, B., & Piaget, J. (1958). The growth of logical
thinking from childhood to adolescence. New York: Ba-
sic Books.

Keil, E. (1979). Semantic and conceptual development: An
ontological perspective. Cambridge, MA: Harvard Univer-
sity Press.

Kemp, C., & Tenenbaum, J. B. (2008, August). The discovery
of structural form. Proceedings of the National Academy of
Sciences of the United States of America, 105(31), 10687—
92.

Mandler, J. M., & McDonough, L. (1993). Concept Forma-
tion in Infancy. Cognitive Development, 8, 291-318.

McClelland, J. L. (1995). A Connectionist Perspective on
Knowledge and Development. In T. Simon & G. Halford
(Eds.), Developing cognitive competence: New approaches
to process modeling. Hillsdale, NJ: Erlbaum.

Plunkett, K., & Sinha, C. (1992). Connectionism and de-
velopmental theory. British Journal of Developmental Psy-
chology, 10(3), 209-254.

Quinn, P., & Johnson, M. (1997). The emergence of percep-
tual category representations in young infants: A connec-
tionist analysis. Journal of Experimental Child Psychology,
66, 236-263.

Rogers, T., & McClelland, J. (2004). Semantic cognition: A
parallel distributed processing approach. Cambridge, MA:
MIT Press.

Rumelhart, D., & Todd, P. (1993). Learning and connectionist
representations. In D. Meyer & S. Kornblum (Eds.), Atten-
tion and performance xiv: Synergies in experimental psy-
chology, artifical intelligence, and cognitive neuroscience.
Cambridge, MA: MIT Press.

Siegler, R. (1976). Three aspects of cognitive development.
Cognitive Psychology, 8, 481-520.



