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Abstract

Probabilistic models have recently received much attention as accounts of human cognition.

However, most research using probabilistic models has focused on formulating the abstract

problems behind cognitive tasks and their optimal solutions, rather than considering mechanisms

that could implement these solutions. Exemplar models are a successful class of psychological

process models that use an inventory of stored examples to solve problems such as identification,

categorization, and function learning. We show that exemplar models can be used to perform a

sophisticated form of Monte Carlo approximation known as importance sampling, and thus

provide a way to perform approximate Bayesian inference. Simulations of Bayesian inference in

speech perception, generalization along a single dimension, making predictions about everyday

events, concept learning, and reconstruction from memory show that exemplar models can often

account for human performance with only a few exemplars, for both simple and relatively complex

prior distributions. These results suggest that exemplar models provide a possible mechanism for

implementing at least some forms of Bayesian inference.
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Exemplar models as a mechanism for performing Bayesian inference

Much of cognition and perception involves inference under uncertainty, using limited data

from the world to evaluate underdetermined hypotheses. Probabilistic models provide a way to

characterize rational solutions to these problems, with probability distributions encoding the

beliefs of agents and Bayesian inference updating those distributions as data become available. As

a consequence, probabilistic models are becoming increasingly widespread in both cognitive

science and neuroscience, providing explanations of behavior in domains as diverse as motor

control (Körding & Wolpert, 2004), reasoning (Oaksford & Chater, 1994), memory (Anderson &

Milson, 1989), and perception (Yuille & Kersten, 2006). However, these explanations are typically

presented at Marr’s (1982) computational level, focusing on the abstract problem being solved and

the logic of that solution. Unlike many other formal approaches to cognition, probabilistic models

are usually not intended to provide an account of the mechanisms underlying behavior – how

people actually produce responses consistent with optimal statistical inference.

Understanding the mechanisms that could support Bayesian inference is particularly

important since probabilistic computations can be extremely challenging. Representing and

updating distributions over large numbers of hypotheses is computationally expensive, a fact that is

often viewed as a limitation of rational models (e.g., Kahneman & Tversky, 1972; Gigerenzer &

Todd, 1999). The question of how people could perform Bayesian inference can be answered at at

least two levels (as suggested by Marr, 1982). One kind of answer focuses on the neural level,

exploring ways in which systems of neurons could perform probabilistic computations. The

language of such answers is that of neurons, tuning curves, firing rates, and so forth, and several

recent papers have explored ways in which systems of neurons could perform probabilistic

computations (e.g., Ma, Beck, Latham, & Pouget, 2006; Zemel, Dayan, & Pouget, 1997). A

second kind of answer is at the level of psychological processes – showing that the Bayesian

inference can be performed using mechanisms that are no more complex than those used in
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psychological process models. The language of such answers is representations, similarity,

activation, and so forth, and some preliminary work has been done in this direction (Kruschke,

2006; Sanborn, Griffiths, & Navarro, 2006).

Our focus in this paper is on a familiar class of psychological process models known as

exemplar models. These models assume that people store many instances (“exemplars”) of events

in memory, and evaluate new events by activating stored exemplars that are similar to those events

(Medin & Schaffer, 1978; Nosofsky, 1986). It is well known that exemplar models of

categorization can be analyzed in terms of nonparametric density estimation, and implement a

Bayesian solution to this problem (Ashby & Alfonso-Reese, 1995). Here we show that exemplar

models can be used to solve problems of Bayesian inference more generally, providing a way to

approximate expectations of functions over posterior distributions. Our key result is that exemplar

models can be interpreted as a sophisticated form of Monte Carlo approximation known as

importance sampling. This result illustrates how at least some cases of Bayesian inference can be

performed using a simple mechanism that is a common part of psychological process models.

Our analysis of Bayesian inference using exemplar models is also an instance of a more

general strategy for exploring possible psychological mechanisms for implementing rational

models. Importance sampling is one of a variety of methods used for approximating probabilistic

computations in computer science and statistics. These methods are used because they provide

efficient approximate solutions to problems that might be intractable to solve exactly. If we extend

the principle of optimality underlying rational models of cognition to incorporate constraints on

processing, we might expect to see similarities between the approximation schemes used by

computer scientists and statisticians and the mechanisms by which probabilistic computations are

implemented in the human mind. In some cases, as for importance sampling and examplar models,

the resulting “rational process models” provide a way to connect the abstract level of analysis used

in many probabilistic models of cognition with existing ideas about psychological processes.

Establishing a stronger connection between rational models of cognition and psychological
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mechanisms has been a goal of cognitive scientists at least since Simon (1957) introduced the

notion of “bounded rationality.” Several different strategies for taking into account the effects of

information-processing constraints have been considered, including incorporating those constraints

into the optimization process involved in rational analysis (e.g., Anderson, 1990), handicapping

rational models to produce behavior closer to that of human participants (e.g., Steyvers,

Tenenbaum, Wagenmakers, & Blum, 2003), and rejecting the principle of optimization altogether

in favor of finding simple but effective heuristics (e.g., Gigerenzer & Todd, 1999). The idea of

developing rational process models shares characteristics with all of these strategies, with its focus

being on finding psychologically plausible processes that can be justified as approximations to

rational statistical inference. Such processes will ideally generalize beyond the solutions to specific

optimization problems, or schemes for handicapping specific models, and provide a new way to

look at the mechanistic or heuristic accounts that psychologists have developed in order to explain

aspects of human behavior.

The plan of the paper is as follows. We first introduce the mathematical formulation of

exemplar models and Bayesian inference. We then discuss how exact Bayesian inference can be

approximated, focusing on Monte Carlo methods. A Monte Carlo method known as importance

sampling is discussed in detail and its connection to exemplar models is established. The

remainder of the paper explores the capacity of exemplar models to perform Bayesian inference in

various tasks. These include a range of cognitive tasks from perception, generalization, prediction

and concept learning. We also use simulations of performance on these tasks to investigate the

effects of different kinds of capacity limitations and ongoing storage of exemplars in memory.

Exemplar models

Human knowledge is formed by observing examples. When we learned the concept “dog,”

we were not taught to remember the physiological and anatomical characteristics of dogs, but

instead, saw examples of various dogs. Based on the large inventory of examples of dogs we have
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seen, we are able to reason about the properties of dogs, and make decisions about whether new

objects we encounter are likely to be dogs. Exemplar models provide a simple explanation for how

we do this, suggesting that we do not form abstract generalizations from experience, but rather

store examples in memory and use those stored examples as the basis for future judgments (e.g.,

Medin & Schaffer, 1978; Nosofsky, 1986).

An exemplar model consists of stored exemplars X∗ = {x∗1,x
∗
2, · · · ,x∗n}, and a similarity

function s(x,x∗), measuring how closely a new observation x is related to x∗.1 On observing x, all

exemplars are activated in proportion to s(x,x∗). The use of the exemplars depends on the task

(Nosofsky, 1986). In an identification task, where the goal is to identify the x∗ of which x is an

instance, the probability of selecting x∗i is

pr(x∗i |x) =
s(x,x∗i )

∑n
j=1 s(x,x∗j)

, (1)

where pr(·) denotes the response distribution resulting from the exemplar model, and we assume

that participants use the Luce-Shepard rule (Luce, 1959; Shepard, 1962) in selecting a response,

with no biases towards particular exemplars. In a categorization task, where each exemplar x∗j is

associated with a category c j, the probability that the new object x is assigned to category c is

given by

pr(c|x) =
∑ j|c j=c s(x,x∗j)
∑n

j=1 s(x,x∗j)
, (2)

where again we assume a Luce-Shepard rule without biases towards particular categories.

While exemplar models have been most prominent in the literature on categorization, the

same basic principles have been used to define models of function learning (DeLosh, Busemeyer,

& McDaniel, 1997), probabilistic reasoning (Juslin & Persson, 2002), and social judgment (Smith

& Zarate, 1992). These models pursue a similar approach to models of categorization, but

associate each exemplar with a quantity other than a category label. For example, in function

learning each exemplar is associated with the value of a continuous variable rather than a discrete
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category index. The procedure for generating responses remains the same as that used in Equations

1 and 2: the associated information is averaged over exemplars, weighted by their similarity to the

stimulus. Thus, the predicted value of some associated information f for a new stimulus x is

f̂ =
∑n

j=1 f js(x,x∗j)
∑n

j=1 s(x,x∗j)
, (3)

where f j denotes the information associated with the jth exemplar. The identification and

categorization models can be viewed as special cases, corresponding to different ways of

specifying f j. Taking f j = 1 for j = i and 0 otherwise yields Equation 1, while taking f j = 1 if

c j = c and 0 otherwise yields Equation 2. Equation 3 thus provides the general formulation of an

exemplar model that we will analyze.

Bayesian inference

Many cognitive problems can be formulated as evaluating a set of hypotheses about

processes that could have produced observed data. For example, perceiving speech sounds requires

considering what sounds might be consistent with an auditory stimulus (Feldman, Griffiths, &

Morgan, 2009), generalizing a property from one object to another involves considering the set of

objects likely to possess that property (Shepard, 1987), predicting the duration of an ongoing event

necessitates reasoning from its current duration to a hypothetical future endpoint (Griffiths &

Tenenbaum, 2007), and learning a concept from examples means evaluating a space of possible

concepts (Tenenbaum & Griffiths, 2001). Even reconstructing information from memory can be

analyzed as an inference about the nature of that information from the data provided by a noisy

memory trace (Huttenlocher, Hedges, & Vevea, 2000).

Bayesian inference provides a solution to problems of this kind. Letting h denote a

hypothesis and d the data, assume a learner encodes his or her degrees of belief regarding the

hypotheses before seeing d using a probability distribution, p(h), known as the prior distribution.
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Then, the degrees of belief after seeing d are given by the posterior distribution, p(h|d), obtained

from Bayes’ rule

p(h|d) =
p(d|h)p(h)R

H p(d|h)p(h)dh
, (4)

where H is the set of hypotheses under consideration (the hypothesis space), and p(d|h) is a

distribution indicating the probability of seeing d if h were true, known as the likelihood.

While our analysis applies to Bayesian inference in the general case, we will introduce it

using a specific example that is consistent with several of the psychological tasks we consider later

in the paper. We will return to the general case after working through this specific example.

Assume we observe a stimulus x, which we believe to be corrupted by noise and potentially

missing associated information, such as a category label. Let x∗ denote the uncorrupted stimulus,

and z denote the missing data. Often, our goal is simply to reconstruct x, finding the x∗ to which it

corresponds. In this case, z can be empty. Otherwise, we seek to infer both x∗ and the value of z

which corresponds to x. We can perform both tasks using Bayesian inference.

The application of Bayes’ rule is easier to illustrate in the case where z is empty, where we

simply wish to infer the true stimulus x∗ from noisy x. We use the probability distribution p(x|x∗)

to characterize the noise process, indicating the probability with which the stimulus x∗ is corrupted

to x, and the probability distribution p(x∗) to encode our a priori beliefs about the probability of

seeing a given stimulus. We can then use Bayes’ rule to compute the posterior distribution over the

value of the uncorrupted stimulus, x∗, which might have generated the observation x, obtaining

p(x∗|x) =
p(x|x∗)p(x∗)R

p(x|x∗)p(x∗)dx∗
, (5)

where p(x|x∗) is the likelihood and p(x∗) is the prior.

This analysis is straightforward to generalize to the case where z contains missing data, such

as the label of the category from which x was generated. In this case, we need to define our prior as

a distribution over both x∗ and z, p(x∗,z). We can then use Bayes’ rule to compute the posterior
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distribution over the uncorrupted stimulus, x∗, and missing data, z, which might have generated the

observation x, obtaining

p(x∗,z|x) =
p(x|x∗)p(x∗,z)R R

p(x|x∗)p(x∗,z)dx∗ dz
, (6)

where we also assume that the probability of observing x is independent of z given x∗, so

p(x|x∗,z) = p(x|x∗).

Evaluating expectations by Monte Carlo

Posterior distributions on hypotheses given data can be used to answer a variety of

questions. To return to the example above, a posterior distribution on x∗ and z can be used to

evaluate the properties of x∗ and z given x. A standard way to do this is to use the expectation of a

function over the posterior distribution. For any function f (x∗,z), the posterior expectation of that

function given x is

E [ f (x∗,z)|x] =
Z Z

f (x∗,z)p(x∗,z|x)dx∗ dz, (7)

being the average of f (x∗,z) over the posterior distribution. Since f (x∗,z) can pick out any

property of x∗ and z that might be of interest, many problems of reasoning under uncertainty can be

expressed in terms of expectations. For example, we could compute the posterior mean of x∗ by

taking f (x∗,z) = x∗, or calculate the posterior probability that z takes a particular value by taking

f (x∗,z) to be 1 when z has that value, and 0 otherwise.

Evaluating expectations over the posterior distribution can be challenging: it requires

computing a posterior distribution, which is a hard problem in itself, because the integrals in

Equation 7 can range over many values for x∗ and z. Consequently, Monte Carlo methods are often

used to approximate expectations. Monte Carlo methods approximate the expectation of a function

with respect to a probability distribution with the average of that function at points drawn from the

distribution. Assume we want to evaluate the expectation of a function g(y) over the distribution

p(y), Ep [g(y)] (where we use y as a generic random variable, instead of x∗ and z). Let µ denote the
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value of this expectation. The law of large numbers justifies

µ = Ep [g(y)] =
Z

g(y)p(y)dy≈ 1
m

m

∑
j=1

g(y j), (8)

where the y j are all drawn from the distribution p(y).

This simple Monte Carlo method requires that we are able to generate samples from the

distribution p(y). However, this is often not the case: it is quite common to encounter problems

where p(y) is known at all points y but hard to sample from. If a surrogate distribution q(y) is

close to p(y) but easy to sample from, a form of Monte Carlo called importance sampling can be

applied (see Neal, 1993 for a detailed introduction, and Robert & Casella, 1999 for a mathematical

treatment). Manipulating the expression for the expectation of g gives

Z
g(y)p(y)dy =

R
g(y)p(y) dyR

p(y)dy
=

R
g(y) p(y)

q(y) q(y)dy
R p(y)

q(y) q(y)dy
. (9)

The numerator and denominator of this expression are each expectations with respect to q(y).

Applying simple Monte Carlo (with the same set of samples from q(y)) to both,

µ = Ep [g(y)]≈
∑m

j=1 g(y j)
p(y j)
q(y j)

∑m
j=1

p(y j)
q(y j)

, (10)

where each y j is drawn from q(y). The ratios p(y j)
q(y j) are “importance weights” on the samples y j,

correcting for having sampled from q(y) rather than p(y). Intuitively, these weights capture how

important each sampled value should be to calculating the expectation, and give importance

sampling its name. If the y j are sampled directly from p(y), they are given equal weight, each

having an importance weight of 1. However, when the y j are sampled from surrogate distribution

q(y), they bear nonuniform importance weights due to the difference between p(y) and q(y).

Samples with higher probability under p(y) than q(y) occur less often than they would if we were

sampling from p(y), but receive greater weight, counter-balancing the lower sampling frequency,

with the opposite applying to samples with higher probability under q(y) than p(y).
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Importance sampling is a useful method for approximating expectations when simple Monte

Carlo cannot be applied because generating samples from the target distribution is difficult.

However, using an importance sampler can make sense even in cases where simple Monte Carlo

can also be applied. First, it allows a single set of samples to be used to evaluate expectations with

respect to a range of distributions, through the use of different weights for each distribution.

Second, the estimate of µ produced by the importance sampler can have lower variance than the

estimate produced by simple Monte Carlo, if the surrogate distribution is chosen to place high

probability on values of y where both p(y) and the contribution of g(y) to the expectation are large.

2

Both simple Monte Carlo and importance sampling can be applied to the problem of

evaluating the expectation of a function f (x∗,z) over a posterior distribution on x∗ and z with

which we began this section. Simple Monte Carlo would draw values of x∗ and z from the posterior

distribution p(x∗,z|x) directly. Importance sampling would generate from surrogate distribution,

q(x∗,z), and then reweight those samples. One simple choice of q(x∗,z) is the prior, p(x∗,z). If we

sample from the prior, the weight assigned to each sample is the ratio of the posterior to the prior

p(x∗,z|x)
p(x∗,z)

=
p(x|x∗)R R

p(x|x∗)p(x∗,z)dx∗ dz
, (11)

where we use the assumption that p(x|x∗,z) = p(x|x∗). Substituting these weights into Equation 10

and cancelling constants, we obtain

E [ f (x∗,z)|x]≈
∑m

j=1 f (x∗j ,z j)p(x|x∗j)
∑m

j=1 p(x|x∗j)
, (12)

where we assume that x∗j and z j are drawn from p(x∗,z). Because the weights on the samples are

based on the likelihood, this approach is sometimes known as likelihood weighting.

Figure 1 provides a visual illustration of the approximation of Bayesian inference using

importance sampling. Here, the goal is to recover the true value of a noisy observation x, which is
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done by computing the posterior expectation E[x∗|x]. This can be done applying Equation 12 with

f (x∗,z) = x∗. First, exemplars x∗j are drawn from prior distribution p(x∗), producing the collection

of sampled values shown in Figure 1 (a). Then, these exemplars are given weights proportional to

the likelihood p(x|x∗). In this case, the likelihood is a Gaussian distribution with its mean at x∗,

and the same standard deviation for each value of x∗. Since the Gaussian is symmetric in its

arguments (in this case, x and x∗), the function used to assign weights to each x∗j is also Gaussian,

with its mean at x, as illustrated in Figure 1 (b). Finally, E[x∗|x] is estimated by the weighted sum

∑ j x∗j p(x|x∗j) normalized by ∑ j p(x|x∗j). The posterior expectation moves the estimate of x∗ closer

to the nearest mode of the prior distribution, as shown in Figure 1 (c), appropriately combining

prior knowledge with the noisy observation. This computation is straightforward despite the

complicated shape of the prior distribution.

The success of this importance sampling scheme for approximating posterior expectations

depends on how much probability mass the prior and posterior distribution share. This can be

understood by considering how the variance of the importance weights depends on the relationship

between the surrogate and target distributions. The variance of the importance weights determines

the stability of the estimate produced by importance sampling: If only a few samples have high

weights, then the estimate of the expectation will be based only on those samples. Figure 2

provides some intuitions for this phenomenon. If the prior largely overlaps with the posterior, as in

Figure 2 (a), the importance weights have little variance and the estimate produced by the sampler

is fairly stable. If the prior does not overlap with the posterior, as in Figure 2 (b), few samples from

the prior fall in the region with higher posterior probability, and these samples are given all the

weight. The estimate is then solely dependent on these samples and is highly unstable. In

intermediate cases, such as that shown in Figure 2 (c) where the prior is a multi-modal distribution

and the posterior is one of the modes, stable results are obtained if enough samples are drawn from

each of the modes. In cases where there is not a close match between prior and posterior, a

reasonably large number of samples needs to be drawn from the prior to ensure a good
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approximation.

Exemplar models as importance samplers

Inspection of Equations 3 and 12 yields our main result: Exemplar models can be viewed as

implementing a form of importance sampling. More formally, assume X∗ is a set of m exemplars

x∗ and associated information z drawn from the probability distribution p(x∗,z), and f j = f (x∗j ,z j)

for some function f (x∗,z). Then the output of Equation 3 for an exemplar model with exemplars

X∗ and similarity function s(x,x∗) is an importance sampling approximation to the expectation of

f (x∗,z) over the posterior distribution on x∗ and z, as given in Equation 6, if two conditions are

fulfilled: the x∗j and z j making up X∗ are sampled from the prior p(x∗,z) and the similarity function

s(x,x∗) is proportional to the likelihood p(x|x∗). Returning to Figure 1, the x∗i are now exemplars,

and the importance weights reflect the amount of activation of those exemplars based on similarity

to the observed data x.

The two conditions identified in the previous paragraph are crucial in establishing the

connection between exemplar models and importance sampling. They are also reasonably natural

assumptions, if we assume that exemplars are stored in memory as the result of experience, and

that similarity functions are flexible and can vary from task to task. For most perceptual tasks of

the kind we have been considering here, the prior p(x∗,z) represents the distribution over the states

of the environment that an agent lives in. Thus, sampling x∗j and z j from the prior is equivalent to

storing randomly generated events in memory. The second condition states that the similarity

between x and x∗ corresponds to the likelihood function, subject to a ratio constant. This is

straightforward when the stimulus x exists in the same space as x∗, as when x is a noisy observation

of x∗. In this case, similarity functions are typically assumed to be monotonically decreasing

functions in space, such as exponentials or Gaussians, which map naturally to likelihood functions

(Nosofsky, 1986, 1990; Ashby & Alfonso-Reese, 1995).

This connection between exemplar models and importance sampling provides an alternative



Exemplar models and Bayesian inference 14

rational justification for exemplar models of categorization, as well as a more general motivation

for these models. The justification for exemplar models in terms of nonparametric density

estimation (Ashby & Alfonso-Reese, 1995) provides a clear account of their relevance to

categorization, but does not explain why they are appropriate in other contexts, such as

identification (Equation 1) or the general response rule given in Equation 3. In contrast, we can use

importance sampling to provide a single explanation for many uses of exemplar models, such as

categorization, identification and function learning, viewing each as the result of approximating an

expectation of a particular function f (x∗,z) over the posterior distribution p(x∗,z|x). For

categorization, z is the category label and the quantity of interest is p(z = c|x), the posterior

probability that x belongs to category c. Hence, f (x∗,z) = 1 for all z = c and 0 otherwise. For

identification, the question is whether the observed x corresponds to a specific x∗, so f (x∗,z) = 1

for that x∗ and 0 otherwise, regardless of z. For function learning, z contains the value of the

continuous variable associated with x∗, and f (x∗,z) = z. Similar analyses apply in other cases, with

exemplar models providing a rational method for answering questions expressed as an expectation

of a function of x∗ and z.

A general scheme for approximating Bayesian inference

The equivalence between exemplar models and importance sampling established in the

previous section focuses on the specific problem of interpreting a noisy stimulus. However, the

idea that importance sampling constitutes a psychologically plausible mechanism for

approximating Bayesian inference generalizes beyond this specific problem. In the general case an

agent seeks to evaluate a hypothesis h in light of data d, and does so by computing the posterior

distribution p(h|d) as specified by Equation 4. An expectation of a function f (h) over the posterior

distribution can be approximated by sampling hypotheses from the prior, p(h), and weighting the
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samples by the likelihood, p(d|h). Formally, we have

E[ f (h)|d] =
Z

f (h)p(h|d)dh≈
∑m

j=1 f (h j)p(d|h j)
∑m

j=1 p(d|h j)
, (13)

where h j is drawn from the prior p(h).

Approximating Bayesian inference by importance sampling in this general case can also be

interpreted as a kind of exemplar model, but here the stored “exemplars” correspond to hypotheses

rather than stimuli. As in a standard exemplar model, these hypotheses can be stored in memory as

the consequence of previous learning events. Each hypothesis needs to be weighted by its

likelihood, which no longer has a natural interpretation in terms of similarity, but represents the

degree to which a hypothesis is “activated” as a result of observing the data. Thus, all that is

required for an agent to be able to approximate Bayesian inference in this way is to store

hypotheses in memory as they are encountered, and to activate those hypotheses in such a way that

the hypotheses that best account for the data receive the most activation.

The theoretical properties of importance sampling suggest that exemplar models of the kind

considered in this and the preceding section may provide a way to approximate Bayesian inference

in at least some cases. Specifically, we expect that importance sampling with a relatively small

number of samples drawn from the prior should produce an accurate approximation to Bayesian

inference in cases where prior and posterior share a reasonable amount of probability mass. This

can occur in cases where the data are relatively uninformative, either as a result of small samples or

high levels of noise. Despite this constraint, we anticipate that there will be a variety of

applications in which exemplar models provide a good enough approximation to Bayesian

inference to account for existing behavioral data.

In the remainder of the paper we present a series of simulations evaluating exemplar models

as a scheme for approximating Bayesian inference in five tasks. These tasks are selected to

illustrate the breadth of this approach, and to allow us to explore the effect of number of exemplars
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on performance, as well as the consequences of other variants on the basic importance sampling

scheme intended to reflect possible psychological or biological constraints. In general, we use the

notation from the original papers in describing these simulations. However, in each case we

formulate the underlying problem to be solved by Bayesian inference, and relate it back to either

the specific or general problems of Bayesian inference we have considered in establishing the

connection to exemplar models, identifying the correspondence between the relevant variables.

Simulation 1: The perceptual magnet effect

Categorical perception of speech sounds was first demonstrated by Liberman, Harris,

Hoffman, and Griffith (1957), who showed that listeners’ discrimination of stop consonants was

little better than would be predicted on the basis of categorization performance, with sharp

discrimination peaks at category boundaries. Evidence has also been found in vowels for a

perceptual magnet effect, a language-specific shrinking of perceptual space specifically near

category prototypes, presumably due to a perceptual bias toward category centers (Kuhl, Williams,

Lacerda, Stevens, & Lindblom, 1992). However, perception of vowels differs from that of stop

consonants in that it is continuous rather than strictly categorical, with listeners showing high

levels of within-category discrimination (Fry, Abramson, Eimas, & Liberman, 1962). Because of

the high level of within-category discriminability in vowels, the perceptual magnet effect has been

difficult to capture through traditional labeling accounts of categorical perception.

Feldman et al. (2009) argued that the perceptual magnet effect arises because listeners are

trying to recover the phonetic detail (e.g., formant values) of a speaker’s target production from a

noisy speech signal. Under this account, listeners perform a Bayesian denoising process,

recovering the intended formant values of the noisy speech sounds they hear. Speech sounds are

assumed to belong to phonetic categories in the native language, and listeners can use their

knowledge of these categories to guide their inferences of the speaker’s target production. Because

this account assumes that listeners are trying to recover phonetic detail, it predicts a baseline level
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of within-category discrimination while still allowing categories to influence listeners’ perception.

The Bayesian model introduced by Feldman et al. (2009) assumes that speakers, in

producing a speech sound, sample a phonetic value for their target production T from a Gaussian

phonetic category c with category mean µc and category variance σ2
c . Listeners hear a speech

sound S, which has been perturbed by articulatory, acoustic, and perceptual noise. This noisy

speech sound S is normally distributed around the target production T with noise variance σ2
S. The

prior on target productions is therefore a mixture of Gaussians representing the phonetic categories

of the language,

p(T ) = ∑
c

p(T |c)p(c) = ∑
c

N(T |µc,σ2
c)p(c), (14)

where N(T |µc,σ2
c) is the probability density at T given a Gaussian distribution with mean µc and

variance σ2
c . The likelihood function represents the noise process that corrupts a target production

T into a speech sound S, and is given by the Gaussian function representing speech signal noise,

p(S|T ) = N(S|T,σ2
S). (15)

Listeners hear the speech sound S and use Bayes’ rule to compute the posterior mean (ie. the

expectation E[T |S]) and optimally recover the phonetic detail of a speaker’s target production,

marginalizing over all possible category labels.

The problem of inferring T from S is directly analogous to the problem of inferring a true

stimulus x∗ from a noisy stimulus x that we considered when introducing importance sampling. To

complete the analogy, the category c corresponds to the missing information z, and the expectation

E[T |S] corresponds to E[x∗|x]. This expectation can thus be approximated by an importance

sampler of the form given in Equation 12, with f (x∗,z) = x∗. By the equivalence between

importance sampling and exemplar models, this means that we can approximate the Bayesian

solution to the problem of inferring T from S using an exemplar model.

An exemplar model derived through importance sampling provides a psychologically
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plausible implementation of the model introduced by Feldman et al. (2009), allowing listeners to

optimally recover speakers’ target productions using unlabeled exemplars. This implementation

has two specific advantages over the original Bayesian formulation. First, there is evidence that

infants as young as six months show a language-specific perceptual magnet effect even though they

are still forming phonetic categories (Kuhl et al., 1992), and importance sampling allows them to

perform this computation without any explicit category knowledge. Category labels are not

required, and the distribution of exemplars need not follow any parametric distribution. Second,

importance sampling directly parallels the neural network model of the perceptual magnet effect

proposed by Guenther and Gjaja (1996), allowing the Bayesian model and the neural network

model to be interpreted as convergent descriptions of the same perceptual process.

To calculate the expected target production T using importance sampling, listeners need to

store their percepts of previously encountered speech sounds, giving them a sample from p(T ), the

prior on target productions (Equation 14).3 Upon hearing a new speech sound, they weight each

stored exemplar by its likelihood p(S|T ) (Equation 15) and take the weighted average of these

exemplars to approximate the posterior mean as

E[T |S]≈
∑m

j=1 Tj p(S|Tj)
∑m

j=1 p(S|Tj)
, (16)

where Tj denotes the formant value of a stored target production.

We compared the performance of this exemplar model to multidimensional scaling data

from Iverson and Kuhl (1995) on adult English speakers’ discrimination of 13 equally-spaced

stimuli in the /i/ and /e/ categories. The discrimination data were obtained through an AX task in

which subjects heard pairs of stimuli and pressed a button to indicate whether the stimuli were

identical. Responses and reaction times were used in a multidimensional scaling analysis to create

a one-dimensional map of perceptual space, shown in Figure 3. The data show a non-linear

mapping between acoustic space and perceptual space, with portions that are more nearly
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horizontal corresponding to areas in which perceptual space is shrunk relative to acoustic space.

Sounds near phonetic category centers are closer together in perceptual space than sounds near

category boundaries, despite being separated by equal psychophysical distances. We simulated the

performance of exemplar models with ten and fifty exemplars drawn from the prior, examining

both the performance of individual simulated participants and the results of aggregating across

participants. The results of this simulation, shown together with the multidimensional scaling data

in Figure 3, suggest that a relatively small number of exemplars suffices to capture human

performance in this perceptual task. Model performance using ten exemplars already demonstrates

the desired effect, and with fifty exemplars, the model gives a precise approximation that closely

mirrors the combined performance of the 18 subjects in Iverson and Kuhl’s multidimensional

scaling experiment.

In addition to giving a simple psychological mechanism for approximating Bayesian

inference in this task, importance sampling provides a link between the Bayesian model and a

previous account of the perceptual magnet effect. The exemplar model considered in this section is

isomorphic to a neural mechanism proposed by Guenther and Gjaja (1996) to create a bias toward

category centers. In Guenther and Gjaja’s neural map, the firing preferences of a population of

neurons come to mirror the distribution of speech sounds in the input. Upon hearing a speech

sound, listeners recover a percept of that speech sound by taking a weighted average of firing

preferences in the neural map. The weights, or neural activations, are determined by the similarity

between a neuron’s firing preference and the speech sound heard. This perceptual mechanism

implements an importance sampler: Firing preferences of individual neurons constitute samples

from the prior, and the activation function plays the role of the likelihood. The activation function

in the neural map differs from the Gaussian function assumed in the Bayesian model, but both

implement the idea that exemplars with similar acoustic values should be weighted most highly.

The correspondence between these two models suggests that Monte Carlo methods such as

importance sampling may provide connections not just to psychological processes, but to the
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neural mechanisms that might support probabilistic computations. We return to this possibility in

the General Discussion.

Simulation 2: The universal law of generalization

In a celebrated paper, Shepard (1987) showed that generalization gradients decrease

exponentially with psychological distance across many experimental situations. He then gave a

probabilistic explanation for this phenomenon that was later formulated in a Bayesian framework

(Myung & Shepard, 1996; Tenenbaum & Griffiths, 2001). Here, we use the notation originally

introduced by Shepard. Assume that we observe a stimulus 0 that has a certain property (or

“consequence”). What is the probability that a test stimulus x has the same property? Shepard

analyzed this problem by assuming that 0 and x were points in a psychological space, and the set

of stimuli sharing a property defined a consequential region in the space. We know that the original

stimulus 0 belongs to this region, and we want to evaluate whether the test stimulus x does. We thus

want to compute the probability that the x falls into an unknown consequential region containing 0.

The first question we can answer is which consequential regions 0 could have come from.

This is a problem of Bayesian inference, where consequential regions are hypotheses and

observing that 0 belongs to the region constitutes data. In the case of one-dimensional

generalization, we might take consequential regions to be intervals along that dimension,

parameterized by their center c and size s. We then want to compute the posterior distribution on

intervals (c,s) given the information that 0 ∈ (c,s). This can be done by defining a prior p(c,s) and

likelihood p(0|c,s). Shepard (1987) assumed that all locations of consequential regions are equally

probable, so the distribution of c is uniform and the prior distribution p(c,s) is specified purely in

terms of a distributon on sizes, p(s). The likelihood is obtained by assuming that 0 is sampled

uniformly at random from the interval given by (c,s), resulting in p(0|c,s) = 1/m(s) for all

intervals (c,s) containing 0, where m(s) is a measure of the volume of a region of size s (in one

dimension, the length of the interval), and p(0|c,s) = 0 for all other intervals. Prior and likelihood
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can then be combined as in Equation 4 to yield a posterior distribution over consequential regions.

With a posterior distribution over consequential regions in hand, the probability that x

belongs to one of the consequential regions containing 0 is obtained by summing the posterior

probabilities of the regions containing x. This can be expressed as the integral

p(x|0) =
Z

s,c
1(x ∈ (c,s))p(c,s|0) ds dc, (17)

where 1(x ∈ (c,s)) is an indicator function that equals 1 if x is in the region parameterized by (c,s)

and 0 otherwise. This integral can also be viewed as an expectation of the indicator function

1(x ∈ (c,s)) over the posterior distribution p(c,s|0).

By viewing Equation 17 as an expectation, it becomes clear that it can be approximated by

importance sampling, and thus by an exemplar model. Identifying a consequential region does not

match the form of the simple stimulus de-noising problem that we used in demonstrating

equivalence between importance sampling and exemplar models, requiring us to use the more

general idea that Bayesian inference can be approximated by storing hypotheses sampled from the

prior and activating them based on consistency with data. In this case, the hypotheses h are

consequential regions, the data d consist of the observation that 0 is contained in some

consequential region, and the function f (h) that we want the expectation of is the indicator

function that takes the value 1 if x is in the consequential region and 0 otherwise. The

approximation to this expectation is then given by Equation 13.

The importance sampling approximation to Equation 17 is thus obtained by assuming that a

set of hypotheses parameterized by centers and sizes (c j,s j) are sampled from the prior and

activated by the likelihood 1(0 ∈ (c j,s j))1/m(s j), to give

p(x|0) ≈
∑m

j=1 1(x,0 ∈ (c j,s j)) 1
m(s j)

∑m
j=1 1(0 ∈ (c j,s j)) 1

m(s j)
. (18)

The numerator simplifies the product of the indicator function that we want the expectation of,
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1(x ∈ (c j,s j)), with that in the likelihood, 1(0 ∈ (c j,s j)), to a single indicator function that takes

the value 1 when both x and 0 are in the interval (c j,s j). Since c and s are independent under the

prior, we can also draw m samples of each and then take the sum over all m2 pairs of c and s

values, reducing the number of samples that need to be taken from the prior.

The results of using this approximation with several different priors on the size of the

consequential region are shown in Figure 4. The different priors that are used are those considered

by Shepard (1987) in his original analysis of generalization behavior. The figure shows the

generalization gradient – the probability of generalizing from 0 to x as a function of psychological

distance – for these six prior distributions, together with approximations that vary the number of

sampled hypotheses. In the one-dimensional case, the psychological distance between 0 and x is

just the value of x (taking 0 as the origin), which is shown on the horizontal axis of each plot in the

figure . Relatively small numbers of sampled hypotheses (20 and 100) are sufficient to produce

reasonable approximations to the generalization gradients associated with all of these prior

distributions.

Simulation 3: Predicting the future

Remembering past events, like the local temperature in March in previous years, or the

duration of red traffic lights, can help us make good predictions in everyday life. Griffiths and

Tenenbaum (2006) studied people’s predictions about a variety of everyday events, including the

grosses of movies and the time to bake a cake, and found that these predictions corresponded

strikingly well with the actual distributions of these quantities. In each case, people were asked to

predict the total extent or duration of a quantity based on its current value, such as how much

money a movie would make based on how much it has made so far, or how long a cake would be in

the oven based on how long it has currently been in the oven. Predicting the future in this way can

be analyzed as Bayesian inference, and approximated using an exemplar model.

As formulated in Griffiths and Tenenbaum (2006), the statistical problem that people solved
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is inferring the total duration or extent of a quantity, ttotal , from its current duration or extent, t. The

goal is to compute the posterior median of ttotal given t. Unlike the mean, the median gives a robust

estimate of ttotal when the posterior distribution is skewed, which is the case for many of these

everyday quantities. The posterior median t∗ is defined to be the value such that

p(ttotal > t∗|t) = 0.5, where the posterior distribution is obtained by applying Bayes’ rule with an

appropriate prior and likelihood. The prior p(ttotal) depends on the distribution of the everyday

quantity in question, with temperatures and traffic lights being associated with different

distributions. As in the previous example, the likelihood is obtained by assuming that the

phenomenon is encountered at a random point drawn uniformly from the interval between 0 and

ttotal , with p(t|ttotal) = 1/ttotal for all ttotal > t.

Making correct predictions about everyday events requires knowing the prior distributions of

the relevant quantities – the grosses of movies, the time taken to bake a cake, and so forth. While it

is unlikely that we store these distributions explicitly in memory, the posterior median can be

approximated using stored exemplars that are sampled from the prior p(ttotal) using Equation 12.

The posterior probability that a value of ttotal is greater than t∗ can be formulated as an expectation,

p(ttotal > t∗|t) = E[1(ttotal > t∗)|t], (19)

where 1(ttotal > t∗) is an indicator function taking the value 1 when its argument is true, and 0

otherwise, as in the previous example. This problem fits the schema for the general approximation

to Bayesian inference given by Equation 13, with the hypotheses h being values of ttotal , the data d

being the observation t, and the function of interest f (h) being the indicator function 1(ttotal > t∗).

Consequently, the expectation given in Equation 19 can be approximated using an exemplar model

in which exemplars ttotal, j are sampled from the prior p(ttotal) and activated by the likelihood



Exemplar models and Bayesian inference 24

1/ttotal if they are greater than t. This gives the approximation

p(ttotal > t∗|t) ≈
∑ j 1(ttotal, j > t∗, ttotal, j > t) 1

ttotal, j

∑ j 1(ttotal, j > t) 1
ttotal, j

. (20)

The approximate median of the posterior distribution is the exemplar ttotal, j that has

p(ttotal > ttotal, j|t) closest to 0.5.

Considering limitations in memory capacity and computational power, we conducted two

sets of simulations. In predicting the future, only values of ttotal that are greater than the observed

value of t are plausible, with all other values having a likelihood of 0. Consequently, sampling

directly from the prior can be inefficient, with many samples being discarded. We can thus break

the approximation process into two steps, with the first being generating a set of values of ttotal

from memory, and the second being assigning those values of ttotal greater than t a likelihood of

1/ttotal and normalizing. Our simulations considered limitations that could apply to either of these

steps. In the memory-limited case, the number of exemplars generated from memory is fixed. In

the computation-limited case, the bottleneck is the number of exemplars that can be processed

simultaneously, placing a constraint on the number of exemplars such that ttotal > t. In this case,

we assume that exemplars are generated from memory until they reach this upper limit.

Figure 5 shows the results of applying these different approximation schemes to the

predicting the future task, varying the number of exemplars. We examined performance across

seven prior distributions, corresponding to the baking time of cakes, human life spans, the grosses

of movies, the duration of the reigns of pharaohs, the length of poems, the number of terms in the

United States House of Representatives, and the runtime of movies, and for 5, 10, and 15

exemplars. The prior distributions were those used by Griffiths and Tenenbaum (2006), who

collected data from online databases for each of these different quantities. In each case, we

simulated the performance of 50 participants using the appropriate number of exemplars sampled

directly from the prior (for the memory-limited case) or sampled from the prior but constrained to
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be consistent with the observed value of t (for the computation-limited case). In the

memory-limited case, if none of the exemplars is larger than the observation, the observed value t

is taken as the only exemplar which results in t∗ = t. The figure also shows the quality of the

approximation produced by directly sampling exemplars from the posterior distribution, rather

than generating from the prior. For each approximation scheme, 50 simulated participants’

responses were generated. The plot markers indicate the median and the 68% confidence interval

on the median (ie. the 16th and 84th percentiles of the sampling distribution), computed using a

bootstrap with 1000 samples drawn from the responses of these participants.

For a quantitative measure of the success of the approximation, we computed the sum of the

absolute value of the deviations for each of the median results shown in Figure 5 (t∗ML, t
∗
CL, t

∗
SA for

memory-limited, computation-limited, and sampling respectively) to both the true function (t∗Bayes)

and to the median human responses (t∗human). These error scores were then normalized by the

difference in t∗Bayes for the lowest and highest values of t for each prior, in order to compensate for

the different scales of these quantities, and then summed across priors to produce the scores shown

in Table 1. This quantitative analysis confirmed the trends evident from the figure. Approximation

performance improved with more exemplars, but was already fairly good with only five exemplars

when compared against the performance of the full Bayesian model considered by Griffiths and

Tenenbaum (2006). The memory-limited case tended to perform worse than the other

approximations for a given number of exemplars, since some of the exemplars generated from the

prior would not enter into the approximation for the reasons detailed above.

The question of whether approximations based on a small number of exemplars might

account for the results of Griffiths and Tenenbaum (2006) was independently raised by Mozer,

Pashler, and Homaei (2008), who argued that a close correspondence to the posterior median could

be produced by aggregating responses across a large number of participants who each had only

limited knowledge of the appropriate prior, such as a handful of samples from that distribution.

The original model considered by Mozer et al. (2008), which estimates t∗ as the minimum of the
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set of exemplars greater than t, does not have an interpretation as importance sampling, and

degenerates as an approximation as the number of exemplars increases, rather than improving.

However, one of the variants on this model, called GTkGuess in their paper, is equivalent to our

memory-limited importance sampling approximation provided at least one sampled exemplar is

greater than t. Consistent with the results presented here, Mozer et al. (2008) demonstrated that

this model produced a good correspondence with the results of Griffiths and Tenenbaum (2006)

with only a small number of exemplars, considering both aggregate performance and the amount

of variability produced by different approximation schemes.

One important difference between the analysis we present here and that of Mozer et

al. (2008) is that we do not necessarily view using an exemplar model to approximate Bayesian

inference as being related to having limited prior knowledge. For Mozer et al. (2008), the

exemplars used in approximating Bayesian inference were taken to represent all that a given

individual knew about a phenomenon. Since each participant in Griffiths and Tenenbaum (2006)

made only a single judgment about each phenomenon, it was possible to accurately model the

aggregate judgments by making this assumption. However, another possibility that is equally

consistent with the data is that each individual has a large pool of exemplars available, and only

samples a small number in making a given prediction. In this case, a small number of exemplars

are used in order to make the Bayesian computation efficient, not because they represent the

complete knowledge of the learner. These two possibilities can be differentiated by conducting an

experiment in which individuals make multiple judgments about a given phenomenon. If

participants only have access to a small number of exemplars, they produce very similar responses

for a range of values of t, while if they are sampling different sets of exemplars on different trials,

their responses should increase as a function of t in a way that is consistent with applying Bayesian

inference. Lewandowsky, Griffiths, and Kalish (in press) conducted such an experiment, and found

support for the latter hypothesis.
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Simulation 4: Concept learning

The simulations we have presented so far correspond to cases where Bayesian inference is

performed with a hypothesis space that contains only hypotheses that correspond to continuous

quantities (formant values, the size of consequential regions, the extent or duration of everyday

phenomena). However, Bayesian inference is also carried out with hypothesis spaces in which

each hypothesis is discrete, and qualitatively different from other hypotheses. The “number game”

of Tenenbaum (1999; Tenenbaum & Griffiths, 2001) is a good example. This game is formulated

as follows: Given natural numbers from 1 to 100, if a number or set of numbers x belongs to an

unknown set C, what is the probability that another number y also belongs to the same set? For

example, if the numbers {59,60,61,62} all belong to an unknown set, what is the probability that

64 belongs to that set? What about 16?

The problem of determining whether y belongs to the same set as x is another instance of the

problem of generalization, and can be answered using a similar Bayesian inference. Our data are

the knowledge that x belongs to the set C, and our hypotheses concern the nature of C. Since C is

unknown, we should sum over all possible hypotheses h in the hypothesis space H when

evaluating whether y belongs to C,

p(y ∈C|x) = ∑
h∈H

p(y ∈C|h)p(h|x) = ∑
h∈H

1(y ∈ h)p(h|x), (21)

where 1(y ∈ h) is the indicator function of the statement y ∈ h, taking value 1 if this is true and 0

otherwise. In the analysis presented by Tenenbaum (1999; Tenenbaum & Griffiths, 2001), the

likelihood p(x|h) is proportional to the inverse of the size of h (the “size principle”) being 1/|h| if

x ∈ h and 0 otherwise. This corresponds to the uniform sampling assumption made in the previous

two examples. A hypothesis space H containing a total of 6,412 hypotheses was used, including

intervals of numbers spanning a certain range, even numbers, odd numbers, primes, and cubes.

The number game is challenging because any given number (say x = 8) is consistent with

many hypotheses (not only intervals containing 8, but also hypotheses such as even numbers, cubic
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numbers, number with final digit 8, etc.). Interestingly, the responses of human participants can be

captured quite accurately with this Bayesian model (Figure 6 (a)). However, this involves

instantiating all 6,412 hypotheses, calculating the likelihood for each rule and integrating over the

product of the prior and likelihood. Such computations are challenging, so a mechanism that

approximates the exact solution is desirable. Fortunately, the probability computed in Equation 21

is an expectation, and can be approximated by importance sampling and thus by an exemplar

model.

The number game is another instance of a problem that requires the more general

approximation scheme summarized in Equation 13. The hypotheses h are candidates for the

identity of the concept C, the data d are the observation that x belongs to C, and the function f (h)

that we want to evaluate the expectation of is the indicator function 1(y ∈ h). We can approximate

this expectation by sampling hypotheses h j from the prior p(h), and reweighting those hypotheses

by the likelihood p(x|h), with

p(y ∈C|x)≈ ∑ j 1(y ∈ h j,x ∈ h j)1/|h j|
∑ j 1(x ∈ h j)1/|h j|

, (22)

meaning that p(y ∈C|x) is just the ratio of the summed likelihoods of the hypotheses stored in

memory that generate y to the summed likelihoods of all hypotheses stored in memory.

Figure 6 (b) and (c) show generalization responses for different sets of numbers, x, for a

single simulated participant. As in Simulation 3, we conducted simulations for both memory- and

computation-limited approximations, with the latter case corresponding to generating sample

hypotheses h from the prior until a fixed number consistent with x had been generated. The

simulations used the same parameters as those in the full Bayesian model of Tenenbaum and

Griffiths (2001), except the likelihood function assigns a small non-zero probability to all natural

numbers from 1 to 100 for every hypothesis to ensure numerical stability. The results suggest that a

small number of exemplars (20 and 50 for computation-limited and memory-limited respectively)
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is sufficient to account for human performance. The memory-limited case needs more exemplars

because not all exemplars are qualified hypotheses. Therefore, the effective number of exemplars,

which determines the computational load, is small. The consistency of these results with the human

judgments indicates that exemplar models provide a plausible mechanism that relies on reasonable

memory and computational resources and can be used with highly structured hypothesis spaces.

To further evaluate the model, we compared the variance of the predictions produced by

importance sampling with the variability among individuals on this task. Since the model

predictions rely on a sample from the prior, there can be variability between simulated participants

which we can compare with the variability among human participants. Moreover, we should

expect to see specific simulated participants who produced behavior similar to that of specific

human participants. Figure 7 (a) shows the variability among the eight participants analyzed by

Tenenbaum (1999), together with the variability among 100 simulated participants (using the

memory-limited case). Both human and simulated participants exhibit significant variability in

their responses, particularly for the stimulus x = {60}. The patterns of responses also share some

key features. For x = {60,52,57,55}, since there is no specific numeric rule describing the set,

most plausible hypotheses are intervals containing x. Therefore, we expect higher variability near

the boundary of the set (ie. below 52 or greater than 60) and lower variability within the set. For

x = {60,80,10,30}, high variability in genealization to multiples of five and ten is observed in

both human and simulated participants.

The variability seen in the human and simulated participants disagree in two respects. First,

there is significant baseline variability in the human responses that is not captured by the model,

especially for x = {60,52,57,55} and x = {60,80,10,30}. After looking in detail at individual

trials, we found that high baseline variability is partly due to inconsistent use of the rating scale

(which ranged from 1-7) to express “low probability.” For example, for x = {60,52,57,55}, two

out of eight participants gave minimum responses of 2 out of 7, while the other six used the full

range and had minimum responses of 1. A second point of difference between the human and
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simulated responses is in the use of the “square numbers” hypotheses with x = {81,25,4,36}. The

model displays greater variability than seen among human participants when generalizing to other

squares from this set. This is due to the fact that the memory-limited exemplar model is not

guaranteed to sample the “square numbers” rule in every trial, while the educated participants used

by Tenenbaum (1999) consistently recognized this mathematical rule.

For a closer look at the way that variability manifests in the model, we examined whether it

was possible to find patterns of predictions that matched the behavior of individual participants.

Figure 7 (b) shows some close correspondences between human and simulated participants. Each

row shows the responses of a different human participant, together with the closest-matching

responses chosen from the 100 simulated participants used in our analysis of variability. In each

case the correlation between human and simulated participants was greater than r = 0.95, and

many of the details of the responses are in correspondence. For example, in the case of x = {60},

this individual evaluated multiple hypotheses such as intervals, multiple of 10 and multiples of 6,

and a similar pattern appears in the model predictions.

Simulation 5: Category effects on reconstruction from memory

Retrieving or reconstructing items from memory can also be formulated as a problem of

statistical inference, with Bayes’ rule being used to evaluate which item in memory might

correspond to a particular cue (Anderson & Milson, 1989; Shiffrin & Steyvers, 1997; Hemmer &

Steyvers, 2009; Huttenlocher et al., 2000). Examining how this kind of probabilistic inference can

be approximated using an exemplar model has the potential to be particularly informative, since

exemplar models themselves are based on memory. This creates an opportunity to consider how

exemplars come to be stored in memory, and what role statistical inference plays in this process.

We will focus on the problem of reconstructing items from memory, and in particular on a

study by Huttenlocher et al. (2000, Experiment 1) examining how the relative frequencies of items

within a category can be used to improve accuracy in reproducing stimuli. In this study
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participants learned the distribution associated with a novel one-dimensional stimulus (the width of

a schematic fish). The form of this distribution varied across participants. Some participants

learned a single category, which was associated with either a uniform or a Gaussian distribution on

fish width. Other participants learned two categories, each of which was associated with one half

of the uniform distribution used in the one category case (the categories thus corresponded to

“slender” and “fat” fish). During training, participants were briefly shown a stimulus, and then

asked to reproduce that stimulus from memory (having been provided with its category label).

Reconstructions were produced by adjusting the size of a schematic fish until participants felt that

they had matched the size of the original stimulus.

Reconstructing a stimulus from memory can be analyzed as a Bayesian inference. Returning

to the very first example of Bayesian inference we considered in the paper, we might assume that

the observed stimulus x is taken as a noisily perceived instance of some true stimulus x∗, with the

noise process described by the distribution p(x|x∗). The prior distribution on x∗ is provided by the

category c, which is associated with a distribution p(x∗|c). The best reconstruction of x∗, in the

sense of minimizing the squared error between the reconstruction and the true value, is the

posterior expectation of x∗ given x and c,

E[x∗|x,c] =
Z

x∗p(x∗|x,c)dx∗, (23)

where the posterior distribution p(x∗|x,c) is calculated using Bayes’ rule. Huttenlocher et

al. (2000) explicitly tested this model of reconstruction from memory, arguing that using category

information to guide reconstruction should increase accuracy.

The problem of reconstruction from memory is of exactly the same form as the stimulus

denoising problem we used to demonstrate the equivalence between importance sampling and

exemplar models. The expectation in Equation 23 can be approximated by storing a set of

exemplars x∗j in memory, sampled from the prior p(x∗|c), and then activating those exemplars in
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proportion to the likelihood p(x|x∗). Huttenlocher et al. (2000) assumed that the likelihood was a

Gaussian distribution with a mean at x∗, and explored several different prior distributions p(x∗|c).

In each case, the Bayesian inference required to reconstruct a stimulus from memory can be

approximated using an exemplar model of the form specified in Equation 12.

Although this analysis of reconstruction from memory is similar to that for the perceptual

magnet effect, there are two important differences. First, category labels are given explicitly in the

case of reconstruction, but are unknown in the perceptual magnet effect. Second, and perhaps more

importantly, the experiments conducted to explore these phenomena differ in how the relevant

priors were acquired. The prior distribution on speech sounds was established before the

experiment exploring the perceptual magnet effect, as a result of learning the distributions

associated with these sounds in English. In contrast, the prior being used to reconstruct the stimuli

in the experiment conducted by Huttenlocher et al. (2000) is learned on the fly, through the process

of forming the reconstructions. The reconstruction produced on one trial might thus play the role

of a stored exemplar on a later trial.

To explore the effects of incrementally building a set of exemplars over time, we conducted

a series of simulations of this study in which we used a variant on the standard exemplar model.

The reconstruction of the first stimulus seen by each simulated participant was taken to be exactly

equal to that stimulus. Each subsequent stimulus was reconstructed using an exemplar model with

the previous n stimuli as exemplars (or all stimuli, if fewer than n have been observed), including

the observed value of the current stimulus. Following Huttenlocher et al. (2000), the likelihood

p(x|x∗) was taken to be a normal distribution with mean x∗ and variance σ2. The resulting model

has two parameters: the noise level σ2, and the memory capacity n. Our simulations varied these

two parameters, with n = {1,2,5,10,∞} and σ = {1, . . . ,10} pixels.4

Figure 8 shows the results of these simulations. In each case, we plot the bias in

reconstruction for stimuli of different widths, defined to be the difference between the width of the

reconstruction and the width of the stimulus. In general, stimuli that are smaller than the mean of a
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category show a positive bias and stimuli that are larger show a negative bias, consistent with

reconstructions moving towards the mean of each category. This effect comes out in all of our

models, being the basic prediction resulting from a Bayesian analysis of this problem. However,

the results also show how the exemplar models capture some subtle characteristics of the data. For

example, in the normal prior condition (the middle row of the figure), a full Bayesian model would

predict that bias is a linear function of fish width. This prediction is quite clearly reflected in the

results for n = ∞, which most closely approximates exact Bayesian inference. In contrast, both the

human data and the models with smaller values of n show a non-linear function, with bias reduced

for more extreme stimuli. To understand this effect, we should note that the current observation x is

always included as an exemplar in producing the reconstruction of x∗. Thus, when x takes an

extreme value lying at the tails of the prior, it is often over-weighted since recent observations are

unlikely to lie in proximity to this extreme value. In this case, the reconstruction of x∗ relies more

on x itself, resulting in smaller bias.

General Discussion

The formal correspondence that we have shown to exist between exemplar models and

importance sampling suggests a way to solve the computationally challenging problem of

probabilistic inference using a common computational model of psychological processes. Our five

simulations illustrate how this approach can be applied in a range of settings where probabilistic

models have previously been proposed. Simulation 1 showed that exemplar models can be used to

perform Bayesian inference for a simple speech perception problem, providing an account of the

perceptual magnet effect that does not require parametric assumptions about the distribution of

speech sounds associated with phonetic categories, or any form of learning of these distributions.

Simulation 2 demonstrated that a similar approach could approximate the predictions of Shepard’s

(1987) classic analysis of generalization. Simulation 3 examined how exemplar models could be

used in predicting the future. Simulation 4 extended our analysis to a case where hypotheses
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represent discrete, qualitatively different accounts of observed data. Finally, Simulation 5

considered how exemplars might be recruited in the course of an experiment, and showed that this

approach could account for the results of a study of reconstruction from memory.

In the remainder of the paper, we discuss three issues raised by these results. First, while our

simulations show that exemplar models can be used to approximate Bayesian inference in a range

of settings, this approach will not provide good approximations in all cases. The relationship with

importance sampling makes it possible to clearly state in which cases we expect this to be an

effective approximation scheme. Second, none of the cases we consider involve any kind of

dynamics, with the hypothesis space remaining static over time. Since some cognitive problems

require dealing with hypothesis spaces that change in size and content over time, we outline how

our approach can be extended to accommodate this situation. Finally, we consider some of the

broader implications of the correspondence between exemplar models and importance sampling

that we have identified in this paper, viewing this result as just one instance of a more general

approach towards connecting rational models of cognition with psychological processes.

The limits of importance sampling

While importance sampling is widely used to approximate probabilistic inference, it is not

appropriate for all problems. As discussed above, the quality of the approximation provided by

importance sampling depends on the relationship between the target distribution p(y), the function

g(y) for which we want to find an expected value, and the proposal distribution q(y). In particular,

we want the proposal distribution to assign high probability to values of y for which both p(y) and

the contribution of g(y) to the expectation are large, and low probability to other values of y (see

footnote 2 for details). Otherwise, samples from the proposal distribution may not correspond to

values of y that make a large contribution to the expectation of g(y).

The relationship between importance sampling and exemplar models that we have identified

relies on the assumption that the exemplars are drawn from the prior (ie. that the prior is used as a
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proposal distribution). This makes it easy to identify the limitations of this approach: Bayesian

inference can only be approximated effectively using the kind of exemplar models we have

considered in this paper when there is a reasonably close match between the posterior and the

prior. This will be the case when the data are relatively uninformative, meaning that the posterior

does not deviate significantly from the prior. Data can be uninformative because of small sample

size, or because of a high level of uncertainty (as reflected in the likelihood). All of the settings we

explored in our simulations met this criterion, requiring an inference to be made on the basis of

only one or at most a handful of stimuli.

One way to extend the range of problems for which exemplar models yield approximations

to Bayesian inference might be to remove the assumption that the exemplars are drawn from the

prior. While we have focused on the equivalence between Equations 3 and 12, the exemplar-based

computations represented by Equation 3 are also equivalent to those used in the more general

formulation of the importance sampler in Equation 10. Thus, exemplar models can be used to

approximate expectations over a distribution p(x∗|x) when the exemplars are generated from any

distribution q(x∗), provided the similarity function used to activate each exemplar is proportional

to p(x∗|x)/q(x∗). When q(x∗) = p(x∗), we obtain the class of models analyzed in this paper.

However, relaxing this assumption broadens the range of proposal distributions that can be used,

and may make it possible for exemplar models to produce efficient approximations to Bayesian

inference across a wider range of problems.

Approximating dynamic inferences

A second limitation of the approach that we have presented in this paper is that it is only

appropriate in cases where the hypothesis space is static, with the same hypotheses being used in

multiple inferences. The simple strategy of using a stored set of hypotheses does not work in cases

where the hypothesis space itself changes over time, and results in a particularly poor

approximation when that hypothesis space grows with the number of observations. One example
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where such a problem arises is dividing a set of observations into clusters, as in Anderson’s (1990,

1991) rational model of categorization. In this model, the hypothesis space consists of all possible

clusterings of a set of observations. This hypothesis space has to be revised with each new

observation, reflecting all of the ways in which that observation could be added to the existing

clusters. Not only does the hypothesis space change over time, but it grows super-exponentially in

the number of observations.

While exemplar models are not appropriate for this situation, they are closely related to

another Monte Carlo method that can be extremely effective for approximating dynamic

inferences. This method, known as particle filtering, translates importance sampling into a

dynamic setting. The basic idea is that the posterior distribution over hypotheses after n

observations should be closely related to the posterior distribution after n+1 observations, in the

same way that the prior and posterior were closely related in the examples we considered above.

The posterior after n+1 observations can thus be approximated by importance sampling, using a

proposal distribution based on the posterior after n observations. This idea can be applied

recursively: while we may not know the posterior after n observations, we can approximate this by

importance sampling too, using a proposal distribution based on the posterior after n−1

observations, and so on. A particle filter thus consists of a set of samples that evolves through time,

with samples from the posterior distribution after n observations being used to generate samples

from the posterior distribution after n+1 observations.

Particle filters share with the models that we have discussed in this paper the idea of

approximating a probability distribution with a small number of samples. However, the models we

have considered all assume that these samples are fixed exemplars stored in memory, while a

particle filter dynamically constructs a set of samples in response to the information provided by a

sequence of observations. Despite this difference, the basic components of a particle filter are very

similar to the components of an exemplar model, requiring activation of hypotheses in proportion

to their likelihood, normalization, and random selection. As a consequence, particle filters may
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provide a psychologically plausible scheme for approximating Bayesian inference in dynamic

settings. This idea has been explored in the context of the rational model of categorization by

Sanborn et al. (2006), and similar models have been proposed as explanations of change point

detection (Brown & Steyvers, 2009), associative learning (Daw & Courville, 2008), sentence

processing (Levy, Reali, & Griffiths, 2009), and reinforcement learning (Yi, Steyvers, & Lee, in

press).

Rational process models

Probabilistic models of cognition are typically expressed at Marr’s (1982) computational

level, analyzing learning, reasoning, and perception in terms of ideal solutions to abstract problems

posed by the environment. This is at odds with much of the history of cognitive psychology, in

which theories are typically expressed at the level of representation and algorithm. As Marr noted,

these two levels should not be considered independent of one another: findings at one level provide

constraints on theories at the other. However, despite a few notable exceptions (e.g., Kruschke,

2006), there has been little exploration of the relationship between probabilistic models of

cognition and psychological process models.

The connection between importance sampling and exemplar models that we have

established in this paper hints at a strategy that might help to establish a more general link between

probabilistic models formulated at the computational level and psychological process models

expressed at the algorithmic level. The computational challenges posed by probabilistic inference

do not arise just as an obstacle for rational models of cognition: they also appear whenever a

computer scientist or statistician wants to work with a probabilistic model. As a consequence,

researchers in computer science and statistics have developed a variety of schemes for efficiently

approximating probabilistic inference. Importance sampling is just one of these schemes, and the

fact that it can be implemented in a psychologically plausible way suggests that there may be other

approximate algorithms for probabilistic inference that are candidate explanations for how people
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might address the computational challenges posed by rational models of cognition.

In embodying an effective solution to the problem of approximating probabilistic inference,

and making use of psychological notions common in mechanistic process models, exemplar

models are an instance of a “rational” process model. Such rational process models push the

principle of rationality embodied in existing rational models of cognition a level deeper. Rational

models of cognition apply the principle of rationality – the assumption that optimal solutions are

informative about human behavior – at the computational level. Rational process models apply a

similar principle at the level of representation and algorithm, assuming that the psychological

processes that are used to approximate probabilistic inference represent efficient solutions to this

problem. As noted above, particle filters are another instance of a rational process model, but the

great diversity of efficient approximation algorithms for probabilistic inference suggests that there

may be many other psychologically plausible mechanisms for solving this problem that are still to

be discovered.

In providing a connection between abstract probabilistic models of cognition and

psychological processes, rational process models also have the potential to help us understand the

neural mechanisms that underlie probabilistic computation. For example, our analysis of the

perceptual magnet effect revealed that approximating Bayesian inference by importance sampling

resulted in a model that was extremely similar to a neural network model proposed by Guenther

and Gjaja (1996). This connection is valuable in two ways: It shows how such a neural network

could be used to approximate Bayesian inference, and it provides a high-level explanation of why

this neural mechanism produces the perceptual magnet effect. We anticipate that similar

connections will exist in other domains, particularly given the close correspondence between

exemplar models and neural network architectures such as radial basis function networks

(Kruschke, 1992; Shi & Griffiths, in press).
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Conclusion

We have presented both theoretical results and simulations showing that exemplar models

provide a simple, psychologically plausible mechanism for performing at least some kinds of

Bayesian inference. Our theoretical results indicate that exemplar models can be interpreted as a

form of importance sampling, and can thus implement an approximation to Bayesian inference.

Our simulations demonstrate that this approach produces predictions that correspond reasonably

well with human behavior, and that relatively few exemplars are needed to provide a good

approximation to the true Bayesian solution in at least five settings.

The approach that we have taken in this paper represents one way of addressing questions

about the mechanisms that could support probabilistic inference. Our results suggest that exemplar

models are not simply process models, but rational process models – an effective and

psychologically plausible scheme for approximating statistical inference. This approach pushes the

principle of optimality that underlies probabilistic models down to the level of mechanism, and

suggests a general strategy for explaining how people perform Bayesian inference: Look for

connections between psychological process models and approximate inference algorithms

developed in computer science and statistics.
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Notes

1Our analysis requires that this similarity measure has a finite integral, with
R

s(x,x∗)dx equal

to a fixed constant for all x∗. This assumption is satisfied by similarity functions such as the

exponential or Gaussian that are typically used in exemplar models.

2If the function g(y) takes on its largest values in regions where p(y) is small, the variance of

the simple Monte Carlo estimate can be large. An importance sampler can have lower variance

than simple Monte Carlo if q(y) is chosen to be complementary to g(y). In particular, the

asymptotic variance of the sampler is minimized by specifying q(y) as

q(y) ∝ |g(y)−Ep[g(y)]| p(y). (24)

This is not a practical procedure, since finding this distribution requires computing Ep[g(y)], but

the fact that the minimum variance sampler need not be p(y) means that importance sampling can

provide a better estimate of an expectation than simple Monte Carlo.

3Because listeners only hear noisy speech sounds S, they may not have direct access to a

sample from T . Storing samples from S instead of T produces the same qualitative effect, though

the computation is no longer optimal. Alternatively, listeners may be able to bootstrap a sample

from T by using multiple cues to reduce the amount of noise and by using subsequent percepts to

update stored values. We return to the problem of recruiting exemplars during inference in

Simulation 5.

4We also conducted simulations in cases where perceptual noise was considered and

reconstructed stimuli, instead of original stimuli, were taken as exemplars. All of these variations

produced similar results.



Exemplar models and Bayesian inference 47

Table 1
Comparison of Approximation Schemes with Exact Bayes and Human Data

Error score Number of exemplars
5 exemplars 10 exemplars 50 exemplars

∑ |t∗ML− t∗Bayes| 4.2003 2.3333 1.2366
∑ |t∗ML− t∗human| 8.3023 7.0858 6.6757
∑ |t∗CL− t∗Bayes| 3.5601 1.8620 1.0798
∑ |t∗CL− t∗human| 7.8566 6.8283 6.1023
∑ |t∗SA− t∗Bayes| 1.4706 1.7449 2.3050
∑ |t∗SA− t∗human| 6.8043 6.0633 6.5741

Note: Subscripts correspond to memory limited (ML), computation limited (CL), sampling from
the posterior (SA), and true Bayesian and human estimates of t∗. Error scores were summed across
values of t for each prior, normalized as described in the text, and then summed across priors. The
error score for the full Bayesian model, ∑ |t∗human− t∗Bayes|, was 6.2626.
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Figure Captions

Figure 1. Approximating Bayesian inference by importance sampling using the prior p(x∗) as the

surrogate distribution. The true value of a stimulus x∗ is recovered from a noisy observation x

(represented by the gray dot). (a) Exemplars x∗j are sampled from the prior p(x∗). Each bar marks

the location of an exemplar, and the solid black line shows the prior. (b) The x∗j are weighted by a

Gaussian likelihood function p(x|x∗j). Since the Gaussian is symmetric in x and x∗, the weights

assigned to the exemplars fall off as a Gaussian function around x, here plotted as a solid gray line.

(c) The expectation is the weighted average of the x∗j . Compared with x, the estimate E[x∗|x] is

shifted towards a region that has higher probability under the prior.

Figure 2. The variance of the importance weights in approximating posterior expectations depends

on how much probability mass is shared between prior and posterior. Different patterns are

observed if posterior and prior distributions are (a) strongly overlapping, (b) non-overlapping or (c)

partially overlapping. In these figures, the importance weights have been normalized to make it

clear what proportion of the expectation depends on each sample. Greater overlap between prior

and posterior results in lower variance in the importance weights, use of a larger set of samples,

and consequently a better approximation.

Figure 3. Locations of stimuli in perceptual space from Iverson and Kuhl’s (1995)

multidimensional scaling data and from a single hypothetical subject (open circles) and the middle

50% of hypothetical subjects (solid lines) using an exemplar model in which perception is based

on (a) ten and (b) fifty exemplars. The labels µ/i/ and µ/e/ show the locations of category means in

the model. Parameter values were those used by Feldman, Griffiths, and Morgan (2009).

Figure 4. Exemplar models approximate generalizations functions for six different prior

distributions on the size of consequential regions, corresponding to the six priors originally

considered by Shepard (1987). Each generalization function shows how the probability of



Exemplar models and Bayesian inference 49

generalizing a property from an observed stimulus 0 to a new stimulus x decreases with the

psychological distance between the stimuli. In this one-dimensional case, if we take 0 to be the

origin, the psychological distance corresponds directly to the value of x. Prior distributions are

shown as inset shaded curves, reproducing Figure 3 of Shepard (1987). Analytical results for the

form of the generalization function are provided on the top of each inset prior, and are plotted in

the dotted curve. An approximating exponential generalization function is plotted as a smooth

curve. Exemplar models using 20 and 100 hypotheses sampled from the prior (corresponding to

circles and asterisks respectively) provide a good approximation to these theoretical predictions.

Figure 5. Simulations of prediction on everyday cognition, data from Griffiths and Tenenbaum

(2006). The first row is the prior distribution of each dataset. The second to fourth rows are

simulations with 5, 10 and 50 exemplars for memory-limited and computation-limited exemplar

models, as well as sampling from the posterior. The solid line shows the optimal responses given

the prior distribution, and the black dots are the responses of human participants. For both

simulations and human data, the plot markers indicate the median response across a population of

50 simulated participants. Error bars show a 68% confidence interval computed by 1000 sample

bootstrap.

Figure 6. Simulations (dashed line) and behavioral data from Tenenbaum (1999) (gray bars) for

the number game. The full Bayesian model uses 6,412 hypotheses. Results of computation-limited

(20 exemplars) and memory-limited (50 exemplars) exemplar models are based on a single

simulated participant with a set of hypotheses (exemplars) sampled from the prior. Models are

tested under conditions suggesting single point generalization x = 60, a consecutive interval

x = {60,52,57,55}, multiples of 10 x = {60,80,10,30} and squares x = {81,25,4,36}.

Figure 7. Variability across human and simulated participants in the number game. (a) The

standard deviation of the ratings produced by eight human participants in the number game
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(denoted with asterisks) is compared with the standard deviation of the posterior probabilities

produced by 100 simulated subjects. (b) Responses from four human participants, compared with

the closest matching simulated participants from the pool of 100 used in evaluating variability.

Figure 8. Reconstruction from memory with online recruitment of exemplars. (a) The left column

shows the average bias in the reconstructed stimuli produced by participants (measured as the

difference between the actual and reconstructed width of fish, in pixels) as a function of actual

width. The rows show reconstructions produced for three prior distributions: a single category

following a uniform and a normal distribution, and two categories following uniform distributions.

Data are from Huttenlocher et al. (2000, Experiment 1). The remaining columns show simulations

using exemplar models with a memory capacity of 1, 2, 5, 10 and ∞ exemplars. Data were

generated in a way that was consistent with the original experiment, and the results show an

average across 10 simulated participants with 192 trials per participant. The only free parameter,

the assumed noise level σ2, is specified by minimizing mean squared error (MSE) in each case. (b)

Sensitivity of the results to memory capacity and recall noise. In the upper panel, memory capacity

(in number of exemplars) is fixed and σ2 is chosen to minimize MSE. Interestingly, MSE grows

with increasing memory capacity, suggesting that a limited memory model (< 10 exemplars) is

consistent with human behavior. In the lower panel, the effect of different noise levels σ2 is

examined, optimizing memory capacity. For all three priors, the error curves have concave bell

shape and share a region of minimum error, suggesting that a single assumed noise level can

account for results in all three conditions.



prior p(x*)
noisy data  x likelihood

p(x|x*)prior p(x*)
noisy data  x

x*j

(a) (b)

prior p(x*)
noisy data  x likelihood

p(x|x*)

E[x*|x](c)



0

0.4

P
ro

b
a
b

il
it

y

(a) Overlap

 

Posterior p(x*|x)
Prior p(x*)
Exemplars

0

0.1

W
e
ig

h
ts

0.4

(b) Non-overlap

0

1

0.4

(c) Partial overlap

0

0.1

0 0



1 2 3 4 5 6 7 8 9 10 11 12 13
Stimulus Number

Lo
ca

tio
n 

in
 P

er
ce

pt
ua

l S
pa

ce

Perceived Stimuli Based on 10 Exemplars

MDS
Model

µ/i/ µ/e/

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13
Stimulus Number

Lo
ca

tio
n 

in
 P

er
ce

pt
ua

l S
pa

ce

Perceived Stimuli Based on 50 Exemplars

MDS
Model

µ/i/ µ/e/

(b)



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

G
en

er
al

iz
at

io
n 

pr
ob

ab
ilit

ie
s 

p 
(x

 є 
(c

,s)
|0

)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2
Psychological distance (x)

100 exemplars

 Shepard's formulation

 20  exemplars
 Exponential fit

p(
s)

s

µ

p(
s)

s

µ

p(
s)

s

µ

p(
s)

s

µ

p(
s)

s

µ

p(
s)

s

µ

(a)

(b)

(c)

(d)

(e)

(f)



1 50 100

Cakes

1 300 600

Movie Grosses

1 50 100

Pharoahs

1 500 1000

Poems

1 20 40

Representatives

1 50 100

Life Spans

1 100 200

Movie Runtimes

Pr
ob

ab
ilit

y
Pr

ed
ict

ed
 to

ta
l e

xt
en

t o
r d

ur
at

io
n 
(t*
to
ta
l)

5 
ex

em
pl

ar
s

Human Computation limited case Memory limited case Sampling

0 50 100
60

80

100

0 50 100

50

100

10 30

10

30

1 40 80

50

100

0 20 40

20

40

10
 e

xe
m

pl
ar

s

0 50 100
60

80

100

0 50 100

50

100

10 30

10

30

1 40 80

50

100

0 20 40

20

40

50
 e

xe
m

pl
ar

s

0 50 100
60

80

100

0 50 100

50

100

10 30

10

30

Observed extent or duration (t )
1 40 80

50

100

0 20 40

20

40

0 50 100

80

100

120

0 50 100

80

100

120

0 50 100

80

100

120

Prediction from true distribution

0 20 40 60

50

100

0 20 40 60

50

100

0 20 40 60

50

100



0

1  x = {60}

0

1  x = {60  52  57  55}

0

1  x = {60  80  10  30}

0

0

1

Number (y)

 x = {81  25   4  36}

Number (y) Number (y)1 100 1 100 1 100

(a) Full Bayesian model (c) Memory-limited (50 exemplars)(b) Computation-limited (20 exemplars)

p 
(y

 є 
C|

x)



Variability in responses

 

 

Ind
ivi

du
al 

va
ria

bil
ity

20 40 60 80 100 

 

x= {60}

 

 

x = {60, 52, 57, 55}

Po
ste

rio
r p

rob
ab

ilit
y

x = {81, 25, 4, 36}

20 40 60 80 100

x = {60, 80, 10, 30}

 exemplar models
subjects

exemplar models
subjects

Individual trial match(a) (b)



−20

0

20

U
ni

fo
rm

 C
on

di
tio

n

−20

0

20

N
or

m
al

 C
on

di
tio

n

Bi
as

 in
 re

co
ns

tr
uc

tio
n

168 252 336
−20

0

20

Sl
en

de
r a

nd
 F

at
 C

on
di

tio
ns

1 Exemplar
MSE = 15.5

r = 0.91

168 252 336

2 Exemplar
MSE = 20.5

r = 0.89

168 252 336

5 Exemplar
MSE = 22.3

r = 0.87

168 252 336

Actual width

10 Exemplar
MSE = 23.5

r = 0.87

168 252 336

∞ Exemplar
MSE = 29.9

r = 0.83

168 252 336

1 2 5 10 200
0

2

3

Memory capacity (n)
 

1 50 100
0

5

10

Recall noise (σ )

N
or

m
al

iz
ed

 m
ea

n 
sq

ua
re

d 
er

ro
r

Uniform prior
Normal prior
Two−category prior

Data
(a) (b)

1

2


