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Recent work has given rise to the view that reward-based decision making is governed by two key controllers:
a habit system, which stores stimulus–response associations shaped by past reward, and a goal-oriented system
that selects actions based on their anticipated outcomes. The current literature provides a rich body of
computational theory addressing habit formation, centering on temporal-difference learning mechanisms. Less
progress has been made toward formalizing the processes involved in goal-directed decision making. We draw
on recent work in cognitive neuroscience, animal conditioning, cognitive and developmental psychology, and
machine learning to outline a new theory of goal-directed decision making. Our basic proposal is that the brain,
within an identifiable network of cortical and subcortical structures, implements a probabilistic generative
model of reward, and that goal-directed decision making is effected through Bayesian inversion of this model.
We present a set of simulations implementing the account, which address benchmark behavioral and
neuroscientific findings, and give rise to a set of testable predictions. We also discuss the relationship between
the proposed framework and other models of decision making, including recent models of perceptual choice,
to which our theory bears a direct connection.
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Since the earliest days of both psychology and neuroscience,
investigators interested in decision making and the control of
behavior have recognized a fundamental distinction between
habitual action and goal-directed or purposive action. Although
this opposition has obvious roots in commonsense notions from
folk psychology, its first rigorous expression emerged in a
classic debate in the behaviorist era. On one side of this debate,
Hull (1943), Spence (1956), and others characterized action
selection as driven primarily by immediate associations from
internal and environmental states to responses. On the other,
Tolman (1932), McDougall (1923), and others portrayed action
as arising from a process of prospective planning, involving the
anticipation, evaluation, and comparison of action outcomes.
Over time, this early view of habit and goal directedness as
mutually exclusive accounts of behavior has given way to a
more inclusive multiple-systems account, under which habitual

and goal-directed control coexist as complementary mecha-
nisms for action selection (Daw, Niv, & Dayan, 2005; Dayan,
2009; Dickinson, 1985; Dickinson & Balleine, 1993; Doya,
1999; Gläscher, Daw, Dayan, & O’Doherty, 2010; Platt et al.,
2008; Rangel, Camerer, & Montague, 2008; Rangel & Hare,
2010; Samejima & Doya, 2007). This more recent perspective
licenses the study of each form of action control in its own
right, and sizable literatures have developed concerning both
habitual stimulus–response based action selection and planning-
based control (see, e.g., Bargh, Green, & Fitzsimons, 2008;
Bekkering, Wohlschlager, & Gattis, 2000; Gergely & Csibra,
2003; Wood & Neal, 2007; Yin & Knowlton, 2006).

Despite exciting progress in both arenas, however, a nagging
imbalance has gradually arisen: Over the past decade, research
on habitual, stimulus–response behavior has crystallized around
an increasingly explicit set of computational ideas, originating
from the field of reinforcement learning (Sutton & Barto, 1998).
These ideas have not only provided a context for interpreting
and predicting patterns of behavior (Sutton & Barto, 1981,
1990; Wickens, Kotter, & Houk, 1995); they have also enabled
new and detailed insights into the functional contributions of
specific brain structures, including the striatum and the mid-
brain dopaminergic system (Barto, 1995; Houk, Adams, &
Barto, 1995; Joel, Niv, & Ruppin, 2002; Montague, Dayan, &
Sejnowski, 1996; Ribas-Fernandes et al., 2011; Schultz, Dayan,
& Montague, 1997). In contrast, research on goal-directed
behavior, for all its sophistication, has not developed a similarly
mature computational core.

In the present work, we contribute toward closing this gap in
psychological and neuroscientific theory by proposing a neuro-
computational account of goal-directed decision making.
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Goal-Directed Decision Making: Definition and
Manifestations

It is important, from the outset, to be precise about what the
expression goal-directed decision making is intended to denote.
Here, as in the animal conditioning literature, we use the term to
describe decision making based directly on predictions concerning
action outcomes and their attendant incentive values. As implied
by this definition, goal-directed decision making requires the agent
to have access to two distinct forms of knowledge. First, it requires
access to stored information about action-outcome contingencies,
a body of knowledge that Tolman (1932, 1948) famously referred
to as a “cognitive map.” Second, as Tolman (1932, 1949) also
observed, in order for preferences to emerge over prospective
outcomes, action-outcome knowledge must be integrated with
incentive knowledge, knowledge of the reward values associated
with individual world states. Integration of these two forms of
knowledge allows the selection of actions judged most likely to
bring about preferred outcomes (Balleine & Dickinson, 1998b).

Working from this conception of goal-directed decision making,
animal conditioning research has generated a number of experi-
mental paradigms that operationalize the construct, making it
possible to diagnose goal directedness in observed behavior. One
particularly important experimental manipulation is known as out-
come revaluation (Adams & Dickinson, 1981; Balleine, 2005;
Balleine & Dickinson, 1998c; Colwill & Rescorla, 1985b;
Klossek, Russell, & Dickinson, 2008). Here, an animal first learns
to perform actions that yield specific rewards (e.g., learning to pull
a chain that yields one kind of food and to press a lever that yields
another). The appeal or reward value of one of the outcomes is
then altered, for example, by allowing the animal to eat its fill of
a particular food (the specific satiety procedure; Balleine & Dick-

inson, 1998c; Colwill & Rescorla, 1985a), by pairing that food
with an aversive event such as toxin-induced illness (conditioned
aversion; Adams, 1982; Adams & Dickinson, 1981; Colwill &
Rescorla, 1985a; Colwill & Rescorla, 1988), or by inducing a
change in motivational state (Balleine, 1992; Balleine & Dickin-
son, 1994; Dickinson & Dawson, 1989). Under appropriate cir-
cumstances, this intervention results in a rapid shift in behavior
either away from or toward the actions associated with the relevant
outcome. Such a shift is interpreted as reflecting goal-directed
behavior because it implies an integration of action-outcome
knowledge with representations of outcome reward value.

Another key experimental manipulation involves breaking the
causal contingency between a specific action and outcome. Here,
typically, the animal first learns to associate delivery of a certain
food with a particular action but later begins to receive the food
independently of the action. The upshot of this “contingency
degradation” is that the animal less frequently produces the action
in question (Colwill & Rescorla, 1986; Dickinson & Mulatero,
1989; Williams, 1989). Such behavior provides evidence that
actions are being selected based on (appropriately updated) inter-
nal representations of action-outcome contingencies, thus meeting
the criteria for goal directedness.

The same definition for goal directedness extends to decisions
involving sequences of action (Daw, Gershman, Seymour, Dayan,
& Dolan, 2011; Ostlund, Winterbauer, & Balleine, 2009; Simon &
Daw, 2011). An illustrative example, introduced by Niv, Joel, and
Dayan (2006), involves a rat navigating through a two-step T
maze, as shown in Figure 1 (lower right). The animal in this
scenario must make a sequence of two left-right decisions, arriving
by these at a terminus containing an item with a particular incen-
tive value. A goal-directed decision at S1 would require retrieval of

Figure 1. Left: Maze used to demonstrate detour behavior, redrawn from Tolman and Honzik (1930, p. 223).
Upper right: Maze used to demonstrate latent learning, redrawn from Blodgett (1929, p. 117). D � door. Lower
right: T-maze scenario from Niv et al. (2006). Outcome values relate to hungry (left) and thirsty (right) states.
Reprinted from “A Normative Perspective on Motivation,” by Y. Niv, D. Joel, and P. Dayan, 2006, Trends in
Cognitive Sciences, 10, p. 376. Copyright 2006 by Elsevier. Reprinted with permission.
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a sequence of action-outcome associations—linking a left turn at
S1 with arrival at S2 and a left turn at S2 with cheese—as well as
access to stored information about the incentive value of the
available outcomes. Building on this simple example, Niv et al.
(2006) provided an illustration of how revaluation plays out in the
multistep decision context. They considered a scenario in which
fluid deprivation is used to make the rat thirsty, inducing a change
in the reward values associated with the four outcomes (see Figure
1). This change in the animal’s internal representations of incen-
tive value, when integrated into the prospective operations in-
volved in goal-directed decision making, results in a different
action at S1.

Although this T-maze example represents only a thought exper-
iment, some of the issues it addresses were engaged in recent
experiments by Ostlund et al. (2009). Here, rats were trained to
execute two-step sequences in order to obtain food rewards. The
rats had access to two levers. When a rat pressed the right lever and
then the left, a bit of sucrose was delivered. When the levers were
pressed in the opposite order, the rat received polycose. The
sequences left-left and right-right, meanwhile, yielded no reward.
Following training, one of the food rewards was devalued through
satiety. When presented with the two levers in this setting, rats
tended to execute the sequence yielding the nondevalued food
more frequently than the opposite sequence. Ostlund et al. (2009)
also showed analogous changes in sequence production following
contingency degradation.

Two further standard operationalizations of goal-directed decision
making derive from the classic research championed by Tolman. In
the latent learning paradigm (Blodgett, 1929), rats run a compound T
maze as shown in Figure 1 (upper right), until they reach the box
labeled “exit.” After several sessions, a food reward is placed in the
exit box. After the animals discover this change, there is an immediate
reduction in the frequency of entrances into blind alleys. Animals
suddenly take a much more direct path to the exit box than they had
previously. In detour behavior, as described by Tolman and Honzik
(1930), rats run a maze configured as in Figure 1 (left). When the most
direct route (Path 1) is blocked by a barrier at location A, the animals
tend to opt for the shortest of the remaining paths (Path 2). However,
when the block is placed at location B, animals take the third path. In
each of these cases, a change in action-outcome contingencies triggers
immediate adjustments in behavior, providing a hallmark of goal-
directed decision making.

Toward a Computational Account

Our interest in the present work is in understanding the computa-
tions and mechanisms that underlie goal-directed decision making, as
it manifests in behaviors like the ones just described. Given the recent
success of temporal-difference models in research on habit formation,
one approach might be to draw from the same well, surveying the
wide range of algorithms that have developed in artificial intelligence,
machine learning, and operations research for solving multistep de-
cision problems based on preestablished contingency and incentive
knowledge (see Bertsekas & Tsitsiklis, 1996; Puterman, 2005; Russell
& Norvig, 2002; Sutton & Barto, 1998). We do believe that it is
important to consider such procedures for their potential biological
relevance,1 and later we will circle back in order to do so. However,
the theory we present draws its inspiration from a rather different
source, looking to previous research in neuroscience, psychology, and

computer science that has invoked the notion of a probabilistic
generative model. In order to set the scene for what follows, we will
briefly unpack this construct and highlight previous work in which it
has been applied.

Generative models in psychology and neuroscience. Over
recent years, a broad formal perspective has taken root within both
cognitive and neural research, in which probabilistic inference plays a
central organizing role. A recurring motif, across numerous applica-
tions of this perspective, is that of inverse inference within a gener-
ative model. The basic idea emerged first in research on visual
perception. Early on, Helmholtz (1860/1962) characterized vision as
a process of unconscious inference, whose function is to diagnose the
environmental conditions responsible for generating the retinal image.
In recent years, this perspective has found expression in the idea that
the visual system embodies a generative model of retinal images,
that is, an internal model of how the ambient scene (objects,
textures, lighting, and so forth) gives rise to patterns of retinal
stimulation. More specifically, this generative model encodes a
conditional probability distribution, p(image �scene). The inference
of which Helmholtz spoke is made by inverting this generative
model using Bayes’ rule, in order to compute the posterior prob-
ability p(scene � image) (Dayan, Hinton, & Zemel, 1995; Kersten,
Mamassian, & Yuille, 2004; Knill & Richards, 1996; Yuille &
Kersten, 2006).

The influence of this generative perspective has gradually
spread from perception research to other fields. In particular, it has
played an important role in recent work on motor control. Here, the
generative (or forward) model maps from motor commands to
their postural and environmental results, and this model is inverted
in order to establish a mapping from desired effects to motor
commands (Carpenter & Williams, 1995; Jordan & Rumelhart,
1992; Kilner, Friston, & Frith, 2007; Körding & Wolpert, 2006;
Rao, Shon, & Meltzoff, 2007; Wolpert, Doya, & Kawato, 2003;
Wolpert, Ghahramani, & Jordan, 1995). Beyond motor control and
perception, theories centering on probabilistic inference over gen-
erative models have figured in numerous other realms, including
language (Chater & Manning, 2006; Xu & Tenenbaum, 2007),
memory (Hemmer & Steyvers, 2009), conceptual knowledge
(Chater & Oaksford, 2008; Griffiths, Steyvers, & Tenenbaum,
2007), perceptual categorization (Yu, Dayan, & Cohen, 2009),
and—significantly—causal learning and the learning of action-
outcome contingencies (Blaisdell, Sawa, Leising, & Waldmann,
2006; Glymour, 2001; Gopnik et al., 2004; Gopnik & Schulz,
2007; Green, Benson, Kersten, & Schrater, 2010; Sloman, 2005;
Tenenbaum, Griffiths, & Niyogi, 2007).

One exciting aspect of the generative approach in psychology is
that its terms can be transposed, in very much the same mathe-
matical form, into accounts of the underlying neural computations.
The notion of inverse inference within a generative model has
played a central role in numerous recent theories of brain function,
both in visual neuroscience (Ballard, Hinton, & Sejnowski, 1983;
Barlow, 1969; Lee & Mumford, 2003; Rao & Ballard, 1999) and
elsewhere (Dayan et al., 1995; Friston, 2005; Knill & Pouget,
2004; Mumford, 1992, 1994).

1 As detailed in the General Discussion, the idea that we pursue also has
precedents in machine learning, although it does not yet figure among the
standard approaches to solving sequential decision problems.
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Goal-directed decision making as inverse inference. Our cen-
tral proposal in the present work is that goal-directed decision making,
like so many other forms of human and animal information process-
ing, can be fruitfully understood in terms of probabilistic inference. In
particular, we propose that goal-directed decisions arise out of an
internal generative model, which captures how situations, plans, ac-
tions, and outcomes interact to generate reward. Decision making, as
we characterize it, involves inverse inference within this generative
model: The decision process takes the occurrence of reward as a
premise and leverages the generative model to determine which
course of action best explains the observation of reward.

Although this specific idea is new to psychology and neurosci-
ence, it has a number of direct and indirect precedents in machine
learning, as we later detail (Attias, 2003; Botvinick & An, 2009;
Cooper, 1988; Dayan & Hinton, 1997; Hoffman, de Freitas,
Doucet, & Peters, 2009; Shachter & Peot, 1992; Toussaint &
Storkey, 2006; Verma & Rao, 2006b). In what follows, we draw
many of our raw materials from such work, but also reshape them
to yield an account that makes maximal contact with existing
psychological and neuroscientific theory.

Overview. The ensuing presentation is divided into three main
sections, corresponding to the three levels of theoretical analysis
famously proposed by David Marr (1982; see also Jones & Love,
2011). We begin in the next section by considering the computational
problem underlying goal-directed control. The succeeding section
moves on to consider the algorithm or procedure involved in solving
that computational problem. Finally, in a third section, we consider
the level of neural implementation. Following these three core sec-
tions of the paper, we discuss the relationship between the present
ideas and earlier work, and consider directions for further develop-
ment.

Reframing the Computational Problem

In building a formal theory, we take as our point of departure an
insight recently expressed by Daw et al. (2005; see also Dayan & Niv,
2008), which is that goal-directed decision making can be viewed as
a version of model-based reinforcement learning. The “model” re-
ferred to in this term comes in two parts: a state-transition function,
which maps from situation–action pairs to outcomes, and a reward
function, which attaches a reward value to each world state. Model-
based reinforcement learning refers to the project of discovering an
optimal (reward-maximizing) policy, or mapping from states to ac-
tions, given this two-part model (Sutton & Barto, 1998).

To state this more formally: Model-based reinforcement
learning begins with a set of givens, which include a set of
states, S; a set of actions, A; a state-transition function
T(s � S, a � A, s� � S), which specifies the probability of ar-
riving in state s� after having performed action a in state s; and
a reward function R(s), which assigns a scalar reward value to each
state. The computational problem is then to choose a policy
�(s,a,t) � p(a �s,t) that maximizes expected cumulative reward
over steps of action t up to some planning horizon T:

argmax� E� �
t�1

T

pt�s ���R�s��. (1)

Our objective is to reframe this problem in terms of probabilistic
inference. As a first step in that direction, the problem’s ingredi-

ents, as well as their interrelations, can be represented in the form
of a probabilistic graphical model (see Bishop, 2006; Koller &
Friedman, 2009; Pearl, 1988). Figure 2A begins construction of
this model with an initial set of three nodes. The node S represents
a variable indicating the decision maker’s current situation or
state.2 This node is shaded to indicate that its value is known or
observed by the decision maker; the initial state is a “given” in the
action-selection problem. The node A represents a variable whose
values correspond to available actions, and � represents a set of
state-specific policy variables, with values corresponding to state–
action pairs. The two arrows converging on A indicate that the
current action a depends on both the current state s and the policy
� for that state. More specifically, node A is associated with the
conditional probability distribution p(A � a �S � s,���) or, for
brevity, p(a �s,�).3

Figure 2B expands the model to incorporate a representation of
the transition function. As above, the latter is defined as a proba-
bility distribution p(s� �s,a), where s� is the value of a variable
representing action outcomes or successor states. This variable is
represented by node S� in the figure, with incoming arrows indi-
cating its joint dependence on S and A.

Figure 2C completes the structure by incorporating a represen-
tation of the reward function. Here, we add a node R̂ representing
reward value, with an afferent arrow to indicate that the value r̂
depends on the outcome state s�. (The reason for the change in
notation from R to R̂ will be disclosed in a moment.)

The architecture developed so far addresses only a single step of
action. However, it is readily extended to sequences. As shown in
Figure 2D, this extension is accomplished by duplicating part of
the existing structure, providing a series of state, action, policy,
and reward nodes, one for each step of the action sequence. In
extending the architecture in this way, we also introduce one final
new element: a variable representing the cumulative reward ac-
crued over an action sequence (R̂c).

A Probabilistic Representation of Reward

To this point, our model has been built from materials directly
provided by traditional reinforcement learning. At the present
juncture, however, we make our first move toward reframing the
goal-directed decision making problem by choosing a special form
for the representation of reward. In reinforcement learning, as well

2 Representing state as a multinomial variable is obviously a massive
simplification. However, the graphical model formalism can accommodate
richer representations of state, including factored or distributed represen-
tations and representations involving continuously valued features. The
same comment applies to the action representations discussed below.

3 In the present case, where only a single step of action is planned and
the initial state is known, there is in fact no need to distinguish between
action and policy variables. However, we include policy variables for two
reasons. First, they allow the model to accommodate situations where the
initial state is uncertain at the time of planning. This is often the case, for
example, in behavioral experiments where a participant must prepare to
respond to an impending stimulus, without yet knowing the exact identity
of the stimulus. Indeed, this is precisely the scenario involved in most
experiments that have demonstrated coding for specific tasks in prefrontal
cortex (see the Neural Implementation section). Second, we include policy
variables for parallelism with the multistep case, where they are in fact
computationally necessary.
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as in many quarters of economics and psychology, reward mag-
nitude is generally formalized as a scalar value. In view of this, the
most intuitive approach in fleshing out our graphical model might
be to treat R̂ as a continuous variable, whose value directly
corresponds to reward magnitude or utility (see, e.g., Attias, 2003).
However, we find it fruitful to represent reward in a different way.
Specifically, we cast R̂ as a binary variable, with discrete values of
one and zero. Reward magnitude is then encoded as the probability
p(r̂ � 1), for which we use the shorthand p�r̂�. Under this
encoding, a state s� associated with large positive reward would
give p�r̂�s�� close to one. If the state were associated with large
negative reward (punishment), p�r̂�s�� would fall near zero. In the
sequential setting (see Figure 2D), the cumulative reward variable
R̂c is also be treated as binary, with

p�r̂c � 1� �
1

T ��
t�1

T

r̂t� (2)

where r̂t is the R̂ node associated with step t of the plan (Tatman
& Shachter, 1990).

To prevent misapprehension, it is worth emphasizing that what
is represented using this approach is reward magnitude, not reward
probability. Although the value p�r̂� is a probability, it is being
used as the vehicle for representing the size of a deterministic
reward. On first blush, this approach to representing reward may
seem rather perverse. However, as we later discuss in detail, it has
precedents in economics, psychology, and neuroscience, as well as
in decision theory and machine learning (Shachter & Peot, 1992;
Toussaint & Storkey, 2006). For example, in the psychology
literature, Stewart, Chater, and Brown (2006) have proposed that

the utility of a choice item is quantified as the probability that this
item would be judged preferable to a randomly selected compar-
ison item (see also Kornienko, 2010). And in neuroscience, data
suggest that utility is encoded in part through the firing rates of
neurons in orbitofrontal cortex, i.e., the probability that these
neurons will fire within a small time window (see, e.g., Padoa-
Schioppa & Assad, 2006). In both cases, as in our model, utility is
encoded through the probability of a binary event.

By adopting this binary format for reward representation, we
bring about a subtle but important change in how the goal-directed
decision problem is framed. In the conventional case, where re-
ward is represented as an ordinary real number (which we shall
continue to denote by r), the problem is to find the policy that
maximizes expected reward magnitude (see Equation 1). In the
scenario we are considering, the problem is instead to maximize
the probability of a discrete event, p(r̂ � 1��). Goal-directed
decision making thus assumes the form of a likelihood
maximization problem. This seemingly incidental point has
far-reaching ramifications, which we unpack in what fol-
lows.

A Generative Model for Reward

As we have noted, the graphical model in Figure 2 can be seen
as simply one way of representing the standard ingredients of a
model-based reinforcement learning problem. However, another
way of viewing it is as a generative model for reward. That is, the
model represents the interrelated factors—initial states, policies,
actions, and outcomes—that together give rise to reward events.

To illustrate, we can “query” the variable R̂, asking for the
marginal probability p�r̂�s�. In the one-step model, this probability
depends on the remaining variables in the following way:

p�r̂�s� � �
s�,a,�

p�r̂�s��p�s��s,a�p�a�s,��p��� (3)

Note that the first factor in this sum is simply the reward
function. The second term is the transition function, and the
third expresses the effect of policies on action selection. The
final term represents the decision maker’s prior bias toward
specific policies, expressed as a probability distribution. Each
of these factors corresponds to the conditional probability dis-
tribution (CPD) at a specific node in the graph.

An important aspect of probabilistic graphical models is that
they provide a substrate for conditional inference. Given an ob-
served or known value for one or more variables, one can query the
conditional distribution for any other set of variables (see Bishop,
2006; Koller & Friedman, 2009). Indeed, Equation 3 already
provides an illustration of this, as here the value of the initial state
s was an observed quantity. The same approach could be used to
obtain the marginal probability of p(r̂ � 1), given a commit-
ment to a specific policy. This is obtained by treating � as
an observed variable (� � �), as illustrated in Figure 3 (top), and
computing

p�r̂�s,�� � �
s�,a

p�r̂�s��p�s��s,a�p�a�s,��. (4)

Given the definition of r̂, the conditional probability computed
here corresponds to the expected reward under the designated

Figure 2. Elements of the computational account. Rectangular plates
surrounding policy nodes indicate the inclusion of one such node per state
(see Appendices). PFC � prefrontal cortex; VLPFC � ventrolateral pre-
frontal cortex; BA � Brodmann area; PMC � premotor cortex; SMA �
supplementary motor area; PPC � posterior parietal cortex; DLS � dor-
solateral striatum; DLPFC � dorsolateral prefrontal cortex.
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policy �. As indicated in Figure 3 (top), in the multistep setting,
the expected cumulative reward for a specific set of policy choices
can be inferred by computing the conditional probability of r̂c.

Note that conditioning on a policy and querying the reward
variable in this way offers one potential method for solving the
computational problem we have laid out. The decision maker
could iterate through all available policies, keeping a record of the
expected reward p�r̂�,s� for each, and then choose the policy that
maximizes that quantity. As we discuss later, this procedure may
be relevant to decision making in the biological case, in some
instances. However, there is also another, more interesting route to
solving the computational problem.

Abductive Inference

As discussed in the introduction, the notion of a generative
model has been applied extensively in work on vision. There, the
proposal has been that perception seeks an explanation for retinal
inputs, based on a generative model capturing the way that envi-
ronmental situations give rise to those inputs. Note that the ob-
served data in this case (i.e., the pattern of retinal stimulation) is at
the “output” end of the generative model. The model is not used to
reason from causes to effects but is rather inverted to reason
abductively (i.e., from effects to causes).

The same logic can be applied within our generative model of
reward. Rather than conditioning on policies and computing re-
wards, it is possible to invert the model in order to reason from
rewards to policies (see Figure 3, bottom). Specifically, leveraging
our binary representation of reward, we can condition on r̂ � 1 and
apply Bayes’ law to compute

p���s,r̂��p�r̂�s,��p��� � �
s�,a

p�r̂�s��p�s��s,a�p�a�s,��p���. (5)

As illustrated in Figure 3, the same approach can be applied in the
multistep case by conditioning on r̂c � 1.

Notice that if there is no initial bias toward any specific policy
(the priors p(�) are uniform across all values of �), the right-hand
side of Equation 5 is identical to that of Equation 4. That is,

p�� �s,r̂� � p�r̂ �s,��. (6)

This suggests an alternative way of framing the computational
problem involved in goal-directed decision making. According to
our earlier formulation, the objective was to find a policy to
maximize p�r̂ ���. It is now evident that an equally valid objective
is to find a policy to maximize p�� � r̂�. Conditioning on r̂ � 1, the
task is to identify the policy that best explains that “observation.”
In what ensues, we refer to this procedure as policy abduction,
considering that it involves reasoning from effects (reward) to their
explanations or causes (policies for action).

It should be noted that our ability to make this important turn
derives specifically from our having adopted a binary representa-
tion of reward, choosing to work with p(r̂ � 1/s) rather than
R�s�. To see this, consider what happens if we attempt to
condition on a scalar representation of reward. The most
obvious approach here would be to replace the R̂ node in
Figure 2 with a node R representing p�r �s��, a probability density
function over the real numbers. One might then (naively) set up to
find argmax� p�� �r�. However, what specific value of r would one
condition on here? If the range of R were bounded, one might be
tempted to condition on its maximum: argmax� p�� �r � rmax�.
However, this will not answer. What if the outcome state s�
affording that maximum is not reachable—or not reachable with
certainty—given the current situation, as will generally be the
case? In the end, there is no tractable way of conditioning on a
traditional scalar reward representation. The shift to a binary
representation of reward is a critical step in reframing goal-
directed decision making as abductive inference.

To recap, we have moved in this section through three interre-
lated ways of characterizing the computational problem involved
in goal-directed decision making: (a) the conventional framing,
which centers on the maximization of expected reward; (b) an
alternative, maximum-likelihood view; and (c) a final transforma-
tion of the problem, which calls for the inversion of a generative
model of reward. In the next section, we retain a focus on the last
of these problem formulations, turning to a consideration of the
procedures by which the problem might be solved.

Algorithmic Framework

Given the preceding discussion, the appropriate procedure for
goal-directed decision making may appear self-evident: In order to
find argmax� p�r̂ �s,��, condition on r̂ � 1 and evaluate
argmax� p�� �s,r̂�. It is true that this approach will yield the
optimal policy under certain restricted circumstances. How-
ever, under others it would backfire. For one thing, the
procedure requires that the decision maker begin with no
bias toward any specific policy, because as indicated by
Equation 5, such prior biases enter into computing the
posterior distribution p�� �s,r̂�. Another, more daunting
problem arises in the multistep setting. Here, taking
argmax� p�� �s,r̂c� at each policy variable (see Figure 3, lower
right) can lead to incorrect decisions. This is because, in the
setting of sequential decision making, the optimal decision

Figure 3. Top: Conditioning on a policy. Bottom: Conditioning on re-
ward. Filled nodes indicate variables with stipulated values.
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at any step depends on what actions are planned for later
steps.

As an illustration of this important point, consider the decision
faced by the rat in the two-step T maze discussed earlier and
shown in Figure 1. The numbers at the top of that figure (ahead of
each slash) indicate the reward values associated with items con-
tained at the maze termini. Obviously, the optimal choice at the
first decision point is to head left. However, this is only true if
the animal’s plan at the next juncture, S2, is to head left again. If
the animal plans instead to head right if faced with decision point
S2, then the best choice at S1 is actually to go right. The same is
true if the animal has not yet made any decision about what to do
at S2 or S3; if the animal is equally likely to head left or right at
these points, then the best plan at S1 is to go right. Given this kind
of interdependence, a procedure that makes independent decisions
at each stage of the plan would yield unreliable results.

Before considering how a biological decision-making algorithm
might cope with these issues, let us introduce one further circum-
stance in which simple policy abduction might fail to yield a
reward-maximizing response. This is suggested by so-called ran-
dom utility models of economic decision making. In such models,
the value associated with any particular outcome is not a fixed
quantity: Each time the decision maker retrieves a value for an
outcome, the result is drawn from a probability distribution (see
Gul & Pesendorfer, 2006; Manski, 1977). According to one stan-
dard version of this idea, the goal of decision making is to
maximize expected reward given such “noisy” readings of out-
come value (Busemeyer, 1985; Busemeyer & Townsend, 1993;
Glimcher, 2008; Platt et al., 2008; Rustichini, 2008; Shadlen,
2008).

In order to incorporate random utility into our graphical-model
framework, we can simply add a stochastic component to the CPD
at R̂. Thus, rather than p(r̂ �s�), we have p(r̂ �s�,z), where Z is a
random variable (see Figure 4). Although this changes the reward
model available to the decision maker, the decision problem—to
maximize p(r̂ �s,�), now equal to the expectation EZ[p(r̂ �s, �,
Z)]—remains unchanged. Note that in this setting, as in the others
we have enumerated, policy abduction is not assured to deliver the
policy with the highest expected return; even a policy that maxi-
mizes p(r̂ �s, �, z) may not maximize EZ[p(r̂ �s, �, Z)].

Notice that decision making under random utility, as we have
just characterized it, bears a close resemblance to perceptual
decision-making problems involving ambiguous or noisy stimuli.
A highly studied example is the dot-motion task introduced by
Newsome, Britten, and Movshon (1989). Here, the subject is
required to identify the predominant direction of motion in a
dynamic display (see Figure 4, top). Formally, the challenge is to
decide between competing hypotheses (i.e., true directions of
motion), given observations that provide information that is both
incomplete and potentially equivocal: incomplete in the sense that
p(x �y) 	 1.0 for all available hypotheses x and any single obser-
vation y, and equivocal in the sense that for two observations y1

and y2 and hypotheses x1 (the true hypothesis) and x2 (false), it
might occur that both p(x1 �y1) 
 p(x2 �y1) and p(x2 �y2) 
 p(x1 �y2).

In fact, this decision-making situation is isomorphic to our
random utility scenario, where the single “observation” r̂ � 1
provides information about candidate policies that is potentially
both partial and equivocal. In both scenarios, it is hazardous to
commit to an answer based on only a single observation. Given

this parallel, in order to make progress in understanding goal-
directed decision making, it may be fruitful to consider current
models of perceptual decision making. As discussed next, these
center on the theme of evidence integration.

Evidence Integration

An abundance of research suggests that, in the case of percep-
tual decision making, human and animal decision makers mitigate
uncertainty by pooling across a series of observations. According
to current evidence-integration models (see Bogacz, Brown,
Moehlis, Holmes, & Cohen, 2006), in any interval during the
decision process, having made the series of observations y and a
new observation ynew, the decision maker updates a representation
of the posterior probabilities p�x �y� by combining them with the
likelihoods p�ynew �x�:p�x �y,ynew��p�ynew �x�p�x �y�. In so-called
random walk or drift-diffusion models of two-alternative forced
choice decision (see Figure 4, top), accumulated evidence is rep-
resented in the form of a log posterior ratio, to which is added a
log-likelihood ratio representing the evidence from each new ob-
servation (see Beck & Pouget, 2007; Bogacz et al., 2006; Gold &
Shadlen, 2007; Rao, 2006; Ratcliff & McKoon, 2008). Given an
unlimited number of observations, this procedure is guaranteed to

Figure 4. Top: Evidence integration in the dot-motion task, focusing on
the hypothesis that the underlying stimulus motion is in the upward
direction. Bottom left: The graph in the top panel can also be diagrammed
as a dynamic Bayesian network, with a recurrent connection running from
and to the variable X. Bottom right: An architecture for evidence integra-
tion, based on the graph from Figure 3.
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converge to the correct hypothesis. Moreover, when a response
threshold is introduced (see Figure 5), the procedure becomes
equivalent to the so-called sequential probability ratio test (Wald
& Wolfowitz, 1948), which guarantees the minimum attainable
reaction time for any given error rate.

Evidence-integration models have shown striking success in
accounting for behavioral data not only in perceptual tasks but also
in memory retrieval (Ratcliff, 1978), lexical decision (e.g., Wagen-
makers et al., 2004), cognitive control (Liu, Holmes, & Cohen,
2008), and other contexts. Indeed, as reviewed later, efforts have
been made to adapt the framework to reward-based decision mak-
ing (Rangel & Hare, 2010; Rustichini, 2008; Usher, Elhalal, &
McClelland, 2008). The apparent ubiquity of evidence-integration
procedures in human and animal decision making, along with the
particular parallels we have noted, makes it inviting to consider the
potential relevance of these procedures to the framework we have
developed for goal-directed decision making.

Goal-Directed Decision via Iterative Inference

In our framework, under policy abduction, the “observation”
r̂ � 1 is adopted, and the posteriors p�� �s,r̂� are computed.4 As we
have seen, this approach is not robust and can go awry in the
presence of nonuniform priors, random utility, or sequential prob-
lem structure. However, by analogy to evidence-integration mod-
els of perceptual choice, the inference procedure can be repeated.
On each iteration n, the observation r̂ � 1 is reinstated, and the
policy posteriors are updated using Bayes’ rule:

pn�� �s,r̂�¢�p�r̂ �s,��pn�1�� �s,r̂� (7)

where � is a normalization coefficient that ensures the left-hand
side term sums to one across all values of �.

Both mathematically and conceptually, this iterative procedure
directly parallels the standard evidence-integration model as ap-
plied to the dot-motion task (see Figure 4). Rather than noisy
perceptual observations, we have stochastic observations of re-
ward.5 In both cases, observations are translated into likelihoods—
respectively, p�y �x� and p�r̂ �s,��—which are used to update an
evolving posterior distribution. Indeed, as in other evidence-
integration models, the iterative procedure in Equation 7 is guar-
anteed to converge to the correct decision, that is, to find the
optimal policy, as shown formally in Appendix A. Furthermore, in
the single-step case, if a response threshold is imposed as in
Figure 5, the procedure is guaranteed to yield the lowest error rate
for a given expected decision time, just as in the sequential
probability ratio test (see Appendix A).

Although it was random utility that led us to consider an
evidence-integration approach, it turns out that the iterative pro-
cedure we have obtained also overcomes the other hazards enu-
merated at the outset of this section. Specifically, the procedure is
guaranteed to converge to the optimal policy even in the presence
of an initial bias toward a nonoptimal policy, and as demonstrated
in Appendix A it will also find the optimal sequential policy in the
multistep decision-making case. Indeed, in the multistep setting,
our procedure shares structure with iterative procedures found in
reinforcement learning and dynamic programming, where repeated
updates allow a diffusion of information across temporally distrib-
uted events (see Sutton & Barto, 1998; Toussaint & Storkey,
2006).

Simulations

Having arrived at an algorithmic account, we turn now to a set
of simulations that show the procedure in action, illustrating its
applicability to hallmark patterns of behavior in goal-directed
decision making. Technical details, sufficient to replicate these
simulations, are presented in Appendix B (relevant code is avail-
able at www.princeton.edu/matthewb).

Simulation 1: Instrumental Choice

1.1. Simple binary choice. We begin with the simplest pos-
sible case: two-alternative forced choice with deterministic out-
comes. For concreteness, and to prepare the ground for later
simulations, consider a laboratory scenario in which a rat has
access to two levers, positioned to its left and right. Pressing the
left lever yields one kind of food and pressing the right lever
another (see, e.g., Balleine & Dickinson, 1998c). Let us assume
that the rat prefers the food associated with the left lever, at
baseline, and assign a scalar reward value r � 2 to this food and
a reward value r � 1 to the other.

The situation is modeled by defining three states, no-food (the
initial state, r � 0), food1, and food2; and two policies, press-left
and press-right, matched with corresponding actions. Our frame-
work requires that reward values be represented as probabilities

4 From here forward, to avoid clutter, we suppress the noise variable Z.
5 In the evidence-integration framework one has a fixed likelihood

function and stochastic observations. In the present model, one has instead
a fixed observation and a stochastic likelihood function. Mathematically,
these two cases are notational variants of one another.

Figure 5. A: Evolution of the decision variable in a sequential-sampling
model of a left-right visual motion judgment, both in the absence of noise
(straight trajectory labeled “Drift Rate”) and with the addition of noise
(remaining trajectories). From “The Diffusion Decision Model: Theory and
Data for Two-Choice Decision Tasks, by R. Ratcliff and G. McKoon,
2008, Neural Computation, 20, p. 876. Copyright 2008 by the Massachu-
setts Institute of Technology. Adapted with permission. B: Evolution of the
log posterior ratio in the present model, as applied to a forced choice
between outcomes with values as shown at right, both with and without
noise (random utility).
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p�r̂ �s��. In order to map from traditional, unbounded scalar reward
values (r) to probabilities between zero and one, we employ the
following simple linear transformation (with alternatives discussed
later):

p�r̂ �s�� � 0.5�R�s��

rmax
� 1�, rmax :�

max
s� �R�s�� � . (8)

For the present scenario, this yields p�r̂ � food1� � 1.00 and
p�r̂ � food2� � 0.75.

The question is how the rat decides, based on its knowledge of
the causal structure of the environment and its preferences over
outcomes, which lever to press. One way of reaching a decision
would involve the procedure shown in Figure 3 (top). Here, the
policy variable is treated as observed, first set to press-left, then
separately to press-right. In both cases, forward inference yields
specific posterior probabilities at the reward node. The probability
p�r̂ �s,�� turns out to be larger under the press-left policy (1.00)
than under press-right (0.75), providing a sufficient basis for
choice.

The potential relevance of serial policy evaluation, along the
lines just described, has been recognized in recent theoretical work
on animal decision making (see, e.g., Daw et al., 2005; Smith, Li,
Becker, & Kapur, 2004), and recent single-unit recording data in
rodents provide apparent evidence for serial consideration of fu-
ture actions and outcomes at behavioral choice points (Johnson &
Redish, 2007; Johnson, van der Meer, & Redish, 2007). However,
our theory focuses on a different, more parallelized decision pro-
cedure. Here, the reward variable is treated as observed (r̂ � 1),
and inference yields posterior probabilities for the two available
policies. Figure 6A shows the evolution of these posteriors, over
iterations of inference within a single decision-making “trial.”
Also displayed is the expected value of the current mixture of

policies: the average of p�r̂ �s,��, weighted by the posterior prob-
ability of � on the current iteration; i.e., the marginal probability
p�r̂ �s�. As the figure shows, as time elapses within the decision-
making episode, the model converges to the optimal deterministic
policy.

To make clear what is going on “under the hood” in this
simulation, let us step through the computations performed during
its first three iterations. At the outset, the initial or prior probabil-
ities p��� for the policies press-left and press-right are both equal
to 0.5. Labeling these policies �L and �R, the first iteration uses
Equation 5:

p1��L �s,r̂��p�r̂ �s,�L�p��L� � 1 � 0.5 � 0.5,

p1��R �s,r̂��p�r̂ �s,�R�p��R� � 0.75 � 0.5 � 0.375.

Dividing each of these values by their sum, to normalize, yields
p1��L �s,r̂�� 0.57 and p1��R �s,r̂�� 0.43. On the second iteration,
the results of iteration 1 are fed into Equation 7:

p2��L �s,r̂��p�r̂ �s,�L�p1��L �s,r̂� � 1 � 0.57 � 0.57,

p2��R �s,r̂��p�r̂ �s,�R�p1��R �s,r̂� � 0.75 � 0.43 � 0.3225.

Normalizing, again by dividing both values by their sum, yields
p2��L �s,r̂� � 0.64 and p2��R �s,r̂� � 0.36. On the third iteration,
the results of iteration 2 are fed back into Equation 7:

p3��L �s,r̂��p�r̂ �s,�L�p2��L �s,r̂� � 1 � 0.64 � 0.64,

p3��R �s,r̂��p�r̂ �s,�R�p2��R �s,r̂� � 0.75 � 0.36 � 0.27.

Normalization yields p3(�L �s, r̂) � 0.70 and p3(�R �s, r̂) � 0.30.
On the fourth iteration, these results are fed back into Equation 7,
and the process continues in that fashion. One way of summarizing

Figure 6. Results of Simulations 1.1 (Panel A), 1.3 (B), 1.4 (C–D), 2.1 (E), 2.2 (F), and 2.3 (G). Blue, green,
and yellow traces indicate the posterior probability of indicated actions/policies at each processing iteration. Red
traces indicate the probability p�r̂ � 1� given the mixture of policies at each iteration, proportional to the
expected reward for that mixture. Dashed red lines indicate p�r̂ � 1� for the optimal policy. In Panel G, the two
most central data series are offset for legibility; the values were in fact precisely equal across the two. pre �
pre-devaluation; post � post-devaluation.
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the whole procedure in this simple case, where only a single step
of action considered and no noise is involved, is to note that the
policy posterior pn(� �s, r̂) on each iteration n is proportional to
p(r̂ �s, �)n p(�).

1.2. Stochastic choice. In implementing random utility
above, we introduced a random variable Z, which parameterized
the reward function p(r̂ �s�, z). For simplicity, this aspect of the
model was set aside in Simulation 1.1, as it shall be in subsequent
simulations. In the present simulation, however, we examine its
impact on the decision-making process.

To this end, we assigned the variable Z a multivariate normal
distribution with zero covariance (see Appendix B). Under these
conditions, the decision dynamics take the form of a drift-diffusion
process, isomorphic to those purported to underlie perceptual
decision making (see Appendix A). The model’s behavior is illus-
trated in Figure 5B, in the same lever-choice scenario considered
in Simulation 1.1. For comparison with Figure 5A, the figure
shows the log posterior ratio, log �p�left�/p�right�, rather than the
individual posteriors. In the absence of noise, this quantity follows
a straight-line course, mirroring the constant drift rate of the
drift-diffusion model (see Bogacz et al., 2006; Gold & Shadlen,
2007; Ratcliff & McKoon, 2008). With Z active, the log posterior

ratio follows a serpentine course, tending toward the optimal
policy but sometimes deviating in the other direction.

If a response threshold is introduced, as shown in Figure 5B, the
match to the drift-diffusion model is complete. This formal link
allows the present model to account for some important behavioral
data concerning choice proportions and reaction times in reward-
based decision making. Figure 7A shows data from an experiment
by Padoa-Schioppa and Assad (2006), in which monkeys chose
between two juice offers. A central finding in this study concerned
choice variability. When one of the alternatives presented was
much more valuable than the other, that option was always se-
lected, but as the alternatives came closer together in value, the
animals showed a graded increase in choice variability. When our
model is faced with decisions between rewards with varying
degrees of separation, it shows precisely the same kind of behav-
ior, as illustrated in Figure 7B.

In a related study, Padoa-Schioppa, Jandolo, and Visalberghi
(2006) showed that incentive disparity can also affect reaction
time, with decisions taking longer when options are closely
matched in value (see Figure 7C; see also Rangel, 2008; Rus-
tichini, Dickhaut, Ghirardato, Smith, & Pardo, 2005). This finding

Figure 7. A: Choice data from Padoa-Schioppa and Assad (2006, Figure 1B, p. 223). Value ratio indicates the
subjective value of choice option B relative to option A as inferred from choice behavior. Reprinted by
permission from Macmillan Publishers Ltd: Nature (Padoa-Schioppa & Assad, 2006), copyright 2006. B: Choice
data from Simulation 1.2, including random utility and a response threshold on the log posterior ratio of 2.0.
Reward values for choice options were selected so as to yield the ratios shown on the x-axis. Each point reflects
the choice proportion over a sample of 1,000 trials. C: Response time data from Padoa-Schioppa et al. (2006).
Reprinted from Cognition, 99, C. Padoa-Schioppa, L. Jandolo, and E. Visalberghi, “Multi-Stage Mental Process
for Economic Choice in Capuchins,” p. B6, Copyright 2006, with permission from Elsevier. D: Response times
in the simulation associated with Panel B. E: Response-time distributions in a two-alternative perceptual
judgment, under stimulus conditions yielding uniform judgments (Prob � 1.00) and more variable judgments
(Prob � .65). The superimposed curve shows the fit of a drift-diffusion model. Adapted from “Modeling
Response Times for Two-Choice Decisions,” by R. Ratcliff and J. N. Rouder, 1998, Psychological Science, 9,
Figure 5, p. 352. Copyright 1998 by Sage. Adapted with permission. F: Response-time distributions from the
simulation associated with Panels B and D, with outcome value ratios chosen so as to yield choice variabilities
close to those in the Ratcliff and Rouder (1998) experiment.
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is also captured by our model under random utility, as shown in
Figure 7D.

An important realm of data addressed by standard evidence-
integration models centers on reaction-time distributions. As
shown in Figure 7E, in many decision-making settings such dis-
tributions assume a characteristic skewed shape, with the distribu-
tion becoming broader under conditions leading to greater choice
variability. As shown in Figure 7F, our model generates reaction
time distributions showing the same characteristics. The model
thus predicts that reaction-time distributions in goal-directed
choice should resemble those observed in other settings, including
perceptual decision making (Ratcliff & Rouder, 1998) and mem-
ory retrieval (Ratcliff, 1978). To our knowledge, reaction-time
distributions in reward-based decision making have not yet been
studied experimentally.

1.3. Outcome devaluation. As a further proof of concept, our
paradigm can be used to simulate incentive devaluation. For this
purpose, we return to the two-lever scenario and the model intro-
duced in Simulation 1.1. In Balleine and Dickinson (1998c), to
take a representative study, the incentive value of one of two action
outcomes was devalued by specific satiety, leading to an immedi-
ate reduction in performance of the associated action. This deval-
uation effect can be captured in our model by simply changing the
reward value associated with one food outcome. To simulate
the effect of this, we reduced the reward value associated with the
formerly preferred food from r � 2 to r � 0. Note that this
change directly affects only the CPD of the reward variable;
p�r̂ �s�� is reduced, for the case where s� corresponds to the deval-
ued food. When inference is performed, however, the impact of
this local change propagates to the level of the policy node,
yielding a reversal in choice (see Figure 6B).

1.4. Contingency degradation. As discussed in the introduc-
tion, changes in goal-directed decisions can be induced not only by
revaluation of outcomes but also by changes in patterns of causal
contingency (Dickinson & Mulatero, 1989; Williams, 1989). A
representative demonstration was reported in Colwill and Rescorla
(1986). Here, rats were given access to a lever and a chain. If the
lever was pressed, a preferred food was delivered with probability
0.05. Pulling the chain yielded a less preferred food, again with
probability 0.05. Under these conditions, not surprisingly, animals
came to favor the lever. However, in the next phase of the exper-
iment, the causal link between the lever and the preferred food was
broken by delivering the preferred food with probability 0.05
regardless of the animal’s action (or inaction). Following this
change, animals shifted their efforts toward the chain response.

To simulate this effect, we adapted the model from Simulation
1.1 to include three policies, corresponding to the actions chain,
lever, and neither and the four states no-food (r � 0), food1 (r �
1), food2 (r � 2), and both-foods (r � 3). When the model was
parameterized to reflect the initial contingencies in the experiment,
evidence integration led to selection of the lever action (see Figure
6C). When the CPD p�s� �s,a� was updated to predict the later
contingencies, where food2 could occur without any action, and
both-foods could occur following chain (but not following lever),
preference shifted to the chain response (see Figure 6D).

In addition to illustrating contingency degradation, this simula-
tion demonstrates the ability of the present framework to cope with
probabilistic outcomes. Given an accurate representation of out-
come contingencies, evidence integration will yield the response

with the highest expected utility. Indeed, the likelihood p�r̂ �s,��,
which marginalizes over outcomes s�, can be viewed as a direct
representation of expected utility (see Equation 4).

Simulation 2: Sequential Decision

Here we apply the iterated architecture from Figure 2D to
simulate benchmark phenomena in multistep decision making.

2.1. A two-stage decision problem. As an initial illustration
of sequential choice, we focus in this simulation on the two-step
T-maze scenario from Niv et al. (2006), described in the introduc-
tion and illustrated in Figure 1. The states included in our model of
this situation include the terminal reward items (cheese, carrot,
water, and null), as well as the three preceding choice points.
Following Niv et al. (2006), we assume the baseline reward values
R(cheese) � 4, R(carrots) � 3, R(water) � 2, R(null) � 0. Figure
6E shows the decision trajectory produced by evidence integration
in this problem setting. The model converges on the sequence
left-left, a policy that takes it to the preferred cheese reward.

If we were to “look under the hood,” tracing the computations
on successive iterations at each stage of the plan, the story would
be identical to that in Simulation 1.1, with the following important
caveat: The calculations bearing on the first stage of the plan (i.e.,
the policy at S1) are impacted by the current policy posteriors at
stage 2 (i.e., at S2 and S3). For example, the first iteration computes
the posterior probability of adopting the left and right policies at
S1. Calling these �L

S1 and �R
S1, Equation 5 gives

p1��L
S1 �s,r̂��p�r̂ �s,�L

S1�p��L
S1�,

p1��R
S1 �s,r̂��p�r̂ �s,�R

S1�p��R
S1�.

The likelihood terms here—p�r̂ �s,�L
S1� and p�r̂ �s,�R

S1�—depend im-
plicitly on what is planned for S2 and S3, that is, on p��L

S2�,p��R
S2�,

p��L
S3� and p��R

S3�.
This dependence manifests in the time courses plotted in Figure

6E. Note the trajectory of the solid blue and green traces in the
figure, which relate to the decision at S1. Although the decision
ultimately tips toward left, early on there is transient movement
toward right. This effect stems directly from the fact that the
optimal first-step choice depends on what is planned for later steps.
As discussed earlier, if the animal is equally likely to go left or
right upon reaching either S2 or S3, the expected reward for a left
turn at S1 is (4 � 0)/2, and that for a right turn is (2 � 3)/2. The
(locally) optimal choice at S1 is thus to turn right. Eventually, as
better plans emerge for S2 and S3, the expected reward for left and
right turns at S1 move toward 4 and 3, respectively, making it
preferable to turn left at S1.

As discussed below, the kind of dynamics reflected in this
simulation, arising from the interdependence of decision-making
operations across plan steps, gives rise to testable model predic-
tions.

2.2. Cumulative reward and cost-benefit analysis. A key
feature of multistep decision problems is the need to compute
cumulative rewards when rewards are distributed across steps of
action. A simple and ubiquitous case arises in effort-based decision
making, where a cost–benefit analysis must take into account both
distal rewards and the cost of proximal effort. A number of rodent
studies have examined this cost–benefit analysis by placing an
animal inside a T maze where both arms contain food, but where
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one also contains a scalable barrier that the animal must surmount
to access the food reward. The common finding is that, unless the
reward on the barrier side is larger by a sufficient degree, animals
will forgo it, avoiding the effort required (Salamone, Correa,
Farrar, & Mingote, 2007; Walton, Kennerley, Bannerman, Phil-
lips, & Rushworth, 2006).

This sort of cost–benefit analysis can be modeled very naturally
within the present framework. For simplicity, we do so using the
two-step T-maze scenario already established. Here, we reimpose
the original reward values on the outcome states, but also imagine
that there is now a scalable barrier placed at S2. The cost
of traversing this barrier is inserted into the model by reducing
R(S2) to �2. Evidence integration under these circumstances
yields the decision trajectory in Figure 6F, which reflects the
inference that the value of the most preferred reward is not worth
the associated cost in effort.

2.3. Outcome revaluation and contingency degradation.
As discussed in the introduction, outcome revaluation can affect
decisions in multistep settings, just as in simpler decision tasks. To
recap one relevant study, Ostlund et al. (2009) trained rats to
execute two two-step lever-press sequences (left-right, right-left),
which yielded sucrose and polycose, respectively. When one of
these outcomes was devalued through satiety, the animals tended
to favor the sequence yielding the nondevalued food.

Note that, although the Ostlund et al. (2009) experiment in-
volves lever pressing rather than maze navigation, the form of the
decision problem aligns precisely with the two-step T maze from
Niv et al. (2006). State S1 in Figure 1 now corresponds to the rat’s
initial situation, facing the two levers, with available actions press-
left and press-right. State S2 corresponds to the rat’s situation after
having pressed the left lever once; state S3 to the situation after
pressing the right lever once.6 The outcomes for press-left and
press-right are, respectively, null (r � 0) and polycose (r � 1) at
S2; and sucrose (r � 1) and null (r � 0) at S3. Using the same
model architecture that we used to simulate the two-step T maze,
these initial conditions lead to selection of the sequences left-right
and right-left (with equal probability) over left-left and right-right
(see Figure 6G). Simulating devaluation by reducing R(sucrose) to
0.5 leads to a preference for left-right over all other sequences, in
line with the empirical observation (see Figure 6G).7

Ostlund et al. (2009) also showed analogous changes in se-
quence production following contingency degradation. Simulating
contingency degradation in the present model, using the approach
established in Simulation 1.4, yields parallel results (data not
shown). Using a similar logic, the model can be applied in a
straightforward way to account for the classic latent learning and
detour effects described in the introduction (see Botvinick & An,
2009).

Predictions

In addition to demonstrating the ability of our framework to
account for benchmark phenomena in goal-directed behavior, the
foregoing simulations give rise to several testable predictions.

One of these arises from Simulation 2.1 and pertains to decision
time course. As shown in Figure 6E, the model in this simulation
displayed a sort of decision-making reversal, traveling toward one
policy early on and then, later, toward another. The origins of this
effect, as discussed earlier, lie in the recursive structure of the

planning problem: The optimal policy for any stage of the plan
depends on what is planned for later stages. In Simulation 2.1, this
general principle combined with a specific set of conditions, ac-
cording to which the outcome with the maximum value lay in one
direction, and the outcomes in the other direction had a larger
mean value. Our model predicts that this mean–max conflict
situation should trigger a similar reversal at the level of neural
response representations in human or animal subjects. One way of
testing this prediction behaviorally would be to impose response
deadlines in order to elicit speeded choice reactions. Under these
circumstances, the model predicts that short-latency responses in
mean–max conflict conditions should show below-chance accu-
racy (for an initial test of this prediction, see Solway, Prabhakar, &
Botvinick, 2011).

Another prediction arises from Simulation 1.4. As illustrated
there and demonstrated formally in Appendix A, our evidence-
integration algorithm yields mathematically sound decisions in the
face of probabilistic outcomes. However, an interesting and some-
what surprising effect arises during this process. Recall that with
each iteration of the decision-making process, for each planned
action, our model computes a posterior probability distribution
over outcomes (s�). It turns out that this posterior distribution is
optimistic. That is, it is weighted toward high-utility outcomes. For
example, in Simulation 1.4, selection of the lever action prior to
contingency degradation led to the outcome food2 with probability
0.05. However, at asymptote, the model attaches to this outcome a
posterior probability of 0.08.

To see the origins of this optimism effect, recall that decision
making begins with an assumption of reward (i.e., the premise
r̂ � 1). This assumption feeds into the calculation of outcome
probabilities, with the natural consequence that they are weighted
toward states with higher utility. It is important to emphasize that
this aspect of the model does not affect the model’s actual deci-
sions; as we have noted, the model’s choices of action conform to
sound calculations of expected utility. Nevertheless, even as the
model chooses rationally, it gives rise to optimistic estimates of
outcome probability. This translates into a further testable predic-
tion of the present theoretical account.

The predicted optimism effect bears an interesting relationship
to what previous work has labeled the “illusion of control.” Here,
individuals make more optimistic outcome predictions when their
actions are freely chosen than when their actions are dictated
(Presson & Benassi, 1996). For example, Langer (1975) found that
experimental participants expressed greater confidence in their

6 Note that the rat’s “state” at S2 and S3 might thus be understood as
factoring in an internal representation of past actions. However, as Ostlund
et al. (2009) noted, this is not strictly necessary, as visual, tactile, and
proprioceptive information might suffice to discriminate among the rele-
vant situations.

7 It is worth remarking that the computational account we are offering
here for the findings of Ostlund et al. (2009) differs from those authors’
own interpretation. Ostlund et al. considered the observed pattern of
behavior to indicate the involvement of “chunked” representations of
action sequences. The present simulation illustrates that chunking is not in
fact necessary. Having noted this, however, we hasten to add that chunked
or hierarchical representations are nonetheless likely to play a role in
goal-directed decision making, a point to which we return in the General
Discussion.
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chances of winning a drawing when they were permitted to select
a ticket from among a set of objectively equivalent tickets than
when a random ticket was simply given to them. A standard
explanation for this effect has been that choice serves as a cue
falsely implying outcome controllability (Langer, 1975; Presson &
Benassi, 1996). The present work suggests a different, though
perhaps not incompatible, explanation, which is that choice gives
rise to optimism as a natural consequence of the computations
involved in goal-directed decision making.

How do these predictions compare with those of competing
theories? This is not a straightforward question to answer, given
the dearth of psychological and neuroscientific theory concerning
the processes underlying goal-directed decision making, particu-
larly in sequential domains. However, it is perhaps useful to
consider whether different machine-learning algorithms for model-
based reinforcement learning might give rise to comparable pre-
dictions. In this respect, the above predictions concerning choice
dynamics appear not to arise from algorithmic approaches in
which depth-first tree search is employed (see, e.g., Smith et al.,
2004), or where choice depends on backward induction (starting at
the goal and working backward, in the spirit of successive sub-
goaling). On the other hand, the same predictions might obtain in
more parallel procedures, such as the classical value iteration
algorithm (see Sutton & Barto, 1998). In contrast, our model’s
prediction concerning optimistic state representation appears prob-
lematic even for the latter planning procedure and thus stands as a
particularly distinctive prediction of the present framework.

Neural Implementation

To this point, we have considered goal-directed decision making
in abstract cognitive or information-processing terms. However,
ultimately what is needed is an account that makes direct contact
with neuroscientific data, pinpointing the neural structures and
processes that give rise to goal-directed decisions. One of the most
exciting aspects of recent empirical research on goal-directed
decision making is that it has begun to shed some light on the
relevant functional anatomy, identifying critical brain regions and,
in some cases, characterizing the response properties of the neu-
rons they contain. Despite such progress, we still lack a working
model of how these brain structures interface and interact in order
to support goal-directed decision making.

In this section we leverage the present theory to sketch out such
a functional neural model. More specifically, we translate the
theory into neural terms at two distinct levels of description. First,
at a structural level, we map the elements of our model to specific
gross brain regions, as discussed in the next subsection. Then, at a
finer grain, we cash out the proposed information-processing op-
erations within a neural network model, yielding a coarse account
of how neurons within the relevant brain regions may collaborate
in generating goal-directed behavior.

Four Interlocking Neural Systems

The graphical architecture we have been considering contains
variables of four types, which represent, respectively, (a) policies,
(b) actions, (c) current and projected situations or states, and (d)
reward or utility. As noted previously, these four domains of
representation, along with the transition and reward functions that

link them, constitute the givens of the model-based reinforcement
learning problem. However, each of the four representational do-
mains can also be mapped to distinct sets of neuroanatomic re-
gions. Making this mapping ties the four strata of our model to
specific brain systems, opening the door to a consideration of the
model’s potential neuroscientific implications.

1. The policy system. Recall that the policy nodes in our
model represent mappings from situations to responses. In the
brain, representations of this kind have been shown to reside
within the dorsolateral prefrontal cortex (DLPFC). Single-unit
recording studies in primates and complementary functional neu-
roimaging studies in humans have indicated that one important
function of the DLPFC may be to represent task sets or “rules”
(Asaad, Rainer, & Miller, 2000; Bunge & Wallis, 2007; Sakai,
2008; Wallis, Anderson, & Miller, 2001; White & Wise, 1999).
The content of such rules is typically understood to establish a set
of relationships between stimuli and responses (Bunge, 2004).
According to the guided activation theory of Miller and Cohen
(2001), a critical function of the DLPFC is to bias the flow of
neural activation in pathways between stimulus and response rep-
resentations, supporting transmission along task-relevant path-
ways. Given this role, it is not surprising that the DLPFC has been
heavily implicated in planning and goal direction (Anderson, Al-
bert, & Fincham, 2005; Duncan, Emslie, Williams, Johnson, &
Freer, 1996; Goel & Grafman, 1995; Lengfelder & Gollwitzer,
2001; Miller & Cohen, 2001; Shallice, 1982; Shallice & Burgess,
1991; Tanji & Hoshi, 2008; Tanji, Shima, & Mushiake, 2007;
Unterrainer & Owen, 2006). Furthermore, studies on outcome
devaluation in rodents (Balleine & Dickinson, 1998a; Corbit &
Balleine, 2003; Killcross & Coutureau, 2003; although see Ostlund
& Balleine, 2005) suggest that it depends critically on prelimbic
cortex, a structure judged by some to represent a homologue to the
primate DLPFC (Fuster, 1997; Kesner, 2000; Uylings, Goenewe-
gen, & Kolb, 2003).

Although the DLPFC is the area most heavily implicated in
policy representation, there are data suggesting that policy, task
set, or rule representations may also reside in other portions of the
frontal lobe, including premotor cortex (Wallis & Miller, 2003),
ventrolateral prefrontal cortex (Bunge, 2004; Bunge et al., 2005),
presupplementary area (Dosenbach et al., 2006; Rushworth, Wal-
ton, Kennerley, & Bannerman, 2004), and the frontal pole (Sakai
& Passingham, 2003). The policy stratum in our model thus
summarizes a role that is carried out in the brain by a densely
interconnected network of cortical regions, with the DLPFC as an
important hub.

2. The action system. Within our model, policy nodes inter-
face with nodes representing actions. If the pertinent actions are
understood as bodily movements, then the set of relevant brain
areas is relatively straightforward to identify, and would include
premotor and supplementary motor cortices, portions of cingulate
and parietal cortex, and associated sectors within the dorsal stria-
tum. However, goal-directed decision making can involve more
abstract forms of action, including actions defined in terms of ends
rather than motoric means, implicating intraparietal and inferior
frontoparietal cortex (Hamilton & Grafton, 2006, 2008), or tem-
porally extended behaviors, currently speculated to be represented
in portions of prefrontal cortex (see Badre, 2008; Botvinick, 2008).
The action variables in our model thus, once again, summarize the
role of a specific network of areas.
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3. The state projection system. Within our model’s archi-
tecture, action nodes project to and receive projections from nodes
representing current and projected situations or states.8 On the
neuroscientific side, it is clear that the brains of higher animals
must contain representations of anticipated states, as well as their
dependencies on earlier states and actions (Atance & O’Neill,
2001; Gopnik & Schulz, 2007; Schütz-Bosbach & Prinz, 2007).
However, despite considerable research, the neuroanatomical site
of such representations is only beginning to emerge. Early studies
of spatial navigation in rodents led to the idea that cognitive map
representations might reside in the hippocampus (O’Keefe & Na-
del, 1978), and recent research suggests that hippocampal place
cells may represent projected future locations (Diba & Buzsaki,
2007; Johnson & Redish, 2007; Johnson et al., 2007). Lesion
studies have also provided evidence for the involvement of medial
temporal lobe structures (entorhinal cortex, if not hippocampus) in
the representation of action-outcome contingencies during instru-
mental learning (Corbit, Ostlund, & Balleine, 2002). Convergent
neuropsychological research in humans indicates that medial tem-
poral lobe structures may play a critical role in allowing visual-
ization of future events, including action outcomes and goals
(Buckner & Carroll, 2007; Hassabis, Kumaran, Vann, & Maguire,
2007; Schacter, Addis, & Buckner, 2007), possibly as part of a
larger network including regions within medial and lateral parietal
cortex (see also Hamilton & Grafton, 2008), lateral temporal
cortex, and medial frontal cortex (see also Matsumoto, 2004;
Matsumoto, Suzuki, & Tanaka, 2003; Tanaka, Balleine, &
O’Doherty, 2008). Still other work has suggested that the DLPFC
may play a role in representing projected action outcomes, includ-
ing both final “goal” states and intermediate “means” states (Fus-
ter, 1997; Mushiake, Saito, Sakamoto, Itoyama, & Tanji, 2006;
Saito, Mushiake, Sakamoto, Itoyama, & Tanji, 2005), and a recent
study by Hamilton and Grafton (2008) suggests that the right
inferior frontal cortex may also be involved in representing action
outcomes.

At the subcortical level, there is strong evidence for the involve-
ment of specific basal ganglia structures in the representation of
action-outcome contingencies. Research in rats has shown that
damage to or inactivation of the dorsomedial striatum impairs
sensitivity to outcome devaluation and changes in instrumental
contingency (Balleine, 2005; Yin, Knowlton, & Balleine, 2005;
Yin, Ostlund, Knowlton, & Balleine, 2005). This fits well with
research implicating the caudate nucleus, the primate homologue
of the dorsomedial striatum, in action-outcome contingency detec-
tion (Tanaka et al., 2008) and planning (Monchi, Petrides, Stra-
fella, Worsley, & Doyon, 2006; Unterrainer & Owen, 2006) in
humans. A potential role for the striatum in representing action-
outcome contingencies is particularly interesting given evidence
for overlapping inputs from dorsal and orbital prefrontal areas
within anterior striatum (Cavada, Company, Tejedor, Cruz-
Rizzolo, & Reinoso-Suarez, 2000; Haber, Kim, Mailly, & Calza-
vara, 2006), a convergence that fits well with the structure of our
graphical model.

4. The reward system. The final set of elements in our model
are nodes representing reward. Here again, the variables in ques-
tion can be understood as summarizing the representational role of
a specific set of brain regions. In this case, the relevant regions
include, most prominently, the orbitofrontal cortex and the baso-
lateral amygdala. The orbitofrontal cortex (OFC) has been exten-

sively implicated, across species, in the representation of the
incentive value of stimuli, including anticipatory coding for the
value of predicted and even imagined outcomes (Arana et al.,
2003; Bray, Shimojo, & O’Doherty, 2010; Kringelbach, 2005;
Montague & Berns, 2002; Padoa-Schioppa & Assad, 2006; Plass-
mann, O’Doherty, & Rangel, 2007; Rolls, 2004, 2006). This
function has been linked to a role in goal-directed decision making
(Frank & Claus, 2006; Roberts, 2006; Rolls, Everitt, & Roberts,
1996; Schoenbaum & Setlow, 2001; Schultz, Tremblay, & Hol-
lerman, 2000; Wallis, 2007), based in part on studies demonstrat-
ing OFC involvement in revaluation phenomena (De Araujo, Krin-
gelbach, Rolls, & McGlone, 2003; Gottfried, O’Doherty, & Dolan,
2003; Izquierdo, Suda, & Murray, 2004; LaBar et al., 2001;
Pickens, Saddoris, Gallagher, & Holland, 2005; Valentin, Dickin-
son, & O’Doherty, 2007; however, see Ostlund & Ballene, 2007).

Despite important differences in function, the basolateral
amygdala (BLA) has also been extensively implicated in the
representation of incentive value of stimuli, including action out-
comes, and in the guidance of goal-directed behavior (Arana et al.,
2003; Balleine, 2005; Baxter & Murray, 2002; Holland & Gal-
lagher). Like OFC, BLA has been directly implicated in revalua-
tion phenomena (Balleine, Killcross, & Dickinson, 2003; Corbit &
Balleine, 2005; Gottfried et al., 2003; LaBar et al., 2001). Indeed,
there is evidence that revaluation sensitivity may depend on a
functional interaction between BLA and OFC (Baxter, Parker,
Lindner, Izquierdo, & Murray, 2000), suggesting that these struc-
tures might be most fruitfully regarded as two components within
an integrated system for reward representation (Cavada et al.,
2000; Schoenbaum, Setlow, Saddoris, & Gallagher, 2003).9

Figure 2 summarizes the proposed correspondences between
elements of our model and functional neural structures. At one
level, these parallels simply recapitulate existing ideas concerning
the functional roles of the implicated brain areas. However, be-
cause we have drawn the parallels in the context of an explicit
algorithmic model, what results is a proposal concerning the way
that the relevant neural structures interact to support goal-directed
decision making. Of course, this account is specified at a very high
level of abstraction. What we ultimately need is an account of the
computations carried out by the neurons residing in each of these
anatomical regions. In the next section, we extend the present
account to make contact with this level of description.

Neural Network Model

The pivotal operation in our graphical framework (as in many
applications of probabilistic graphical models) involves computing
a marginal distribution for each variable the graph contains. What

8 It should be noted that our model intends “state” to encompass not only
ambient environmental circumstances but also internal state, including the
state of working memory (implicating relevant DLPFC and parietal areas),
affective state (amygdala, insula, and other affect-related structures), and
homeostatic conditions (hypothalamus).

9 Although we have focused on OFC and BLA as substrates for the
representation of utility, it should be noted that there is evidence that the
costs of effort, as studied in Simulation 2.2, may be represented in different
structures, in particular the dorsal anterior cingulate cortex (Botvinick,
Huffstetler, & McGuire, 2009; Rudebeck, Walton, Smyth, Bannerman, &
Rushworth, 2006).
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is required, in order to translate our account into neural terms, is an
account of how this marginalization operation might be carried out
in a neural network. Fortunately, a number of recent theoretical
papers have addressed just this problem (Beck & Pouget, 2007;
Deneve, 2008; Lee & Mumford, 2003; Litvak & Ullman, 2009;
Ma, Beck, Latham, & Pouget, 2006; Pouget, Dayan, & Zemel,
2003; Rao, 2006). One approach that is particularly well suited to
the present application was proposed by Rao (2005). Rao focused
on a classic algorithm for marginalization in graphical models,
known as belief propagation (Pearl, 1988). Belief propagation
operates through message passing: Each variable node in the
network sends to each of its neighbors a vector-valued message,
the components of which encode specific marginal probabilities.
The outgoing messages at each node are computed by combining
incoming messages with information stored locally at the node.
After the information from each node propagates throughout the
network, the messages converging at each node can be combined
to compute the marginal distribution for the pertinent variable (for
full details of the algorithm, see Koller & Friedman, 2009; Pearl,
1988).

The propagation of messages in belief propagation is manifestly
similar to the propagation of activation within a neural network;
indeed, the algorithm was originally inspired by neural network
research (Weiss & Pearl, 2010). Making good on this similarity,
Rao (2005) suggested how networks of biological neurons might
directly implement the belief propagation algorithm, applying the
resulting approach to several specific problems, including evi-
dence integration in perceptual decision making. Briefly, Rao’s
(2005) proposal was that each variable in the underlying graph is
represented by a group of neurons, each coding for a particular
message component in its instantaneous firing rate. The passage of
messages between neighboring variables translates to synaptic
transmission of firing-rate information, with synaptic weights and
dendritic operations helping to transform the set of incoming
messages into new outgoing messages.10

We applied the proposal from Rao (2005) in order to transpose
our theory into the format of a neural network (for implementa-
tional details and simulation procedures, see Appendix B; simula-
tion code is available at www.princeton.edu/matthewb). Starting
from the two-alternative forced-choice model introduced in Sim-
ulation 1.1, the resulting recurrent neural network is shown in
Figure 9. Each disk in the figure corresponds to a single neuron-
like unit, which carries a scalar activation value between zero and
one, representing its instantaneous firing rate. This activation value
corresponds to a specific message component prescribed by belief
propagation, and each group of color-matched units together rep-
resents a particular set of probabilities, as spelled out in the table
in Figure 8. For example, the red units at the top of the network
diagram together encode the “message” p�� � r̂,s�. As such, their
activation values should evolve like the policy posteriors in the
graphical model, as diagrammed in Figure 6A. Figure 8A confirms
that this is indeed the case.

The neural network in Figure 8 may seem rather elaborate for
such a simple task (i.e., two-alternative forced choice with deter-
ministic outcomes). However, it should be borne in mind that, by
design, the architecture accommodates more complex scenarios,
including problems with stochastic action-outcome contingencies,
and problems where the initial state is not uniquely known at the
time of planning (see Footnote 3). Furthermore, the neural net-

work, like the probabilistic graphical model on which it is based,
does more than map from rewards to policies: It also projects
outcome states and expected rewards, as detailed in what follows.
Perhaps most important, it is straightforward to apply the same
implementational approach to multistep decisions. As an illustra-
tion, we converted to neural network form the two-step T-maze
model described in Simulation 2.1. Figure 8B shows unit activa-
tions over iterations of processing for units coding for the policy at
the first and second stages of the network, analogous to Figure
6E.11

A critical aspect of information processing in biological neural
networks is its stochasticity, apparent in the random variability in
the interspike interval (Shadlen & Newsome, 1998). The impact of
this variability can be captured in the present implementation by
relating the activity of each unit to the variable number of spikes
that might be fired by a biological neuron during a small time
interval (see Appendix B). Figure 12B shows the behavior of the
policy units in the two-alternative forced-choice network when
variability is introduced in this way. The dynamics of the decision-
making process here resemble those arising in Simulation 1.2,
under random utility, and the network shows the same dependence
of choice proportion on incentive disparity (see Figure 8C). In the
present case, however, the model’s behavior arises not from ran-
domness isolated to the utility function but instead from random-
ness in neural firing throughout the entire network. This feature of
the neural network implementation fits well with recent neurosci-
entific analyses of economic decision making, which have asserted
that the variability traditionally ascribed to random utility should
indeed be seen as simply reflecting variability in neural activity
(see Shadlen, 2008).

Simulations

Our neural network implementation presents a further opportu-
nity to test the present theoretical framework against empirical
data. If the model is valid, then, despite its simplicity, it seems
reasonable that the response profiles of the units within it should
correspond to those of actual neurons in the relevant brain systems.
The following simulations document several such parallels.

3.1. State value. Recent neuroscientific studies have distin-
guished sharply between two forms of value representation. Stud-
ies of OFC suggest that many neurons in this region code for state
value, the reward value associated with specific states, outcomes,
or goods (Padoa-Schioppa, 2011; Tremblay & Schultz, 1999).

10 The scheme from Rao (2005) carries with it two particularly specu-
lative assumptions, which are important to acknowledge. First, it requires
multiplicative interactions between presynaptic neurons. Although both
modeling and empirical work have begun to shed light on how this might
be accomplished (Mel, 1992, 1993; Polsky, Mel, & Schiller, 2004), further
work is necessary to elucidate the details of these mechanisms. Second, this
approach assumes that dendrites are able to approximate a logarithmic
transformation (see Rao, 2005, for discussion).

11 The minor differences between Figures 8B and 6E arise from the fact
that an exact algorithm was used in Simulation 2 (see Appendix B). Belief
propagation is, technically speaking, an approximate inference algorithm in
graphs that contain loops, and so is not guaranteed to yield marginals
precisely equivalent to those arising from exact algorithms (see Koller &
Friedman, 2009).
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Studies in several other areas, including dorsal striatum (Hori,
Minamimoto, & Kimura, 2009; Kim, Sul, Huh, Lee, & Jung, 2009;
Lau & Glimcher, 2008; Lauwereyns, Watanabe, Coe, & Hikosaka,
2002; Pasquereau et al., 2007; Samejima, Ueda, Doya, & Kimura,
2005) and parietal cortex (Dorris & Glimcher, 2004; Platt &
Glimcher, 1999; Sugrue, Corrado, & Newsome, 2004), have iden-
tified neurons that code for action value. During decision making,
these neurons code for specific actions, but in a way that depends
on the expected reward for the relevant action.

Our neural network implementation contains units coding for
state value and for action value. Units coding for state value lie at
the bottom of the diagram in Figure 8 (shown in purple), in a sector
of the model we earlier related to OFC. To illustrate the corre-
spondence, we used the network to simulate a neurophysiological
study by Padoa-Schioppa and Assad (2006). Here, monkeys chose
between different quanitities and types of juice by making a
saccade to one of two locations. Single-unit recordings in OFC
revealed that a subset of neurons were sensitive to the offers made
on each trial, independent of the monkey’s subsequent choice.
Figures 9A and 9B show the firing rates of two neurons, each
encoding the value of a particular juice offer. We modeled this task

using three states (decision, juice-A, and juice-B) and two actions
(saccade-left and saccade-right). The values of the messages R̂3
S� for the series of decisions in Figures 9A and 9B are shown in
Figures 9D and 9E, respectively.

In addition to discovering neurons coding for “offer value,”
Padoa-Schioppa and Assad (2006) discovered OFC neurons cod-
ing for “chosen value,” the value of the option ultimately selected
by the animal (Figure 9C). In our model, chosen value corresponds
to the marginal probability p�r̂ �s�, which appears as a message in
the multistep version of our model (pink units in Figure 8). The
activation of the relevant unit, across the series of decisions de-
noted in Figure 9C, is shown in Figure 9F.

3.2. Action value. Representations of action value are borne
by different units within our model, specifically the units labeled
S�3A and shown in blue in Figure 8. To illustrate, we used the
model to simulate another single-unit recording study, by Lau and
Glimcher (2008). Here, monkeys chose between visual targets
yielding different quantities of juice. The study revealed that
neurons within the dorsal striatum coded for specific eye move-
ments, but in a way that reflected the reward to be expected for
executing them (see Figures 10A–B). We modeled this task using

Figure 8. Left: Neural network implementation for two-alternative forced choice decision, with unit colors
keyed to the table below. Arrows indicate all-to-all connections between the indicated unit groups. The
group shown in pink derives from the multistep model and is included for Simulation 3.1. A: Replication
of Simulation 1.1 (cf. Figure 6A). B: Replication of Simulation 2.1 (cf. Figure 6E). C: Replication of
Simulation 1.2. (cf. Figure 7B).
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the same approach as in Simulation 3.1, with three states and two
actions. Figures 10C–D shows the effect of action values (quan-
tified as in Lau and Glimcher, 2008; see Appendix B) on the
activity of one S�3A unit in our neural network model. Like that
of the neurons in the empirical study, this unit’s activity varies
with the expected value of one action but is insensitive to the value
of the opposing action.

3.3. Sequence planning. In addressing multistep decision
making, our model posits separate policy, action, state, and reward
representations for each plan step (see Figure 2). If this is a valid
picture of the mechanisms underlying goal-directed decision mak-
ing, step-specific representations should be evident in the relevant
neural structures. Evidence in support of this comes from a number
of studies focusing on action representations, in which neurons
have been reported to code conjunctively for specific actions and
their positions within a planned sequence (Barone & Joseph, 1989;
Botvinick & Plaut, 2009; Inoue & Mikami, 2006; Ninokura, Mush-
iake, & Tanji, 2004). Such studies have also revealed important
information about the timing of activation in such neurons, which
may be important for evaluating the validity of our model of
sequential decision making.

To focus on one particularly rich example, Mushiake et al.
(2006) reported an experiment in which monkeys were presented
with a maze display, indicating a goal location, as shown in Figure
11A. Shortly thereafter, a set of additional barriers was added to
the maze, as shown in the figure. The animal’s task was to navigate
from the center of the maze to the goal location. The researchers
found, recording in DLPFC, that many neurons coded for specific
directions of movement within the maze, showing selectivity also
for the ordinal position of the movement (first, second, or third in
the solution sequence; see Figure 11B). These neurons became
active before the onset of the first action, consistent with a role in
planning. A critical additional finding was that neurons coding for
successive actions became active at around the same time (see
Figure 11C), suggesting that planning of the three required move-
ments occurred more or less in parallel.

In order to simulate these results, we implemented a three-stage
model. Considering that the action units in our neural network
model convey the probability p(a �s), and thus carry the same

Figure 9. A–C: Data from Padoa-Schioppa and Assad (2006). Reprinted by permission from Macmillan
Publishers Ltd: Nature (Padoa-Schioppa & Assad, 2006, p. 225), copyright 2006. D–E: Results from Simulation
3.1.

Figure 10. A–B: Data from Lau and Glimcher (2008). Reprinted from
Neuron, 58, B. Lau and P. W. Glimcher, “Value Representations in the
Primate Striatum During Matching Behavior,” p. 457, Copyright 2008,
with permission from Elsevier. Preferred action refers to the action (sac-
cade) whose execution preferentially excites the index neuron. Action value
was quantified in terms of the impact of objective reward quantities
(volume of water) on choice probability. C–D: Results of Simulation 3.2.
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information as the A variables in our graphical model, we per-
formed this simulation using the graphical model implementation
for convenience. The state space included the set of occupiable
positions in the maze, with available actions including movement
in the four cardinal directions. The transition function dictated that
movement into a barrier yielded no change in position, and reward
was associated with the single goal location (p(r̂)� 0.7; else-
where 0.05).

The central result of the simulation is shown in Figure 11D. This
shows the evolution of the action posteriors for the first, second,
and third steps in the plan, as they converge to the correct plan
up3left3up. Of course, our model includes conjunctive repre-
sentations of action and ordinal position and thus matches this
aspect of the empirical data by design. What the figure shows,
additionally, is that the decision processes at the three steps follow
highly overlapping time courses, very much in line with the
parallel activation observed in the Mushiake et al. (2006) study.

It is revealing to compare these results with those from Simu-
lations 2.1 and 2.2 (see Figures 6E and 6F). The present simulation
shows that within our model, as in Mushiake et al.’s (2006) study,
planning at successive steps can be highly parallel in time. Fig-
ure 6, in contrast, shows cases where planning is more asynchro-
nous. In Figure 6F, the decision at the first step of a two-step plan

emerges first. In Figure 6E the order is reversed, with the decision
at the second step evolving faster. As this contrast indicates,
although our model can be fit to the findings from Mushiake et al.
(2006), the model more generally predicts that the relative timing
of decision making across stages of a multistep plan will vary
systematically with the specific set of outcome contingencies
involved in the decision task.

3.4. Evidence integration in simple incentive choice. Ear-
lier, we compared our graphical model account with evidence inte-
gration models of perceptual decision making. We are now in a
position to consider this parallel from a neuroscientific point of view.
A range of studies have mapped the elements of the evidence-
integration framework onto specific neural regions, in the context of
specific perceptual tasks. The most extensive research has focused on
the dot-motion paradigm reviewed earlier and diagrammed in Fig-
ure 4. Here, neurophysiological research has focused on localizing
two critical functions. The first is the “integrator” itself, the area or
areas in which information about visual motion accumulates over
time, leading neural activity to approach or retreat from decision
thresholds. Activity fitting with this description has been identified in
lateral intraparietal area (LIP) as illustrated in Figure 12A, based on
work by Gold and Shadlen (2007).

Figure 11. A: Example displays from Mushiake et al. (2006, p. 633), showing the sequential presentation of
goal and barrier locations. Reprinted from Neuron, 50, H. Mushiake, N. Saito, K. Sakamoto, Y. Itoyama, and
J. Tanji, “Activity in Lateral Prefrontal Cortex Reflects Multiple Steps of Future Events in Action Plans,” p. 633,
Copyright 2006, with permission from Elsevier. B: Response profiles of three dorsolateral prefrontal neurons
studied by Mushiake et al. (2006, p. 635; reprinted with permission from Elsevier). The arrowhead on the x-axis
indicates the onset of the visual signal cuing the animal to begin navigating the maze. The top panel shows a
neuron selective for rightward movement on the first step; the middle panel shows a neuron selective for leftward
movement on the second step; and the lower panel shows a neuron selective for leftward movement on the third
step. C: Data from Mushiake et al. (2006, p. 636; reprinted with permission from Elsevier) showing simultaneous
emergence, over a population of prefrontal neurons, of information concerning first (blue), second (green), and
third (red) actions during planning. D: Results of Simulation 3.3. Numbers indicate the relevant action variable
(as though moving from left to right in the architecture shown in Figure 2D). “Other” indicates actions down,
right, and left on Steps 1 and 3 and actions up, down, and right on Step 2. Note that Mushiake et al. (2006) also
presented data relating to plan execution, which are omitted here.
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The second focus of neuroscientific work has been to identify
the source of input to the integrator, that is, the source of the
evidence feeding into the evidence-integration mechanism. Not
surprisingly, in the dots task this has been tracked to cortical area
MT, which has long been known to encode information concerning
visual motion (see Gold & Shadlen, 2001). Unlike neurons in LIP,
MT neurons show relatively stable tonic activity during viewing of
dot-motion stimuli, consistent with the idea that they are coding for
instantaneous information in the display, rather than integrating
this information over time (see Figure 12A, inset).

Earlier, we highlighted the fact that the policy variable in our
model behaves like an integrator. In this regard, our theory draws
a direct analogy between the role of LIP in perceptual decision
tasks and the role of DLPFC in goal-directed decision making. The
analogy is reinforced in Figure 12B, which shows the activity in
the units coding for policy marginals in our neural network model
(red in Figure 8) over a set of two-alternative decision problems
varying in incentive disparity (see Appendix B for simulation
methods).

If the role of DLPFC is analogous to that of LIP in perceptual
decision making, then what area is analogous to MT? That is, what
area provides the “evidence” that is integrated over time within
DLPFC? In formal terms, we earlier identified this evidence with
the likelihood p�r̂ ��,s�. In the setting of simple binary choice,
where there is a one-to-one correspondence between actions and
outcomes, note that this value is exactly equal to p�r̂ �s��. As a
consequence, in simple choice, the “evidence” entering into the
integration process corresponds to the activation of the units la-
beled R̂3 S� in our neural network model (purple in Figure 8). In
Simulation 3.1, we compared the function of this set of units with
that of neurons representing state value in OFC. The analogue to
MT, according to our model, is therefore OFC. The analogy is
elaborated in Figure 12B (inset), which shows activity in state-
value units for the same choice problems used to generate the
policy time courses above. Like MT, these units show stable tonic
activity indicating the “strength of evidence” for one choice over
the other.

Predictions

In these simulations, we have focused on cases where signals
within the neural network have readily identifiable correlates in the
current neuroscientific literature. Other aspects of the neural net-
work model lead to further testable predictions. For example, the
units labeled S�3 R̂ and shown in green in Figure 8 represent the
probabilities of outcome states.12 The model predicts that such
representations should be identifiable within the brain and (less
obviously) that sequence planning should activate neural represen-
tations of sequences of future states, with order-specific coding as
has been demonstrated for actions (see Simulation 3.3). Some
neuroscientific evidence consistent with prospective state coding
was discussed earlier. With regard to representation of multiple
future states during planning, suggestive evidence is provided by
Saito et al. (2005), who showed that neurons in prefrontal cortex
encode both immediate and final goal locations in parallel during
planning in a maze navigation task. Having noted this, we ac-
knowledge that other studies have uncovered representations of
state that fit less tidily into the present account. Johnson and
Redish (2007) observed hippocampal activation apparently coding
for projected future positions during path planning. However, in
contrast to the activation reported by Saito et al. (2005), these
activations were activated serially in time rather than concurrently.
In other recent work, Stalnaker, Calhoon, Ogawa, Roesch, and
Schoenbaum (2010) reported neurons in dorsal striatum coding for

12 Interestingly, these messages represent the probability of states con-
ditional on the current policy distribution but not on r̂ � 1. As a result, the
predictions represented here do not show the same “optimistic” bias as the
marginal state probabilities discussed under Predictions following Simu-
lations 1–2. Another set of messages, present when the model is expanded
to encompass more than one step of action, does show the “optimism”
effect. Thus, the framework predicts that it should be possible to find
multiple representations of outcome probability, some of which are, and
some of which are not, optimistic. Some evidence in favor of this kind of
multiple coding is reported by Kool, Getz, and Botvinick (2011).

Figure 12. A: Representative findings from lateral intraparietal area (LIP) and middle temporal area (MT)
during motion discrimination. From “The Neural Basis of Decision Making,” by J. I. Gold & M. N. Shadlen,
2007, Annual Review of Neuroscience, 30, p. 548. Copyright 2007 by Annual Reviews, Inc. Reprinted with
permission. B: Results from Simulation 3.4. Upgoing data series in the main panel are for the unit representing
the chosen policy; downgoing time series are for the unchosen policy. As in Panel A, red and yellow data series
are based only on trials involving correct (reward-maximizing) responses.
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action-outcome conjunctions. Such representations do not figure in
our neural network model and therefore present a challenge to be
examined in future work.13

A further prediction stems from the fact that our model posits
separate representations of expected reward for each stage in a
multistage plan. Given the parallels we have drawn to OFC and
amygdala, this predicts that similar, step-specific reward represen-
tations should be identifiable in one or both of these regions during
the planning of sequential actions. To our knowledge, neural
activity in these regions has not been studied in the setting of
sequence planning (though see Simon & Daw, 2011).

Finally, Simulation 3.2 leads to specific predictions concerning
neural action-value representations. In previous work, such repre-
sentations have generally been assumed to support model-free or
habitual action selection (see, e.g., Samejima et al., 2005). Our
model shows how action-value representations might arise during
goal-directed decision making. Furthermore, our model suggests a
close link between action-value and state-value representations,
with the latter providing part of the basis for computing the former
during the course of single decision-making episodes (for related
proposals, see Hasselmo, 2005). This leads to the novel prediction
that disruptions of neural state-value representations (e.g., in OFC)
should disrupt action-value coding (e.g., in parietal cortex or
striatum).

General Discussion

In the present paper, we have advanced an account of goal-
directed decision making. With a nod to David Marr, we have
specified the theory at computational, algorithmic, and implemen-
tational levels. At the computational level, the proposal aligns with
contemporary theories in vision, motor control, and other domains,
which center on inverse inference within a generative model. In the
present work, the generative model in question captures the way in
which policies, actions, and states work together to generate re-
wards, and model inversion reveals the policy that best explains
the occurrence of reward. The procedures involved in carrying out
this inversion link the present account with current theories of
perceptual decision making, which center on iterative evidence
integration. Like such theories, the present one can be translated
into neural terms, providing an account of how populations of
neurons spanning relevant brain areas may work together to yield
goal-directed decisions. Across the algorithmic and implementa-
tional levels, the theory we have presented accounts for a range of
behavioral and neurophysiological observations and gives rise to
testable predictions. In this final section, we pan back to consider
the relationship between the ideas we have presented and previous
work, and enumerate some areas for further development.

Related Work in Machine Learning and Theoretical
Neuroscience

As intimated earlier, although the notion of reward-based deci-
sion making as inference has been little explored in psychology or
neuroscience, versions of the idea have been in play for several
decades within decision theory and machine learning. Initial pro-
posals for how to solve decision problems through probabilistic
inference in graphical models, including the idea of encoding
reward as the posterior probability of a random utility variable,

were put forth by Cooper (1988). Related ideas were presented by
Shachter and Peot (1992), including the use of nodes that integrate
information from multiple utility nodes. More recently, Attias
(2003) and Verma and Rao (2006b) have used graphical models to
solve shortest path problems, leveraging probabilistic representa-
tions of rewards, although not in a way that guarantees conver-
gence to reward-maximizing plans. More closely related to the
present research is work by Toussaint and Storkey (2006) employ-
ing the expectation-maximization algorithm, a technique with in-
teresting but insufficiently explored relations to evidence-
integration procedures (see also Dayan & Hinton, 1997; Furmston
& Barber, 2009; Hoffman et al., 2009).

Although close in spirit, our framework does not fully parallel
any of this previous work. Perhaps the most important difference
is at the level of the research objective: Our aim in the present
work has been to maximize not computational power but rather
explanatory power, by engaging wherever possible with estab-
lished principles and findings in psychology and neuroscience. Our
efforts to relate the present theory to accounts of perceptual deci-
sion making and to available functional neuroanatomic and neu-
rophysiologic data are emblematic of this objective.

Within neuroscience, one recent line of work that has explored
reward-based decision making from an inference-centered point of
view is by Friston, Daunizeau, and Kiebel (2009). This work
adopts the generative perspective, proposing that the brain is
shaped through learning to minimize its own “surprise” by maxi-
mizing the accuracy of its predictions about external inputs. Action
selection is then modeled by introducing the additional assumption
that the brain is configured to predict the perceptual feedback that
would be produced by adaptive actions. The objective of minimiz-
ing surprise is then met by selecting actions that assure the pre-
dicted inputs. Beyond its shared focus on inference within a
generative model, this approach is somewhat different from the
one we have taken. In the theory of Friston et al., the role of the
central generative model is to predict observations (perceptual
inputs), and the role of action is to realize those observations. The
generative model at the center of our work is itself the substrate for
action selection, accomplished through inverse inference from the
fixed initial “observation” of reward. Interestingly, the model of
Friston et al. (2009) deliberately eschews any explicit representa-
tion of reward; reward is encoded implicitly through the distribu-
tions that express the agent’s predictions. Although such an im-
plicit encoding may be computationally feasible (see Furmston &
Barber, 2009), it does not square well with the neurophysiological
data reviewed earlier (e.g., Padoa-Schioppa & Assad, 2006), which
provide strong evidence for explicit neural representations of re-
ward.

Spreading Activation Models of Spatial Navigation

One other area in which some work has been done on the
neurocomputational basis of goal-directed decision making is spa-
tial navigation. The predominant approach in such work is repre-

13 One interesting possibility, which was intimated by the Stalnaker et al.
(2010), is that these neurons are involved in representing the transition
function. This is consistent with the finding, from this same study, that
many striatal neurons coded in a tonic fashion for the specific response–
outcome associations active during the current block of trials.
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sented in studies by Schmajuk and colleagues (Schmajuk & Thi-
eme, 1992; Voicu & Schmajuk, 2002) and subsequent simulations
by Hasselmo and colleagues (Hasselmo, 2005; Koene & Has-
selmo, 2005). Both sets of models assume a network of simple
neuron-like processing elements representing environmental states
or locations, which plays the role of the cognitive map. In Schma-
juk’s models, inputs representing incentive value activate re-
warded locations, and activation spreads from these locations to
adjacent ones until the frontier of activation reaches the agent’s
current location. This results in an activation map, from which
actions can be selected through a hill-climbing procedure (for
related work, see Bugmann, Taylor, & Denham, 1995; Gaussier,
Revel, Banquet, & Babeau, 2002; Girard, Filliat, Meyer, Berthoz,
& Guillot, 2005; Martinet, Passot, Fouque, Meyer, & Arleo, 2008;
Muller, Stead, & Pach, 1996; Reid & Staddon, 1998). Hasselmo’s
models (Hasselmo, 2005; Koene & Hasselmo, 2005) follow the
same general approach, but allow activation to spread “forward”
from the agent’s initial state (see also Smith et al., 2004). These
models also explicitly represent actions and action-outcome rela-
tionships, permitting the models, at least in principle, to be applied
beyond the domain of spatial navigation.

The framework we have put forth shares a definite family
resemblance with such spreading-activation models. In particular,
one can relate the propagation of activation within these networks
to the message-passing operations within our neural network im-
plementation. A relative strength of our model, once again, is that
it offers an explicit formal characterization of the computations
involved,14 establishing a link between these computations and
inference-based operations in other information-processing do-
mains, as well as to normative and empirical accounts of percep-
tual decision making. Furthermore, by implementing goal-directed
decision making in probabilistic terms, our models also naturally
extend to settings involving uncertain outcomes and multiple
sources of reward or cost, settings not generally addressed by
spreading activation models.

Evidence-Integration Models of Decision Making

A key feature of our account is its incorporation of an iterative
procedure transparently related to the sequential probability ratio
test, an optimal procedure for sequential hypothesis testing. As we
have emphasized, this aspect of our model links it closely with
current theories of perceptual decision making, in particular those
leveraging the drift-diffusion formalism. Our neural-network im-
plementation reinforces this connection, based as it is on a recent
effort to translate such decision-making theories into neural terms.

The success of drift-diffusion models in perceptual decision
making and other domains has inspired several researchers to
apply the same framework to reward-based decisions. In several
cases, the proposal has been to import the drift-diffusion model en
bloc, simply relabeling the inputs to the process as the utilities of
choice objects (Krajbich, Armel, & Rangel, 2010; Rangel, 2008;
Rustichini, 2008; Shadlen, 2008). The present work complements
and extends such efforts in two ways. First, it furnishes an explicit
statistical interpretation for evidence integration in the context of
reward-based decision making. In the case of perceptual decision
making, such an interpretation is ready to hand: The evidence-
integration process is understood as an implementation of the
sequential probability ratio test, with perceptual inputs playing the

role of the data, representations of stimulus identity playing
the role of hypotheses, and a well-characterized likelihood func-
tion p(data �hypothesis) linking the two (see Figure 4). In contrast,
prior applications of the evidence-integration framework to
reward-based decision making have not, to our knowledge, been
associated with a corresponding statistical interpretation. The pres-
ent work bridges this gap. In our framework, the fictive observa-
tion r̂ � 1 plays the role of the data; each hypothesis corresponds
to the belief that the observation r̂ � 1 is explained by a particular
policy; and the likelihood function is p�r̂ ��,s�.

In addition to providing this formal interpretation for evidence-
integration models of reward-based decision, the present work
generalizes the approach. Indeed, the standard drift-diffusion
model can be seen as a limiting case of the present framework,
which obtains in the setting of two-alternative forced choice with
one-to-one, deterministic action-outcome contingencies (see Ap-
pendix A). The present account widens the scope of the evidence-
integration paradigm to accommodate stochastic action-outcome
contingencies and multistep planning.15

Alongside direct applications of the drift-diffusion model, sev-
eral models have adapted the evidence-integration framework to
reward-based decision in more elaborate and specialized ways.
Such work includes the leaky competitive accumulator (LCA)
model of Usher and colleagues (Bogacz, Usher, Zhang, & Mc-
Clelland, 2007; Tsetsos, Usher, & Chater, 2010; Usher et al.,
2008), the decision-by-sampling (DBS) framework of Stewart and
colleagues (Stewart, 2009; Stewart et al., 2006), and decision field
theory (DFT), as proposed by Busemeyer and colleagues (Buse-
meyer & Diederich, 2002; Busemeyer & Townsend, 1993). Our
model has features in common with all three of these, given their
shared use of sequential sampling, along with integrator-like
mechanisms. One important difference is that the LCA, DBS, and
DFT models all focus heavily on multi-attribute decision making,
where choice options are characterized along multiple feature
dimensions. Extending the present framework to engage the multi-
attribute case is an important area for future development. Elabo-
rating the computational architecture to accommodate multiple
feature dimensions is, in itself, quite straightforward, as demon-
strated by related work in machine learning using factored state
representations (see, e.g., Toussaint & Storkey, 2006). The key
question for future work is whether introducing factored represen-
tations into the present framework gives rise to patterns seen in
human multi-attribute choice (see Busemeyer & Diederich, 2002;
Tsetsos et al., 2010).

14 Hasselmo (2005) discussed parallels between his model and the policy
iteration procedure in reinforcement learning. Some underlying links to
policy iteration have also been considered in planning-as-inference (see
Toussaint & Storkey, 2006). Further exploration of this underlying formal
connection would be of interest.

15 The statistical interpretation offered above for the one-step scenario
transfers to the multistep case: The likelihood in this instance, for the set
of policy variables �t at each stage t of the plan, is p(r̂c � �t; �{��t}). The
optimality property that obtains in the one-step case does not transfer. To
our knowledge, optimal decision making (in the sense involved in the
sequential probability ratio test) has not been studied in the setting of
multistep planning. This strikes us as a fascinating area for future study,
into which the present work may provide a portal.
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Departures From Rationality

A central preoccupation in work with the LCA, DBS, DFT,
and related models has been with putative departures from
rationality, as defined by classical expected-value theory. The
ability of such models to account for biases and heuristic use in
decision making may at first appear to reflect a fundamental
difference in approach from the one we have pursued. It is, after
all, true that our framing of the goal-directed decision making
problem is normative in form, taking the maximization of
expected reward (or subjective utility) as its objective. In this
respect, the present framework aligns with a wide range of other
work that adopts a normative approach to decision making (e.g.,
Anderson, 1990; Bogacz et al., 2006; Geisler, 2003; Niv et al.,
2006). A particularly strong resonance is with work taking a
normative perspective on action understanding (Bekkering et
al., 2000; Csibra & Gyorgy, 2007; Gergely & Csibra, 2003),
some of which has also adopted an explicitly probabilistic
approach (Baker, Saxe, & Tenenbaum, 2009; Rao et al., 2007;
Verma & Rao, 2006a).

Having said this, it is also important to note that our account
presumes that decision making is rational only relative to the
decision maker’s internal model of the problem (see Simon, 1987).
Throughout the present work we have assumed, for simplicity, that
this model accurately captures the objective probabilities associ-
ated with action-outcome contingencies, and represents reward
values in a simple linear fashion (see Equation 8). However, the
framework naturally accommodates representations of contin-
gency and reward that depart from this default case. In particular,
the distribution p�r̂ �s�� could be assumed to have the asymmetric
sigmoid form of the utility function posited by prospect theory
(Kahneman & Tversky, 1979), and the distribution p�s� �s,a� could
be assumed to distort objective outcome probabilities as occurs in
prospect theory’s weighting function. Under these assumptions,
the present model would inherit the ability of prospect theory to
account for such phenomena as loss aversion and interactions
between outcome probability and valence in determining risk
attitude.

This approach of simply “plugging in” functions from pros-
pect theory has precedents in the decision modeling literature
(see, e.g., Tsetsos et al., 2010; Usher et al., 2008) and could
arguably be justified in our model—independently of the be-
havioral phenomena to be explained— based on neurophysio-
logical data identifying neural response profiles resembling
those functions (Fox & Poldrack, 2008; Hsu, Krajbich, Zhao, &
Camerer, 2009). However, it would perhaps be more satisfying
if the relevant functional forms could be understood as emerg-
ing naturally through learning rather than simply stipulated. The
psychology, neuroscience, and economics literatures suggest
some interesting possibilities in this regard, which may have
further relevance to departures from strict rationality, as we
discuss next.

Learning

The work we have presented, like most work on goal-directed
decision making, has focused on the question of how decisions are
made in the presence of an established internal model of the task
domain. A truly comprehensive theory would have to include an

account of how that internal model arises (see Gläscher et al.,
2010; Green et al., 2010). The theory we have presented is, we
believe, quite amenable to such an extension. Indeed, formal
methods for learning in graphical models are well developed
(Jordan, 1998), and analogies have already been made between the
relevant algorithms and learning processes in humans (Chater,
Tenenbaum, & Yuille, 2006; Gopnik & Schulz, 2007).

From a purely formal perspective, the most obvious approach to
learning in our graphical model would be to base the CPD at each
node on event counts, as these provide maximum-likelihood esti-
mates of the true distributions (see Koller & Friedman, 2009).
Thus, for example, if an action a in situation s can lead to two
outcomes s�1 and s�2, the transition probabilities could be estimated
as the count ratios Ns,a,s�1/Ns,a and Ns,a,s�2/Ns,a. Attias (2003) has
demonstrated the feasibility of combining this form of learning
with concurrent inference-based decision making.16

However, an appealing alternative approach to learning is sug-
gested by recent work in psychology and economics. As men-
tioned earlier, in the DBS model of Stewart and colleagues (Stew-
art, 2009; Stewart et al., 2006), continuous quantities such as
utilities and outcome probabilities arise out of a tournament-like
process. To compute the utility of a particular item, for example,
one compares the item against a series of reference items, sampled
from memory based on their frequency of occurrence in past
experience. The proportion of comparisons in which the index item
is judged preferable to the reference item becomes the scalar
representation of the index item’s utility (for a related proposal in
economics, see Kornienko, 2010; Van Praag, 1968).

It seems inviting to consider how this tournament-based ap-
proach could be integrated into our framework, for several reasons.
First, the approach provides a natural interpretation for our binary
representation of reward: p�r̂ �s�� could be interpreted as the pro-
portion of “victories” enjoyed by s� in the relevant tournament.
Note that here, because p�r̂ �s�� depends on the set of states against
which s� is compared, the value p�r �s�� acquires the property of
range adaptation (see Kornienko, 2010; Stewart et al., 2006). This
is appealing from a neuroscientific perspective, because recent
studies have demonstrated range adaptation in neural representa-
tions of reward (Kobayashi & Carvalho, 2010; Padoa-Schioppa,
2009). Range adaptation is also appealing from the perspective of
behavioral economics; as Stewart and colleagues (Stewart, 2009;
Stewart et al., 2006) have detailed, adaptive coding provides an
explanation for the emergence of both the utility and weighting
functions from prospect theory. Furthermore, because adaptive
coding makes the representation of utility (and other quantities)

16 One interesting issue that arises when learning and action selection are
interleaved is that action choices can affect what is learned. The learner can
thus engage in active learning, in which actions are taken to maximize
information gain (Castro et al., 2009; Kruschke, 2008; Steyvers, Tenen-
baum, Wagenmakers, & Blum, 2003). Another setting where action can be
motivated by the value of information is partial observability, where the
state of the environment is not entirely available to immediate perception
(Behrens, Woolrich, Walton, & Rushworth, 2007; Howard, 1966). The
models we presented assumed full state observability. However, Toussaint,
Charlin, and Poupart (2008) and Furmston and Barber (2009) have de-
scribed how similar principles can be applied to partially observable
problems. Evaluating the fit between the resulting account and human
behavior in analogous task contexts presents an interesting challenge.
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context dependent, it gives rise to a number of phenomena that
present a challenge for standard expected utility (e.g., similarity,
compromise, and attraction effects; see Busemeyer & Diederich,
2002; Kornienko, 2010; Stewart, 2009; Tsetsos et al., 2010).
Evaluating the potential role for these considerations within the
present theory is an important target for future research.

One further germane aspect of learning arises from cognitive
research on planning and problem solving. Such work highlights
the importance not only of learning about state transitions but also
of learning to represent states themselves (Chase & Simon, 1973).
The principles underlying such representational or state-space
learning (see Gershman & Niv, 2010) are still poorly understood,
and incorporating this aspect of learning into models of goal-
directed behavior stands as an important long-range challenge.

Capacity Limitations, Heuristics, and Problem
Representation

Cognitive research on planning highlights another characteristic
of human goal-directed decision making that we have not consid-
ered thus far: its rather strict capacity limitations. A central take-
home message from prior research is that human planners are
incapable of reasoning precisely about complex problems, due
largely to limitations on working memory capacity, and thus resort
to a number of simpler problem-solving heuristics (Newell &
Simon, 1972; Novick & Bassok, 2005; Unterrainer & Owen,
2006). One way of understanding such capacity limitations within
the present framework would be in terms of a limit on the number
of future steps of action that can be concurrently represented. This
limit could be a property of the underlying processing architecture
(i.e., an inherent limit on the number of segments within the
structure posited in Figure 2, bottom). A structural limit of this
flavor has been independently proposed in work on multitasking
(Koechlin & Hyafil, 2007), and inherent limits on depth of search
have also been heavily discussed in work on decision making in
economic games (see Camerer, 2003). One reason such a depth
limit might make functional sense in the problem settings we have
considered relates to the impact of noise. In any model of planning
where random variability plays a role, adding a stage to the
planning depth will inject more noise into the planning process.
Given that decision making at each stage of a sequential plan is
dependent on other stages, it seems likely that the impact of noise
will grow in a nonlinear fashion as planning depth increases,
making deep search intractable (see Daw et al., 2005).

Another perspective on capacity limitations that may have rel-
evance within the present account comes from work suggesting
that human cognition does not leverage probability distributions in
their entirety, but rather only samples from such distributions.
Under this approach, capacity limitations in information process-
ing are understood to arise from limitations on the number of
samples that can be made during a single decision-making event.
This general idea, which leverages machine learning algorithms
for approximate inference, has been applied to magnitude estima-
tion (Vul & Pashler, 2008) and sentence processing (Levy, Reali,
& Griffiths, 2009).17 The notion of sampling has already entered
into the present work, both in connection with random utility and
in our neural network implementation. Evaluating the more gen-
eral relevance of the sampling hypothesis to goal-directed decision
making is an inviting area for further theory development.

As noted earlier, the cognitive planning literature not only
documents capacity limitations but goes on to characterize the
strategies used by human planners to mitigate or cope with those
limitations (Newell & Simon, 1972). Some of the relevant ideas
are readily transposed into the present theory. For example, one
method of coping with limited or costly processing capacity is to
simplify problem representations. This has been proposed, in par-
ticular, to explain intransitivities in multi-attribute choice (Kalen-
scher, Tobler, Huijbers, Daselaar, & Pennartz, 2010; Shah &
Oppenheimer, 2008; Tversky, 1969, 1972). Such a strategy would
enter into the present theory at the level of the underlying gener-
ative model, as this model is in essence a representation of the
decision problem. Strategic selection of this model might thus be
considered part of an adaptive procedure for goal-directed decision
making. Accounting for this model-specification stage presents an
important challenge for development of the present theory, as for
any theory of goal-directed decision making or planning.

Another planning strategy that helps in overcoming capacity
limitations is referred to as hill climbing. Here, a goal is pursued
by selecting actions that reduce the discrepancy between the pres-
ent state and the goal state (Newell & Simon, 1972). Within the
present model, this strategy would correspond to imposing a spe-
cial or auxiliary reward function, which values states in proportion
to their similarity to a goal state. Of course, to make good on this
proposal, it would be necessary to supplement the present theory
with an account of how reward functions might be strategically
chosen. This is an issue that comes up in the field of hierarchical
reinforcement learning, a field whose relevance to psychology and
neuroscience we have recently considered elsewhere (Botvinick,
Niv, & Barto, 2009; Ribas-Fernandes et al., 2011).

Indeed, one further strategy for mitigating the impact of limited
capacity on goal-directed decision making, both in machine learn-
ing and in human cognition, is through hierarchical representation.
Hierarchical action representations simplify the planning problem,
allowing plans to reach deeper into the future through efficient
coding of action subsequences (see Botvinick, Niv, & Barto,
2009). As discussed in Simulation 2.3, Ostlund et al. (2009)
reported devaluation behavior that they interpreted as direct evi-
dence for “chunked” action representations in goal-directed behav-
ior. Although, in our earlier discussion, we suggested the relevant
data might be explained without chunking, it seems certain that, in
the general case, hierarchical action representations do play a role
in goal-directed decision making. In recent work, Toussaint et al.
(2008) have provided an initial demonstration of how hierarchical
representation can be integrated with inference-based planning. It
would be interesting to consider how the relevant computational
issues relate to recent findings suggesting that prefrontal cortex
houses a topographically organized hierarchy of action represen-
tations (Badre, 2008).

17 One interesting aspect of sampling-based techniques for approximate
inference in graphical models is that they are inherently serial in operation,
in some cases involving “particles” that traverse the graphical structure in
a wavelike fashion (see Koller & Friedman, 2009). Exploring the applica-
tion of such procedures in the present modeling context may thus allow
contact with evidence that planning in challenging circumstances can take
a serial form, often involving serial subgoaling.
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Human capacity limitations in planning, as well as the strategies
and heuristics used to cope with them, have of course been a
central concern in production-system models including ACT-R
and SOAR (Anderson et al., 2004; Laird, Newell, & Rosenbloom,
1987). Such models stand in a complex relationship to models that
approach goal-directed decision making from a reinforcement
learning perspective, as recently discussed by Dayan (2009). One
difference is in the way the underlying problem is typically
framed. Production system models, following the tradition in
problem-solving research, have tended to focus on tasks defined by
an explicit a priori goal. In work inspired by reinforcement learn-
ing, including the work we have presented here, specific goal
states do not figure at all in the formulation of the computational
problem, which focuses instead on the generic goal of reward
maximization. Recent versions of SOAR and ACT-R have begun
to incorporate representations of reward into their accounts of
action selection (see Anderson et al., 2004; Nason & Laird, 2005).
However, in both cases the role of such representations appears to
align more with the action values found in model-free reinforce-
ment learning than with the freestanding reward function that is
central to model-based or goal-directed action. Of course, this is
not to say that production system models could not implement
goal-directed choice procedures. Indeed, many ACT-R models
contain action-outcome information in declarative memory, and
recent work has also used declarative memory for rewards to guide
action selection (see Stewart, West, & Lebiere, 2009). The chal-
lenge for production system models lies not in any restriction on
their representational capacities but instead in their very flexibility.
Such models could, in principle, implement any of a range of
procedures for goal-directed decision making; the architectures, in
and of themselves, do not furnish a specific theory. Nonetheless,
because production system models and, in particular, ACT-R, take
detailed account of basic cognitive faculties (perhaps most impor-
tantly the dynamics of memory), we believe they may offer a
useful context in which to compare theories of goal-directed de-
cision making, including the one we have advanced here.

Relations With Habitual Action Selection

In the present work, we have modeled goal-directed decision
making in isolation, but as recent work has emphasized, human
and animal behavior also rests upon habitual action selection,
supported by different computational and neural mechanisms. A
final important area for further development of the current account
involves the question of how goal-directed decision making mech-
anisms interface with the habit system (Botvinick & Plaut, 2006;
Cooper & Shallice, 2006; Coutureau & Killcross, 2003; Daw et al.,
2005; Killcross & Coutureau, 2003). One way to model the role of
habits in the present framework might be as additional inputs to
policy variables, biasing policy selection toward habitual config-
urations. Another potential point of contact between goal-directed
and habit mechanisms might also be at the planning horizon:
Rather than encoding immediate reward at the final step of a
multistep plan, it might make more sense to represent a cached
“reward-to-go” value, a central element in model-free temporal-
difference learning algorithms (see Sutton & Barto, 1998). Cap-
ping off explicit prospective “rollouts” with value representations
of this kind has become standard in recent machine learning
models of forward planning in partially observable domains (see

Ross & Pineau, 2008). Whether an application of these ideas
within the present framework would align with available behav-
ioral and neural evidence concerning the goal/habit interface will
be an interesting question to pursue.

Conclusion

Despite a veritable explosion in computational work addressing
habitual action selection, inspired largely by theories linking do-
pamine with temporal-difference learning, relatively little work
has been done to specify the computational principles involved in
goal-directed decision making. The present work contributes to-
ward rectifying this imbalance. In addition to adopting the view
that goal-directed decision making can be viewed in the terms
provided by model-based reinforcement learning, our proposal
seeks to account for such decision making in terms that figure
equally in other domains of neural information processing, includ-
ing other types of decision making, motor control, perception, and
beyond. By portraying goal-directed decision making as probabi-
listic inference, the work we have presented fits into a broad
movement within both psychology and neuroscience, which sees
inference as providing a lingua franca, applicable across content
domains as well as across computational, algorithmic, and imple-
mentational levels of description (Chater & Oaksford, 2008; Doya,
Ishii, Pouget, & Rao, 2006; Jones & Love, 2011).

Given the early stage of computational research on goal-directed
decision making, the most important contribution of the present
work is simply to chart out one sector in the space of possible
computational approaches. By performing this role, we hope, the
work will, at the very least, provide a useful stepping-stone toward
further computational and empirical research in this important
domain.
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Appendix A

Formal Analysis

The main text introduced an iterative procedure for solving
finite horizon Markov decision problems within graphical models
of the kind displayed in Figure 2. Here we provide formal proofs
of monotonicity and convergence (based on Botvinick & An,
2009), which guarantee that the algorithm will converge to an
optimal policy. To recap, the procedure is as follows: (a) Initialize
the policy nodes with any set of nondeterministic priors. (b)
Treating the initial state and R̂c as observed variables, with r̂c � 1,
use the junction tree algorithm or a comparable algorithm to infer
the posterior distributions over all policy nodes. (c) Set the prior
distributions over the policy nodes to the values (posteriors) ob-
tained in step b. (d) Go to step b. The proofs follow:

Monotonicity

We show first that, at each policy node, the probability associ-
ated with the optimal policy will rise on every iteration. Define ��

as follows:

p�r̂c ���,��� � p�r̂c ���,��� � �� � �� (A1)

where �� is the current set of probability distributions at all policy
nodes at all subsequent steps within the plan (i.e., to the right
within the model architecture. Note that we assume here, for
simplicity, that there is a unique optimal policy at each step.) The
objective is to establish that

p��n
�� � p��n�1

� � (A2)

where n indexes processing iterations. The evidence integration
procedure stipulates that

p��n� � p��n�1 � r̂c� (A3)

where � represents any value (i.e., policy) of the decision node
being considered. Substituting this into A2 gives

p��n�1
� � r̂c� � p��n�1

� � (A4)

From this point on the focus is on a single iteration, which permits
us to omit the relevant subscripts. Applying Bayes’ law to A4
yields

p�r̂c ����p����

�
�

p�r̂c ���p���
� p���� (A5)

Canceling and bringing the denominator up, this becomes

p�r̂c ���� � �
�

p�r̂c ���p��� (A6)

Rewriting the left-hand side, we obtain

�
�

p�r̂c ����p��� � �
�

p�r̂c ���p��� (A7)

Subtracting and further rearranging,

�
�

�p�r̂c ���� � p�r̂c ����p��� � 0 (A8)

�p�r̂c ���� � p�r̂c �����p���� � �
�����

�p�r̂c ����

� p�r̂c �����p���� � 0 (A9)

�
�����

�p�r̂c ���� � p�r̂c �����p���� � 0 (A10)

Note that this last inequality (A10) follows from the definition of
�*.
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Remark. Of course, the identity of �* depends on ��. In
particular, the policy �* will only be part of a globally optimal
plan if the set of choices �� is optimal. Fortunately, this require-
ment is guaranteed to be satisfied, as long as no upper bound is
placed on the number of processing cycles. Recalling that we are
considering only finite-horizon problems, note that for policies
leading to states with no successors, �� is empty. Thus, �* at the
relevant policy nodes is fixed and is guaranteed to be part of the
optimal policy. The proof above shows that �* will continuously
rise. Once it reaches a maximum, �* at immediately preceding
decisions will perforce fit with the globally optimal policy. The
process works backward, in the fashion of backward induction.

Convergence

Continuing with the same notation, we show now that

lim
n3�

pn��
� � r̂c� � 1 (A11)

Note that, if we apply Bayes’ law recursively,

pn��
� � r̂c� �

p�r̂c ����pn��
��

pn�r̂c�
�

p�r̂c ����2pn�1��
*�

pn�r̂c�pn�1�r̂c�

�
p�r̂c ����3pn�2��

��

pn�r̂c�pn�1�r̂c�pn�2�r̂c�
. . . (A12)

Thus,

pn��
� � r̂c� �

p�r̂c ����np1��
��

�
m�1

n

pm�r̂c�

. (A13)

Therefore, what we wish to prove is

p�r̂c �����p1��
��

�
n�1

�

pn�r̂c�

� 1 (A14)

or, rearranging,

�
n�1

�
pn�r̂c�

pn�r̂c ����
� p1��

��. (A15)

Note that, given the stipulated relationship between p(�) on each
processing iteration and p�� � r̂c� on the previous iteration,

pn�r̂c� � �
�

p�r̂c ���pn��� � �
�

p�r̂c ���pn�1�� � r̂c�

�

�
�

p�r̂c ���2pn�1���

pn�1�r̂c�

�

�
�

p�r̂c ���3Pn�1���

Pn�1�r̂c�pn�2�r̂c�
�

�
�

p�r̂c ���4Pn�1���

Pn�1�r̂c�Pn�2�r̂c�Pn�3�r̂c�
. . .

(A16)

With this in mind, we can rewrite the left-hand side product in A15
as follows:

p1�r̂c�

p�r̂c ����
·

�
�

p�r̂c ���2p1���

p�r̂c ����p1�r̂c�
·

�
�

p�r̂c ���3p1���

p�r̂c ����p1�r̂c�p2�r̂c�

·

�
�

p�r̂c ���4p1���

p�r̂c ����p1�r̂c�p2�r̂c�p3�r̂c�
. . . (A17)

Note that, given A16, the numerator in each factor of A17 cancels
with the denominator in the subsequent factor, leaving only
p�r̂c ���� in that denominator. The expression can thus be rewritten
as

1

p�r̂c ����
·

1

p�r̂c ����
·

1

p�r̂c ����
·

�
�

p�r̂c ���4p1���

p�r̂c ����
. . .

� �
�

p�r̂c ����

p�r̂c ����
p1��� (A18)

The objective is then to show that the above equals p1(�*). It
proceeds directly from the definition of �* that, for all � other than
�*,

p�r̂c ���

p�r̂c ����
� 1 (A19)

Thus, all but one of the terms in the sum above approach zero, and
the remaining term equals p1(�*). Thus,

lim
n3�

�
�

p�r̂c ���n

p�r̂c ����n p1��� � p1��
��� (A20)

Convergence Under Random Utility

We show here that the algorithm will also converge to the
optimal policy under random utility. We focus on the single-step
model, but the proof can be extended to the multistep case. As in
the main text, we assume that the distribution of the variable R
depends jointly on S� and on a vector-valued random variable Z,
whose elements are independent and identically distributed. Z is
assumed to be sampled upon each iteration of the evidence-
integration procedure described above and in the main text. Define

�� : � argmax Ez�p�r̂ ��, Z� (A21)
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where E indicates expectation, and conditioning on the initial state
s is implicit. Adopting this definition, the last expression in A18
becomes (replacing r̂c with r̂)

�
�

��
m�1

�
p�r̂ ��,zm�p1���

p�r̂ ���,zm� � � p1��
��. (A22)

Given the present definition of �*, A19 translates to

Ez�pn�r̂ �� � ��,zn�

Pn�r̂ ���,zn�
� � 1 (A23)

The expected value for the product in A22 is equal to the product
of the expected values for the individual factors (iterations) in-
dexed by m. Given A23, the latter product goes to zero as m goes
to infinity for every � � �*. Thus, the expected value of the
left-hand side in A22 must converge to p1(�*). It can be easily
shown that the variance of that same expression goes to zero as m
goes to infinity, guaranteeing that p(�*) will converge to one.

Relation to Sequential-Sampling Models

The main text asserted a link between the present model and
evidence-integration or sequential-sampling models of perceptual de-
cision making, including random walk and drift-diffusion models,
which in the case of binary choice are known to implement the
sequential probability ratio test (for reviews, see Bogacz et al., 2006;
Gold & Shadlen, 2007). We show here that in the same setting of
simple binary choice, the model we have proposed displays precisely
the same dynamics. The analog to the decision variable in the standard
random walk model is the log policy posterior ratio

log�Pn��A � r̂�
Pn��B � r̂��, (A21)

where �A and �B are the two response options (policy values); as
before, n is the iteration; and u is shorthand for u � 1. It is easily
shown that in the absence of noise, this value grows linearly with
a step size equal to the log likelihood ratio given the evidence
r̂ � 1. The increment in the decision variable on each time step is

log� pn��A � r̂
Pn��B � r̂� � log�Pn�1��A � r̂�

pn�1��B � r̂��. (A22)

Absorbing the second term into the first, and applying Bayes’ law
along with the stipulation that Pn��� � Pn�1�� � r̂�, this becomes

log�p�r̂ ��A�Pn�1��A � r̂�
p�r̂ ��B�Pn�1��B � r̂� ·

Pn�1��B � r̂�
Pn�1��A � r̂��, (A23)

which reduces to

log �P�r̂ ��A�

p�r̂ ��B�
�. (A24)

This last expression is a constant, confirming that the decision vari-
able grows linearly with a step size equal to the log likelihood ratio.

In our model, drift rate variability derives purely from internal
sources of noise. In our algorithmic account, the source of noise is
understood as deriving from intrinsic variability in the reward
function, modeled using the noise variable Z. If the distribution of
Z is chosen as in our simulations (see Simulation Procedures
below), then drift-rate variability assumes a uniform Gaussian
form, as in the drift diffusion model.

Appendix B

Simulation Procedures

Graphical Model

All simulations were run using the Matlab Bayes Net Toolbox
(Murphy, 2001), combined with custom Matlab (Math-
works, Natick, MA) code (available for download from
princeton.edu/matthewb).

Simulations addressing single-step decisions employed the ar-
chitecture from Figure 2C. Multistep tasks were modeled using the
architecture from Figure 2D, extended to include the minimum
number of actions required for the task simulated. States, actions,
and policies were represented by discrete, multinomial variables.
Policies were modeled using a set of nodes connected to each
action variable, with each node representing the policy for a single
state. Each policy-node value corresponded to a unique, determin-
istic policy for the relevant state. As described earlier, reward was

modeled using a binary variable connected to each state variable,
as described in the main text.

For each task modeled, a scalar reward value R(s�) was assigned
to each state s�. The resulting set of reward values was then scaled
to fall between zero and one and was used to define the CPD for
the reward variable, using the linear transformation specified in
Equation 8. For simplicity, temporal discounting was not applied,
but the framework could accommodate it through appropriate
changes to the reward-variable CPD.

Each simulation involved imposing a set of values on one
variable or set of variables and computing the posterior distri-
bution over another variable or variables. In all cases, posterior
probabilities were computed using the junction tree algorithm
(see Jensen, 2001). Iterative inference was conducted as de-
scribed in the main text and Appendix A. In all simulations,
distributions for all policy variables were initialized as uniform.

(Appendices continue)
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As shown in Figure 4 (bottom right), Simulation 1.2 included an
additional multivariate normal variable Z, with the same dimen-
sionality as S� and covariance 0.3I. On each iteration of inference,
a value of this variable was sampled and treated as observed. The
probability P�r̂ �s�,z� was then determined as P�logit��� � z�,
where P is the standard logistic function, z is the value of the
element of Z with the same index as s�, and � is a parameter
p�r̂ �s�,0�, denoted p�r̂ �s�� in the main text.

Neural Network

In translating our generative model into neural network form,
we followed the approach outlined by Rao (2005). As noted in the
main text, that work proposes how belief propagation might be
implemented in biological neural networks, with message compo-
nents encoded in the proportional firing rates of individual neu-
rons. Following this idea, our neural network models simply
implement standard belief propagation, with a unit for each mes-
sage component. For a detailed introduction to the operations
underlying belief propagation, see Pearl (1988). In what follows,
we provide simulation details that cannot be gleaned from this
source or from Rao (2005).

The network depicted in Figure 8 was tailored to the two-
alternative forced choice task scenario. The messages transmitted
within the model were computed as indicated in Table B1. The
message m��3 �� was initialized as �0.5,0.5�, and updated as

m��3 ��¢�m��3 A� J m�A3 �� (B1)

where J denotes component-wise multiplication. The messages
used in the multistep model can similarly be derived from the
general purpose equations prescribed by belief propagation. See
Pearl (1988) for details.

Rao (2005) presented an account of how stochasticity in neural
firing might enter into a biological implementation of belief prop-
agation. We took a simpler approach, which gives rise to similar
network behavior (as confirmed in head-to-head comparison sim-
ulations). In our modified approach, rather than treating the mar-

ginal probability (p) carried by each message component as an
instantaneous firing rate and transmitting its exact value to down-
stream units, we drew a sample from Binomial(N, p), normalized
its value by N (a free parameter, set to 200 in our simulations
except where otherwise noted), and transmitted the result. The
resulting quantities can be interpreted in two ways. First, they can
be interpreted as the proportion of N time bins within a fixed
interval during which an index neuron fired. Alternatively, they
can be interpreted as representing the proportion of N neurons,
with identical receptive fields, firing within a fixed time window.

Further details for several specific simulations follow:
Replication of Simulation 1.2 (Figure 8). Here, a threshold

of 0.75 was used along with a value of 75 for the N parameter, and
the data presented represent response proportions from a set of
1,000 trials.

Simulation 3.2. The approach taken in this simulation was
based closely on the procedure followed in Lau and Glimcher
(2008). First, 1,000 simulation runs were performed for every
pairing �p�r̂ �outcome action 1�,p�r̂ �outcome action 2�� in which
each value fell between 0.5 and 0.6, inclusive, and constituted a
multiple of 0.01 (threshold parameter � 0.8, N � 200). From each
trial, the action chosen and the activation of one S�3A unit at the
time of threshold traversal were recorded. The action for which the
S�3A unit coded was treated as the “preferred” action in the
remaining analysis steps. Following Lau and Glimcher (2008), a
logistic regression was conducted to relate p�r̂ �action 1� and
p�r̂ �action 2� to choice probability [log p(action 1)/p(action 2)].
This yielded a regression coefficient of 0.82, that is,

log �p�action 1�

p�action 2�� � 0.82p�r̂ �action 1� � 0.82p�r̂ �action 2�.

(B2)

Based on this result, the scale used to represent action value �AV�
on the x-axis in Figure 10C–D was

AV � 0.82�p�r̂ �action� � 0.5�, (B3)

with the quantity 0.5 intended to represent a reference or status quo
reward value. Again following Lau and Glimcher (2008), the
values plotted on the y-axis in Figure 10 represent the residuals ε
from two linear regressions:

εAVpreferred � S�3 A unit activity � �1�action selected�

� �2�AVnon�preferred� and

εAVnon�preferred � S�3 A unit activity � �1�action selected�

� �2�AVpreferred�. (B4)

Simulation 3.4. The data presented in Figure 12B are based
on 50 simulation trials for each reward–value pairing, using a
response threshold of 0.8 and N � 200.
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Table B1
Specification of Belief-Propagation Messages Employed in
Simulation 3

Message Specification

m(S3�,S�) p(S)a��1,0,0�
m(�3�) pn(�)�pn�1(��r̂,s0)
m(R̂3S�) p(r̂�S�)
m(S�3A) p(S��s0,A) m(R̂3S�)
m(�3�) p(A��,s0) m(S�3A)
m(�3S�) � p(A�s0,�)T m(�3�)c

m(S�3R̂) � p(S��s0,A)T m(A3S�)
m(R̂3R̂c)

d � p(R̂�S�)T m(S�3R̂)

a Here and in subsequent entries, s0 indicates the observed initial state, and
the notation p(X) denotes a probability vector with one component for each
discrete value of X. b Here and in subsequent entries, p(Y � X) and
p(Y �X,z) indicate a matrix with a row for each value of X and a column for
each value of Y. c Here and elsewhere, � denotes a normalization fac-
tor. d As discussed in the main text (Simulation 3.1), this message derives
from the multistep model.
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