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Prediction error — a mismatch between expected and actual
outcome — is critical to associative accounts of inferential learning.
However, it has proven difficult to explore the effects of prediction
error using functional magnetic resonance imaging (fMRI) while
excluding the confounding effects of stimulus novelty and incorrect
responses. In this event-related fMRI study we used a three-stage
experiment generating preventative- and super-learning conditions.
In both cases, it was possible to generate prediction error within a
causal associative learning experiment while subtracting the effects
of novelty and error. We show that right lateral prefrontal cortex
(PFC) activation is sensitive to the magnitude of prediction error.
Furthermore, super-learning activation in this region of PFC corre-
lates, across subjects, with the amount learned. We thus provide
direct evidence for a brain correlate of the surprise-dependent mech-
anisms proposed by associative accounts of causal learning. We
show that activity in right lateral PFC is sensitive to the magnitude,
though not the direction, of the prediction error. Furthermore, its
activity is not directly explicable in terms of novelty or response
errors and appears directly related to the learning that arises out of
prediction error.
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Introduction

Humans are quick to learn causal associations between co-
occurring environmental stimuli. Traditional theories of human
causal inference are based on statistical comparisons of co-
occurrence rates across learning experiences (Cheng, 1997).
Alternative accounts draw upon associative learning theories,
postulating that causal inference is based upon the formation
of associations between representations of events and their
outcomes (Dickinson, 2001). In such theories, it is not merely
co-occurrence, but also unpredictability, that governs the
formation of these associations (Rescorla and Wagner, 1972;
Schultz and Dickinson, 2000). As an example of this distinc-
tion, consider a person who suffers an allergic reaction every
time they eat chicken. Even if several meals consisting of
chicken and potatoes are eaten, and result in an allergic reac-
tion, a causal link between the potatoes and the allergy is
unlikely to form because the allergy is already fully predicted
by the presence of chicken in the meal.

In previous functional neuroimaging studies of associative
learning, unpredictability and novelty (of experimental trial
structure) have been correlated (Ploghaus et al., 2000; Fletcher
et al., 2001; McClure et al., 2003; O’Doherty et al., 2003). An
important challenge, if we are to provide neurobiological
support for associative theories, lies in their experimental

dissociation. We have achieved this using preventative and
super-learning tasks. In this setting we have been able to char-
acterize the relationship between brain activity and the magni-
tude and direction of prediction error and to relate this to
learning-dependent behavioural change.

Previously, we showed that activity in human dorsolateral
prefrontal cortex (DLPFC) correlates with the surprise-
dependent learning of a cue–outcome relationship (Fletcher et

al., 2001). Right DLPFC activation was greater when outcomes
were unexpectedly present or absent. However, the unpre-
dicted events were necessarily configured to be different from
control trials in terms of event configuration and relative
novelty. To delineate more accurately the functional neuro-
anatomy of prediction-error based learning it is necessary to
match the activation and control events precisely for their
configuration and familiarity. The use of compound cues in a
causal inference task enables manipulation of the magnitude of
prediction error across conditions whilst holding these factors
constant.

It has been shown that, if the repeated co-occurrence of two
stimuli with an outcome strongly defies the prediction of one
or other of the stimuli, this association will strengthen to an
unusual extent (Aitken et al., 2000). This increase in prediction
error is the basis for super-learning (Aitken et al., 2000) and is
analogous to the ‘super-conditioning’ of responding first
described by Rescorla (1971). In order to generate super-
learning, two prior learning stages must occur (Fig. 1). In the
first, a subject learns that a given stimulus is positively associ-
ated with an outcome (A+). In the next stage — preventative
learning — the familiar stimulus and a novel stimulus are seen
together, with no outcome (AB–). This generates a negative
prediction error (an unfulfilled expectation of an outcome).
Stimulus B is attributed negative causal potential, i.e. preventa-
tive learning, because it prevents the allergy expected from
stimulus A. In the third stage, stimulus B is presented together
with a new stimulus and an outcome occurs (BC+). At this
stage, the presence of stimulus B generates an expectancy that
no outcome will occur and, therefore, the occurrence of the
outcome generates an extra large positive prediction error.
The strong and rapid learning that is generated by this error is
known as super-learning. It occurs because stimulus C over-
comes the preventative effect of the stimulus B, and is thus
attributed greater causal significance than an appropriate
control cue (Aitken et al., 2000; Dickinson, 2001). Thus, super-
learning may be conceived of as a special case of error
dependent learning in which greater learning is engendered by
a greater prediction error.
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We report an event-related fMRI study of super-learning
using the three experimental stages required to produce this
phenomenon (Fig. 1). As Figure 1 shows, this experimental
procedure allows us to generate control trials that are matched
for cue–outcome configuration and for stimulus novelty.

Materials and Methods

Subjects
Thirteen healthy, right-handed volunteers (eight female, five male)
with a mean age of 27 ± 3 years and a mean predicted verbal IQ of 121
± 3 (as indexed by the National Adult Reading Test from Nelson, 1982)
were recruited from within the local community by advertisement.
Exclusion criteria included a history of psychiatric or physical illness
(particularly cardiovascular or neurological disorders), head injury,
any history of drug or alcohol dependence, left-handedness or the
possibility of magnetic metal being present in their body. All experi-
ments were performed in compliance with the relevant laws and insti-
tutional guidelines. The study was approved by the Local Research
Ethics Committee and written informed consent was given by all
subjects prior to imaging. One female subject failed to perform the
task and her data were therefore excluded from further analysis.

Learning Task Stimuli and Trial Structure
This task, and the instructions that preceded it, were based on an
existing associative learning paradigm (Aitken et al., 2000, 2001). In
brief, before entering the scanner subjects were told to imagine them-
selves as food allergists whose goal it was to ascertain which of an
array of presented foods would cause allergic reactions in an imagi-
nary patient. They were presented with a series of trials in which an
initial stimulus (a picture of a single food or a pair of foods — see Fig.
1 for example) informed them which food their imaginary patient had

eaten. They were then required to predict whether an allergic reac-
tion occurred using a two-choice button push, following which they
were shown whether an allergic reaction had indeed occurred. If it
had, a red jagged line appeared encircling the word ‘Allergic
Response’, if it had not, a smooth green box appeared around the
words ‘No Response’. Stimuli for learning were presented on a screen
using DMDX (K.I. Forster and J.C. Forster, University of Arizona),
viewed via a mirror comfortably situated within the subject’s field of
view. Each trial lasted a total of 4 s, with the food presented for 3 s
(during which time subjects made their predictive response) and the
outcome (‘Allergic Response’ or ‘No Response’) for 1 s. Trials ran
successively with occasional (1 per 20 trials) baseline events in which
subjects viewed a fixation cross for periods of between 10 and 20 s.

The trial structure (stimulus–prediction–outcome) was comparable
to that used in our previous associative learning study (Fletcher et al.,
2001). However, we used foods rather than fictitious drugs and
syndromes to facilitate subjects’ learning since multiple stimuli were
required within a learning-session.

Learning Stages
The study employed a within-subjects design in which each subject
was trained concurrently on a number of different contingencies
between the food and allergic reaction. Learning occurred over three
stages (Fig. 1).

Stage 1

This was the first of the two set-up phases. Subjects were presented
with a total of six single foods across 60 trials (10 presentations of
each food and its outcome in a randomized order). Two of the foods
were invariably paired with an allergic response; two were invariably
paired with no response. In addition, two foods were presented with
a variable outcome (allergic response in 50% of cases, no response in
the other 50%) to encourage subjects in the belief that causal contin-

Figure 1. Illustration of the design of the experiment, showing the procedure used to generate super-learning and its appropriate controls. The pilot behavioural ratings obtained
immediately on completion of the study (outside of the scanner) are illustrated in the centre panel.
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gencies might vary for a given stimulus. Although this was primarily a
set-up phase, functional imaging data were acquired and used to
define a ‘mask’ of the learning system that was used to constrain the
spatial analyses of subsequent effects and thus reduce the number of
voxel-wise comparisons.

The three types of foods (allergic, non-allergic and variable) were
used to set the scene for subsequent preventative and super-learning
(stages 2 and 3, respectively). In order to ensure continuity across the
stages (i.e. to prevent subjects from seeing successive stages as three
separate studies and ignoring what had previously been learned),
these foods were presented (in pairs) as ‘fillers’ during subsequent
stages with their predictive relationships preserved. Thus, if subjects
learned that ‘bananas’ and ‘cake’ both separately caused allergies
during stage 1, then they would also see compound stimuli (‘banana’
plus ‘cake’ predicting an allergic response) in stages 2 and 3. This
inclusion of filler cues to preserve experimental continuity is used in
the behavioural studies upon which the current study is based. The
filler cues in stages 2 and 3 were not included in the fMRI compari-
sons.

Stage 2 — Preventative Learning

During this stage, compound cues (pairs of foods) were presented.
Once again, this stage may be considered a set-up phase for the evoca-
tion of super-learning in stage 3 although, in addition, it gave rise to
preventative learning trials (Fig. 1). Foods in which a positive causal
relationship with the allergic response had been established during
stage 1 were now paired with novel foods and a ‘No Response’
outcome. Since these foods were associated with a strong expectancy
of an allergic response, this non-outcome would be surprising. The
result of the mismatch is preventative learning for the novel food, i.e.
this item is considered to overcome the learned allergenicity of the
familiar item. The comparison cues comprised a novel food and a
familiar food that had been learned, during stage 1, to produce no
response. Brain regions responsive to preventative learning events
were isolated by a direct comparison of these two trial types. A total
of 12 trials for each association were produced by stage 2.

As with the fillers from stage 1, which continued into stages 2 and
3, we also included further preventative learned cues from stage 2
during the subsequent (super-learning) stage. Once again, the
purpose of this was to preserve continuity so that subjects did not
view the stages as separate studies. Our intention had not been to use
these trials in the fMRI analysis but we subsequently did so in order to
ascertain that the effects associated with the super-learning trials were
not attributable to the fact that these compound cues contained items
that had been preventatively learned (see below).

Stage 3 — Super-learning

Super-learning was generated by pairing novel foods with familiar
foods that had been presented in stage 2 [and thereby subjected to
preventative learning (Fig. 1)]. Seeing the latter preventative food, a
subject was likely to strongly predict a ‘No Response’ outcome. The
expectancy violation, when an outcome occurred, would therefore
be large and super-learning for this novel food would be generated.
The control pairs, similarly, comprised the familiar item from stage 2
plus a novel item, followed by an allergic response. In this case, the
response was also unexpected (the familiar item had previously been
paired with no allergic response) and would therefore generate asso-
ciative learning. However, the expectancy violation was not as great
as in the super-learning condition [in the formalization of the
Rescorla–Wagner theory (Rescorla and Wagner, 1972), the violation is
2λ in the super-learning condition versus λ in the control condition,
where λ measures the maximum strength of an associative link]. Thus,
the contrast between these two trials enables us to determine brain
systems whose activity is greater when the expectancy–outcome
mismatch is greater in the setting of trials that are well-balanced for
familiarity/novelty and cue–outcome configuration.

Behavioural Measures
Prior to scanning, each participant was asked to rate the likelihood
that each of the stimulus foods would produce an allergic reaction, in
order to ascertain that they had no strong preconceptions about the
foods that they would later be required to learn about. The row of

numerical keys on the computer keyboard corresponded to an
attached scale showing the likelihood of an allergic reaction occur-
ring, ranging from 1 (definitely not) to 9 (definitely). Analysis of the
pre-ratings by food type revealed no systematic effect of item on initial
causal ratings, with a mean initial allergy rating for the target cues of
0.26 ± 0.38.

As well as the subjective ratings of allergenicity for each food, we
recorded on-line predictive responses as a measure of the extent to
which subjects changed and established their expectancy of a given
food pairing causing an allergy across each of the learning stages.

Scanning
Imaging data were collected using a Bruker MedSpec 30/100
(Ettlingen, Germany) scanner operating at 3 Tesla. A TR of 1.1 s
allowed an acquisition of 1554 volumes (21 slices each of 4 mm thick-
ness, interslice gap 1 mm) per subject. Gradient-echo echo planar T2*-
weighted images depicting BOLD contrast were acquired from 21
noncontiguous near axial planes: TE = 27.5 ms, flip angle = 66°, in-
plane resolution = 3.1 × 3.1 mm, matrix size 64 × 64, field of view 20
× 20 cm, bandwidth 100 kHz.

Analysis of fMRI Data
All data analysis was carried out using statistical parametric mapping
(Friston et al., 1995) in the SPM 99 programme (Wellcome Depart-
ment of Cognitive Neurology, London, UK). This included reorienta-
tion, slice acquisition time correction, within-subject image
realignment, spatial normalization to a standard template (Cocosco et

al., 1997) and spatial smoothing using a Gaussian kernel (8 mm). The
time series in each session was high-pass filtered (to a maximum of 1/
120 Hz).

The average haemodynamic responses to each event type (desig-
nated as occurring at the presentation of the outcome stimulus) were
modelled using a canonical, synthetic haemodynamic response func-
tion (Friston et al., 1998). This function was used as a covariate in a
general linear model and a parameter estimate was generated for each
voxel for each event type. The parameter estimate, derived from the
mean least squares fit of the model to the data, reflects the strength of
covariance between the data and the canonical response function for
a given condition. Individuals’ contrast images, derived from the pair-
wise contrasts between parameter estimates for different events, were
taken to a second level group analysis in which t-values were calcu-
lated for each voxel treating inter-subject variability as a random
effect. The t-values were transformed to unit normal Z distribution to
create a statistical parametric map for each of the planned contrasts.

Masking was used. We used stage 1 to identify a learning system [by
comparing all trials to the baseline fixation task, False Discovery Rate
(FDR) thresholded at P < 0.05 (Genovese et al., 2002)]. This was
primarily to ensure that all regions reported in subsequent contrasts
of interest were those that showed activation relative to a low-level
baseline task. Subsequent to this masking procedure, statistical
thresholding for the contrasts of interest used a small volume correc-
tion based upon the an area (20 × 30 × 30 mm) encompassing the right
prefrontal cortex (PFC) activation identified by our previous study
(Fletcher et al., 2001). All of the right frontal activations reported and
discussed below survived a small volume FDR correction (Genovese et

al., 2002). This was motivated by a desire to maximize sensitivity (in
the face of the limited power generated by subtle manipulations and
necessarily few repetitions of each event) without inflating type II
error. Of course, the use of such an approach is highly exclusive and
it remains possible that regions outside the masks show task-
dependent activity that will be of interest to subsequent researchers.
For completeness, therefore, we report all regions for the important
contrasts (preventative learning versus its control and super-learning
vs its control) with a low threshold P < 0.01, uncorrected for multiple
comparisons (see supplementary tables).

Main Effect of Associative Learning to Single Foods (Stage 1)

This effect was explored through a comparison of all associative
learning trials to the randomly occurring fixation events. Its purpose
was to define a set of brain regions sensitive to the associative learning
task in order that subsequent analyses of preventative learning and
super-learning could be confined to this system as described above.
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Main Effects of Compound Cue Associative Learning, Preventative

Learning and Super-learning Compared to Fixation Baseline

These analyses were carried out in order to establish the broad brain
system activated in association with compound cue, surprise-
dependent associative learning. The threshold for this analysis was,
therefore, set at P < 0.05, FDR correction (Genovese et al., 2002).

Effects of Preventative Learning

A direct comparison of preventative learning events (compared to the
fixation baseline) with the appropriate control events (again in
comparison with the fixation baseline), as illustrated in Figure 1, was
carried out within the masked area defined by analysis of stage 1. FDR
threshold P < 0.05 was set for this contrast. For regions of right PFC, a
threshold of P < 0.05 (FDR corrected) was set using a small volume
correction based upon the ROI as defined above.

Effects of Super-learning

A direct comparison of super-learning events with the appropriate
control events (Fig. 1) was carried out, initially thresholded at P < 0.05
(FDR corrected). For regions of right PFC, a threshold of P < 0.05 (FDR
corrected) was set using a small volume correction based upon the
ROI as defined above.

Exploration of the Correlation Between Behavioural Change and

Magnitude of Super-learning Related Brain Activation

In order to evaluate the extent to which an increase in the magnitude
of activation (super-learning versus control associative learning task)
predicted a greater change in predictive response (from negative to
positive predictions) we calculated, for each subject, an index of this
change. Average tendency to predict an allergic response in the first
third of stage 3 was subtracted from that in the last third of stage 3 for
each subject and the resulting values were regressed upon magnitudes
of voxel activation within the learning system mask. Thresholding was
as above.

Results

Behavioural Results
Consistent with the analogous behavioural studies (Aitken et

al., 2000; Le Pelley and McLaren, 2003), the predictive
responses made by subjects in response to successive trials
showed adaptation to the prevailing contingencies. All subjects
made a greater number of ‘yes’ responses on trials with the
outcome (filled symbols) than on trials without the outcome
(open symbols) at the end of each stage of training (Fig. 2).

Scanning demands meant that individual food ratings, similar
to those taken prior to scanning, could not be recorded imme-
diately at the end of the task. However, equivalent data from a

group of 10 volunteers, who piloted the task and completed
rating scales immediately on finishing the task, showed the
expected effects. Subjects rated the super-learned foods as
more allergenic than the control foods [t(9) = 3.63, P = 0.005].
The ratings provided by the pilot data have been included in
the central panel of Figure 1 for illustration purposes.

Scanning Results
A comparison of all single cue–outcome learning events with
the fixation baseline events in stage 1 showed activation of a
broad system comprising bilateral dorsolateral and ventrola-
teral PFC, anterior cingulate cortex, bilateral occipital and pari-
etal cortex, cerebellum and medial temporal cortex including
the hippocampus (Fig. 3). All of the comparisons reported
below were masked by this analysis. Supplementary tables
available online describe in detail the regions activated by each
main learning event (preventative learning, compound cue
associative learning and super-learning) compared to fixation
baseline (supplementary Tables 1–3).

A direct comparison of the preventative learning events with
the appropriate control events (as described in the methods)
was carried out within the masked area defined by the contrast
from stage 1. Discrete areas of superior, middle and inferior
frontal gyri were activated (Fig. 4a). Similarly, a direct compar-
ison of super-learning events with the appropriate control
events (Fig. 4b) was carried out within the masked area. Table
1 (parts a and b) provides the coordinates for the areas of acti-
vation observed.

We next explored the extent to which super-learning (versus
its control) correlated with the behavioural changes observed
across subjects, using change in averaged predictive responses
from the first to the last third of the learning phase (stage 3).
Regions identified by this comparison included right lateral

Figure 2. The change in predictive responses for each contingency across the stages.
Subjects predictive responses across successive trials showed adaptation to the
prevailing contingencies. The stages and symbols used to denote the different
contingencies are the same as those used in Figure 1. Each stage was divided into
three blocks illustrating the change in predictive responding over time. By the end of
each learning stage, all subjects were making a greater number of ‘yes’ responses on
trials in which an allergy was caused (filled symbols, denoted with a ‘+’ in the key)
than on trials where no outcome occurred (open symbols, denoted ‘–’ in the key).

Figure 3. A comparison of all single cue–outcome learning events with the fixation
baseline events in stage 1. The main effect of associative learning to single foods from
stage 1 using SPM (P < 0.001) rendered onto structural MRI in standard space with
sections at x, y, z = 50, 18, 32. This contrast was used as a mask for all further
comparisons.
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PFC (Fig. 5) and are described in Table 1 (part c) (P = 0.017).
Additionally, we explored the extent to which the size of
behavioural change in the preventative learning condition
correlated with magnitude of activation for this condition. A
correlation was noted (x, y, z = 42, 18, 46, P < 0.05). That is,
right lateral PFC showed greater activity in those subjects
demonstrating a greater change as a result of preventative
learning.

The degree of overlap between the preventative and super-
learning conditions is noteworthy and is illustrated in Figure 6.
This may suggest that the right lateral PFC activation in
response to surprise dependent learning is independent of the
direction of the prediction error and of whether subjects are
learning a positive (causative) or negative (preventative)
contingency between cues and outcome (though see discus-
sion).

Figure 4. Comparison with control events. (a) The activations obtained from direct comparison of preventative learning trials with the appropriate control event. (b) The activations
from super-learning versus its control.
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Note that, with respect to a more precise localization of the
right frontal response to preventative and super-learning, the
foci mainly fall in middle frontal gyrus and may therefore be
designated as DLPFC. However, since most are in close prox-
imity to the inferior frontal sulcus we shall refer to lateral PFC
activations in the interests of caution.

Additional Comparison to Ensure That the Super-learning

Activation Does Not Ref lect the Presence of Preventatively

Learned Items in Super-learning Trials

While the super-learning trials and their controls are matched
for familiarity and outcome, one way in which they do differ is
that super-learning compound cues contain items that have
previously been subject to preventative learning. While the
presence of such an item is critical for super-learning to take
place, it could be argued that the presence of a preventatively
learned item alone could produce right frontal activation. This

could then account for the activations attributed here to super-
learning. In order to ensure that this was not the case, we
compared super-learning trials with filler trials in stage 3
containing preventatively learned items (see above). This
contrast was carried out purely as a check and the results are
not shown. They indicate that right frontal activation in super-
learning trials was significantly greater than that seen for well-
learned preventative trials. While this was not an initially
planned contrast and the super-learning and preventative
learning trial types are not matched for cue–outcome configu-
ration and novelty we believe that the result indicates that the
presence of preventatively learned items cannot be invoked to

Table 1
Coordinates of activation foci together with Z scores and an estimate of where the activations lie in 
anatomical terms is presented for each contrast

Coordinates highlighted in bold are those falling within the region of interest defined by our 
previous study (Fletcher et al., 2001) and surviving a small volume correction for multiple 
comparisons on the basis of these previous data.

x y z Z score

(a) Preventative learning Events AB vs XY (masked)

Middle frontal gyrus left –48 18 34 2.69

Middle frontal gyrus right 48 12 50 2.65

44 36 18 2.37

54 18 34 2.21

58 24 24 2.02

Inferior frontal gyrus right 38 16 –8 2.76

38 50 2 2.20

Occipital cortex –34 –90 0 2.33

Superior frontal gyrus 4 24 54 2.04

(b) Super-learning Events BC vs YZ (masked)

Middle frontal gyrus right 46 20 34 1.92

42 14 48 2.37

40 52 –8 2.36

Inferior frontal gyrus right 50 32 18 2.83

36 52 2 2.13

Inferior parietal lobe –44 –50 44 2.45

Occipital cortex –26 –86 –10 2.32

Cerebellum –46 –70 –28 2.16

–34 –52 –28 1.96

–44 22 32 1.92

(c) Super-learning and behavioural change Correlation with events BC

Middle frontal gyrus left –52 20 30 1.80

Middle frontal gyrus right 44 36 26 2.39

42 28 22 1.72

50 22 28 2.25

Medial frontal cortex 0 34 34 2.22

Fusiform gyrus 18 –92 –10 2.16

Inferior frontal gyrus 36 18 –6 2.08

Figure 5. Areas sensitive to the correlation between behavioural change and the
magnitude of super-learning related brain activation.

Figure 6. A graphical rendering of the activations from preventative learning versus its
control (green) and super-learning versus its control (red). Yellow denotes overlap
between the two conditions.
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account for the right frontal activation seen in the super-
learning versus control contrast.

Discussion

Our results indicate that right lateral PFC is sensitive not just to
prediction error on each learning trial, but also that its activity
is augmented in those situations when prediction error is
greater, either negatively (as in preventative learning) or posi-
tively (super-learning). This error-dependent activation
predicts the degree to which learning occurs (as measured by
the adjustment of the predictive responses in both the super-
learning and the preventative learning conditions). Of course,
our inference that right PFC is sensitive to prediction error is
based upon the supposition that we have isolated this phenom-
enon from confounding factors that would normally correlate
with prediction error. The use of compound cues has indeed
allowed us to isolate brain regions whose activity reflects
prediction-error dependent learning from those areas
reflecting changes in stimulus novelty or task performance. We
believe that this is a novel dissociation in a causal associative
learning task. Furthermore, in other studies of reward–punish-
ment-based associative learning (e.g. Ploghaus et al., 2000;
O’Doherty et al., 2003), prediction-error dependent trials must
also occur as relatively novel occurrences. While this is less of
a problem when carrying out direct comparisons between
positive and negative prediction error trials, it does make inter-
pretation of common effects difficult — a problem that we have
overcome here.

Compound cues enable a precise and pure manipulation of
prediction error, both in its magnitude and its direction. Super-
learning and preventative learning were matched with their
respective control conditions in terms of event configuration
and degree of item familiarity. In each case, cues comprised
one familiar and one novel food. Both the super-learning trials
and super-learning control trials were succeeded by an
outcome (allergy). Similarly, for preventative learning and its
control, no outcome (no allergy) occurred. In addition, for the
super-learning condition, very similar changes in predictive
behaviour occurred for both the target and control conditions
(Fig. 2). Error rates did not differ across these different events
and cannot, therefore, account for the activation differences.

An emerging functional neuroimaging literature suggests
that frontal cortex is an important mediator of many aspects of
human memory function (Fletcher and Henson, 2001).
However, activations of the regions seen in the current study
are by no means unique to explicit memory tasks. Studies
exploring a variety of processes may include, as a component
of the activation task, manipulations that are likely to produce
ongoing inferential associative learning. Studies of functions as
diverse as working-memory (Rypma and D’Esposito, 2003; van
den Heuvel et al., 2003), attentional control (Milham et al.,
2003), reversal learning (Cools et al., 2002), set-shifting
(Konishi et al., 2002, 2003) and reward expectation (Ramnani
and Miall, 2003) have all been shown to recruit prefrontal
cortical areas overlapping with the ones reported here. Simi-
larly, an fMRI study exploring the dynamic processing of
sequences showed that unexpectedly violating sequential
patterns also evoked similar patterns of activity in prefrontal
and interconnected subcortical regions (Heuttel et al., 2002).
Thus, for example, in exploring inhibitory processes and target
detection (Coull et al., 1996; Menon et al., 2001; Ramnani and

Miall, 2003) the aim is frequently to explore the brain response
to items that occur relatively rarely compared to background/
baseline items. In such studies, an outcome–expectancy
mismatch will occur, initially at least, as a result of this relative
rarity and, in light of the current data, this must be considered
as a plausible explanation for observed activations in such
tasks.

Prediction error is increasingly becoming a focus for func-
tional neuroimaging studies (Ploghaus et al., 2000; Pagnoni et

al., 2002; Braver and Brown, 2003; McClure et al., 2003;
O’Doherty et al., 2003), although this has largely focused upon
emotionally salient learning, or conditioning. O’Doherty et al.

(2003), for example, explored the evolving prediction error
during the formation of an association between a conditioned
stimulus (abstract visual stimulus) and an unconditioned stim-
ulus (a juice reward). Considering within-trial prediction error
patterns, they observed a positive and attenuating response to
the unconditioned stimulus (US) in the ventral striatum and
orbitofrontal cortex, an evolving positive response at the time
of the conditioned stimulus (CS) and a deactivation at the point
at which the reward would have been expected in subsequent
surprise omission trials. This pattern was seen in more dorsal
regions of the striatum by McClure et al. (2003) and is precisely
that predicted by the temporal difference (TD) model (Schultz
et al., 1997). Elsewhere, a negative prediction error (unex-
pected omission of the US) is associated with increased blood
oxygen level dependent (BOLD) responses: Pagnoni et al.

(2002) showed that the nucleus accumbens responds to unex-
pected reward omission. With respect to aversive stimuli, the
picture is less clear. Ploghaus et al. (2000) showed that direc-
tion of BOLD signal responses to the unexpected occurrence
or omission of painful heat appeared highly variable across
brain areas and subjects.

Our study focused upon the magnitude of prediction error
(in both negative and positive directions). The comparison of
activation events with a fixation baseline highlighted a system
including frontal, parietal and medial temporal regions (Fig. 3);
presumably an effect of the cognitive, as distinct from
emotional, salience of our stimuli and design. Aside from our
previous study (Fletcher et al., 2001) some work has impli-
cated the PFC directly in prediction error. O’Doherty et al.

(2003) showed that a number of prefrontal regions were sensi-
tive to the magnitude of reward prediction error, though not
its direction. Ploghaus et al. (2000) also observed frontal
responses to pain prediction error although, as mentioned, this
varied markedly among subjects. It is important to note that
our study did not systematically manipulate reward or punish-
ment. This could account for the absence of striatal activation
in our surprise events. We subsequently compared super-
learning with its control condition at a much reduced
threshold (P < 0.05, uncorrected). We noted bilateral caudate
and nucleus accumbens activations in association with super-
learning. This suggests that striatal regions may be sensitive to
error-dependent learning even in the absence of reward or
punishment, but, of course, we must be cautious in proposing
this in view of the subtlety of the effects in these regions.

Our study provides unambiguous evidence for a specific
response to prediction error, where activation and control
events are balanced for configuration and familiarity. The crit-
ical question, therefore, lies in the precise function of the
DLPFC in cognition. It is a region that has been activated in
many studies of human memory — including working memory,
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episodic memory encoding and retrieval (see Fletcher and
Henson, 2001 for review). It is also frequently activated in
attentionally demanding conditions (D’Esposito et al., 1995;
Coull et al., 1996; Braver et al., 1997) and in tasks requiring the
production of non-automatic responses (Carter et al., 1998;
Botvinick et al., 1999). While many of the observed patterns of
prefrontal response are consistent with a role in novelty
processing of unfamiliar stimuli (Ranganath and Rainer, 2003),
novelty per se is an insufficient explanation for the DLPFC acti-
vation seen here, for the reasons described above. Rather, our
findings are more consistent with models that propose PFC
function to be central to learning processes — the ability to
adapt behaviour in response to new information (Miller, 2000;
Miller and Cohen, 2001). This new information initially
presents itself as a mismatch between expectancy and
outcome: a mismatch that forms the basis for change. Atten-
tional modulation is posited as the initial response to predic-
tion error by one influential model of associative learning
(Pearce and Hall, 1980). This model suggests that the atten-
tional modulation is not influenced by the direction of the
prediction error, which is consistent with our demonstration
of highly comparable patterns of right lateral PFC activity for
both positive and negative surprise. We offer this interpreta-
tion with a degree of caution however since it is possible that
there is a difference in localization between responses to
preventative learning and super-learning trials but that this
difference lies below the spatial resolution of the fMRI tech-
nique as used here. It is possible that, at an increased spatial
resolution, differences in activation, within lateral PFC,
reflecting the direction of prediction error might be observed.

We believe we have provided unambiguous evidence for the
existence of a brain correlate of prediction error and have
shown that this, in turn, predicts subjects’ behavioural
changes. This provides, to our knowledge, the first direct
support for the mechanisms proposed by associative theories
of causal learning in humans. These results confirm that the
pattern of PFC response is consistent with the notion of predic-
tion error (Friston, 2002), operationalized here as a discrep-
ancy between the expected (on the basis of previous stimulus
exposure) and the actual outcome. This error term provides an
experimental framework within which to understand the
existing data on prefrontal function. These data clearly show
the effects of learning on prefrontal function in isolation from
the other factors, such as increased novelty, that normally
accompany it.
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