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Abstract 1

How do children acquire knowledge of syntactic islands? Cross-linguistically, we see 2

constrained variation (Sprouse et al., 2021), suggesting an interplay between child-internal 3

factors and language-specific input. We use computational cognitive modeling to investi- 4

gate a recent theory of the learning mechanism which relies on the child learning efficient 5

chunks of syntactic structure from the input (Dickson, 2025; Dickson et al., 2024, 2022). 6

Specifically, we adapt the Fragment Grammar (FG) chunking approach (T. O’Donnell et al., 7

2011; T. J. O’Donnell, 2015; T. J. O’Donnell et al., 2009) to syntactic islands, where the 8

modeled child identifies both (i) chunks of hierarchical structure, and (ii) the probabili- 9

ties of the learned chunks, in order to maximize the probability of the input. Following 10

Dickson et al. (2022), the modeled child learns from cognitively-plausible input (realistic 11

distribution and quantity of utterances) drawn from the CHILDES Treebank (L. Pearl & 12

Sprouse, 2013). The modeled child is evaluated on its ability to replicate empirical data 13

indicating human knowledge of syntactic islands (De Villiers et al., 2008; Liu et al., 2022; 14

Sprouse et al., 2012), thereby demonstrating if the modeled child has acquired the relevant 15

syntactic island knowledge. The FG-using modeled child performs better than several 16

comparison modeled children as well as a current large language model, thus supporting 17

the FG-chunk-based theory of acquisition. We discuss limitations and the potential of this 18

efficient-chunking theory to explain the acquisition of additional empirical data, as well as 19

implications for the relationship between acquisition and cross-linguistic variation with 20

respect to syntactic islands. 21

Keywords: language acquisition; computational cognitive modeling; syntactic islands; 22

structural chunking; efficiency; English 23

1. Syntactic islands and acquisition 24

Consider the English wh-questions in (1): (1a) and (1b) seem acceptable, while (1c) 25

seems far less acceptable (Sprouse et al., 2012). 26

(1) a. What does Jack think what is expensive? 27

b. Who does Jack think the necklace is for who? 28

c. ∗ Who does Jack think the necklace for who is expensive? 29

One explanation for this difference is that the wh-dependency in (1c) crosses a “syntactic 30

island” (Ross, 1967), a latent structure that English speakers generate when processing this 31

utterance. The island metaphorically has “no way off”, so island-crossing wh-dependencies 32

are typically found to be much less acceptable than non-island-crossing wh-dependencies 33
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(see e.g., Sprouse et al., 2012). Since Ross’s seminal work on syntactic islands, there have 34

been hundreds of articles across many languages trying to understand the nature of the 35

observed constraints on wh-dependencies (see Boeckx (2012) for a valuable synthesis of 36

much of the major debates, and Cuneo and Goldberg (2023), Momma and Dillon (2023), 37

A. Goldberg et al. (2024), Winckel et al. (2025), and Matchin et al. (2025) (among others) for 38

recent discussion). 39

Notably, much of this past work has been dedicated to understanding the adult 40

representation of the observed language behavior. Less attention has focused on concrete 41

theories for the acquisition of syntactic island knowledge. An influential generativist theory 42

suggests that islands can be decomposed into building blocks (e.g., “bounding nodes” in 43

the theory of Subjacency: Chomsky (1981); Chomsky et al. (1973); Huang (1982); see Boeckx 44

(2012) for more recent adaptations); children must then have built-in knowledge about 45

the inventory of potential island building blocks for human languages. Then, children 46

learn which building blocks comprise islands for their language. How children learn which 47

specific island building blocks are appropriate for their language is a process typically 48

discussed less. 49

Here, we offer a concrete proposal for an alternative acquisition theory that draws 50

inspiration both from this generativist approach as well as from usage-based approaches 51

that leverage the statistical information available in children’s input (A. E. Goldberg, 2006; 52

McCauley & Christiansen, 2019; Tomasello, 2001). More specifically, the acquisition theory 53

we implement here relies on children discovering the appropriate syntactic island building 54

blocks (in line with the generativist approach) from the statistics of their input (in line 55

with the usage-based approach), assuming some prior knowledge of the syntactic structure 56

underlying observable utterances. Importantly, any theory must be able to account for 57

the incredible efficiency of child acquisition in the face of what appear to be severe data 58

ambiguity issues (a problem noted extensively in the research community as the “Poverty 59

of the Stimulus”: see L. Pearl (2022) for a recent overview). 60

Table 1 illustrates one aspect of the data ambiguity issue in children’s input for learning 61

about syntactic islands, drawing from a sample of English child-directed speech from the 62

CHILDES Treebank (L. Pearl & Sprouse, 2013). In particular, the input is dominated by 63

structurally-simple questions – five question types make up over 50% of the wh-dependency 64

input (see L. Pearl and Sprouse (2013)) and L. Pearl and Bates (2022a) for similar findings 65

about how skewed children’s input seems to be). Thus, the data available are often 66

ambiguous when it comes to the more complex wh-dependencies – how are children to 67

know which are allowed (like (1a)) and which aren’t (like (1c)), when neither type reliably 68

occurs in their input? Children nonetheless reliably figure it out. 69

Example Wh-Dependency Count Percent of Stimuli Cumulative Percent
What’s that? 3,704 29.2% 29.2%
Who’s that? 1,502 11.8% 41.0%

What are you doing? 696 5.5% 46.5%
What did you do? 466 3.7% 50.1%

What was that? 264 2.1% 52.2%
Table 1. Example wh-dependencies from the 5 most common wh-dependency types extracted from a
sample of 12,704 child-directed wh-dependencies from the CHILDES Treebank

.

Moreover, children seem to be very data-efficient, even when compared to recent 70

advances in language modeling. We now have large language models that produce lan- 71

guage closely resembling human language (Futrell & Mahowald, 2025). However, these 72

models require hundreds of billions of words to learn from. In contrast, children seem 73
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to accomplish much the same with less than 100 million words to work with (Warstadt 74

et al., 2023). Children’s remarkable data-efficiency is even more surprising because of the 75

known cognitive limitations that children have (Behm et al., 2025; Fandakova et al., 2014; 76

Gathercole et al., 2004; Paris, 1978). That is, children’s ability to extract information from 77

their input is immature, and so their intake can be quite different from the available input 78

(L. Pearl, 2023a, 2023b). 79

Here, we investigate an acquisition theory for islands that can succeed under these 80

conditions – that is, an acquisition theory capable of learning relevant syntactic islands 81

knowledge as data-efficiently as children do. We begin by motivating the efficient-chunking 82

approach at the heart of this acquisition theory, and reviewing chunking as a cognitive 83

strategy, as well as prior chunking approaches in syntactic acquisition. We then discuss 84

the implementation of the efficient-chunking strategy that we evaluate here, which relies 85

on Fragment Grammars (FGs) (T. O’Donnell et al., 2011). We turn then to the specification 86

of the FG-based modeled child’s acquisition task, including the input, the intake, and the 87

target behavior signaling acquisition of syntactic island knowledge. 88

We evaluate this FG-based modeled child by how well it can generate the target be- 89

havior, given realistic input, and compare its performance against several other modeled 90

children as well as a neural network model whose architecture underlies high-performing 91

large language models. We find that the FG-based modeled child can generate all target be- 92

havior patterns, and does so better than every other comparison modeled child and model. 93

These results both support our proposed efficient-chunk-based acquisition theory, and 94

highlight its superior performance for acquiring syntactic island knowledge from realistic 95

input. We discuss key underlying assumptions of the current FG-based implementation 96

of the efficient-chunking acquisition theory, and their potential impact on our findings 97

here. We conclude by considering future directions about acquiring broader knowledge 98

of wh-dependencies and the implications of our findings for the relationship between 99

acquisition and constrained cross-linguistic variation of syntactic island constraints. 100

2. Efficient chunking for syntactic islands 101

2.1. Why chunking? 102

From a human cognition standpoint, a chunk is a series of units grouped together, typi- 103

cally based on some efficiency consideration (Chase & Simon, 1973; Miller, 1956; Ramkumar 104

et al., 2016; Rosenbloom & Newell, 1982; Thalmann et al., 2019). Humans are limited- 105

resource agents (Lieder & Griffiths, 2020), and so much of our cognitive success relies on 106

efficiently organizing the input into units that are both useful and compact, such as with 107

structured sequential information in the domains of language, vision, and motor planning 108

(Ding, 2025). For instance, in motor planning e.g., speech articulation), deploying a chunk 109

of action sequences that often occur together is more energy-efficient than planning each 110

individual muscle twitch (Derrick et al., 2024; Ramkumar et al., 2016). This efficiency 111

results because smooth, combined motions (i.e., motor chunks) expend less energy than 112

jerky motions where each movement is planned separately. Moreover, planning a long 113

sequence of actions expends computational energy in considering all possible ways to 114

group individual actions. Chunked actions therefore require less computation to plan. 115

More specifically, useful chunks lead to “savings” on future input that can be broken 116

into those useful chunks (e.g., in speech segmentation: M. C. Frank et al. 2010; Jessop et al. 117

2025; Perruchet et al. 2014; Perruchet and Vinter 1998). For syntactic acquisition, multi-word 118

chunks appear to be a key unit of representation (Arnon, 2021; Arnon & Clark, 2011; A. 119

E. Goldberg, 1995) and sensitivity to frequently-reused language chunks has been linked to 120

success in second-language acquisition (Pulido, 2021). With this in mind, we turn now to 121

previous models of syntactic acquisition that incorporate chunking. 122
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2.2. Previous models of syntactic chunking 123

Two notable chunk-based acquisition theories for syntax involve the child creating use- 124

ful multi-word chunks from the input, based on input processing considerations (Freuden- 125

thal et al., 2024; McCauley & Christiansen, 2019). In the Model of Syntax Acquisition 126

in Children (MOSAIC) (Freudenthal et al., 2024, 2006, 2015), the modeled child tracks 127

how often a multi-word sequence is encountered in the input – if the sequence occurs 128

often enough, the sequence becomes a multi-word chunk (where individual words within 129

that chunk can’t be substituted). Similarly, the Chunk-Based Learner (CBL) (McCauley 130

& Christiansen, 2019) creates multi-word chunks out of bigrams whose transitional prob- 131

ability is sufficiently high. Notably, the CBL-modeled child also reuses these chunks to 132

process future input and decide which future sequences ought to be chunked. Both the 133

MOSAIC and CBL modeled learners align with cross-linguistic child comprehension and 134

production data. Notably, these chunking approaches were evaluated on their ability to 135

parse and generate child language data in general (i.e., naturally-occurring utterances in 136

child language interactions). 137

In contrast, the syntactic chunking approach of L. Pearl and Sprouse (2013) aimed 138

specifically to explain the acquisition of syntactic island knowledge, as measured by be- 139

havior in controlled experiments. The modeled child’s chunks incorporated syntactic 140

structure, and were pre-specified as three units in size (i.e., trigrams). The units themselves 141

primarily consisted of phrase structure pieces, such as “verb phrase” (VP), though the 142

chunks could also include information about a single lexical item type (complementizers 143

like “that”). The modeled child determined the relative frequency of the syntactic trigrams 144

in its chunk inventory, based on the input, and then used these chunks to distinguish 145

between wh-dependencies that crossed syntactic islands from those that didn’t. The mod- 146

eled child’s output aligned with English wh-dependency judgments (see also L. Pearl and 147

Bates (2022b)), suggesting these syntactic trigram chunks could explain acquisition of some 148

syntactic island knowledge. From a theoretical standpoint, this means that “knowledge 149

of syntactic islands” is distributed across the modeled child’s inventory of chunks (and 150

their resulting potential combinations). That is, the knowledge of any given syntactic 151

island emerges from the child’s inventory of syntactic trigram chunks and their associated 152

probabilities. 153

In the syntactic trigrams approach, the efficiency of a chunk was captured via its 154

probability, with higher-probability chunks yielding higher-probability parses of wh- 155

dependencies. In other words, input that could be processed with higher-probability 156

chunks was itself given a higher probability. One way to interpret input with a higher 157

probability is as input that’s easier (more efficient) to process, and that’s the same link we’ll 158

use in our proposed chunking acquisition theory. That is, efficient chunks make the input 159

have a higher probability for the modeled child. So, the modeled child’s goal is to find 160

efficient chunks that explain the input, i.e., give the input in general a high(er) probability. 161

2.3. Finding efficient chunks: The Fragment Grammar learner 162

We adapt and expand prior chunk-based approaches in order to explain more empirical 163

data on the acquisition of syntactic islands. Like all prior chunking approaches, the child we 164

model is looking for chunks that explain both current and future input with high probability. 165

Like L. Pearl and Sprouse (2013), the child we model perceives syntactic structure in the 166

input – i.e., the modeled child’s intake includes phrase structure, as in Figure 1. A key 167

difference for our modeled learner is flexibility in the nature of the chunks, in terms of both 168

the units that comprise the chunks and how many units can be involved in a chunk. 169

More specifically, the units forming the chunks can be any phrase structure node 170

or lexical item available in the input representation (instead of only words (Freudenthal 171
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et al., 2024; McCauley & Christiansen, 2019) or only phrase structure nodes with a single 172

lexical item type (L. Pearl & Sprouse, 2013)). In addition, the chunks are free to vary in 173

size, ranging from a single lexical item to the structure of an entire utterance (see Figure 1’s 174

minimal, intermediate, and maximal learner chunk representations). 175

Figure 1. Potential chunk representations of the wh-dependency “What are you drawing?”. The
modeled child receives syntactic structure for the dependency, which is then chunked in different
ways. The minimal learner (left) selects the smallest “chunks” available, effectively not chunking.
The intermediate learner (center) makes several chunks of different sizes. The maximal learner (right)
makes one chunk out of the entire wh-dependency structure.

We implement a modeled child’s potential inventory of chunks using Fragment Gram- 176

mars (FGs) (T. O’Donnell et al., 2011)), where a potential inventory (i.e., “grammar”) of 177

chunks (i.e., “fragments”) has some probability assigned to each chunk. The FG-based 178

modeled child searches the space of possible chunk inventories (i.e., FGs), using the input to 179

identify which chunk inventories yield a high probability for the input data. The intuition 180

for this search is similar to prior chunking approaches: if certain parts of the input appear 181

together frequently, the modeled child will chunk these parts together. 182

The modeled child searches the hypothesis space of possible chunk inventories by 183

using Bayesian inference, a principled reasoning approach that accords well with empirical 184

data on human cognition, including language acquisition (e.g., Dowman, 2000; Feldman 185

et al., 2013; Foraker et al., 2009; S. Frank et al., 2013; Goldwater & Griffiths, 2007; Griffiths 186

et al., 2024; Gutman et al., 2015; Harmon et al., 2021; Kwiatkowski et al., 2012; T. J. O’Donnell, 187

2015; L. Pearl et al., 2010; L. S. Pearl & Mis, 2016; L. S. Pearl & Sprouse, 2019; Perfors et al., 188

2011; Perkins et al., 2017; Phillips & Pearl, 2015, among many others) – see L. S. Pearl (2021) 189

for a recent overview. In particular, the modeled child uses Bayesian inference to balance 190

how well the chunks explain the input (by giving the input a high probability) with how 191

“simple” the chunk inventory is (e.g., the size of the chunk inventory: Chater and Vitányi 192

2007). The smaller the chunk inventory, the more space-efficient the chunk inventory is. So, 193

the modeled child is searching for a space-efficient chunk inventory that can still give the 194

input a high probability. 195

We can see how this balance would play out in the sample chunk representations in Fig- 196

ure 1, whose characteristics are summarized in Table 2. The maximal learner (Figure1: right) 197

creates one chunk per wh-dependency type, and so gives any particular wh-dependency a 198

very high probability. However, its chunk inventory is very large (as large as the number of 199

wh-dependency types in the input), and so it’s not very space-efficient. 200

In contrast, the minimal learner (Figure1: left) creates only tiny “chunks” (the smallest 201

units possible), and so has a fairly space-efficient inventory. However, because no larger 202

chunks are available, any “efficiency savings” from frequently-appearing structural se- 203

quences are lost. Every structural piece must be constructed every single time from the tiny 204

chunks. So, the probability of the input will be lower. 205
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In contrast to the minimal learner, the intermediate learner (Figure1: center) leverages 206

frequently-appearing structural sequences to make larger chunks, in addition to the small- 207

est “chunk” units that the minimal learner has. While the intermediate learner’s chunk 208

inventory is therefore larger (less space-efficient) than the minimal learner’s, the intermedi- 209

ate learner’s probability of the input data is higher – this is because the chunks, comprised 210

of frequently-appearing structural sequences, yield higher probability for a given structural 211

sequence than the combination of smaller units that comprise that structural sequence. In 212

other words, the minimal learner must rely on combining the smaller units every time, 213

while the intermediate learner can use the chunk. So, the intermediate learner yields a 214

higher probability for the input than the minimal learner does, even though it has a less 215

space-efficient chunk inventory than the minimal learner does. Bayesian inference allows 216

the modeled child to find the chunk inventory that strikes the best balance between these 217

two factors (input probability and space efficiency). 218

We note that the modeled child is using a computational-level implementation of 219

Bayesian inference to approximate the mental computation children perform. More specifi- 220

cally, the modeled child samples a potential chunk inventory, and uses that chunk inventory 221

to analyze the input. Then, the modeled child begins the following cycle: (i) sample a 222

different potential chunk inventory, (ii) analyze the data with that inventory, (iii) adopt the 223

new chunk inventory if the data have a higher probability with that inventory than with 224

the previous chunk inventory. This cycle is repeated until the modeled child identifies a 225

chunk inventory that yields a high probability for the input (and in particular, no other 226

sampled chunk inventory yields a higher probability). 227

To be clear, we don’t assume that children are capable of accomplishing this mental 228

computation of Bayesian inference in this way – for one thing, it seems unlikely they can 229

hold a detailed representation of all their input data over many years in mind. However, 230

we are committed to children performing Bayesian inference, likely approximating this 231

mental computation as best they can with the cognitive resources they have available. 232

This is why we use “computational-level" to describe the modeled learners: we believe 233

children perform the mental computation of Bayesian inference, but not necessarily using 234

the algorithm the modeled children here use. 235

Chunk inventory type Space-efficient? High input probability?
Minimal Yes Somewhat

Intermediate Somewhat Yes
Maximal No Yes

Table 2. Characteristics of chunking strategies (minimal, intermediate, and maximal chunking), in
terms of whether the chunk inventories are space-efficient and also yield a high probability for the
modeled child’s input data.

3. The FG modeled child: Implementation 236

The FG modeled child considers chunk inventories (i.e., Fragment Grammars) that are 237

a type of a Probabilistic Context-Free Grammar (PCFG). A chunk can be represented as a 238

rule that specifies how one unit can expand into other units. For example, the structure 239

in (2) can be expressed with several PCFG chunks (3), which can be represented with the 240

rules also shown in (3). 241
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(2) VP

VBG

drawing

NP

-NONE-

∗T∗

242

(3) PCFG chunks and rules 243

VP

VBG NP

VBG

drawing

NP

-NONE-

-NONE-

∗T∗

244

245

VP → VBP NP VBG → drawing NP → -NONE- -NONE- → *T* 246

The FG chunk inventories differ from those that a PCFG can consider in two key ways. First, 247

the FG allows larger chunks, as opposed to the minimal chunks (i.e., those that the minimal 248

learner of Figure 1 uses). For example, the FG modeled child can consider the full VP chunk 249

in (2), which might be represented in a rule as something like VP → (VBG → drawing) 250

(NP → (-NONE- → *T*)). See Appendix A for the notation we implemented to capture 251

FG chunks like this. The mathematical implementation that allows this larger-chunking 252

process (known as an Adaptor Grammar: Johnson et al. 2007; T. J. O’Donnell 2015) uses a 253

Pitman-Yor process (Pitman & Yor, 1997); notably, this implementation can only consider 254

chunks that are fully expanded to the leaves. So, for example, a modeled child using this 255

process could consider the chunk in (2) but not the chunk in (4), because the chunk in (4) 256

leaves VBG unexpanded. See Appendix A.2 for details. 257

(4) VP

VBG

...

NP

-NONE-

∗T∗

258

In contrast, a FG chunk inventory can include chunks like (4) that involve unexpanded 259

nodes. For example, the chunk in (4) can be represented as something like VP → VBG (NP 260

→ (-NONE- → *T*)). This is a chunk that the intermediate learner of Figure 1 uses, which 261

allows the specific verb to vary while keeping the wh-object position in the VP chunk. See 262

Appendix A.3 for the “lazy evaluation” mathematical implementation of the Pitman-Yor 263

process that allows this chunk option (T. J. O’Donnell, 2015). 264

Once the modeled child has inferred an efficient chunk inventory (and each chunk’s 265

associated probability) from the input, the modeled child can then generate a probability 266

for any structure that can be comprised of the chunks available in that inventory. Here, 267

we assume a structure’s probability is the product of the chunks that comprise it (i.e., 268

p(structure) = ∏chunk ci∈structure p(ci)). 269

4. The FG modeled child’s acquisition task 270

4.1. Input 271

The FG modeled child receives a realistic sample of child-directed wh-dependencies, 272

derived from a distribution of 12,704 wh-dependencies from the CHILDES Treebank 273

(L. Pearl & Sprouse, 2013). We follow L. Pearl and Bates (2022a) and estimate the to- 274

tal number of wh-dependencies that children encounter by considering their potential 275
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learning period, the average waking hours of a child at different ages (Davis et al., 2004), 276

the utterances heard per hour (Rowe, 2012), and the relative frequency of wh-dependencies 277

in children’s input (see Table 3). We consider the learning period to start at 18 months 278

when children seem capable of reliably recognizing wh-dependencies in their input (Perkins 279

& Lidz, 2021). We consider the learning period to end at age 4, when children seem to 280

demonstrate adult-like knowledge of several syntactic islands (De Villiers et al., 2008) 281

(though there is evidence for adult-like knowledge of some islands even younger: Hirzel 282

2022). 283

min in learning period
= waking hours / 60

utt/min wh-dep/utt = total wh-dep es-
timated in learn-
ing period

886,950 14.4 0.164 2,094,753
Table 3. Calculation of the wh-dependencies children encounter during the proposed learning period
from 18 months to 4 years old. Values are derived from L. Pearl and Bates (2022b), which estimated
the total number of wh-dependencies that children encounter by considering the average waking
hours (Davis et al., 2004) per age, utterances encountered per minute (Rowe, 2012), and the proportion
of wh-dependencies in the utterances in children’s input.

The resulting estimate for the quantity of wh-dependencies children encounter is a 284

little over 2 million (2,094,753, out of 2,094,753/0.164 = 12,772,884 utterances). The modeled 285

child sees this quantity of wh-dependencies, distributed according to the sample of child- 286

directed wh-dependencies from the CHILDES Treebank. As noted above in Table 1, the 287

majority of wh-dependencies are of only a few types (though see (L. Pearl & Bates, 2022a; 288

L. Pearl & Sprouse, 2013) for the complete distribution of wh-dependency types in different 289

samples of the CHILDES Treebank). 290

4.2. A modeled child’s intake 291

We follow L. Pearl and Sprouse (2013), and assume the modeled child’s intake is 292

a filtered subset of the available input (L. Pearl, 2023b). More specifically, the modeled 293

child focuses on utterances containing wh-dependencies, ignoring other utterances. Then, 294

for a given wh-dependency, the modeled child projects syntactic structure onto the wh- 295

dependency, given its prior syntactic knowledge (see (5) for the wh-dependency “Who does 296

Jack think the necklace is for?”1). With this syntactic structure in place, the modeled child 297

then focuses on a subset of the available structure, which is the “syntactic path” connecting 298

the wh-word to its gap, as in (5a). 299

More formally, L. Pearl and Sprouse (2013) define this syntactic path as the set of 300

phrase structure nodes that contain the gap, until the phrase structure node that is parent 301

to the wh-phrase is reached. In (5a), the gap who is contained by PP, which is contained 302

by VP, and so on, until IP is reached. Then, the parent of IP is CP, which is the parent of 303

the wh-phrase. The syntactic path can be represented by a portion of the actual structure 304

available, as in (5b), focusing on the phrase structure nodes and their accompanying heads 305

in the syntactic path. A flattened version of the syntactic path can be represented as a 306

sequence, such as IPPRESENT-VPthink-CPNULL-IPPRESENT-VPbe-PP f or for (5a). 307

(5) Syntactic path representation for “Who does Jack think the necklace is for?" 308

309

1 Our implementation assumes a particular syntactic phrase structure representation, but a syntactic path can be
defined for any syntactic tree structure.
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a. Projected syntactic structure and syntactic path 310

CP

NP

N

Who

IP

Aux

does

NP

N

Jack

I

PRESENT

VP

V

think

CP

C

NULL

IP

NP

the necklace

I

PRESENT

VP

V

be

PP

P

for

NP

who

311

b. Syntactic path only 312

IP

PRESENT VP

think CP

NULL IP

PRESENT VP

be PP

for

313

syntactic path sequence: 314

IPPRESENT-VPthink-CPNULL-IPPRESENT-VPbe-PP f or 315

4.3. Modeled child target behavior 316

Linguistic knowledge is typically assessed by mapping observable behavior to un- 317

derlying knowledge; we thus review three behavior patterns that serve as signals of 318

syntactic island knowledge and so function as the target of acquisition for the modeled 319

child here (L. Pearl, 2023b). The first two are acceptability judgment patterns for different 320

wh-dependencies, while the third is an interpretation preference pattern for utterances 321

ambiguous between two possible wh-dependencies. 322

4.3.1. Adult judgment data 323

The first pattern is a superadditive acceptability judgment pattern, as shown in the 324

interaction plot in Figure 2 – the superadditive pattern itself appears as non-parallel lines 325

(L. Pearl & Sprouse, 2013; Sprouse et al., 2012). 326

The judgment pattern arises from constructed stimuli sets like (6) that vary two 327

factors: the length of the wh-dependency (matrix clause vs. embedded clause) and the 328

absence/presence of a proposed island structure (non-island vs. island) (Sprouse et al., 329
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Figure 2. An interaction plot showing a pattern in the acceptability of wh-dependency judgments,
which appears as non-parallel lines. The figure is annotated with examples of the four conditions
from example (6).

2012). Examples (6a) and (6b) vary by the length of the dependency, but neither has an 330

island structure. Square brackets surround the proposed island structure in (6c)-(6d), and 331

the wh-dependency in (6d) crosses the island structure. 332

(6) a. Who who thinks the necklace is expensive? MATRIX | NON-ISLAND 333

b. What does Jack think what is expensive? EMBEDDED | NON-ISLAND 334

c. Who who thinks [CP [IP [NP the necklace for Lily is expensive]]]? MATRIX | ISLAND 335

d. ∗Who does Jack think [CP[IP[NP the necklace for who ] is expensive]]? EMBEDDED | ISLAND 336

Importantly, each factor is associated with a decrease in acceptability. First, an embedded 337

dependency is less acceptable than a matrix dependency (length: (6b) is less acceptable 338

than (6a) by some amount, len). Second, an utterance with an island structure in it is less 339

acceptable than an utterance without one (absence/presence: (6c) is less acceptable than 340

(6a) by some amount, isl). An additive effect for an embedded dependency with an island 341

structure in it (6d) would be the simple addition of these two decreases in acceptability: 342

(6d) = (6a) - (len + isl). So, there would be no interaction and Figure 2 would show parallel 343

lines. A superadditive effect for an embedded dependency with an island structure in 344

it (6d) would be an extra decrease beyond the simple addition of the two decreases due 345

to length and presence of an island structure: (6d) = (6a) - (len + isl + extra). This extra 346

decrease for (6d) causes the interaction plot to show non-parallel lines. 347

Figure 3. An acceptability difference plot showing the superadditive acceptability judgment pattern
as a difference between the acceptability of the non-island and island structures, varying the factor of
length. The difference is greater for the embedded wh-dependencies, which appears as a line with a
positive slope on this plot between matrix and embedded stimuli.
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This superadditive pattern can also be summarized by plotting the difference in ac- 348

ceptability between the non-island and island structures, as in Figure 3. In particular, the 349

superadditive pattern is observed when the difference between the matrix wh-dependencies 350

(rating(6a) - rating(6c)) is less than the difference between the embedded wh-dependencies 351

(rating(6b) - rating(6d)). That is, the “island difference” is how the matrix wh-dependency 352

difference compares to the embedded wh-dependency difference, with the idea that the 353

increase in difference comes from the presence of the island-crossing dependency in ex- 354

amples like (6d). When the matrix difference is less than the embedded difference, we 355

see a positive slope, as in Figure 3. So, a positive slope on this kind of “island difference 356

plot” indicates a superadditive acceptability judgment pattern, which signals knowledge 357

of syntactic islands (such as the one in (6d)). This qualitative pattern – the positive slope 358

on an island difference plot – is the target output for the modeled child here, when given 359

wh-dependency stimuli sets like (6). 360

The second target pattern involves an observed effect of lexical item frequency in 361

adult acceptability judgments of wh-dependencies. In particular, Liu et al. (2022) found a 362

positive correlation between the frequency of a certain wh-dependency’s main verb and 363

that wh-dependency’s acceptability, as shown in in Figure 4. The x-axis of Figure 4 shows 364

the log-transformed frequency of the main verb appearing in the linguistic context where 365

the verb is followed by an embedded clause (e.g., “...say/whine that Jack saw.”) – this is the 366

verb frame. 367
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Figure 4. Behavioral data reported in Liu et al. (2022) showing a positive correlation between a
wh-dependency’s acceptability and the frequency of the main verb in a specific linguistic context (e.g.,
“What did Lily VERB that Jack saw?”). Wh-dependencies with verbs like “say” in this frame are rated
as more acceptable than wh-dependencies with verbs like “whine”.

368

We can see that as the verb frame’s frequency increases, the wh-dependency’s accept- 369

ability increases. For example, a dependency with a high-frequency main verb (e.g. “What 370

did Lily say that Jack saw?") is judged to be more acceptable than an identical dependency 371

with a lower-frequency main verb (e.g. “What did Lily whine that Jack saw?"). This positive 372

correlation is the target behavior for the modeled child, representing this lexical effect on 373

wh-dependencies. 374

4.3.2. Child judgment data 375

The third target pattern is child preferences for utterances that are potentially ambigu- 376

ous between two wh-dependencies as in (7), derived from the behavioral data collected by 377

De Villiers et al. (2008). 378

(7) Who did the police woman help to call? 379

a. wh-dependency 1 (main): Who did the police woman help who [to call]? 380

Interpretation 1: Who was helped? 381
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b. wh-dependency 2 (embedded): Who did the police woman help [to call who]? 382

Interpretation 2: Who was called? 383

In (7), the two logically possible interpretations correspond to different wh-dependencies, 384

a main-clause one (7a) and an embedded-clause one (7b) (the embedded clause is indicated 385

with [...]). Children then indicated which interpretation they preferred, and so which 386

wh-dependency they preferred. Table 4 shows the full list of wh-utterance types used in 387

De Villiers et al. (2008), and how often children preferred the embedded wh-dependency 388

for each type, ordered by how often the embedded option was preferred. 389

Item Question Child emb pref

1 How did the boy say howmain 0.80
[he hurt howemb

himself] ?

2 What did the mother say whatmain 0.79
[she bought whatemb

] ?

3 Who did the police woman help whomain 0.48
[to call whoemb

] ?

4 Who did the little sister ask whomain 0.25
[how to see whoemb

] ?

5 How did [the boy who sneezed howemb
] 0.20

drink howmain
the milk?

6 What did the boy fix the cat 0.09[that was lying on the table with whatemb
] whatmain

?

7 How did the girl ask howmain 0.04
[where to ride howemb

]?

8 Who did the boy ask whomain 0.04
[what to bring whoemb

]?

9 How did the mom learn howmain 0.03
[what to bake howemb

]?
Table 4. Stimuli from De Villiers et al. (2008) used to probe child dependency preferences. Each
question has a main and embedded clause (embedded clauses are marked in [...]), and is potentially
ambiguous between a main-clause wh-dependency (whmain

) and an embedded-clause wh-dependency
(whemb

). Child preferences for the embedded-clause wh-dependency are shown, with items ordered by
embedded-dependency preference.

As the target of acquisition, the modeled child will aim to generate these same prefer- 390

ences, when given the two wh-dependency options to choose between (i.e., the main-clause 391

one vs. the embedded-clause one). Figure 5 plots the child preferences from De Villiers et al. 392

(2008) against a modeled child able to perfectly reproduce those embedded-dependency 393

preferences for each item. 394

5. Evaluating the FG modeled child 395

After learning from the input, the FG modeled child can generate a probability for 396

any wh-dependency, using the most probable (highest probability) combination of chunks 397

available from its learned chunk inventory. More specifically, we can calculate the maximum 398

a posteriori (MAP) score under the inferred chunk inventory (Eisenstein, 2018), based on 399

the highest-probability parse for the given syntactic structure (here: a wh-dependency’s 400

syntactic path). We first discuss how we link these generated probabilities to the target 401

behavior patterns for syntactic islands. We then present other learning approaches that are 402

given the same acquisition task as the FG modeled child and so can serve as a basis for 403

comparison regarding acquisition performance. 404
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Figure 5. Example data depicting a perfect match between child preference data observed from
De Villiers et al. (2008) on the x-axis and the modeled child’s prediction on the y-axis for each item
(1-9) in Table 4.

5.1. Linking probabilities with target behavior patterns 405

5.1.1. Probabilities to acceptability judgments 406

Recall that the structures the modeled child here considers are the syntactic paths of 407

wh-dependencies, which can be rewritten as sequences. For instance, the syntactic path 408

for “Who does Jack think the necklace is for?" (5) can be represented by the sequence 409

IPPRESENT-VPthink-CPNULL-IPPRESENT-VPbe-PP f or. When considering sequences, a sequence’s 410

probability is affected by length when the sequence’s probability is calculated by multiply- 411

ing together its individual pieces (i.e., chunks). The more pieces, the lower the probability, 412

because probabilities are generally less than 1. However, we don’t see this same reliable 413

relationship between utterance length and human judgments of acceptability (Lau et al., 414

2015, 2017). So, utterances differing in length (e.g., “The necklace is for Lily" vs. “The 415

necklace with the sparkly gems is for Lily” may still be comparably acceptable even though 416

their probabilities are not (transparently) comparable. 417

To account for this potential effect of length, the modeled child’s acceptability score for 418

a given wh-dependency’s syntactic path is impacted by the length of the wh-dependency, 419

following Lau et al. (2015, 2017). More specifically, the modeled child’s length-factorized 420

score is the (log) probability for the wh-dependency’s syntactic path divided by the length 421

of the path, as in So, for the example syntactic path above from (5), the length would be 6 422

as there are 6 units in the sequence. 423

(8) length-factorized(syn-path) = Plen_ f ac(syn-path) =
log(prob(syn-path))

length(syn-path)
424

For the acceptability judgments from both Sprouse et al. (2012) and Liu et al. (2022), 425

the modeled child calculates the length-factorized score for each of the stimuli in a given 426

set. We can then assess if superadditivity is present for the data from Sprouse et al. (2012) 427

and if a positive correlation is present for the data from Liu et al. (2022). 428

5.1.2. Probabilities to interpretation preferences 429

To generate an interpretation preference for a potentially-ambiguous wh-utterance 430

from the data of De Villiers et al. (2008) in Table 4, the modeled child needs to generate a 431

score for each wh-dependency associated with a potential interpretation of that utterance 432

(i.e., the main-clause wh-dependency vs. the embedded-clause wh-dependency). We follow 433

prior work linking probabilities to production frequencies (Mayer, 2021), and again use the 434

length factorization in (8) to generate a score for each wh-dependency. We then calculate the 435

preference for the embedded-clause dependency by normalizing these scores to calculate 436
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the probability of an embedded-clause preference, as in (9). So, the preference ranges 437

between 0 (strongest main-clause wh-dependency preference) to 1 (strongest embedded- 438

clause wh-dependency preference). 439

(9) Prefemb =
Plen_fac(emb-wh)

Plen_fac(emb-wh) + Plen_fac(main-wh)
440

5.2. Comparison: Other modeled children and models 441

As a comparison to the FG-modeled child, we consider a set of modeled children that 442

vary in the nature of the chunks they consider for their chunk inventories, all of which 443

are more constrained than the chunks the FG-based modeled child considers. Because 444

of this ability to consider a wider hypothesis space of possible chunks, the FG-modeled 445

child is also more complex than the comparison modeled children (i.e., it has more free 446

parameters that enable better data-fitting). It could be that simply having more parameters 447

enables better acquisition performance. To test this possibility, we additionally use a neural 448

network model with many free parameters as a comparison. We review each comparison 449

modeled child and the neural network model below. 450

5.2.1. Modeled children with simpler chunks 451

Recall from Section 3 that FGs are more-flexible version of Adaptor Grammars (AGs), 452

which are more-flexible versions of PCFGs. In particular, AGs allow larger chunks but 453

require full expansion of non-terminal nodes, causing their hypothesis space to exclude 454

chunks like (4) (i.e., VP → VBG (NP → (-NONE- → *T*))) that leave a non-terminal 455

node open (i.e., VBG). Thus, an AG-based modeled child considers a more-restricted 456

space of possible chunks than the FG-based child. Similarly, a PCFG-based child has a 457

further-restricted space of possible chunks compared to the AG-based child, because the 458

PCFG-based child can only consider minimal chunks like those in (3) (ie., VP → VBG NP, 459

VBG → drawing, etc.). Implementation details for the AG-based and PCFG-based modeled 460

children are found in Appendix B.1. 461

We additionally implement modeled children with fixed-size chunks, following 462

L. Pearl and Sprouse (2013) for some options. Prespecifying the size of the chunks con- 463

trasts with the modeled children using FGs, AGs, and PCFGs, as the size of those chunks 464

can vary (and is learned from the input). Instead, the modeled children using fixed-size 465

chunks specifically use trigrams (i.e., 3-unit chunks) to form the syntactic path sequence of 466

a wh-dependency. The trigram-based modeled children we consider vary the amount of 467

lexical information included in the trigrams, as in (10). The syntactic path is then broken 468

into successive sequences of trigrams, based on the information included from the syntactic 469

path. See Appendix B.2 for details about how trigrams combine to form a syntactic path. 470

(10) Comparison representations for “Who did Jack think the necklace was for?” 471

a. Fully-lexicalized: all lexical information included with phrase label 472

syn path: START-IPpresent-VPthink-CPnull-IPpresent-VPbe-PP f or-END 473

trigrams: START-IPpresent-VPthink, IPpresent-VPthink-CPnull , ..., VPbe-PP f or-END 474

b. Phrasal-only: phrase label only 475

syn path: START-IP-VP-CP-IP-VP-PP-END 476

trigrams: START-IP-VP, IP-VP-CP, ..., VP-PP-END 477

c. Lexicalized CP: only the head of the CP (the complementizer) is included 478

syn path: START-IP-VP-CPnull-IP-VP-PP-END 479

trigrams: START-IP-VP, IP-VP-CPnull , ..., VP-PP-END 480
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d. Lexicalized main verb: only the main verb is included 481

syn path: START-IP-VPthink-CP-IP-VP-PP-END 482

trigrams: START-IP-VPthink, IP-VPthink-CP, ..., VP-PP-END 483

The modeled child using fully-lexicalized trigrams (10a) would include all the information 484

on the syntactic path in its trigrams, both phrasal and lexical (e.g., IPpresent-VPthink-CPnull). 485

In contrast, a modeled child using only phrasal information in its trigrams (10b) ignores 486

all lexical information (e.g., IP-VP-CP) and was considered as a baseline in L. Pearl and 487

Sprouse (2013). L. Pearl and Sprouse (2013) found that a modeled child that included lexical 488

information only for complementizer phrases (CPs) in its trigrams (e.g., IP-VP-CPnull) 489

was able to capture the superadditive adult acceptability judgment pattern in Figure 2 490

for several island types. However, this modeled child can’t explain the variation by main 491

verb found in the positive correlation pattern from Liu et al. (2022), so we also consider 492

a modeled child that includes lexical information only for main verbs, as in (10d) (e.g., 493

IP-VPthink-CP). 494

5.2.2. A neural network model with many free parameters 495

We chose a long-short term memory (LSTM) model (Hochreiter & Schmidhuber, 496

1997) as the comparison neural network model because LSTMs do well when learning 497

information about sequences (Eisenstein, 2018), such as syntactic paths. The specific 498

implementation we use involves tens of thousands of free parameters that enable the 499

model to fit the input data well – see Appendix B.3 for the formal definition and relevant 500

hyperparameter settings. 501

The LSTM implementation we use learns to accurately predict the next token in a 502

sequence, and so its input is a “flattened” version of the syntactic path the modeled children 503

previously discussed use. For example, the syntactic path from (10) is START-IPpresent- 504

VPthink-CPnull-IPpresent-VPbe-PP f or-END, and becomes START, IP, present, VP, think, CP, 505

null, IP, present, VP, be, PP, for, END. The LSTM model can then generate a probability for 506

any wh-dependency’s syntactic path, represented in this flattened, sequential form. 507

6. Results 508

Figures 6, 7, and 8 show the results for the FG-based modeled child, as well as the 509

comparison modeled children and LSTM model. One key broad observation is that the 510

FG-based modeled child’s performance most closely aligns with target behavior patterns, 511

outperforming all comparison modeled children and the LSTM model (summarized in 512

Table 5). More specifically, the FG-based modeled child can generate both the superadditive 513

pattern from Sprouse et al. (2012) and the positive correlation pattern from Liu et al. 514

(2022); it also has the highest correlation (R2=0.879) with the child preference patterns from 515

De Villiers et al. (2008). We discuss each target behavior pattern in turn. 516

Chunk-based modeled children
Chunks of varying size Trigram chunks
FG AG PCFG Phrasal Fully Lex Lex CP Lex MV LSTM

Sprouse et al. (2012) ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗
Liu et al. (2022) ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓

De Villiers et al. (2008) 0.879 0.045 0.601 0.084 0.046 0.268 <0.001 0.532
Table 5. Summary of results for all chunk-based modeled children and the LSTM model across the
three target behavioral patterns. A qualitative summary (✓/✗) is shown for the behavioral patterns
from Sprouse et al. (2012) and Liu et al. (2022), while the correlation value between predicted vs.
actual child behaviors are shown for the behavioral patterns from De Villiers et al. (2008).

https://doi.org/10.3390/1010000

https://doi.org/10.3390/1010000


Version January 19, 2026 submitted to Journal 16 of 38

6.1. Target behavior: Superadditivity 517

Recall that adults have acceptability judgments on stimuli related to different syntactic 518

islands that pattern as a positive slope in the “islands difference score” of Figure 3. In par- 519

ticular, the stimuli from Sprouse et al. (2012) involved four island types: Subject, Complex 520

NP, Whether, and Adjunct islands. A successful modeled learner (modeled child or model) 521

would be able to generate that same pattern (a positive slope) for all four island types, 522

using its internalized representations of wh-dependency knowledge. Figure 6 shows the 523

results for all four island types. We discuss each island type in turn. 524
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Figure 6. Results from all modeled children (variable-size chunks: FG, AG, PCFG; trigram chunks:
Phrasal, Fully Lex, Lex CP, Lex MV) and the LSTM model for the four island types tested in Sprouse
et al. (2012): Subject, Complex NP, Whether, and Adjunct. The dashed line represents the original
human z-scored acceptability judgments from Sprouse et al. (2012), showing a positive increase in
the island difference score from the main to the embedded condition. The modeled learner must
generate this positive slope to qualitatively match the human behavior pattern.

6.1.1. Subject and Complex NP islands 525

To replicate the desired positive slope, the modeled learner must assign a higher 526

score to the embedded non-island-crossing stimuli like (11a)-(12a) than to the embedded 527

island-crossing stimuli like (11b)-(12b). 528

(11) Subject island embedded stimuli 529

a. EMBEDDED | NON-ISLAND 530

What does [IP Jack [VP think [CP[IP what is expensive]]]]? 531

b. EMBEDDED | ISLAND 532

∗Who does [IP Jack [VP think [CP[IP[NP the necklace [PP for who]] is expensive]]]]? 533

(12) Complex NP island embedded stimuli 534

a. EMBEDDED | NON-ISLAND 535

What did [IP the chef [VP hear [CP that [IP Jeff [IP baked what]]]]]? 536

b. EMBEDDED | ISLAND 537

∗What did [IP the chef [VP hear [NP the statement [CP that [IP Jeff [VP baked what]]]]]]? 538

For the Subject island condition, we see in the first row of Figure 6 that all the modeled 539

learners successfully reproduce the human judgment patterns. One plausible explanation 540
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for this overwhelming success is that the island-crossing wh-dependency (11b) has addi- 541

tional nodes (NP and PP) that are infrequent in the wh-dependencies that the modeled 542

learners see. (In fact, most of the tested lexical items in the NPs were unseen, as well.) All 543

the modeled learners were capable of tracking chunks that involved – or notably, didn’t 544

involve – NPs or PPs all that often. So, NP and PP nodes in the syntactic path reduce the 545

probability of the syntactic path, and all the modeled learners were capable of encoding 546

these (in)frequencies. 547

For the Complex NP island condition, we see in the second row of Figure 6 that 548

most modeled learners succeed (the two exceptions are the Fully Lexicalized (Fully Lex) 549

and Lexicalized Main Verb (Lex MV) trigram learners). Similar to the Subject island 550

condition, an infrequent NP node seems to be a relevant difference between (12a) and 551

(12b). Why then do we see two modeled learners fail, if they’re capable of encoding the 552

NP node infrequency? One answer is that these modeled learners’ sensitivity to lexical 553

items undermines their ability to view the NP-containing syntactic path as less probable. 554

In particular, the Fully Lex trigram modeled learner includes all lexical information in its 555

representation – that is, its trigrams include the individual lexical items, such as IPpresent- 556

VPhear-CPthat. So, the learner’s trigrams are often very infrequent, no matter which trigram 557

it is. For example, IPpresent-VPhear-CPthat, which is used in the non-island (more acceptable) 558

syntactic path of (12a), never actually appeared in the learner’s input. More specifically, 559

the trigrams for both the non-island and island Complex NP stimuli are all infrequent. This 560

situation contrasts with the Subject island stimuli, which involved some more-frequent 561

trigrams (e.g., START-IPpresent-VPthink and IPpresent-VPthink-CPnull). There, the NP-involving 562

and PP-involving trigrams in the island-crossing syntactic path were in fact less probable 563

than these other more-frequent trigrams, and so the modeled learner could correctly view 564

the island-crossing path as less probable. 565

A related explanation can account for the failure of the Lex MV trigram learner on 566

the Complex NP island judgments. In particular, because this modeled learner includes 567

main verb lexical items in its trigrams, it’s sensitive to the frequency of those verbs. The 568

Complex NP stimuli involve some more-frequent trigrams with the main verbs “hear” 569

and “make” that appeared in the learner’s input. More specifically, the non-island path 570

of (12a) involves only one of these more-frequent main verbs while the island-crossing 571

path of (12b) involves two. This means that the Lex MV trigram learner actually gives the 572

island-crossing wh-dependency higher probability – that is, it finds the wh-dependency 573

in (12b) more acceptable than the non-island-crossing on in (12a). So, even though the 574

modeled learner views the NP-node trigrams in (12b) as low probability, they’re not low 575

enough probability to counteract the effect of the higher-frequency trigrams involving the 576

main verbs “hear” and “make”. 577

Overall, most of the modeled learners succeeded at replicating adult acceptability 578

judgment patterns for both Subject and Complex NP islands. Two of the trigram modeled 579

learners that encoded lexical item information in their internalized chunks (Fully Lex, Lex 580

MV) succeeded on the Subject island pattern but failed on the Complex NP island pattern, 581

specifically due to their sensitivity to lexical items. 582

6.1.2. Whether and Adjunct islands 583

To replicate the desired positive slope, the modeled learner must assign a higher 584

score to the embedded non-island-crossing stimuli like (13a)-(14a) than to the embedded 585

island-crossing stimuli like (13b)-(14b). 586

(13) Whether island embedded stimuli 587

a. EMBEDDED | NON-ISLAND 588

What does [IP the detective [VP think [CP that [IP Paul [VP took what]]]]]? 589
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b. EMBEDDED | ISLAND 590

∗What does [IP the detective [VP wonder [CP whether [IP Paul [IP took what]]]]]? 591

(14) Adjunct island embedded stimuli 592

a. EMBEDDED | NON-ISLAND 593

What do [IP you [VP suspect [CP that [IP the boss [VP left what in the car]]]]]? 594

b. EMBEDDED | ISLAND 595

∗What do [IP you [VP worry [CP if [IP the boss [VP leaves what in the car]]]]]? 596

For the Whether island condition, we see in the third row of Figure 6 that most 597

modeled learners successfully reproduce the human judgment pattern (the exception is 598

the Phrasal trigram learner). One plausible explanation for these modeling results again 599

involves the modeled learners’ sensitivity (or insensitivity) to the lexical items involved 600

in the syntactic paths. In particular, the island-crossing syntactic path of (13b) includes a 601

lower probability complementizer “whether" and a lower probability main verb “wonder"; 602

in contrast, the non-island-crossing syntactic path of (13a) includes a higher-probability 603

complementizer “that" and a higher-probability main verb “think". All modeled learners 604

capable of tracking these lexical items in their chunks – that is, all the learners except the 605

Phrasal trigram learner – were capable of encoding these relative (in)frequencies. 606

For the Adjunct island condition, we see in the fourth row of Figure 6 that several 607

modeled learners succeeded, but four failed: the Phrasal, Fully Lex, and Lex MV trigram 608

learners, as well as the LSTM learner. Lexical item frequency again can help explain 609

these results, as salient differences between the non-island-crossing stimuli like (14a) and 610

island-crossing stimuli like (14b) involve the complementizer and the main verbs. First, the 611

Phrasal trigram learner is incapable of encoding these lexical items in its chunks, and so 612

fails to distinguish them, just as in the Whether islands. 613

Interestingly, the Fully Lex and Lex MV trigram learners failed because of their sensitiv- 614

ity to the main verbs. More specifically, the main verbs in the non-island-crossing syntactic 615

paths are not much more frequent than the main verbs in the island-crossing syntactic paths. 616

So, these learners wouldn’t assign a higher probability to the non-island-crossing syntactic 617

paths just because of the main verbs. Importantly, the Lex MV learner only encodes the 618

main verb lexical items and so fails to prefer the non-island-crossing syntactic path. The 619

Fully Lex trigram learner is capable of encoding the relative frequencies of the complemen- 620

tizer, but fails to disprefer the island-crossing syntactic path because of how infrequent 621

all its trigrams tend to be. More specifically, while trigrams involving complementizer 622

“if” are less frequent than trigrams involving complementizer “that” (which distinguish 623

island-crossing (14b) from non-island-crossing (14a)), they’re not less frequent enough 624

counteract the low probability of the other trigrams involved in non-island-crossing (14a). 625

The LSTM learner has a different issue: it generally assigns scores that are very similar 626

for non-island-crossing and island-crossing wh-dependency paths. While the LSTM learner 627

generally captures the correct qualitative pattern (i.e., a positive island difference for three 628

island types), it actually does fail to do so for the Adjunct island type (see Appendix C.1 for 629

more details of its performance). Although LSTM internal representations are difficult to 630

decode, we posit that the LSTM learner fails for a similar reason that the trigram learners 631

above do: improperly dealing with the complementizer lexical information. The LSTM runs 632

that failed assign very similar scores to island-crossing and non-island-crossing sequences, 633

despite the island structure having an unseen lexical item “if". 634

Overall, many modeled learners succeed at replicating adult acceptability judgment 635

patterns for both Whether and Adjunct islands. Only modeled learners capable of encoding 636

lexical item information were able to succeed, as lexical items distinguish the island-crossing 637

from the non-island-crossing stimuli. However, sensitivity to the wrong lexical items can 638

cause failure as well, just as with the Subject and Complex NP islands. 639
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6.1.3. Summary for superadditivity 640

Four of the modeled learners succeeded at generating the observed behavior patterns 641

associated with syntactic island knowledge: the FG-based modeled child, the other modeled 642

children relying on variable-sized chunks (AG-based, PCFG-based), and one modeled 643

child relying on trigram chunks (Lex CP). One key reason they succeeded was because 644

they encoded relevant frequency distinctions from the input, involving specific structural 645

elements (e.g., the rarity of NP and PP nodes in wh-dependencies) or specific lexical items 646

(e.g., main verbs and complementizers). 647

6.2. Target behavior: Positive correlation 648

To replicate human behavior, the modeled learner’s predictions must generate a 649

positive correlation between verb-frame frequency and acceptability (the pattern from Liu 650

et al. (2022)). Figure 7 shows that many modeled learners can indeed replicate this pattern. 651

For example, the Lex MV baseline trigram model only includes the main verb lexical item 652

in the dependency path representation and is thus well suited for this task by directly 653

tracking the frequency of the main verb (R2=0.434). 654
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Figure 7. Results from all modeled children (variable-size chunks: FG, AG, PCFG; trigram chunks:
Phrasal, Fully Lex, Lex CP, Lex MV) and the LSTM model for the stimuli from Liu et al. (2022), where
humans showed a positive correlation between the frequency of the verb-frame in the utterance
and the utterance’s acceptability. The modeled learner must generate this positive correlation to
qualitatively match the human behavior pattern.

Notably, the FG-based modeled child has equivalent performance (R2=0.433), even 655

though it distributes probability differences for lexical items across many different chunks. 656

This performance contrasts with the AG-based modeled child, who failed to show a positive 657

correlation (R2=0.008). Importantly, the FG learner’s chunks are more general than the AG 658

learner’s chunks, and thus can be used more often when parsing new wh-dependencies. 659

For example, the FG learner learns a “know” chunk like (15) that can be abbreviated with 660

the rule VP → know ... IP. This chunk can be used for any wh-dependency with “know" 661
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followed by an IP (e.g., “What does she know that he likes?”, “What does she know he 662

liked?”, “What does he know that she hates?”, “What does he know she hated?”, etc.) 663

(15) FG-based chunk 664

VP

V

know

... IP

665

In contrast, the AG-based modeled child can’t learn partially-unexpanded chunks 666

like (15). Instead, it can only learn fully-expanded chunks like (16) that can be represented 667

with the rule “VP → know that he PRESENT like". This chunk can be used only for a 668

narrower range of wh-dependencies that have “know” followed by complementizer “that”, 669

embedded subject “he”, and an IP with present tense “like” (e.g., “What does she know 670

that he likes?”, but not any of the others mentioned above that the FG learner could handle 671

with its chunk). 672

(16) AG-based chunk 673

VP

V

know

CP

C

that

IP

NP

N

he

I

PRESENT

VP

v

like

NP

-NONE-

*T*

674

In other words, the FG learner – but not the AG learner – is able to form helpful reusable 675

chunks (here: involving main verb “know” followed by an embedded clause.) So, the FG 676

learner is sensitive to relevant probability differences that target certain lexical items within 677

a structural context, such as the main verb when followed by a tensed embedded clause. 678

More specifically, the AG learner creates many chunks involving the same verb lexical 679

items and so distributes the probability differences between individual verbs across many 680

different chunks. This distribution of probability across many chunks can cause relative 681

frequency differences between individual verbs to be hidden. In contrast, the PCFG learner 682

is more like the FG learner in creating useful chunks for this scenario (R2=0.324). More 683

specifically, the PCFG learner concentrates the probability of a verb into a single rule (e.g., 684

V → know), and so is able to capture a (main) verb distinction. Notably, the PCFG learner 685

doesn’t distinguish if the verb is in the main clause or embedded clause; instead, the PCFG 686

learner just so happens to have created verb-based chunks that serve to distinguish main 687

verb frequency. 688

More generally, the learners that fail to replicate this pattern are of two types: (i) 689

learners incapable of tracking verb lexical items (the Lex CP and Phrasal trigram learners), 690

and (ii) a learner that learns unhelpful chunks (the AG learner). For the modeled learners 691

incapable of tracking verb lexical items, it’s unsurprising that those learners fail to capture 692

a relationship involving verb lexical items – by definition, their representations (in the form 693
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of the chunks they can learn) don’t include the relevant items. In contrast, the AG modeled 694

learner is capable of including verb lexical items in its chunks, but seems to have included 695

them in unhelpful ways. 696

When we look at the LSTM model, we see that it also succeeds (across 10 runs, 697

R2=0.238-0.387; median=0.341). This performance suggests that a model with many free 698

parameters – but which doesn’t transparently use chunks – is able to generate the target 699

acquisition output, given the acquisition input. 700

6.3. Target behavior: Child preferences 701

Figure 8 shows the correlation between the modeled learner’s predictions and the 702

child preference for embedded-clause wh-dependencies for all stimuli from De Villiers 703

et al. (2008), reviewed in Table 4. More specifically, we used a linear regression predicting 704

behavioral scores from model output and report R2 values as a measure of explained 705

variance. Given the small sample size of 9 test items, we focus primarily on comparing R2
706

values across models. 707
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Figure 8. Results from all modeled children (variable-size chunks: FG, AG, PCFG; trigram chunks:
Phrasal, Fully Lex, Lex CP, Lex MV) and the LSTM model) for the stimuli from De Villiers et al. (2008).
We show the correlation between the modeled learner’s predictions and the child preference for
embedded-clause wh-dependencies for all stimuli from Table 4.

Two of modeled children using variable-size chunks, the FG learner and the PCFG 708

learner, showed the strongest alignment with child behavior (FG: R2=0.879, p < 0.01; PCFG: 709

R2=0.601, p < 0.05). No other modeled child relying on chunks fared as well (R2= 0 - 710

0.268). In contrast, the LSTM model also aligned fairly well with child behavior for 3 of 711

its 10 runs (R2=0.228-0.532; median=0.410) – see Figure A3 in Appendix C.2 for details. 712

These high-level results suggest certain types of chunks can be useful for acquisition – and 713

in particular, the FG-based efficient chunks. However, a complex model with many free 714

parameters (the LSTM model) can also succeed sometimes. 715
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Looking more closely, we can also see a few notable results within this broader pattern 716

of results. First, the FG learner has particular success at matching children’s observed 717

embedded-clause preference for items 1 and 2, repeated below as (17)-(18). 718

(17) Item 1: child embedded-clause preference = 0.80 719

a. How did [IP the boy [VP say howmain
[CP he hurt himself]]]? 720

b. How did [IP the boy [VP say [CP [IP he [VP hurt himself howemb
]]]]]? 721

(18) Item 2: child embedded-clause preference = 0.79 722

a. What did [IP the mother [VP say whatmain
[CP she bought]]]? 723

b. What did [IP the mother [VP say [CP [IP she [VP bought whatemb
]]]]]? 724

One key factor for these stimuli is the main verb “say", which is part of a high-frequency 725

chunk in the FG learner’s inventory: “IP → PAST (VP → (V → say)) CP" (abbreviated as “IP 726

→ PAST say CP”). We posit that, by deploying this chunk for the two stimuli in (17b),(18b) 727

the FG learner was able to keep the embedded-clause wh-dependency score higher than 728

the main-clause wh-dependency score. 729

To evaluate this possibility, we altered the stimuli to use the present tense of “say” 730

instead of the past tense in the main clause, as in (19)-(20). The FG-based chunk using 731

“say” in the past tense no longer can be used to generate these syntactic paths. With this 732

manipulation, we find that the FG-based learner no longer prefers the embedded-clause 733

wh-dependencies in (19b)-(20b). Thus, it seems likely that the FG learner relied on the 734

high-frequency “say”-chunk in order to match child preference behavior. Importantly, 735

this chunk isn’t possible for the other chunk-based learners to include in their inventories, 736

highlighting the utility of this kind of flexible chunk. 737

(19) Item 1 using present “does” 738

a. How does [IP the boy [VP say howmain
[CP he hurt himself]]]? 739

b. How does [IP the boy [VP say [CP [IP he [VP hurt himself howemb
]]]]]? 740

(20) Item 2 using present “does” 741

a. What does [IP the mother [VP say whatmain
[CP she bought]]]? 742

b. What does [IP the mother [VP say [CP [IP she [VP bought whatemb
]]]]]? 743

Another notable learner result we see in Figure 8 is a prediction from all modeled learners 744

for a stronger embedded-clause preference for item 3, in contrast to the more-neutral child 745

preference of 0.48. When we look more closely at item 3 from De Villiers et al. (2008), 746

repeated as (21) below, we can see that the embedded clause doesn’t involve a CP phrase 747

(instead, only a non-finite IP appears). For most modeled learners, this non-finite IP 748

structure is still fairly frequent in their experience, and so doesn’t lower the embedded- 749

clause wh-dependency score much at all. 750

(21) Item 3: child embedded-clause preference = 0.48 751

a. Who did [IP the police woman [VP help whomain
[IP to call]]]? 752

b. Who did [IP the police woman [VP help [IP to [VP call whoemb
]]]]? 753

A third common behavior from the chunk-based modeled learners is an overall preference 754

for main-clause wh-dependencies, with most embedded-clause stimuli receiving a score 755

<0.5. This dispreference for embedded-clause wh-dependencies is likely due to embedded- 756

clause syntactic paths involving lower-frequency chunks (e.g., chunks using CP) that 757

therefore reduce the average probability of the syntactic path, compared to main-clause 758

dependencies. The LSTM model behaves somewhat differently, in that it tends to be more 759

neutral for all its preferences (i.e., preference for all items around 0.5). However, for the runs 760

https://doi.org/10.3390/1010000

https://doi.org/10.3390/1010000


Version January 19, 2026 submitted to Journal 23 of 38

where it does generate preferences that better align with child behavior, it also displays a 761

general main-clause preference (i.e., all items but item 3 have a predicted preference <0.5). 762

See Appendix C.2 for more detailed discussion. 763

7. Discussion 764

Here we have explored the potential for a child looking for efficient syntactic chunks 765

to acquire knowledge about syntactic islands. In particular, a modeled child relying 766

on Fragment Grammars (FGs) to define its hypothesis space of possible chunks is able 767

to generate predicted behavior patterns that align with three sets of human behavior 768

patterns signaling knowledge of syntactic islands. No other chunk-based modeled learner 769

succeeded as well, with most failing on at least one of the target behavior patterns. Our 770

results also suggest that simply having more free parameters to encode the input (which 771

the FG-based learner does, compared to the other chunk-based learners) isn’t sufficient for 772

acquisition success, as a comparison model relying on an LSTM with tens of thousands of 773

free parameters wasn’t able to match all target patterns. We interpret our results as support 774

for a learning theory for syntactic islands where the child’s goal is to find efficient syntactic 775

chunks on the basis of the input. 776

We now discuss assumptions of the current FG-based implementation of the efficient- 777

chunks learning theory, and how they might be investigated in future work. In particular, 778

we consider the modeled child’s intake, chunking preferences, and children’s cognitive 779

limitations. We also discuss alternative acquisition targets that include a wider range of 780

empirical data, incorporate the incremental nature of acquisition, and consider the impact 781

of naturally-occurring linguistic variation in children’s input. We conclude with how this 782

approach to acquiring syntactic islands relates to the current theoretical landscape. 783

7.1. Assumptions of the current implementation 784

7.1.1. Intake 785

The current implementation of the learner looking for efficient syntactic chunks relied 786

on a particular perception of the input – namely, phrase structure for the utterance, with the 787

syntactic path between the wh-word and its gap highlighted, as in (22). More specifically, 788

the intake the modeled child learned from included only the syntactic path information 789

(as in (22b)). This intake reflects a learning assumption that children know to ignore other 790

information available when learning about wh-dependencies. 791

(22) a. Phrase structure and highlighted syntactic path for “What does Jack want?” 792

CP

NP

N

What

IP

Aux

does

NP

N

Jack

VP

V

want

NP

what

793
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b. Syntactic path only 794

IP

I

PRESENT

VP

V

want

795

However, do children in fact need to ignore the other information available? That is, 796

could they still succeed at learning the appropriate wh-dependency patterns we looked 797

at here even without this intake filtering? Or instead, is this intake filtering necessary for 798

acquisition success? There are several cases in the acquisition literature that suggest intake 799

filtering is a key component for acquisition success for other phenomena (e.g., basic word 800

order: L. Pearl and Weinberg 2007; English metrical stress: L. Pearl et al. 2017; the English 801

passive: Nguyen and Pearl 2019). 802

One way to investigate the impact of intake filtering is to remove the intake filtering 803

implemented here, and allow children to learn from the entire syntactic structure informa- 804

tion available for the utterance. We discuss two possibilities that implement this option. 805

First, children could simply learn from the entire syntactic structure available, with no 806

special status given to the syntactic path (i.e., (22) without the highlighting). Dickson 807

(2025) uses an FG-based modeled learner to explore this option for acquiring other types of 808

syntactic knowledge, including some wh-dependency knowledge, with moderate success. 809

However, a more thorough investigation using the target wh-dependency patterns we 810

used here remains to be done. One notable issue Dickson (2025) found was data sparsity 811

– because much more information is available in each data point, the FG-based modeled 812

child likely requires more language experience to successfully sift through the possible 813

syntactic chunks. 814

A second way to relax the intake filtering assumption is to include all the syntactic 815

structure for the utterance, but keep the special status of the syntactic path, as in (22). That 816

is, the modeled child has access to the entire structure of the utterance, but knows there’s 817

something important about the syntactic path. One way to implement this idea is by using 818

a grammar formalism that indicates the syntactic path, such as “slash passing” in CCG 819

(Steedman & Baldridge, 2011), HPSG (Borsley & Crysmann, 2021), and GPSG (Gazdar, 820

1985)). In these formalisms, syntactic categories can be functions that specify how the other 821

units are combined with the current linguistic unit. 822

For example, in the CCG formalism from Steedman and Baldridge (2011), the category 823

for the verb “wants” would be a function like (IP\NP)/NP as in (23), specifying how to 824

derive a sentence-level IP. 825

(23) IP

NP

Jack

IP\NP

(IP\NP)/NP

wants

NP

water

826
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In particular, the derivation is something like the following: 827

(i) Combine the unit “wants” with an NP on the right (e.g., “water”) in order to 828

generate the IP\NP unit 829

(ii) Combine this unit with an NP on the left (e.g., “Jack”) to generate the IP 830

The slashes encode direction of the expected unit to be combined, with “/” specifying 831

a combination on the right and “\” specifying a combination on the left. 832

To analyze (22) under the CCG formalism, many of the phrase labels would be replaced 833

by these function labels, as in (24). For instance, the label for the auxiliary “does" is now 834

(CPQ/(IP\NP))/NP, which signals that this unit is first looking for an NP on the right (here, 835

the inverted subject “Jack”). A new unit is formed once this combination occurs that is 836

again looking for another unit type (IP\NP), which itself is looking for yet another unit 837

type (NP), and so on until the wh-question is formed (Hockenmaier & Steedman, 2007). 838

(24) CPWH

CPWH/(CPQ/NP)

What

CPQ/NP

CPQ/(IP\NP)

(CPQ/(IP\NP))/NP

does

NP

Jack

(IP\NP)/NP

want

839

Notably in (24) the “/NP" that percolates up the right edge marks the dependency path 840

of the kind used as the modeled child’s intake in our implementation (i.e., CPQ/NP-(IP 841

\NP)/NP is equivalent to IP-VP, with IP≈CPQ/NP and VP≈(IP \NP)/NP). So, allowing 842

the modeled child’s intake to include full trees that also naturally highlight the syntactic 843

path would be another way of relaxing the current intake restriction to learn only from 844

the syntactic path of the wh-dependency. We do anticipate there may be a similar data 845

sparsity issue to what Dickson (2025) found, as the syntactic category units available to 846

form efficient chunks would be far larger than what we used in the current FG-based 847

implementation. For instance, instead of only VP, a modeled child would potentially 848

need to consider VP-based chunks such as (IP \NP)/NP (a transitive verb), (IP \NP) (an 849

intransitive verb), ((IP \NP)/NP)/NP (a ditransitive verb with an indirect object), and ((IP 850

\NP)/NP)/PP (a ditransitive verb with a prepositional object), among others. 851

7.1.2. Chunking preferences 852

The current FG-based implementation of the efficient-chunks learner has some flexibil- 853

ity about the preferred size of chunks. Recall from Section 3 that a key distinction between 854

the FG-based modeled child and other modeled children allowing variable-sized chunks is 855

how often they prefer to create larger chunks: an AG-based modeled child always prefers 856

to expand potential chunks (pexpand = 1.00) while a PCFG-based modeled child never does 857

(pexpand = 0.00)). The FG-based modeled child can therefore have a preference anywhere in 858

between these extreme points (i.e., 0.00 < pexpand < 1.00). Here, we used hyperparameter 859

settings that led to pexpand = 0.50, based on prior successful FG implementations aimed at 860

learning other linguistic phenomena (T. O’Donnell et al., 2011). 861

While this FG-based modeled child performed well, the PCFG-based modeled child 862

performed almost as well at generating the target behavior patterns (recall Table 5). This 863
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result suggests that having a preference for smaller chunks (i.e., a pexpand closer to 0.0) may 864

also be able to generate target behavior patterns as well as the FG-based implementation 865

here. Future work can investigate more generally if FG-based modeled children with 866

different chunk-size preferences (i.e., different pexpand values) are able to generate the 867

target behaviors as well as (or perhaps better than) the FG-based implementation using a 868

pexpand = 0.50. These future findings would allow us to better understand the necessary 869

chunking preferences a child would need to have in order to succeed at the acquisition task 870

investigated here. 871

7.1.3. Cognitive limitations 872

The FG-based modeled child here incorporated one major limitation in child language 873

acquisition: the (limited) amount of data children encounter before they achieve acquisition 874

success. However, another major limitation for children relates to their cognitive resources, 875

which impacts how children extract information from the data they encounter and update 876

their internal hypotheses (among other things). For instance, limited memory resources 877

might cause children to either miss some of the available information in the moment 878

(Forsythe & Pearl, 2020; Gagliardi et al., 2017; L. Pearl & Forsythe, 2025) or misperceive 879

information that’s there (Gulrajani & Lidz, 2024). The FG-based modeled child implemented 880

here was idealized in this respect – it could perfectly extract the desired intake (i.e., the 881

syntactic path), with no loss or skewing of information. Moreover, the modeled child 882

implemented here received all the data at once that children would encounter during their 883

learning period, rather than only encountering it incrementally as children do. 884

As another example, limited cognitive resources might cause children to imperfectly 885

search their hypothesis space of possible chunk inventories. The FG-based modeled child 886

implemented here was also idealized in this respect – it used computational-level inference 887

techniques to identify a high-probability chunk inventory. In contrast, children would likely 888

be approximating this inference as best they can with their limited cognitive resources, and 889

may not in fact succeed as easily at identifying a high-probability chunk inventory. 890

Future work could implement modeled children that incorporate child-like limitations 891

like those outlined above: forgetting or skewing information in the data, encountering 892

data incrementally, and approximating inference (e.g., Sanborn et al. 2010). If modeled 893

children looking for efficient chunks continue to succeed under these conditions, then 894

we have additional support for the robustness of this learning theory. In contrast, if the 895

efficient-chunks modeled children don’t perform as well, we can better understand the 896

necessary conditions that this acquisition theory depends on. Initial investigations of this 897

type by Dickson and colleagues (Dickson, 2025; Dickson et al., 2024) have found that the 898

FG-based modeled child implemented here can still succeed even in the face of fairly severe 899

memory limitations that cause the modeled child to miss available information. 900

7.2. The target of acquisition 901

Here, we set the target of acquisition to be a set of behavioral patterns signaling 902

knowledge about English wh-dependencies, specifically adult judgment patterns and child 903

interpretation preferences. However, the ideal target of acquisition could (and, in our 904

opinion, should) be broader. We discuss several concrete options for usefully expanding 905

the target state. 906

7.2.1. Additional empirical data about wh-dependencies 907

Wh-dependencies with multiple gaps. 908

A related set of empirical patterns we might wish to account for involves multiple-gap 909

wh-dependencies, such as parasitic gaps (25), purpose clauses (26), and across-the-board 910

extraction (27) (Engdahl, 1983; Grosu, 1973; Ross, 1967). 911

https://doi.org/10.3390/1010000

https://doi.org/10.3390/1010000


Version January 19, 2026 submitted to Journal 27 of 38

(25) Parasitic gaps 912

a. Acceptable: [Which book] did you judge main before reading parasitic? 913

b. Acceptable: [Which book] did you judge main before reading the review? 914

c. Unacceptable: [Which book] did you judge the cover before reading parasitic? 915

(26) Purpose clauses 916

a. Acceptable: [Which book] did you buy main in order to give purpose to Lindy? 917

b. Acceptable: [Which book] did you buy main in order to give it to Lindy? 918

c. Unacceptable: [Which book] did you buy the movie in order to give purpose 919

to Lindy? 920

(27) Across-the-Board extraction 921

a. Acceptable: [Which book] did you read f irst and review second? 922

b. Unacceptable: [Which book] did you read f irst and review the movie? 923

c. Unacceptable: [Which book] did you read the summary and review second? 924

Notably, each of these constructions requires both gaps in order for either the second 925

gap (25)-(26) or either gap (27) to be acceptable. No current acquisition theory accounts 926

for how adults come to know these patterns. The efficient-chunks acquisition theory 927

investigated here may offer an answer, but will need to be evaluated concretely in future 928

work. 929

Other wh-dependency preferences. 930

Another type of behavior we might wish to account for is knowledge of wh- 931

dependency preferences when there are multiple viable (grammatical) options, rather 932

than simply recognizing when a wh-dependency is massively dispreferred (i.e., crossing a 933

syntactic island). Omaki et al. (2014) describes child and adult interpretation preferences 934

for the wh-dependencies like those in (28), where there are two possible gaps for where: one 935

in the main clause and one in the embedded clause. 936

(28) Where did Lizzie {say | tell someone | say to someone} wheremain
937

[that she was gonna catch butterflies whereemb
]? 938

Notably, Omaki et al. (2014) manipulated the main verb phrase (say/tell someone/say to 939

someone) and found that both child and adult preferences vary based on the lexical items. 940

In particular, most children and adults prefer resolving the dependency in the embedded 941

clause (answering where Lizzie will catch the butterflies) when the main verb is “say." 942

However, when the main verb phrase is “tell someone” or “say to someone”, the prefer- 943

ence switches to main-clause resolution (answering where Lizzie told someone or said to 944

someone). 945

Part of this preference is in fact captured by the current FG-based modeled child: when 946

the main verb is “say”, this modeled child prefers an embedded-clause interpretation, as 947

opposed to its general main-clause preference. So, this modeled child could capture the 948

difference between “say” and “tell (someone)”. However, this modeled child can’t capture 949

the difference between “say” and “say to someone”, as the “to someone” part isn’t part 950

of this modeled child’s intake (i.e., “to someone” isn’t part of the syntactic path). One 951

concrete path for future work is to implement some of the suggestions from section 7.1.1 952

that allow more information into the modeled child’s intake, while still preserving the 953

overall approach of identifying efficient chunks. More generally, it seems reasonable that 954

the target of acquisition for wh-dependency knowledge should include preferences like the 955

ones described here, in addition to knowledge of syntactic islands. 956
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7.2.2. Immature wh-dependency knowledge 957

One strength of previous chunking implementations of child language learning is 958

their ability to capture incremental development in children’s production performance 959

(Freudenthal et al., 2015; McCauley & Christiansen, 2019). That is, adult-like knowledge is 960

the eventual acquisition target, but there are stages along the way that are reasonable to 961

consider as target states. In the spirit of these prior approaches that weren’t specifically 962

targeting wh-dependency knowledge, we might consider whether wh-dependency produc- 963

tion data can be used to specify an immature target state that a modeled child could aim to 964

produce. If so, then we would have a much richer target state to evaluate future acquisition 965

theories against. 966

7.2.3. Linguistic variation 967

Another important expansion involves considering linguistic variation, both across 968

languages and within languages. Ideally, a learning theory for syntactic islands (and 969

wh-dependencies more generally) would work universally. For the modeled child trying 970

to identify efficient syntactic chunks, this means that acquisition success should occur 971

no matter what the specific syntactic islands are for a given language or dialect. Prior 972

work examining other chunking approaches to syntactic islands found some success (e.g., 973

English from lower socioeconomic status households: L. Pearl and Bates 2022a) but not 974

complete success (e.g., Norwegian: Kobzeva and Kush 2025). It remains to be seen if the 975

efficient-chunks theory can succeed more completely. 976

7.3. Theoretical implications 977

The efficient-chunks acquisition theory implemented here draws from two different 978

traditions within language acquisition. Similar to generativist approaches, this acquisition 979

theory assumes children have prior syntactic knowledge that allows them to impose certain 980

syntactic structure on their input (Chomsky et al., 1973; Pinker, 1999) when transforming 981

it into their intake. This assumption contrasts with many constructionist approaches to 982

syntactic learning, particularly those involving chunking, which assume the child is operat- 983

ing over unstructured word sequences (Freudenthal et al., 2015; McCauley & Christiansen, 984

2019). 985

However, similar to constructionist approaches, this acquisition theory assumes that 986

sophisticated syntactic knowledge (here, about syntactic islands) doesn’t require specific 987

knowledge a priori, but instead emerges during learning (A. E. Goldberg, 2006; McCauley 988

& Christiansen, 2019; Tomasello, 2001). That is, in contrast to generative approaches to 989

syntactic islands (Chomsky et al., 1973), no island-specific structural knowledge is built in. 990

Notably, the success of this acquisition theory has implications for current propos- 991

als about why there appears to be constrained variation over island constraints cross- 992

linguistically. More specifically, one proposal is that this constrained variation is a result 993

of constraints that are in place during acquisition (Chomsky et al., 1973; Pinker, 1999). 994

Without these built-in constraints (i.e., built-in prior knowledge pertaining to syntactic 995

islands), children could not learn the syntactic islands of their language. Therefore, the 996

reason languages have constraints is because these constraints were built into the child 997

mind in order to make acquisition possible. That is, human-internal constraints active 998

during acquisition – in order to make acquisition possible – are why languages are shaped 999

the way they are with respect to syntactic islands. 1000

Our results weaken this argument by demonstrating how acquisition is possible 1001

without building in constraints specific to syntactic islands. In particular, while some 1002

knowledge of syntax is required a priori, children don’t need island-specific knowledge to 1003
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succeed. So, if languages show constrained variation when it comes to syntactic islands, 1004

this constrained variation could originate from somewhere else. 1005

8. Conclusions 1006

Here we have implemented a language acquisition theory for wh-dependency knowl- 1007

edge (including syntactic islands) where the learner aims to identify an efficient represen- 1008

tation of syntactic chunks for wh-dependencies; knowledge of syntactic islands emerges 1009

from this high-efficiency chunk representation, rather than being represented separately. 1010

When implemented concretely in a modeled child who learns from realistic child input, 1011

this acquisition theory can explain a variety of language behavior patterns that signal 1012

knowledge of syntactic islands. In short, children could acquire sophisticated syntactic 1013

knowledge even with less-sophisticated innate linguistic machinery as long as they have 1014

the right learning objective in mind. 1015
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Appendix A. Implementation of Fragment Grammar 1033

Appendix A.1. PCFG definition 1034

A PCFG includes rules like those in (29), and probabilities associated with the rules. 1035

(29)

Rule Probability
r1 VP −→ VBG NP 0.40
r2 VBG −→ drawing 0.30
r3 NP −→ -NONE- 0.25
r4 -NONE- −→ ∗T∗ 1.0

1036

So, if r2 has probability 0.30 (i.e., p(r2)=0.3), when the grammar generates structure, VBG 1037

will expand to “drawing" 30% of the time, and expand to something else (like “running” or 1038

“sleeping”) the other 70% of the time.. The probability of a structure like (2), repeated below 1039

as (30), under this grammar is calculated by multiplying the probabilities of the rules that 1040

compose the tree i.e., ∏rx∈tree rx). 1041
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(30) VP

VBG

drawing

NP

-NONE-

∗T∗

1042

During initialization of the FG-based modeled child, the probabilities for all rules are drawn 1043

from a multinomial distribution with a Dirichlet prior in order to form the base PCFG for 1044

modeled child. (T. O’Donnell et al., 2011). 1045

Note that an FG also allows rules that represent larger chunks, such as VP → VBG (NP 1046

→ (-NONE- → *T*)). The implementation we use compresses this rule by substituting the 1047

leaves (here: *T*) for the structure that branches into those leaves (here: (NP → (-NONE- 1048

→ *T*))), so that the rule above would be represented as VP → VBG *T*. 1049

Appendix A.2. Pitman-Yor Process 1050

Formally, the Pitman-Yor Process (PYP) is a non-parametric distribution used to cluster 1051

tokens (Harmon et al., 2021; Pitman & Yor, 1997). Here, the modeled child uses the PYP to 1052

sample existing rules (chunks) from the base PCFG representation in order to learn new, 1053

bigger chunks, given the input. For instance, using a PYP, the modeled child may consider 1054

and ultimately learn a new chunk VP → (VBG → drawing) (NP → (-NONE- → *T*)) – 1055

represented as VP → drawing *T* – by clustering together rules r1, r2, r3, and r4 in (29). 1056

Given frequent observations of recurring structures like (30), the modeled child learns 1057

to associate this expansion (i.e., VP → drawing *T*) with a single memorized derivation 1058

instead of expanding each nonterminal (VBG, NP, -NONE-) independently. Chunks ob- 1059

served more frequently are more likely to be reused in the future, enabling the modeled 1060

child to generalize over recurring patterns in the data. 1061

Appendix A.3. Walkthrough of FG Pitman-Yor process 1062

The second key feature in the FG modeled child is a “lazy evaluation scheme” adapta- 1063

tion to the Pitman-Yor process (T. O’Donnell et al., 2011; T. J. O’Donnell et al., 2009): chunks 1064

are allowed to leave some non-terminals unexpanded – that is, these non-terminals can be 1065

evaluated later. This feature allows the FG modeled child to consider chunks like VP → 1066

VBG *T*, with the non-terminal VBG unexpanded. In particular, the modeled child has a 1067

probability for continuing non-terminal expansion (pexpand) (T. J. O’Donnell et al., 2009), 1068

which can be learned from the input. 1069

To illustrate this idea, Figure A1 shows how different treelets (“Computations”) would 1070

be generated using the adapted Pitman-Yor process and a visual metaphor of customers 1071

sitting at tables in different restaurants. Here, the probability of choosing a specific option 1072

(restaurant table) depends on how much probability (how many customers) is already 1073

associated with that option (how many customers are already at the table). 1074

Let’s begin with the leftmost table of the VP → VBG NP restaurant. We follow the solid 1075

red lines to expand the non-terminals VBG (to drawing) and NP (to *T*). This generates a 1076

chunk with all non-terminals expanded (i.e., VP → drawing pictures), and is a chunk an AG 1077

or FG could consider. This chunk also generates the first treelet in the Computations row 1078

(VP → drawing pictures). 1079

Moving to the next table in VP → VBG NP restaurant, we can follow the solid red 1080

line to expand the non-terminal VBG (to framing). We can also leave the NP unexpanded 1081

in this chunk, and follow the dotted gray line to create a separate chunk NP → *T*. The 1082

first chunk has one non-terminal unexpanded (i.e., VP → framing NP), and is a chunk only 1083
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Figure A1. Example FG state adapted from T. J. O’Donnell et al. (2009), using a visual metaphor
of customers sitting at table in different restaurants. Solid red lines indicate a path through the
restaurants as a chunked structure. Dotted gray lines correspond to the lazy evaluation where the
expansion of a given non-terminal is left unevaluated.

the FG could consider. The second chunk (NP → *T*) could be considered by a PCFG, 1084

AG, or FG. Notably, this chunk has a higher probability than many others (i.e., it has three 1085

“people” as its “table”). Combining these chunks together allows the second treelet in the 1086

Computations row (VP → framing *T*). 1087

Moving to the third table in VP → VBG NP restaurant, we can leave the VBG unex- 1088

panded in this chunk, and follow the dotted gray line to create a separate chunk VBG → 1089

drawing or VBG → framing. We can also follow the solid red line to expand the non-terminal 1090

NP to *T*. The first chunk has one non-terminal unexpanded (i.e., VP → VBG*T*), and is a 1091

chunk only the FG could consider. The second chunk (VBG → drawing/framing) could be 1092

considered by a PCFG, AG, or FG. Notably, this chunk also has a higher probability than 1093

many others (i.e., it has three “people” as its “table”). Combining these chunks together 1094

allows the third and fourth treelets in the Computations row (VP → framing/drawing *T*). 1095

Moving to the rightmost table in VP → VBG NP restaurant, we can leave the VBG 1096

unexpanded in this chunk, and follow the dotted gray line to create a separate chunk VBG 1097

→ framing. We can also leave the NP unexpanded in this chunk, and follow the dotted 1098

gray line to make a separate chunk NP → *T*. These are “minimal chunks” that can be 1099

considered by a PCFG, AG, or FG. Combining these chunks together allows the fifth treelet 1100

in the Computations row (VP → framing *T*). 1101

Notably, the third table option seems to offer the highest probability chunk options for 1102

generating these treelets, since its chunks involve more probability (“people”): VP → VBG 1103

*T* (2 people) and VBG → drawing/framing (2 or 3 people). Only the FG can consider the 1104

first chunk of this option, which is larger than a minimal PCFG chunk but still includes 1105

unexpanded non-terminals. 1106

Appendix A.4. Implementation of the FG modeled child 1107

We follow T. J. O’Donnell (2015) for the FG Pitman-Yor parameter settings: a=0, b=1. 1108

We set the Dirichlet hyperparameter π=1, capturing a weak uniform prior over possible 1109

chunks. 1110

The probability that a potential chunk expands a non-terminal to make a larger chunk 1111

(pexpand in the main text) is sampled from a beta distribution (T. J. O’Donnell et al., 2009), 1112

with a mean (“sticky concentration parameter”) ν = 1 and a sample size (“sticky distribution 1113
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parameter”) µ = 0.5. These settings correspond to Beta(0.5,0.5) in the traditional α and β 1114

parameterization of this distribution. With α and β <1, this distribution places much of 1115

the probability mass on the extremes of 0 and 1. So, the modeled child will often learn 1116

strategies that expand a particular non-terminal with probability close to 1 (almost always) 1117

or close to 0 (almost never). 1118

We performed 1,000 sweeps of the Metropolis-Hastings sampling algorithm to iden- 1119

tify potential fragment grammars (chunk inventories). We used the highest-probability 1120

grammar. 1121

To assign probabilities to particular data points (syntactic paths), we calculate the 1122

maximum a posteriori score under the grammar (Eisenstein, 2018), corresponding to the the 1123

highest-probability parse for the item. 1124

Appendix B. Comparison learners 1125

Appendix B.1. Implementation of the PCFG and AG modeled children 1126

For the PCFG modeled child, pexpand should = 0, which is parameterized via a beta 1127

distribution with a mean (“sticky concentration parameter”) ν = 1 and a sample size (“sticky 1128

distribution parameter”) µ = 0. This corresponds to Beta(0,1) in the traditional α and β 1129

parameterization, and places all the probability mass on 0. So, the modeled child will only 1130

learn strategies that never expand a non-terminal. 1131

For the AG modeled child, pexpand should = 1, which is parameterized via a beta 1132

distribution with a mean (“sticky concentration parameter”) ν = 1 and a sample size 1133

(“sticky distribution parameter”) µ = 1. This corresponds to Beta(1,0) in the traditional α 1134

and β parameterization, and places all the probability mass on 1. So, the modeled child 1135

will only learn strategies that always expand a non-terminal. 1136

The remaining implementation is the same as the FG modeled child (i.e., Pitman-Yor 1137

parameter settings, Dirichlet settings, Metroplis-Hastings sweeps, grammar selection, and 1138

calculating highest-probability parses for items). 1139

Appendix B.2. Implementation of trigram-based modeled children 1140

Each trigram t ∈ Trigrams is comprised of three units: u1-u2-u3. We calculate the 1141

probability of t from the input, by observing the trigram’s frequency and using Laplace 1142

smoothing to account for unseen trigrams, as in (A1). 1143

(A1) Pt(u1-u2-u3) =
count(u1-u2-u3) + 1

count(u1-u2) + |Trigrams| 1144

We score a data point as follows: For each element in the data point sequence S, we 1145

calculate the joint log probability of S by summing over the log probabilities of each trigram 1146

that comprises the sequence ts ∈ S, as in (A2). 1147

(A2) log P(S) =
S

∑
ts=1

log(Pts(u1-u2-u3)) 1148

Appendix B.3. LSTM implementation 1149

The long-short term memory (LSTM) model (Hochreiter & Schmidhuber, 1997) is a 1150

type of Recurrent Neural Network with an additional memory gating mechanism, making 1151

it better at learning that requires information to propagate across long sequences (Eisenstein, 1152

2018). 1153
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The input sequences to the LSTM we used are the length of the maximum sequence 1154

(14) plus a start symbol and an end symbol. A padding character was added for shorter 1155

sequences. This padding character was masked when calculating loss. We trained a 1156

single-layer LSTM on each sample of the training data with the objective of minimizing 1157

cross-entropy loss. We selected the size of the hidden state to be the size of the vocabulary: 1158

344. We held out 20% of the data for each sample of the training data and performed 1159

a hyperparameter grid search to determine which values resulted in a minimum of the 1160

held-out loss. We found that the following parameter setting resulted in the lowest held-out 1161

loss across samples: embedding dimension = 300, batch size = 300, number of epochs = 500, 1162

learning rate = 0.0001. 1163

We score a data point as follows: For each element in the data point sequence S, we 1164

perform a logsoftmax over the LSTM hidden state to get log probabilities for the following 1165

unit ut+1. This log probability distribution corresponds to the model’s expectation about 1166

the next unit. Extracting the correct next unit from this distribution gives us a list of 1167

log probabilities corresponding to each observed unit in the sequence. Summing these 1168

probabilities gives us the joint log probability of the sequence, as summarized in (A3). 1169

(A3) log P(S) =
T−1

∑
t=1

log P(ut+1|u1:t) 1170

Appendix C. LSTM results 1171

Appendix C.1. Sprouse et al. (2012) island pattern 1172
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Figure A2. Zoomed-in results of the LSTM model for the behavioral patterns from Sprouse et al.
(2012).

As mentioned in the main text, the LSTM model is capturing behavioral patterns for 1173

all island types except the Adjunct Island (see Figure A2, where 4 of 10 runs show an island 1174

difference with a non-positive slope). The model runs that struggle seem to fail due to 1175

improperly dealing with the complementizer lexical information. In particular, the failing 1176
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runs strongly expect the high-probability “null" lexical item following the “CP", and aren’t 1177

sensitive to the low-probability “that" vs. unseen “if" distinction. 1178

Appendix C.2. De Villiers et al. (2008) child preferences 1179

Recall that the chunk-based modeled children showed a general dispreference for the 1180

embedded-clause wh-dependency. In contrast, the LSTM model predicts preferences close 1181

to 50% for all items (see Figure A3). 1182
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Figure A3. LSTM model predictions (across 10 runs) vs. the behavioral results from De Villiers et al.
(2008). The runs are grouped according to whether the linear regression–predicting behavioral scores
from model output–yielded a statistically significant result (p < 0.05).

Interestingly, the best and worst model runs for the Adjunct island behavioral patterns 1183

were also the best and worst runs for these child preference patterns. As with the Adjunct 1184

behavioral patterns, the complementizer lexical items seem to offer one explanation for the 1185

predicted child preference patterns. In particular, the failing runs fail to detect that unseen 1186

complementizers (e.g., “what”, “how”, “where”) are much worse than other lexical item 1187

options. 1188
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