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Abstract

How do children acquire knowledge of syntactic islands? Cross-linguistically, we see
constrained variation (Sprouse et al., 2021), suggesting an interplay between child-internal
factors and language-specific input. We use computational cognitive modeling to investi-
gate a recent theory of the learning mechanism which relies on the child learning efficient
chunks of syntactic structure from the input (Dickson, 2025; Dickson et al., 2024, 2022).
Specifically, we adapt the Fragment Grammar (FG) chunking approach (T. O’'Donnell et al.,
2011; T. J. O’Donnell, 2015; T. J. O’Donnell et al., 2009) to syntactic islands, where the
modeled child identifies both (i) chunks of hierarchical structure, and (ii) the probabili-
ties of the learned chunks, in order to maximize the probability of the input. Following
Dickson et al. (2022), the modeled child learns from cognitively-plausible input (realistic
distribution and quantity of utterances) drawn from the CHILDES Treebank (L. Pearl &
Sprouse, 2013). The modeled child is evaluated on its ability to replicate empirical data
indicating human knowledge of syntactic islands (De Villiers et al., 2008; Liu et al., 2022;
Sprouse et al., 2012), thereby demonstrating if the modeled child has acquired the relevant
syntactic island knowledge. The FG-using modeled child performs better than several
comparison modeled children as well as a current large language model, thus supporting
the FG-chunk-based theory of acquisition. We discuss limitations and the potential of this
efficient-chunking theory to explain the acquisition of additional empirical data, as well as
implications for the relationship between acquisition and cross-linguistic variation with
respect to syntactic islands.

Keywords: language acquisition; computational cognitive modeling; syntactic islands;
structural chunking; efficiency; English

1. Syntactic islands and acquisition

Consider the English wh-questions in (1): (1a) and (1b) seem acceptable, while (1c)
seems far less acceptable (Sprouse et al., 2012).

(1) a. What does Jack think __,,; is expensive?
b. Who does Jack think the necklace is for _ ;,,?
c. " Who does Jack think the necklace for __, is expensive?

One explanation for this difference is that the wh-dependency in (1c) crosses a “syntactic
island” (Ross, 1967), a latent structure that English speakers generate when processing this
utterance. The island metaphorically has “no way off”, so island-crossing wh-dependencies
are typically found to be much less acceptable than non-island-crossing wh-dependencies
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(see e.g., Sprouse et al., 2012). Since Ross’s seminal work on syntactic islands, there have
been hundreds of articles across many languages trying to understand the nature of the
observed constraints on wh-dependencies (see Boeckx (2012) for a valuable synthesis of
much of the major debates, and Cuneo and Goldberg (2023), Momma and Dillon (2023),
A. Goldberg et al. (2024), Winckel et al. (2025), and Matchin et al. (2025) (among others) for
recent discussion).

Notably, much of this past work has been dedicated to understanding the adult
representation of the observed language behavior. Less attention has focused on concrete
theories for the acquisition of syntactic island knowledge. An influential generativist theory
suggests that islands can be decomposed into building blocks (e.g., “bounding nodes” in
the theory of Subjacency: Chomsky (1981); Chomsky et al. (1973); Huang (1982); see Boeckx
(2012) for more recent adaptations); children must then have built-in knowledge about
the inventory of potential island building blocks for human languages. Then, children
learn which building blocks comprise islands for their language. How children learn which
specific island building blocks are appropriate for their language is a process typically
discussed less.

Here, we offer a concrete proposal for an alternative acquisition theory that draws
inspiration both from this generativist approach as well as from usage-based approaches
that leverage the statistical information available in children’s input (A. E. Goldberg, 2006;
McCauley & Christiansen, 2019; Tomasello, 2001). More specifically, the acquisition theory
we implement here relies on children discovering the appropriate syntactic island building
blocks (in line with the generativist approach) from the statistics of their input (in line
with the usage-based approach), assuming some prior knowledge of the syntactic structure
underlying observable utterances. Importantly, any theory must be able to account for
the incredible efficiency of child acquisition in the face of what appear to be severe data
ambiguity issues (a problem noted extensively in the research community as the “Poverty
of the Stimulus”: see L. Pearl (2022) for a recent overview).

Table 1 illustrates one aspect of the data ambiguity issue in children’s input for learning
about syntactic islands, drawing from a sample of English child-directed speech from the
CHILDES Treebank (L. Pearl & Sprouse, 2013). In particular, the input is dominated by
structurally-simple questions — five question types make up over 50% of the wh-dependency
input (see L. Pearl and Sprouse (2013)) and L. Pearl and Bates (2022a) for similar findings
about how skewed children’s input seems to be). Thus, the data available are often
ambiguous when it comes to the more complex wh-dependencies — how are children to
know which are allowed (like (1a)) and which aren’t (like (1c)), when neither type reliably
occurs in their input? Children nonetheless reliably figure it out.

Example Wh-Dependency | Count | Percent of Stimuli | Cumulative Percent
What's that? 3,704 29.2% 29.2%
Who's that? 1,502 11.8% 41.0%
What are you doing? 696 5.5% 46.5%
What did you do? 466 3.7% 50.1%
What was that? 264 2.1% 52.2%

Table 1. Example wh-dependencies from the 5 most common wh-dependency types extracted from a
sample of 12,704 child-directed wh-dependencies from the CHILDES Treebank

Moreover, children seem to be very data-efficient, even when compared to recent
advances in language modeling. We now have large language models that produce lan-
guage closely resembling human language (Futrell & Mahowald, 2025). However, these
models require hundreds of billions of words to learn from. In contrast, children seem
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to accomplish much the same with less than 100 million words to work with (Warstadt
et al., 2023). Children’s remarkable data-efficiency is even more surprising because of the
known cognitive limitations that children have (Behm et al., 2025; Fandakova et al., 2014;
Gathercole et al., 2004; Paris, 1978). That is, children’s ability to extract information from
their input is immature, and so their intake can be quite different from the available input
(L. Pearl, 2023a, 2023b).

Here, we investigate an acquisition theory for islands that can succeed under these
conditions — that is, an acquisition theory capable of learning relevant syntactic islands
knowledge as data-efficiently as children do. We begin by motivating the efficient-chunking
approach at the heart of this acquisition theory, and reviewing chunking as a cognitive
strategy, as well as prior chunking approaches in syntactic acquisition. We then discuss
the implementation of the efficient-chunking strategy that we evaluate here, which relies
on Fragment Grammars (FGs) (T. O’'Donnell et al., 2011). We turn then to the specification
of the FG-based modeled child’s acquisition task, including the input, the intake, and the
target behavior signaling acquisition of syntactic island knowledge.

We evaluate this FG-based modeled child by how well it can generate the target be-
havior, given realistic input, and compare its performance against several other modeled
children as well as a neural network model whose architecture underlies high-performing
large language models. We find that the FG-based modeled child can generate all target be-
havior patterns, and does so better than every other comparison modeled child and model.
These results both support our proposed efficient-chunk-based acquisition theory, and
highlight its superior performance for acquiring syntactic island knowledge from realistic
input. We discuss key underlying assumptions of the current FG-based implementation
of the efficient-chunking acquisition theory, and their potential impact on our findings
here. We conclude by considering future directions about acquiring broader knowledge
of wh-dependencies and the implications of our findings for the relationship between
acquisition and constrained cross-linguistic variation of syntactic island constraints.

2. Efficient chunking for syntactic islands
2.1. Why chunking?

From a human cognition standpoint, a chunk is a series of units grouped together, typi-
cally based on some efficiency consideration (Chase & Simon, 1973; Miller, 1956; Ramkumar
et al., 2016; Rosenbloom & Newell, 1982; Thalmann et al., 2019). Humans are limited-
resource agents (Lieder & Griffiths, 2020), and so much of our cognitive success relies on
efficiently organizing the input into units that are both useful and compact, such as with
structured sequential information in the domains of language, vision, and motor planning
(Ding, 2025). For instance, in motor planning e.g., speech articulation), deploying a chunk
of action sequences that often occur together is more energy-efficient than planning each
individual muscle twitch (Derrick et al., 2024; Ramkumar et al., 2016). This efficiency
results because smooth, combined motions (i.e., motor chunks) expend less energy than
jerky motions where each movement is planned separately. Moreover, planning a long
sequence of actions expends computational energy in considering all possible ways to
group individual actions. Chunked actions therefore require less computation to plan.

More specifically, useful chunks lead to “savings” on future input that can be broken
into those useful chunks (e.g., in speech segmentation: M. C. Frank et al. 2010; Jessop et al.
2025; Perruchet et al. 2014; Perruchet and Vinter 1998). For syntactic acquisition, multi-word
chunks appear to be a key unit of representation (Arnon, 2021; Arnon & Clark, 2011; A.
E. Goldberg, 1995) and sensitivity to frequently-reused language chunks has been linked to
success in second-language acquisition (Pulido, 2021). With this in mind, we turn now to
previous models of syntactic acquisition that incorporate chunking.
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2.2. Previous models of syntactic chunking

Two notable chunk-based acquisition theories for syntax involve the child creating use-
ful multi-word chunks from the input, based on input processing considerations (Freuden-
thal et al., 2024; McCauley & Christiansen, 2019). In the Model of Syntax Acquisition
in Children (MOSAIC) (Freudenthal et al., 2024, 2006, 2015), the modeled child tracks
how often a multi-word sequence is encountered in the input — if the sequence occurs
often enough, the sequence becomes a multi-word chunk (where individual words within
that chunk can’t be substituted). Similarly, the Chunk-Based Learner (CBL) (McCauley
& Christiansen, 2019) creates multi-word chunks out of bigrams whose transitional prob-
ability is sufficiently high. Notably, the CBL-modeled child also reuses these chunks to
process future input and decide which future sequences ought to be chunked. Both the
MOSAIC and CBL modeled learners align with cross-linguistic child comprehension and
production data. Notably, these chunking approaches were evaluated on their ability to
parse and generate child language data in general (i.e., naturally-occurring utterances in
child language interactions).

In contrast, the syntactic chunking approach of L. Pearl and Sprouse (2013) aimed
specifically to explain the acquisition of syntactic island knowledge, as measured by be-
havior in controlled experiments. The modeled child’s chunks incorporated syntactic
structure, and were pre-specified as three units in size (i.e., trigrams). The units themselves
primarily consisted of phrase structure pieces, such as “verb phrase” (VP), though the
chunks could also include information about a single lexical item type (complementizers
like “that”). The modeled child determined the relative frequency of the syntactic trigrams
in its chunk inventory, based on the input, and then used these chunks to distinguish
between wh-dependencies that crossed syntactic islands from those that didn’t. The mod-
eled child’s output aligned with English wh-dependency judgments (see also L. Pearl and
Bates (2022b)), suggesting these syntactic trigram chunks could explain acquisition of some
syntactic island knowledge. From a theoretical standpoint, this means that “knowledge
of syntactic islands” is distributed across the modeled child’s inventory of chunks (and
their resulting potential combinations). That is, the knowledge of any given syntactic
island emerges from the child’s inventory of syntactic trigram chunks and their associated
probabilities.

In the syntactic trigrams approach, the efficiency of a chunk was captured via its
probability, with higher-probability chunks yielding higher-probability parses of wh-
dependencies. In other words, input that could be processed with higher-probability
chunks was itself given a higher probability. One way to interpret input with a higher
probability is as input that’s easier (more efficient) to process, and that’s the same link we'll
use in our proposed chunking acquisition theory. That is, efficient chunks make the input
have a higher probability for the modeled child. So, the modeled child’s goal is to find
efficient chunks that explain the input, i.e., give the input in general a high(er) probability.

2.3. Finding efficient chunks: The Fragment Grammar learner

We adapt and expand prior chunk-based approaches in order to explain more empirical
data on the acquisition of syntactic islands. Like all prior chunking approaches, the child we
model is looking for chunks that explain both current and future input with high probability.
Like L. Pearl and Sprouse (2013), the child we model perceives syntactic structure in the
input - i.e., the modeled child’s intake includes phrase structure, as in Figure 1. A key
difference for our modeled learner is flexibility in the nature of the chunks, in terms of both
the units that comprise the chunks and how many units can be involved in a chunk.

More specifically, the units forming the chunks can be any phrase structure node
or lexical item available in the input representation (instead of only words (Freudenthal
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etal., 2024; McCauley & Christiansen, 2019) or only phrase structure nodes with a single
lexical item type (L. Pearl & Sprouse, 2013)). In addition, the chunks are free to vary in
size, ranging from a single lexical item to the structure of an entire utterance (see Figure 1’s
minimal, intermediate, and maximal learner chunk representations).

minimal learner intermediate learner maximal learner

CP

Cp

WHNP P
I e
WP AUX NP VP
‘ - - \ | | e
what / | are | [PRP) fVBG NP) what || are | PRP | VBG NP what are PRP VBG NP
[ [ \ \V\ \ | | |
you,/ \drawing @ you |‘drawing \-NONE- you drawing -NONE-
‘ [
¥ AT KTk

Figure 1. Potential chunk representations of the wh-dependency “What are you drawing?”. The
modeled child receives syntactic structure for the dependency, which is then chunked in different
ways. The minimal learner (left) selects the smallest “chunks” available, effectively not chunking.
The intermediate learner (center) makes several chunks of different sizes. The maximal learner (right)
makes one chunk out of the entire wh-dependency structure.

We implement a modeled child’s potential inventory of chunks using Fragment Gram-
mars (FGs) (T. O’'Donnell et al., 2011)), where a potential inventory (i.e., “grammar”) of
chunks (i.e., “fragments”) has some probability assigned to each chunk. The FG-based
modeled child searches the space of possible chunk inventories (i.e., FGs), using the input to
identify which chunk inventories yield a high probability for the input data. The intuition
for this search is similar to prior chunking approaches: if certain parts of the input appear
together frequently, the modeled child will chunk these parts together.

The modeled child searches the hypothesis space of possible chunk inventories by
using Bayesian inference, a principled reasoning approach that accords well with empirical
data on human cognition, including language acquisition (e.g., Dowman, 2000; Feldman
et al., 2013; Foraker et al., 2009; S. Frank et al., 2013; Goldwater & Griffiths, 2007; Griffiths
etal., 2024; Gutman et al., 2015; Harmon et al., 2021; Kwiatkowski et al., 2012; T. J. O’Donnell,
2015; L. Pearl et al., 2010; L. S. Pearl & Mis, 2016; L. S. Pearl & Sprouse, 2019; Perfors et al.,
2011; Perkins et al., 2017; Phillips & Pearl, 2015, among many others) — see L. S. Pearl (2021)
for a recent overview. In particular, the modeled child uses Bayesian inference to balance
how well the chunks explain the input (by giving the input a high probability) with how
“simple” the chunk inventory is (e.g., the size of the chunk inventory: Chater and Vitdnyi
2007). The smaller the chunk inventory, the more space-efficient the chunk inventory is. So,
the modeled child is searching for a space-efficient chunk inventory that can still give the
input a high probability.

We can see how this balance would play out in the sample chunk representations in Fig-
ure 1, whose characteristics are summarized in Table 2. The maximal learner (Figurel: right)
creates one chunk per wh-dependency type, and so gives any particular wh-dependency a
very high probability. However, its chunk inventory is very large (as large as the number of
wh-dependency types in the input), and so it’s not very space-efficient.

In contrast, the minimal learner (Figurel: left) creates only tiny “chunks” (the smallest
units possible), and so has a fairly space-efficient inventory. However, because no larger
chunks are available, any “efficiency savings” from frequently-appearing structural se-
quences are lost. Every structural piece must be constructed every single time from the tiny
chunks. So, the probability of the input will be lower.
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In contrast to the minimal learner, the intermediate learner (Figurel: center) leverages
frequently-appearing structural sequences to make larger chunks, in addition to the small-
est “chunk” units that the minimal learner has. While the intermediate learner’s chunk
inventory is therefore larger (less space-efficient) than the minimal learner’s, the intermedi-
ate learner’s probability of the input data is higher — this is because the chunks, comprised
of frequently-appearing structural sequences, yield higher probability for a given structural
sequence than the combination of smaller units that comprise that structural sequence. In
other words, the minimal learner must rely on combining the smaller units every time,
while the intermediate learner can use the chunk. So, the intermediate learner yields a
higher probability for the input than the minimal learner does, even though it has a less
space-efficient chunk inventory than the minimal learner does. Bayesian inference allows
the modeled child to find the chunk inventory that strikes the best balance between these
two factors (input probability and space efficiency).

We note that the modeled child is using a computational-level implementation of
Bayesian inference to approximate the mental computation children perform. More specifi-
cally, the modeled child samples a potential chunk inventory, and uses that chunk inventory
to analyze the input. Then, the modeled child begins the following cycle: (i) sample a
different potential chunk inventory, (ii) analyze the data with that inventory, (iii) adopt the
new chunk inventory if the data have a higher probability with that inventory than with
the previous chunk inventory. This cycle is repeated until the modeled child identifies a
chunk inventory that yields a high probability for the input (and in particular, no other
sampled chunk inventory yields a higher probability).

To be clear, we don’t assume that children are capable of accomplishing this mental
computation of Bayesian inference in this way — for one thing, it seems unlikely they can
hold a detailed representation of all their input data over many years in mind. However,
we are committed to children performing Bayesian inference, likely approximating this
mental computation as best they can with the cognitive resources they have available.
This is why we use “computational-level" to describe the modeled learners: we believe
children perform the mental computation of Bayesian inference, but not necessarily using
the algorithm the modeled children here use.

Chunk inventory type | Space-efficient? | High input probability?
Minimal Yes Somewhat
Intermediate Somewhat Yes
Maximal No Yes

Table 2. Characteristics of chunking strategies (minimal, intermediate, and maximal chunking), in
terms of whether the chunk inventories are space-efficient and also yield a high probability for the
modeled child’s input data.

3. The FG modeled child: Implementation

The FG modeled child considers chunk inventories (i.e., Fragment Grammars) that are
a type of a Probabilistic Context-Free Grammar (PCFG). A chunk can be represented as a
rule that specifies how one unit can expand into other units. For example, the structure
in (2) can be expressed with several PCFG chunks (3), which can be represented with the
rules also shown in (3).
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@) VP

N

VBG NP

drawing  -NONE-

*Tx
3) PCFG chunks and rules
VP VBG NP -NONE-
VBG NP drawing -NONE- * T

VP - VBPNP VBG — drawing NP — -NONE- -NONE- — *T*

The FG chunk inventories differ from those that a PCFG can consider in two key ways. First,
the FG allows larger chunks, as opposed to the minimal chunks (i.e., those that the minimal
learner of Figure 1 uses). For example, the FG modeled child can consider the full VP chunk
in (2), which might be represented in a rule as something like VP — (VBG — drawing)
(NP — (-NONE- — *T*)). See Appendix A for the notation we implemented to capture
FG chunks like this. The mathematical implementation that allows this larger-chunking
process (known as an Adaptor Grammar: Johnson et al. 2007; T. ]. O’Donnell 2015) uses a
Pitman-Yor process (Pitman & Yor, 1997); notably, this implementation can only consider
chunks that are fully expanded to the leaves. So, for example, a modeled child using this
process could consider the chunk in (2) but not the chunk in (4), because the chunk in (4)
leaves VBG unexpanded. See Appendix A.2 for details.

@) VP

/\
VBG NP

| |

.. -NONE-

*Tx

In contrast, a FG chunk inventory can include chunks like (4) that involve unexpanded
nodes. For example, the chunk in (4) can be represented as something like VP — VBG (NP
— (-NONE- — *T*)). This is a chunk that the intermediate learner of Figure 1 uses, which
allows the specific verb to vary while keeping the wh-object position in the VP chunk. See
Appendix A.3 for the “lazy evaluation” mathematical implementation of the Pitman-Yor
process that allows this chunk option (T. ]. O’Donnell, 2015).

Once the modeled child has inferred an efficient chunk inventory (and each chunk’s
associated probability) from the input, the modeled child can then generate a probability
for any structure that can be comprised of the chunks available in that inventory. Here,
we assume a structure’s probability is the product of the chunks that comprise it (i.e.,

P(StruCture) = Hchunk cjEstructure P(Cz))

4. The FG modeled child’s acquisition task
4.1. Input

The FG modeled child receives a realistic sample of child-directed wh-dependencies,
derived from a distribution of 12,704 wh-dependencies from the CHILDES Treebank
(L. Pearl & Sprouse, 2013). We follow L. Pearl and Bates (2022a) and estimate the to-
tal number of wh-dependencies that children encounter by considering their potential
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learning period, the average waking hours of a child at different ages (Davis et al., 2004),
the utterances heard per hour (Rowe, 2012), and the relative frequency of wh-dependencies
in children’s input (see Table 3). We consider the learning period to start at 18 months
when children seem capable of reliably recognizing wh-dependencies in their input (Perkins
& Lidz, 2021). We consider the learning period to end at age 4, when children seem to
demonstrate adult-like knowledge of several syntactic islands (De Villiers et al., 2008)
(though there is evidence for adult-like knowledge of some islands even younger: Hirzel
2022).

min in learning period | utt/min | wh-dep/utt | = total wh-dep es-
= waking hours / 60 timated in learn-

ing period
886,950 | 144 | 0164 | 2,094,753

Table 3. Calculation of the wh-dependencies children encounter during the proposed learning period
from 18 months to 4 years old. Values are derived from L. Pearl and Bates (2022b), which estimated
the total number of wh-dependencies that children encounter by considering the average waking
hours (Davis et al., 2004) per age, utterances encountered per minute (Rowe, 2012), and the proportion
of wh-dependencies in the utterances in children’s input.

The resulting estimate for the quantity of wh-dependencies children encounter is a
little over 2 million (2,094,753, out of 2,094,753 /0.164 = 12,772,884 utterances). The modeled
child sees this quantity of wh-dependencies, distributed according to the sample of child-
directed wh-dependencies from the CHILDES Treebank. As noted above in Table 1, the
majority of wh-dependencies are of only a few types (though see (L. Pearl & Bates, 2022a;
L. Pearl & Sprouse, 2013) for the complete distribution of wh-dependency types in different
samples of the CHILDES Treebank).

4.2. A modeled child’s intake

We follow L. Pearl and Sprouse (2013), and assume the modeled child’s intake is
a filtered subset of the available input (L. Pearl, 2023b). More specifically, the modeled
child focuses on utterances containing wh-dependencies, ignoring other utterances. Then,
for a given wh-dependency, the modeled child projects syntactic structure onto the wh-
dependency, given its prior syntactic knowledge (see (5) for the wh-dependency “Who does
Jack think the necklace is for?”!). With this syntactic structure in place, the modeled child
then focuses on a subset of the available structure, which is the “syntactic path” connecting
the wh-word to its gap, as in (5a).

More formally, L. Pearl and Sprouse (2013) define this syntactic path as the set of
phrase structure nodes that contain the gap, until the phrase structure node that is parent
to the wh-phrase is reached. In (5a), the gap _,, is contained by PP, which is contained
by VP, and so on, until IP is reached. Then, the parent of IP is CP, which is the parent of
the wh-phrase. The syntactic path can be represented by a portion of the actual structure
available, as in (5b), focusing on the phrase structure nodes and their accompanying heads
in the syntactic path. A flattened version of the syntactic path can be represented as a
sequence, such as IPPRESENT—VPthink—CPNULL—IPpRESENT—VPbe—PPfDr for (5a).

(5)  Syntactic path representation for “Who does Jack think the necklace is for?"

1 Our implementation assumes a particular syntactic phrase structure representation, but a syntactic path can be

defined for any syntactic tree structure.
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a. Projected syntactic structure and syntactic path 310
CP s
/\
NP IP
] T
N Aux NP I VP
/\
Who does N PRESENT V cp
/\
Jack think C IP
T
NULL NP I vP

N

the necklace PRESENT V PP

VN

be P NP
for o
b. Syntactic path only a2
IP 313
PRESENT VP
think CP
NULL P
PRESENT P
PR
be PP
|
for
syntactic path sequence: 314
IPpresent-VPihink-CPnurr-IPpresent-VP be'PPfor 315
4.3. Modeled child target behavior 316

Linguistic knowledge is typically assessed by mapping observable behavior to un- s
derlying knowledge; we thus review three behavior patterns that serve as signals of s
syntactic island knowledge and so function as the target of acquisition for the modeled s
child here (L. Pearl, 2023b). The first two are acceptability judgment patterns for different sz
wh-dependencies, while the third is an interpretation preference pattern for utterances sz
ambiguous between two possible wh-dependencies. 32

4.3.1. Adultjudgment data 523

The first pattern is a superadditive acceptability judgment pattern, as shown in the s
interaction plot in Figure 2 — the superadditive pattern itself appears as non-parallel lines sz
(L. Pearl & Sprouse, 2013; Sprouse et al., 2012). 326

The judgment pattern arises from constructed stimuli sets like (6) that vary two s
factors: the length of the wh-dependency (matrix clause vs. embedded clause) and the s
absence/presence of a proposed island structure (non-island vs. island) (Sprouse et al., 32
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Figure 2. An interaction plot showing a pattern in the acceptability of wh-dependency judgments,
which appears as non-parallel lines. The figure is annotated with examples of the four conditions
from example (6).

2012). Examples (6a) and (6b) vary by the length of the dependency, but neither has an
island structure. Square brackets surround the proposed island structure in (6¢)-(6d), and
the wh-dependency in (6d) crosses the island structure.

(6) Who __,, thinks the necklace is expensive? MATRIX | NON-ISLAND
What does Jack think __;,; is expensive? EMBEDDED | NON-ISLAND
Who __, thinks [cp [ip [np the necklace for Lily is expensive]]]?  MATRIX | ISLAND

*Who does Jack think [cp[ip[xp the necklace for __y,] is expensive]]? EMBEDDED | ISLAND

Qo o

Importantly, each factor is associated with a decrease in acceptability. First, an embedded
dependency is less acceptable than a matrix dependency (length: (6b) is less acceptable
than (6a) by some amount, [en). Second, an utterance with an island structure in it is less
acceptable than an utterance without one (absence/presence: (6¢) is less acceptable than
(6a) by some amount, isl). An additive effect for an embedded dependency with an island
structure in it (6d) would be the simple addition of these two decreases in acceptability:
(6d) = (6a) - (len + isl). So, there would be no interaction and Figure 2 would show parallel
lines. A superadditive effect for an embedded dependency with an island structure in
it (6d) would be an extra decrease beyond the simple addition of the two decreases due
to length and presence of an island structure: (6d) = (6a) - (Ien + isl + extra). This extra
decrease for (6d) causes the interaction plot to show non-parallel lines.

3 (6b-6d)
C
o
2
ES
°
C
©
2 (6a-6¢)
matrix embedded
condition

Figure 3. An acceptability difference plot showing the superadditive acceptability judgment pattern
as a difference between the acceptability of the non-island and island structures, varying the factor of
length. The difference is greater for the embedded wh-dependencies, which appears as a line with a
positive slope on this plot between matrix and embedded stimuli.
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This superadditive pattern can also be summarized by plotting the difference in ac- s
ceptability between the non-island and island structures, as in Figure 3. In particular, the 34
superadditive pattern is observed when the difference between the matrix wh-dependencies s
(rating(6a) - rating(6¢)) is less than the difference between the embedded wh-dependencies 3=
(rating(6b) - rating(6d)). That is, the “island difference” is how the matrix wh-dependency s
difference compares to the embedded wh-dependency difference, with the idea that the s
increase in difference comes from the presence of the island-crossing dependency in ex- 35
amples like (6d). When the matrix difference is less than the embedded difference, we 15
see a positive slope, as in Figure 3. So, a positive slope on this kind of “island difference s
plot” indicates a superadditive acceptability judgment pattern, which signals knowledge s
of syntactic islands (such as the one in (6d)). This qualitative pattern — the positive slope s
on an island difference plot — is the target output for the modeled child here, when given s
wh-dependency stimuli sets like (6). 360

The second target pattern involves an observed effect of lexical item frequency in s
adult acceptability judgments of wh-dependencies. In particular, Liu et al. (2022) found a e
positive correlation between the frequency of a certain wh-dependency’s main verb and s
that wh-dependency’s acceptability, as shown in in Figure 4. The x-axis of Figure 4 shows  se
the log-transformed frequency of the main verb appearing in the linguistic context where s
the verb is followed by an embedded clause (e.g., “...say/whine that Jack saw.”) — this is the s
verb frame. 367

R2=0.613

_

acceptability

08

whine

-5 -4 -3
verb frame frequency

Figure 4. Behavioral data reported in Liu et al. (2022) showing a positive correlation between a
wh-dependency’s acceptability and the frequency of the main verb in a specific linguistic context (e.g.,
“What did Lily VERB that Jack saw?”). Wh-dependencies with verbs like “say” in this frame are rated

as more acceptable than wh-dependencies with verbs like “whine”.
368

We can see that as the verb frame’s frequency increases, the wh-dependency’s accept-  se
ability increases. For example, a dependency with a high-frequency main verb (e.g. “What 37
did Lily say that Jack saw?") is judged to be more acceptable than an identical dependency sn
with a lower-frequency main verb (e.g. “What did Lily whine that Jack saw?"). This positive s
correlation is the target behavior for the modeled child, representing this lexical effect on s
wh-dependencies. 374

4.3.2. Child judgment data a7

The third target pattern is child preferences for utterances that are potentially ambigu- s
ous between two wh-dependencies as in (7), derived from the behavioral data collected by s

De Villiers et al. (2008). 378
(7)  Who did the police woman help to call? 379
a. wh-dependency 1 (main): Who did the police woman help _ , [to call]? 380
Interpretation 1: Who was helped? 381

https:/ /doi.org/10.3390/1010000
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b. wh-dependency 2 (embedded): Who did the police woman help [to call ;1?22
Interpretation 2: Who was called? 383

In (7), the two logically possible interpretations correspond to different wh-dependencies, se
a main-clause one (7a) and an embedded-clause one (7b) (the embedded clause is indicated  3s
with [...]). Children then indicated which interpretation they preferred, and so which s
wh-dependency they preferred. Table 4 shows the full list of wh-utterance types used in s
De Villiers et al. (2008), and how often children preferred the embedded wh-dependency s

for each type, ordered by how often the embedded option was preferred. 389
Item Question Child emb pref
1 How did the boy say _jow,;, 0.80
[he hurt _j,y, , himself] ? '

5 What did the mother say _pat,,;, 0.79
[she bought _p4t,,,17 ’

3 Who did the police woman help _yyo,, ... 0.48
[to call _ypo,,, 17 ’

4 Who did the little sister ask _gp, . 0.25
[how to see _yp,,,17 '

5 How did [the boy who sneezed _jy,, , ] 0.20
drink _jy,, ,, the milk? '

6 What did the boy fix the cat 0.09
[that was lying on the table with _ypar, 1 _what,;,? '
How did the girl ask _jq, ..

7 [where to ride _joy,,, 17 0.04

3 Who did the boy ask _y, .. 0.04
[what to bring _yo,,,1? '

9 How did the mom learn _jy, 0.03

[what to bake _jy,,,17
Table 4. Stimuli from De Villiers et al. (2008) used to probe child dependency preferences. Each
question has a main and embedded clause (embedded clauses are marked in [...]), and is potentially
ambiguous between a main-clause wh-dependency (,, . )and an embedded-clause wh-dependency

main

(wh,,,)- Child preferences for the embedded-clause wh-dependency are shown, with items ordered by
embedded-dependency preference.

As the target of acquisition, the modeled child will aim to generate these same prefer- s
ences, when given the two wh-dependency options to choose between (i.e., the main-clause
one vs. the embedded-clause one). Figure 5 plots the child preferences from De Villiers et al. = 30
(2008) against a modeled child able to perfectly reproduce those embedded-dependency s
preferences for each item. 304

5. Evaluating the FG modeled child 305

After learning from the input, the FG modeled child can generate a probability for se
any wh-dependency, using the most probable (highest probability) combination of chunks  ss
available from its learned chunk inventory. More specifically, we can calculate the maximum 30
a posteriori (MAP) score under the inferred chunk inventory (Eisenstein, 2018), based on 39
the highest-probability parse for the given syntactic structure (here: a wh-dependency’s 0
syntactic path). We first discuss how we link these generated probabilities to the target
behavior patterns for syntactic islands. We then present other learning approaches that are 0
given the same acquisition task as the FG modeled child and so can serve as a basis for s
comparison regarding acquisition performance. 404
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o o
o 3

predicted embedded preference

0.8

02 0.4 0.6
behavioral embedded preference

Figure 5. Example data depicting a perfect match between child preference data observed from
De Villiers et al. (2008) on the x-axis and the modeled child’s prediction on the y-axis for each item
(1-9) in Table 4.

5.1. Linking probabilities with target behavior patterns
5.1.1. Probabilities to acceptability judgments

Recall that the structures the modeled child here considers are the syntactic paths of
wh-dependencies, which can be rewritten as sequences. For instance, the syntactic path
for “Who does Jack think the necklace is for?" (5) can be represented by the sequence
IPpresent- VP iink-CPruLL-1PprEsEnT- V Ppe-PP for- When considering sequences, a sequence’s
probability is affected by length when the sequence’s probability is calculated by multiply-
ing together its individual pieces (i.e., chunks). The more pieces, the lower the probability,
because probabilities are generally less than 1. However, we don’t see this same reliable
relationship between utterance length and human judgments of acceptability (Lau et al.,
2015, 2017). So, utterances differing in length (e.g., “The necklace is for Lily" vs. “The
necklace with the sparkly gems is for Lily” may still be comparably acceptable even though
their probabilities are not (transparently) comparable.

To account for this potential effect of length, the modeled child’s acceptability score for
a given wh-dependency’s syntactic path is impacted by the length of the wh-dependency,
following Lau et al. (2015, 2017). More specifically, the modeled child’s length-factorized
score is the (log) probability for the wh-dependency’s syntactic path divided by the length
of the path, as in So, for the example syntactic path above from (5), the length would be 6
as there are 6 units in the sequence.

log(prob(syn-path))

(8) length-factorized(syn-path) = Pj,,_f,c(syn-path) = length(syn-path)

For the acceptability judgments from both Sprouse et al. (2012) and Liu et al. (2022),
the modeled child calculates the length-factorized score for each of the stimuli in a given
set. We can then assess if superadditivity is present for the data from Sprouse et al. (2012)
and if a positive correlation is present for the data from Liu et al. (2022).

5.1.2. Probabilities to interpretation preferences

To generate an interpretation preference for a potentially-ambiguous wh-utterance
from the data of De Villiers et al. (2008) in Table 4, the modeled child needs to generate a
score for each wh-dependency associated with a potential interpretation of that utterance
(i.e., the main-clause wh-dependency vs. the embedded-clause wh-dependency). We follow
prior work linking probabilities to production frequencies (Mayer, 2021), and again use the
length factorization in (8) to generate a score for each wh-dependency. We then calculate the
preference for the embedded-clause dependency by normalizing these scores to calculate
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the probability of an embedded-clause preference, as in (9). So, the preference ranges s
between 0 (strongest main-clause wh-dependency preference) to 1 (strongest embedded- 4z
clause wh-dependency preference). 439

Plen_fac (emb'Wh)
Plen_fac (emb'Wh) =+ Plen_fac (mam'Wh)

9) Prefy,, =

440

5.2. Comparison: Other modeled children and models a1

As a comparison to the FG-modeled child, we consider a set of modeled children that 4
vary in the nature of the chunks they consider for their chunk inventories, all of which s
are more constrained than the chunks the FG-based modeled child considers. Because 4
of this ability to consider a wider hypothesis space of possible chunks, the FG-modeled s
child is also more complex than the comparison modeled children (i.e., it has more free s
parameters that enable better data-fitting). It could be that simply having more parameters 4
enables better acquisition performance. To test this possibility, we additionally use a neural s
network model with many free parameters as a comparison. We review each comparison s
modeled child and the neural network model below. 450

5.2.1. Modeled children with simpler chunks 451

Recall from Section 3 that FGs are more-flexible version of Adaptor Grammars (AGs), s
which are more-flexible versions of PCFGs. In particular, AGs allow larger chunks but s
require full expansion of non-terminal nodes, causing their hypothesis space to exclude s
chunks like (4) (i.e., VP — VBG (NP — (-NONE- — *T%*))) that leave a non-terminal s
node open (i.e., VBG). Thus, an AG-based modeled child considers a more-restricted  ass
space of possible chunks than the FG-based child. Similarly, a PCFG-based child has a 47
further-restricted space of possible chunks compared to the AG-based child, because the s
PCFG-based child can only consider minimal chunks like those in (3) (ie., VP — VBG NP, 45
VBG — drawing, etc.). Implementation details for the AG-based and PCFG-based modeled o
children are found in Appendix B.1. 461

We additionally implement modeled children with fixed-size chunks, following e
L. Pearl and Sprouse (2013) for some options. Prespecifying the size of the chunks con- s
trasts with the modeled children using FGs, AGs, and PCFGs, as the size of those chunks s
can vary (and is learned from the input). Instead, the modeled children using fixed-size s
chunks specifically use trigrams (i.e., 3-unit chunks) to form the syntactic path sequence of s
a wh-dependency. The trigram-based modeled children we consider vary the amount of 4
lexical information included in the trigrams, as in (10). The syntactic path is then broken s
into successive sequences of trigrams, based on the information included from the syntactic 4
path. See Appendix B.2 for details about how trigrams combine to form a syntactic path. o

(10)  Comparison representations for “Who did Jack think the necklace was for?” an
a. Fully-lexicalized: all lexical information included with phrase label a2

syn path: START'IPpresent'VPthink'CPnull'IPpresent'VPbe'PPfor'END 473

trigrams: START'IPpresent'VPthinkr IPpresent'VPthink'CPnull/ ceey VPbC-PPfor-END 474

b. Phrasal-only: phrase label only a75

syn path: START-IP-VP-CP-IP-VP-PP-END 476

trigrams: START-IP-VDP, IP-VP-CP, ..., VP-PP-END a7

c. Lexicalized CP: only the head of the CP (the complementizer) is included a78

syn path: START-IP-VP-CP,,,,;;-IP-VP-PP-END 479

trigrams: START-IP-VD, IP-VP-CP,,,j;, ..., VP-PP-END 480
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d. Lexicalized main verb: only the main verb is included
syn path: START-IP-VP;,,,-CP-IP-VP-PP-END
trigrams: START-IP-VP,y; ., IP-VPyy,;,,,-CDP, ..., VP-PP-END

The modeled child using fully-lexicalized trigrams (10a) would include all the information
on the syntactic path in its trigrams, both phrasal and lexical (e.g., IPpresent-VPthink-CPpui1)-
In contrast, a modeled child using only phrasal information in its trigrams (10b) ignores
all lexical information (e.g., IP-VP-CP) and was considered as a baseline in L. Pearl and
Sprouse (2013). L. Pearl and Sprouse (2013) found that a modeled child that included lexical
information only for complementizer phrases (CPs) in its trigrams (e.g., IP-VP-CP,,,,;;)
was able to capture the superadditive adult acceptability judgment pattern in Figure 2
for several island types. However, this modeled child can’t explain the variation by main
verb found in the positive correlation pattern from Liu et al. (2022), so we also consider
a modeled child that includes lexical information only for main verbs, as in (10d) (e.g.,
IP-VPy,inx-CP).

5.2.2. A neural network model with many free parameters

We chose a long-short term memory (LSTM) model (Hochreiter & Schmidhuber,
1997) as the comparison neural network model because LSTMs do well when learning
information about sequences (Eisenstein, 2018), such as syntactic paths. The specific
implementation we use involves tens of thousands of free parameters that enable the
model to fit the input data well — see Appendix B.3 for the formal definition and relevant
hyperparameter settings.

The LSTM implementation we use learns to accurately predict the next token in a
sequence, and so its input is a “flattened” version of the syntactic path the modeled children
previously discussed use. For example, the syntactic path from (10) is START-IP pyesent-
VPi1ink=CP011-IP present-VPpe-PP for—END, and becomes START, IP, present, VP, think, CP,
null, IP, present, VP, be, PP, for, END. The LSTM model can then generate a probability for
any wh-dependency’s syntactic path, represented in this flattened, sequential form.

6. Results

Figures 6, 7, and 8 show the results for the FG-based modeled child, as well as the
comparison modeled children and LSTM model. One key broad observation is that the
FG-based modeled child’s performance most closely aligns with target behavior patterns,
outperforming all comparison modeled children and the LSTM model (summarized in
Table 5). More specifically, the FG-based modeled child can generate both the superadditive
pattern from Sprouse et al. (2012) and the positive correlation pattern from Liu et al.
(2022); it also has the highest correlation (R%2=0.879) with the child preference patterns from
De Villiers et al. (2008). We discuss each target behavior pattern in turn.

Chunk-based modeled children
Chunks of varying size Trigram chunks
FG AG PCFG | Phrasal FullyLex LexCP LexMV | LSTM
Sprouse et al. (2012) v v v X X v X X
Liu et al. (2022) v X v X v X v v
De Villiers et al. (2008) | 0.879 0.045 0.601 | 0.084 0.046 0.268 <0.001 | 0.532

Table 5. Summary of results for all chunk-based modeled children and the LSTM model across the
three target behavioral patterns. A qualitative summary (v /X) is shown for the behavioral patterns
from Sprouse et al. (2012) and Liu et al. (2022), while the correlation value between predicted vs.
actual child behaviors are shown for the behavioral patterns from De Villiers et al. (2008).
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6.1. Target behavior: Superadditivity

Recall that adults have acceptability judgments on stimuli related to different syntactic
islands that pattern as a positive slope in the “islands difference score” of Figure 3. In par-
ticular, the stimuli from Sprouse et al. (2012) involved four island types: Subject, Complex
NP, Whether, and Adjunct islands. A successful modeled learner (modeled child or model)
would be able to generate that same pattern (a positive slope) for all four island types,
using its internalized representations of wh-dependency knowledge. Figure 6 shows the
results for all four island types. We discuss each island type in turn.

FG AG PCFG Phrasal Fully Lex Lex CP Lex MV LSTM
10 +=2
8§ ; 5
52 pe - -
%} -
0 E E E E 3 E E 3 E 3 =
s g
10
e 3 . .
059
5 g 4 4 .
= o
a o0 Ed ES ES £ E S x ES ES = T2 -
5 I
- *
L0 g - .
KO =
S 52 .
= ° § =
0 - - - - - - -« - -—
10 S
- I . .
= .
5 1 1 al
0 - -« - - - - 3 -« - 3 -

matrix embedded ~ matrix embedded  matrix embedded ~ matrix embedded  matrix embedded — matrix embedded  matrix embedded  matrix embedded
condition

Figure 6. Results from all modeled children (variable-size chunks: FG, AG, PCFG; trigram chunks:
Phrasal, Fully Lex, Lex CP, Lex MV) and the LSTM model for the four island types tested in Sprouse
et al. (2012): Subject, Complex NP, Whether, and Adjunct. The dashed line represents the original
human z-scored acceptability judgments from Sprouse et al. (2012), showing a positive increase in
the island difference score from the main to the embedded condition. The modeled learner must
generate this positive slope to qualitatively match the human behavior pattern.

6.1.1. Subject and Complex NP islands
To replicate the desired positive slope, the modeled learner must assign a higher

score to the embedded non-island-crossing stimuli like (11a)-(12a) than to the embedded
island-crossing stimuli like (11b)-(12b).

(11) Subject island embedded stimuli
a. EMBEDDED | NON-ISLAND
What does [1p Jack [yp think [cp[ip __wnar i expensive]]]]?
b. EMBEDDED | ISLAND
*Who does [1p Jack [yp think [cp[p[np the necklace [pp for _ )] is expensive]]]]?

(12)  Complex NP island embedded stimuli

a. EMBEDDED | NON-ISLAND
What did [IP the chef [VP hear [CP that [IP Jeff [IP baked fwhutm”?
b. EMBEDDED | ISLAND
*What did [ip the chef [yp hear [yp the statement [cp that [ip Jeff [yp baked __;.¢]]]]]]?

For the Subject island condition, we see in the first row of Figure 6 that all the modeled
learners successfully reproduce the human judgment patterns. One plausible explanation
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for this overwhelming success is that the island-crossing wh-dependency (11b) has addi-
tional nodes (NP and PP) that are infrequent in the wh-dependencies that the modeled
learners see. (In fact, most of the tested lexical items in the NPs were unseen, as well.) All
the modeled learners were capable of tracking chunks that involved — or notably, didn’t
involve — NPs or PPs all that often. So, NP and PP nodes in the syntactic path reduce the
probability of the syntactic path, and all the modeled learners were capable of encoding
these (in)frequencies.

For the Complex NP island condition, we see in the second row of Figure 6 that
most modeled learners succeed (the two exceptions are the Fully Lexicalized (Fully Lex)
and Lexicalized Main Verb (Lex MV) trigram learners). Similar to the Subject island
condition, an infrequent NP node seems to be a relevant difference between (12a) and
(12b). Why then do we see two modeled learners fail, if they’re capable of encoding the
NP node infrequency? One answer is that these modeled learners’ sensitivity to lexical
items undermines their ability to view the NP-containing syntactic path as less probable.
In particular, the Fully Lex trigram modeled learner includes all lexical information in its
representation — that is, its trigrams include the individual lexical items, such as IPpresent-
VPear-CPijas- So, the learner’s trigrams are often very infrequent, no matter which trigram
it is. For example, IPpresent-VPpear-CPypyq¢, which is used in the non-island (more acceptable)
syntactic path of (12a), never actually appeared in the learner’s input. More specifically,
the trigrams for both the non-island and island Complex NP stimuli are all infrequent. This
situation contrasts with the Subject island stimuli, which involved some more-frequent
trigrams (e.g., START-IP present-VPpink and 1P present-VPink-CPpyi1). There, the NP-involving
and PP-involving trigrams in the island-crossing syntactic path were in fact less probable
than these other more-frequent trigrams, and so the modeled learner could correctly view
the island-crossing path as less probable.

A related explanation can account for the failure of the Lex MV trigram learner on
the Complex NP island judgments. In particular, because this modeled learner includes
main verb lexical items in its trigrams, it’s sensitive to the frequency of those verbs. The
Complex NP stimuli involve some more-frequent trigrams with the main verbs “hear”
and “make” that appeared in the learner’s input. More specifically, the non-island path
of (12a) involves only one of these more-frequent main verbs while the island-crossing
path of (12b) involves two. This means that the Lex MV trigram learner actually gives the
island-crossing wh-dependency higher probability — that is, it finds the wh-dependency
in (12b) more acceptable than the non-island-crossing on in (12a). So, even though the
modeled learner views the NP-node trigrams in (12b) as low probability, they’re not low
enough probability to counteract the effect of the higher-frequency trigrams involving the
main verbs “hear” and “make”.

Overall, most of the modeled learners succeeded at replicating adult acceptability
judgment patterns for both Subject and Complex NP islands. Two of the trigram modeled
learners that encoded lexical item information in their internalized chunks (Fully Lex, Lex
MV) succeeded on the Subject island pattern but failed on the Complex NP island pattern,
specifically due to their sensitivity to lexical items.

6.1.2. Whether and Adjunct islands

To replicate the desired positive slope, the modeled learner must assign a higher
score to the embedded non-island-crossing stimuli like (13a)-(14a) than to the embedded
island-crossing stimuli like (13b)-(14b).

(13)  Whether island embedded stimuli

a. EMBEDDED | NON-ISLAND
What does [1p the detective [yp think [cp that [;p Paul [yp took __p.¢]]]]]?
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b. EMBEDDED | ISLAND
*What does [p the detective [yp wonder [cp whether [ip Paul [p took _ 4111117

(14) Adjunct island embedded stimuli

a. EMBEDDED | NON-ISLAND

What do [ip you [yp suspect [cp that [ip the boss [yp left ;. in the car]]]]]?
b. EMBEDDED | ISLAND

*What do [ip you [yp worry [cp if [ip the boss [yp leaves _ ;s in the car]]]]]?

For the Whether island condition, we see in the third row of Figure 6 that most
modeled learners successfully reproduce the human judgment pattern (the exception is
the Phrasal trigram learner). One plausible explanation for these modeling results again
involves the modeled learners’ sensitivity (or insensitivity) to the lexical items involved
in the syntactic paths. In particular, the island-crossing syntactic path of (13b) includes a
lower probability complementizer “whether” and a lower probability main verb “wonder";
in contrast, the non-island-crossing syntactic path of (13a) includes a higher-probability
complementizer “that" and a higher-probability main verb “think". All modeled learners
capable of tracking these lexical items in their chunks — that is, all the learners except the
Phrasal trigram learner — were capable of encoding these relative (in)frequencies.

For the Adjunct island condition, we see in the fourth row of Figure 6 that several
modeled learners succeeded, but four failed: the Phrasal, Fully Lex, and Lex MV trigram
learners, as well as the LSTM learner. Lexical item frequency again can help explain
these results, as salient differences between the non-island-crossing stimuli like (14a) and
island-crossing stimuli like (14b) involve the complementizer and the main verbs. First, the
Phrasal trigram learner is incapable of encoding these lexical items in its chunks, and so
fails to distinguish them, just as in the Whether islands.

Interestingly, the Fully Lex and Lex MV trigram learners failed because of their sensitiv-
ity to the main verbs. More specifically, the main verbs in the non-island-crossing syntactic
paths are not much more frequent than the main verbs in the island-crossing syntactic paths.
So, these learners wouldn't assign a higher probability to the non-island-crossing syntactic
paths just because of the main verbs. Importantly, the Lex MV learner only encodes the
main verb lexical items and so fails to prefer the non-island-crossing syntactic path. The
Fully Lex trigram learner is capable of encoding the relative frequencies of the complemen-
tizer, but fails to disprefer the island-crossing syntactic path because of how infrequent
all its trigrams tend to be. More specifically, while trigrams involving complementizer
“if” are less frequent than trigrams involving complementizer “that” (which distinguish
island-crossing (14b) from non-island-crossing (14a)), they’re not less frequent enough
counteract the low probability of the other trigrams involved in non-island-crossing (14a).

The LSTM learner has a different issue: it generally assigns scores that are very similar
for non-island-crossing and island-crossing wh-dependency paths. While the LSTM learner
generally captures the correct qualitative pattern (i.e., a positive island difference for three
island types), it actually does fail to do so for the Adjunct island type (see Appendix C.1 for
more details of its performance). Although LSTM internal representations are difficult to
decode, we posit that the LSTM learner fails for a similar reason that the trigram learners
above do: improperly dealing with the complementizer lexical information. The LSTM runs
that failed assign very similar scores to island-crossing and non-island-crossing sequences,
despite the island structure having an unseen lexical item “if".

Overall, many modeled learners succeed at replicating adult acceptability judgment
patterns for both Whether and Adjunct islands. Only modeled learners capable of encoding
lexical item information were able to succeed, as lexical items distinguish the island-crossing
from the non-island-crossing stimuli. However, sensitivity to the wrong lexical items can
cause failure as well, just as with the Subject and Complex NP islands.
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6.1.3. Summary for superadditivity 640

Four of the modeled learners succeeded at generating the observed behavior patterns  ex
associated with syntactic island knowledge: the FG-based modeled child, the other modeled &
children relying on variable-sized chunks (AG-based, PCFG-based), and one modeled ¢
child relying on trigram chunks (Lex CP). One key reason they succeeded was because o«
they encoded relevant frequency distinctions from the input, involving specific structural s
elements (e.g., the rarity of NP and PP nodes in wh-dependencies) or specific lexical items s
(e.g., main verbs and complementizers). 647

6.2. Target behavior: Positive correlation 648

To replicate human behavior, the modeled learner’s predictions must generate a e«
positive correlation between verb-frame frequency and acceptability (the pattern from Liu s
et al. (2022)). Figure 7 shows that many modeled learners can indeed replicate this pattern. e
For example, the Lex MV baseline trigram model only includes the main verb lexical item ¢z
in the dependency path representation and is thus well suited for this task by directly s

tracking the frequency of the main verb (R?>=0.434). 654
FG AG
-8 R2=0.433 -17 R2=0.008 -10
-9 -11
-10 -12
[kriow]
-11 -13
- -12 -21 Toel -14
(0]
N
9 -13 -22 -15
®
i Phrasal Fully Lex Lex CP Lex MV
S 3/R2=0 Rz =0.369 _s/RZ=0 ~8TR2=0.434
=) say
c
9 -10

1
EN

feel 12

=51 |whine hear say| | _ -8 feel
whine] — [hear] [say] | 14

. .
-16

-7 -22 -10
-18

-8 -23 -11

6 -5 -4 -3 6 -5 -4 -3 6 -5 -4 -3 6 -5 -4 -3

Log-transformed frequency of verb frame

Figure 7. Results from all modeled children (variable-size chunks: FG, AG, PCFG; trigram chunks:
Phrasal, Fully Lex, Lex CP, Lex MV) and the LSTM model for the stimuli from Liu et al. (2022), where
humans showed a positive correlation between the frequency of the verb-frame in the utterance
and the utterance’s acceptability. The modeled learner must generate this positive correlation to
qualitatively match the human behavior pattern.

Notably, the FG-based modeled child has equivalent performance (R?=0.433), even s
though it distributes probability differences for lexical items across many different chunks. s
This performance contrasts with the AG-based modeled child, who failed to show a positive s
correlation (R?=0.008). Importantly, the FG learner’s chunks are more general than the AG e
learner’s chunks, and thus can be used more often when parsing new wh-dependencies. s
For example, the FG learner learns a “know” chunk like (15) that can be abbreviated with o
the rule VP — know ... IP. This chunk can be used for any wh-dependency with “know"
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followed by an IP (e.g., “What does she know that he likes?”, “What does she know he e

liked?”, “What does he know that she hates?”, “What does he know she hated?”, etc.) 663
(15)  EG-based chunk 664
VP 665

know

In contrast, the AG-based modeled child can’t learn partially-unexpanded chunks s
like (15). Instead, it can only learn fully-expanded chunks like (16) that can be represented 67
with the rule “VP — know that he PRESENT like". This chunk can be used only for a s
narrower range of wh-dependencies that have “know” followed by complementizer “that”, e
embedded subject “he”, and an IP with present tense “like” (e.g., “What does she know  &n
that he likes?”, but not any of the others mentioned above that the FG learner could handle

with its chunk). 672
(16)  AG-based chunk 673
VP 674
/\
\Y CP
‘ /\
know C P
T
that NP I VP
| | N
N  PRESENT Vv NP
| | |
he like  -NONE-
>(-T>(-

In other words, the FG learner — but not the AG learner — is able to form helpful reusable &
chunks (here: involving main verb “know” followed by an embedded clause.) So, the FG &7
learner is sensitive to relevant probability differences that target certain lexical items within 7
a structural context, such as the main verb when followed by a tensed embedded clause. oz

More specifically, the AG learner creates many chunks involving the same verb lexical o7
items and so distributes the probability differences between individual verbs across many sz
different chunks. This distribution of probability across many chunks can cause relative e
frequency differences between individual verbs to be hidden. In contrast, the PCFG learner sz
is more like the FG learner in creating useful chunks for this scenario (R2=0.324). More s
specifically, the PCFG learner concentrates the probability of a verb into a single rule (e.g., e
V — know), and so is able to capture a (main) verb distinction. Notably, the PCFG learner s
doesn’t distinguish if the verb is in the main clause or embedded clause; instead, the PCFG  es
learner just so happens to have created verb-based chunks that serve to distinguish main s
verb frequency. 68

More generally, the learners that fail to replicate this pattern are of two types: (i) s
learners incapable of tracking verb lexical items (the Lex CP and Phrasal trigram learners), %
and (ii) a learner that learns unhelpful chunks (the AG learner). For the modeled learners oo
incapable of tracking verb lexical items, it’s unsurprising that those learners fail to capture oo
a relationship involving verb lexical items — by definition, their representations (in the form o0
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of the chunks they can learn) don’t include the relevant items. In contrast, the AG modeled
learner is capable of including verb lexical items in its chunks, but seems to have included
them in unhelpful ways.

When we look at the LSTM model, we see that it also succeeds (across 10 runs,
R?=0.238-0.387; median=0.341). This performance suggests that a model with many free
parameters — but which doesn’t transparently use chunks — is able to generate the target
acquisition output, given the acquisition input.

6.3. Target behavior: Child preferences

Figure 8 shows the correlation between the modeled learner’s predictions and the
child preference for embedded-clause wh-dependencies for all stimuli from De Villiers
et al. (2008), reviewed in Table 4. More specifically, we used a linear regression predicting
behavioral scores from model output and report R? values as a measure of explained
variance. Given the small sample size of 9 test items, we focus primarily on comparing R?
values across models.

FG AG PCFG LSTM
1.0
0.5
)
e
< 0.0{[e[s] [e[6] [1) [els]
(&)
£
8 R2~0.879 R2 ~0.045 R2~0.601 R2~0.532
o
3 Phrasal Fully Lex Lex CP Lex MV
-g 1.0 (6)
i
©
(0]
B
Bos
o

2] 0
00{E®) @leo [@ [E6) 1

R2~0.084 R2 ~0.046 R2~0.268 R2~0
00 02 04 06 0®MO 02 04 06 0LHO 02 04 06 0800 02 04 06 08
Behavioral Embedded Preference

Figure 8. Results from all modeled children (variable-size chunks: FG, AG, PCFG; trigram chunks:
Phrasal, Fully Lex, Lex CP, Lex MV) and the LSTM model) for the stimuli from De Villiers et al. (2008).
We show the correlation between the modeled learner’s predictions and the child preference for
embedded-clause wh-dependencies for all stimuli from Table 4.

Two of modeled children using variable-size chunks, the FG learner and the PCFG
learner, showed the strongest alignment with child behavior (FG: R?=0.879, p < 0.01; PCFG:
R?=0.601, p < 0.05). No other modeled child relying on chunks fared as well (R?>= 0 -
0.268). In contrast, the LSTM model also aligned fairly well with child behavior for 3 of
its 10 runs (R?=0.228-0.532; median=0.410) — see Figure A3 in Appendix C.2 for details.
These high-level results suggest certain types of chunks can be useful for acquisition — and
in particular, the FG-based efficient chunks. However, a complex model with many free
parameters (the LSTM model) can also succeed sometimes.
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Looking more closely, we can also see a few notable results within this broader pattern s
of results. First, the FG learner has particular success at matching children’s observed =7

embedded-clause preference for items 1 and 2, repeated below as (17)-(18). 718
(17)  Item 1: child embedded-clause preference = 0.80 719
a. How did [ip the boy [vp say _jow,,, [cp he hurt himself]]]? 720
b. How did [IP the bOy [VP say [CP [IP he [VP hurt himself 7howmb]]]]]? 721
(18)  Item 2: child embedded-clause preference = 0.79 o
a.  Whatdid [;p the mother [yp say __ypat,,,, [cp she bought]]]? 723
b. What did [ip the mother [yp say [cp [1p she [yp bought g, . 1]]]]? 72

One key factor for these stimuli is the main verb “say", which is part of a high-frequency s
chunk in the FG learner’s inventory: “IP — PAST (VP — (V — say)) CP" (abbreviated as “IP 7
— PAST say CP”). We posit that, by deploying this chunk for the two stimuli in (17b),(18b) 7
the FG learner was able to keep the embedded-clause wh-dependency score higher than 7
the main-clause wh-dependency score. 720

To evaluate this possibility, we altered the stimuli to use the present tense of “say” 7o
instead of the past tense in the main clause, as in (19)-(20). The FG-based chunk using
“say” in the past tense no longer can be used to generate these syntactic paths. With this 7
manipulation, we find that the FG-based learner no longer prefers the embedded-clause 73
wh-dependencies in (19b)-(20b). Thus, it seems likely that the FG learner relied on the 7
high-frequency “say”-chunk in order to match child preference behavior. Importantly, 7
this chunk isn’t possible for the other chunk-based learners to include in their inventories, 73

highlighting the utility of this kind of flexible chunk. 737
(19)  Item 1 using present “does” 738
a. How does [ip the boy [vp say _jow,,,, [cp he hurt himself]]]? 739
b.  How does [ip the boy [vp say [cp [ip he [vp hurt himself _j,q,, ,]]]]]? 740
(20)  Item 2 using present “does” 741
a.  What does [;p the mother [yp say _pat,,,, [cp she bought]]]? 72
b.  What does [;p the mother [yp say [cp [1p she [vp bought e . ]1]]]? 743

Another notable learner result we see in Figure 8 is a prediction from all modeled learners 7
for a stronger embedded-clause preference for item 3, in contrast to the more-neutral child s
preference of 0.48. When we look more closely at item 3 from De Villiers et al. (2008), s
repeated as (21) below, we can see that the embedded clause doesn’t involve a CP phrase 7
(instead, only a non-finite IP appears). For most modeled learners, this non-finite IP 7
structure is still fairly frequent in their experience, and so doesn’t lower the embedded- 7

clause wh-dependency score much at all. 750
(21) Item 3: child embedded-clause preference = 0.48 751
a.  Who did [ip the police woman [yp help _,, . [1p to call]]? 752
b.  Who did [ip the police woman [yp help [ip to [vp call _y,,,,1]1]]? 753

A third common behavior from the chunk-based modeled learners is an overall preference s
for main-clause wh-dependencies, with most embedded-clause stimuli receiving a score 7
<0.5. This dispreference for embedded-clause wh-dependencies is likely due to embedded- s
clause syntactic paths involving lower-frequency chunks (e.g., chunks using CP) that 7
therefore reduce the average probability of the syntactic path, compared to main-clause s
dependencies. The LSTM model behaves somewhat differently, in that it tends to be more 7
neutral for all its preferences (i.e., preference for all items around 0.5). However, for the runs 7o
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where it does generate preferences that better align with child behavior, it also displaysa
general main-clause preference (i.e., all items but item 3 have a predicted preference <0.5).
See Appendix C.2 for more detailed discussion. 763

7. Discussion 764

Here we have explored the potential for a child looking for efficient syntactic chunks s
to acquire knowledge about syntactic islands. In particular, a modeled child relying 7
on Fragment Grammars (FGs) to define its hypothesis space of possible chunks is able 77
to generate predicted behavior patterns that align with three sets of human behavior 7
patterns signaling knowledge of syntactic islands. No other chunk-based modeled learner o
succeeded as well, with most failing on at least one of the target behavior patterns. Our o
results also suggest that simply having more free parameters to encode the input (which m
the FG-based learner does, compared to the other chunk-based learners) isn’t sufficient for
acquisition success, as a comparison model relying on an LSTM with tens of thousands of 3
free parameters wasn't able to match all target patterns. We interpret our results as support 7
for a learning theory for syntactic islands where the child’s goal is to find efficient syntactic s
chunks on the basis of the input. 776

We now discuss assumptions of the current FG-based implementation of the efficient- 7
chunks learning theory, and how they might be investigated in future work. In particular, 7
we consider the modeled child’s intake, chunking preferences, and children’s cognitive o
limitations. We also discuss alternative acquisition targets that include a wider range of 70
empirical data, incorporate the incremental nature of acquisition, and consider the impact 7
of naturally-occurring linguistic variation in children’s input. We conclude with how this 7

approach to acquiring syntactic islands relates to the current theoretical landscape. 783
7.1. Assumptions of the current implementation 784
7.1.1. Intake 785

The current implementation of the learner looking for efficient syntactic chunks relied 7
on a particular perception of the input — namely, phrase structure for the utterance, with the 77
syntactic path between the wh-word and its gap highlighted, as in (22). More specifically, s
the intake the modeled child learned from included only the syntactic path information 7
(as in (22b)). This intake reflects a learning assumption that children know to ignore other o
information available when learning about wh-dependencies. 791

(22)  a. Phrase structure and highlighted syntactic path for “What does Jack want?” 7

CP 793
NP 1P
N Aux NP VP

N A% NP

What does Jack want _
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b. Syntactic path only

P

/\

I VP
|
s

PRESENT want

However, do children in fact need to ignore the other information available? That is,
could they still succeed at learning the appropriate wh-dependency patterns we looked
at here even without this intake filtering? Or instead, is this intake filtering necessary for
acquisition success? There are several cases in the acquisition literature that suggest intake
filtering is a key component for acquisition success for other phenomena (e.g., basic word
order: L. Pearl and Weinberg 2007; English metrical stress: L. Pearl et al. 2017; the English
passive: Nguyen and Pearl 2019).

One way to investigate the impact of intake filtering is to remove the intake filtering
implemented here, and allow children to learn from the entire syntactic structure informa-
tion available for the utterance. We discuss two possibilities that implement this option.
First, children could simply learn from the entire syntactic structure available, with no
special status given to the syntactic path (i.e., (22) without the highlighting). Dickson
(2025) uses an FG-based modeled learner to explore this option for acquiring other types of
syntactic knowledge, including some wh-dependency knowledge, with moderate success.
However, a more thorough investigation using the target wh-dependency patterns we
used here remains to be done. One notable issue Dickson (2025) found was data sparsity
—because much more information is available in each data point, the FG-based modeled
child likely requires more language experience to successfully sift through the possible
syntactic chunks.

A second way to relax the intake filtering assumption is to include all the syntactic
structure for the utterance, but keep the special status of the syntactic path, as in (22). That
is, the modeled child has access to the entire structure of the utterance, but knows there’s
something important about the syntactic path. One way to implement this idea is by using
a grammar formalism that indicates the syntactic path, such as “slash passing” in CCG
(Steedman & Baldridge, 2011), HPSG (Borsley & Crysmann, 2021), and GPSG (Gazdar,
1985)). In these formalisms, syntactic categories can be functions that specify how the other
units are combined with the current linguistic unit.

For example, in the CCG formalism from Steedman and Baldridge (2011), the category
for the verb “wants” would be a function like (IPANP)/NP as in (23), specifying how to
derive a sentence-level IP.

(23) P

T

NP IPANP

N

(IP\NP)/NP NP

Jack  wants water
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In particular, the derivation is something like the following:

(i) Combine the unit “wants” with an NP on the right (e.g., “water”) in order to
generate the IPANP unit
(ii) Combine this unit with an NP on the left (e.g., “Jack”) to generate the IP

The slashes encode direction of the expected unit to be combined, with “/” specifying
a combination on the right and “\” specifying a combination on the left.

To analyze (22) under the CCG formalism, many of the phrase labels would be replaced
by these function labels, as in (24). For instance, the label for the auxiliary “does" is now
(CPg/(IP\NP))/NP, which signals that this unit is first looking for an NP on the right (here,
the inverted subject “Jack”). A new unit is formed once this combination occurs that is
again looking for another unit type (IP\NP), which itself is looking for yet another unit
type (NP), and so on until the wh-question is formed (Hockenmaier & Steedman, 2007).

(24) CPwh

/\

CPwpy/(CPgo/NP) CPqo/NP

/\

CPo/(IP\NP)  (IP\NP)/NP

/\

(CPo/(IP\NP))/NP NP

What does Jack want

Notably in (24) the “/NP" that percolates up the right edge marks the dependency path
of the kind used as the modeled child’s intake in our implementation (i.e., CPo/NP-(IP
\NP)/NP is equivalent to IP-VP, with IP~CPgo /NP and VP~(IP \NP)/NP). So, allowing
the modeled child’s intake to include full trees that also naturally highlight the syntactic
path would be another way of relaxing the current intake restriction to learn only from
the syntactic path of the wh-dependency. We do anticipate there may be a similar data
sparsity issue to what Dickson (2025) found, as the syntactic category units available to
form efficient chunks would be far larger than what we used in the current FG-based
implementation. For instance, instead of only VP, a modeled child would potentially
need to consider VP-based chunks such as (IP \NP)/NP (a transitive verb), (IP \NP) (an
intransitive verb), (IP \NP)/NP)/NP (a ditransitive verb with an indirect object), and ((IP
\NP)/NP)/PP (a ditransitive verb with a prepositional object), among others.

7.1.2. Chunking preferences

The current FG-based implementation of the efficient-chunks learner has some flexibil-
ity about the preferred size of chunks. Recall from Section 3 that a key distinction between
the FG-based modeled child and other modeled children allowing variable-sized chunks is
how often they prefer to create larger chunks: an AG-based modeled child always prefers
to expand potential chunks (pexpang = 1.00) while a PCFG-based modeled child never does
(Pexpana = 0.00)). The FG-based modeled child can therefore have a preference anywhere in
between these extreme points (i.e., 0.00 < peypaug < 1.00). Here, we used hyperparameter
settings that led to p,ypang = 0.50, based on prior successful FG implementations aimed at
learning other linguistic phenomena (T. O’Donnell et al., 2011).

While this FG-based modeled child performed well, the PCFG-based modeled child
performed almost as well at generating the target behavior patterns (recall Table 5). This

https:/ /doi.org/10.3390/1010000

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863


https://doi.org/10.3390/1010000

Version January 19, 2026 submitted to Journal 26 of 38

result suggests that having a preference for smaller chunks (i.e., @ peypang closer to 0.0) may s
also be able to generate target behavior patterns as well as the FG-based implementation e
here. Future work can investigate more generally if FG-based modeled children with s
different chunk-size preferences (i.e., different p,y;.,4 values) are able to generate the s
target behaviors as well as (or perhaps better than) the FG-based implementation using a  se
Pexpand = 0.50. These future findings would allow us to better understand the necessary s
chunking preferences a child would need to have in order to succeed at the acquisition task &7
investigated here. o1

7.1.3. Cognitive limitations a2

The FG-based modeled child here incorporated one major limitation in child language e
acquisition: the (limited) amount of data children encounter before they achieve acquisition s
success. However, another major limitation for children relates to their cognitive resources, &
which impacts how children extract information from the data they encounter and update e
their internal hypotheses (among other things). For instance, limited memory resources &
might cause children to either miss some of the available information in the moment &
(Forsythe & Pearl, 2020; Gagliardi et al., 2017; L. Pearl & Forsythe, 2025) or misperceive s
information that’s there (Gulrajani & Lidz, 2024). The FG-based modeled child implemented sz
here was idealized in this respect — it could perfectly extract the desired intake (i.e., the s
syntactic path), with no loss or skewing of information. Moreover, the modeled child s
implemented here received all the data at once that children would encounter during their s
learning period, rather than only encountering it incrementally as children do. sea

As another example, limited cognitive resources might cause children to imperfectly  ses
search their hypothesis space of possible chunk inventories. The FG-based modeled child  ss
implemented here was also idealized in this respect — it used computational-level inference s
techniques to identify a high-probability chunk inventory. In contrast, children would likely  sss
be approximating this inference as best they can with their limited cognitive resources, and s
may not in fact succeed as easily at identifying a high-probability chunk inventory. 890

Future work could implement modeled children that incorporate child-like limitations s
like those outlined above: forgetting or skewing information in the data, encountering s
data incrementally, and approximating inference (e.g., Sanborn et al. 2010). If modeled s
children looking for efficient chunks continue to succeed under these conditions, then s
we have additional support for the robustness of this learning theory. In contrast, if the s
efficient-chunks modeled children don’t perform as well, we can better understand the s
necessary conditions that this acquisition theory depends on. Initial investigations of this s
type by Dickson and colleagues (Dickson, 2025; Dickson et al., 2024) have found that the  ss
FG-based modeled child implemented here can still succeed even in the face of fairly severe  ss
memory limitations that cause the modeled child to miss available information. 900

7.2. The target of acquisition %01

Here, we set the target of acquisition to be a set of behavioral patterns signaling o
knowledge about English wh-dependencies, specifically adult judgment patterns and child 0
interpretation preferences. However, the ideal target of acquisition could (and, in our oo
opinion, should) be broader. We discuss several concrete options for usefully expanding s

the target state. 906
7.2.1. Additional empirical data about wh-dependencies %07
Wh-dependencies with multiple gaps. 908

A related set of empirical patterns we might wish to account for involves multiple-gap s
wh-dependencies, such as parasitic gaps (25), purpose clauses (26), and across-the-board w0
extraction (27) (Engdahl, 1983; Grosu, 1973; Ross, 1967). 011
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(25)  Parasitic gaps
a.  Acceptable: [Which book] did you judge __ 4, before reading _ payasitic?

b. Acceptable: [Which book] did you judge __ i, before reading the review?
c.  Unacceptable: [Which book] did you judge the cover before reading __4asitic?

(26)  Purpose clauses

a.  Acceptable: [Which book] did you buy _ 4, in order to give _pyspose to Lindy?

b. Acceptable: [Which book] did you buy _ ;i in order to give it to Lindy?

c.  Unacceptable: [Which book] did you buy the movie in order to give _purpose
to Lindy?

(27)  Across-the-Board extraction

a.  Acceptable: [Which book] did you read _ fj5; and review _ gecong?
b.  Unacceptable: [Which book] did you read _ ;s and review the movie?
c.  Unacceptable: [Which book] did you read the summary and review _ ¢,qo4?

Notably, each of these constructions requires both gaps in order for either the second
gap (25)-(26) or either gap (27) to be acceptable. No current acquisition theory accounts
for how adults come to know these patterns. The efficient-chunks acquisition theory
investigated here may offer an answer, but will need to be evaluated concretely in future
work.

Other wh-dependency preferences.

Another type of behavior we might wish to account for is knowledge of wh-
dependency preferences when there are multiple viable (grammatical) options, rather
than simply recognizing when a wh-dependency is massively dispreferred (i.e., crossing a
syntactic island). Omaki et al. (2014) describes child and adult interpretation preferences
for the wh-dependencies like those in (28), where there are two possible gaps for where: one
in the main clause and one in the embedded clause.

(28)  Where did Lizzie {say | tell someone | say to someone} _jere,, .
[that she was gonna catch butterflies __yjere,,, 1?

Notably, Omaki et al. (2014) manipulated the main verb phrase (say/tell someone/say to
someone) and found that both child and adult preferences vary based on the lexical items.
In particular, most children and adults prefer resolving the dependency in the embedded
clause (answering where Lizzie will catch the butterflies) when the main verb is “say."
However, when the main verb phrase is “tell someone” or “say to someone”, the prefer-
ence switches to main-clause resolution (answering where Lizzie told someone or said to
someone).

Part of this preference is in fact captured by the current FG-based modeled child: when
the main verb is “say”, this modeled child prefers an embedded-clause interpretation, as
opposed to its general main-clause preference. So, this modeled child could capture the
difference between “say” and “tell (someone)”. However, this modeled child can’t capture
the difference between “say” and “say to someone”, as the “to someone” part isn’t part
of this modeled child’s intake (i.e., “to someone” isn’t part of the syntactic path). One
concrete path for future work is to implement some of the suggestions from section 7.1.1
that allow more information into the modeled child’s intake, while still preserving the
overall approach of identifying efficient chunks. More generally, it seems reasonable that
the target of acquisition for wh-dependency knowledge should include preferences like the
ones described here, in addition to knowledge of syntactic islands.
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7.2.2. Immature wh-dependency knowledge 057

One strength of previous chunking implementations of child language learning is o
their ability to capture incremental development in children’s production performance s
(Freudenthal et al., 2015; McCauley & Christiansen, 2019). That is, adult-like knowledge is 0
the eventual acquisition target, but there are stages along the way that are reasonable to s
consider as target states. In the spirit of these prior approaches that weren’t specifically s
targeting wh-dependency knowledge, we might consider whether wh-dependency produc- s
tion data can be used to specify an immature target state that a modeled child could aim to  se
produce. If so, then we would have a much richer target state to evaluate future acquisition  sss
theories against. 966

7.2.3. Linguistic variation 967

Another important expansion involves considering linguistic variation, both across s
languages and within languages. Ideally, a learning theory for syntactic islands (and e
wh-dependencies more generally) would work universally. For the modeled child trying oo
to identify efficient syntactic chunks, this means that acquisition success should occur o
no matter what the specific syntactic islands are for a given language or dialect. Prior o
work examining other chunking approaches to syntactic islands found some success (e.g., o
English from lower socioeconomic status households: L. Pearl and Bates 2022a) but not o
complete success (e.g., Norwegian: Kobzeva and Kush 2025). It remains to be seen if the s
efficient-chunks theory can succeed more completely. 976

7.3. Theoretical implications 977

The efficient-chunks acquisition theory implemented here draws from two different o
traditions within language acquisition. Similar to generativist approaches, this acquisition o
theory assumes children have prior syntactic knowledge that allows them to impose certain o
syntactic structure on their input (Chomsky et al., 1973; Pinker, 1999) when transforming o
it into their intake. This assumption contrasts with many constructionist approaches to s
syntactic learning, particularly those involving chunking, which assume the child is operat- o
ing over unstructured word sequences (Freudenthal et al., 2015; McCauley & Christiansen, — oe
2019). 985

However, similar to constructionist approaches, this acquisition theory assumes that o
sophisticated syntactic knowledge (here, about syntactic islands) doesn’t require specific o
knowledge a priori, but instead emerges during learning (A. E. Goldberg, 2006; McCauley s
& Christiansen, 2019; Tomasello, 2001). That is, in contrast to generative approaches to s
syntactic islands (Chomsky et al., 1973), no island-specific structural knowledge is built in. 0

Notably, the success of this acquisition theory has implications for current propos- o
als about why there appears to be constrained variation over island constraints cross- s
linguistically. More specifically, one proposal is that this constrained variation is a result s
of constraints that are in place during acquisition (Chomsky et al., 1973; Pinker, 1999). oo
Without these built-in constraints (i.e., built-in prior knowledge pertaining to syntactic o
islands), children could not learn the syntactic islands of their language. Therefore, the e
reason languages have constraints is because these constraints were built into the child o7
mind in order to make acquisition possible. That is, human-internal constraints active oo
during acquisition — in order to make acquisition possible — are why languages are shaped s
the way they are with respect to syntactic islands. 1000

Our results weaken this argument by demonstrating how acquisition is possible 100
without building in constraints specific to syntactic islands. In particular, while some 100
knowledge of syntax is required a priori, children don’t need island-specific knowledge to 103
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succeed. So, if languages show constrained variation when it comes to syntactic islands, 100
this constrained variation could originate from somewhere else. 1005

8. Conclusions 1006

Here we have implemented a language acquisition theory for wh-dependency knowl- 1007
edge (including syntactic islands) where the learner aims to identify an efficient represen- 10
tation of syntactic chunks for wh-dependencies; knowledge of syntactic islands emerges 100
from this high-efficiency chunk representation, rather than being represented separately. 10
When implemented concretely in a modeled child who learns from realistic child input, 1ou
this acquisition theory can explain a variety of language behavior patterns that signal 1o
knowledge of syntactic islands. In short, children could acquire sophisticated syntactic o
knowledge even with less-sophisticated innate linguistic machinery as long as they have 104
the right learning objective in mind. 1015
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Appendix A. Implementation of Fragment Grammar 1033
Appendix A.1. PCFG definition 1034

A PCFG includes rules like those in (29), and probabilities associated with the rules. 103

Rule Probability
rn VP — VBGNP 040
(29) rp  VBG — drawing 0.30 1036

r3 NP — -NONE- 0.25
rg -NONE- — «Tx 1.0

So, if rp has probability 0.30 (i.e., p(r2)=0.3), when the grammar generates structure, VBG 10
will expand to “drawing" 30% of the time, and expand to something else (like “running” or 10
“sleeping”) the other 70% of the time.. The probability of a structure like (2), repeated below 103
as (30), under this grammar is calculated by multiplying the probabilities of the rules that 100
compose the tree i.e., [T, cree 'x)- 1001
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(30) VP 1042

N

VBG NP

drawing  -NONE-

*Tx

During initialization of the FG-based modeled child, the probabilities for all rules are drawn 104
from a multinomial distribution with a Dirichlet prior in order to form the base PCFG for 104
modeled child. (T. O’'Donnell et al., 2011). 1045

Note that an FG also allows rules that represent larger chunks, such as VP — VBG (NP 10
— (-NONE- — *T%)). The implementation we use compresses this rule by substituting the 10xr
leaves (here: *T*) for the structure that branches into those leaves (here: (NP — (-NONE- 10
— *T%))), so that the rule above would be represented as VP — VBG *T*. 1049

Appendix A.2. Pitman-Yor Process 1050

Formally, the Pitman-Yor Process (PYP) is a non-parametric distribution used to cluster 1os:
tokens (Harmon et al., 2021; Pitman & Yor, 1997). Here, the modeled child uses the PYP to 10
sample existing rules (chunks) from the base PCFG representation in order to learn new, 1o
bigger chunks, given the input. For instance, using a PYP, the modeled child may consider 1o
and ultimately learn a new chunk VP — (VBG — drawing) (NP — (-NONE- — *T*)) — 1055
represented as VP — drawing *T* — by clustering together rules rq, 1, r3, and 74 in (29). 1056

Given frequent observations of recurring structures like (30), the modeled child learns 1057
to associate this expansion (i.e., VP — drawing *T*) with a single memorized derivation 1oz
instead of expanding each nonterminal (VBG, NP, -NONE-) independently. Chunks ob- 105
served more frequently are more likely to be reused in the future, enabling the modeled 160
child to generalize over recurring patterns in the data. 1061

Appendix A.3. Walkthrough of FG Pitman-Yor process 1062

The second key feature in the FG modeled child is a “lazy evaluation scheme” adapta- 106
tion to the Pitman-Yor process (T. O'Donnell et al., 2011; T. ]. O’'Donnell et al., 2009): chunks 16
are allowed to leave some non-terminals unexpanded — that is, these non-terminals can be 1065
evaluated later. This feature allows the FG modeled child to consider chunks like VP — 1066
VBG *T*, with the non-terminal VBG unexpanded. In particular, the modeled child hasa e
probability for continuing non-terminal expansion (pexpang) (T. . O'Donnell et al., 2009), 108
which can be learned from the input. 1069

To illustrate this idea, Figure A1 shows how different treelets (“Computations”) would 1o
be generated using the adapted Pitman-Yor process and a visual metaphor of customers 1m
sitting at tables in different restaurants. Here, the probability of choosing a specific option 107
(restaurant table) depends on how much probability (how many customers) is already 1o
associated with that option (how many customers are already at the table). 1074

Let’s begin with the leftmost table of the VP — VBG NP restaurant. We follow the solid 1075
red lines to expand the non-terminals VBG (to drawing) and NP (to *T*). This generates a 1o
chunk with all non-terminals expanded (i.e., VP — drawing pictures), and is a chunk an AG 1077
or FG could consider. This chunk also generates the first treelet in the Computations row 17
(VP — drawing pictures). 1079

Moving to the next table in VP — VBG NP restaurant, we can follow the solid red 100
line to expand the non-terminal VBG (to framing). We can also leave the NP unexpanded e
in this chunk, and follow the dotted gray line to create a separate chunk NP — *T*. The 1
first chunk has one non-terminal unexpanded (i.e., VP — framing NP), and is a chunk only s
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VBG ,
—drawing

1
— framing

VP VP VP VP VP

Computations:  VBG NP VBG NP VBG NP VBG NP VBG NP

drawing  pictures framing *Tx framing *Tx drawing *Tx framing *Tx

Figure Al. Example FG state adapted from T. ]. O’Donnell et al. (2009), using a visual metaphor
of customers sitting at table in different restaurants. Solid red lines indicate a path through the
restaurants as a chunked structure. Dotted gray lines correspond to the lazy evaluation where the
expansion of a given non-terminal is left unevaluated.

the FG could consider. The second chunk (NP — *T*) could be considered by a PCFG, 10
AG, or FG. Notably, this chunk has a higher probability than many others (i.e., it has three 10
“people” as its “table”). Combining these chunks together allows the second treelet in the 10
Computations row (VP — framing *T*). 1087

Moving to the third table in VP — VBG NP restaurant, we can leave the VBG unex- 10
panded in this chunk, and follow the dotted gray line to create a separate chunk VBG — 10
drawing or VBG — framing. We can also follow the solid red line to expand the non-terminal 100
NP to *T*. The first chunk has one non-terminal unexpanded (i.e., VP — VBG*T*),and isa 1m
chunk only the FG could consider. The second chunk (VBG — drawing/framing) could be 100
considered by a PCFG, AG, or FG. Notably, this chunk also has a higher probability than 0
many others (i.e., it has three “people” as its “table”). Combining these chunks together 10
allows the third and fourth treelets in the Computations row (VP — framing/drawing *T*).  10es

Moving to the rightmost table in VP — VBG NP restaurant, we can leave the VBG 100
unexpanded in this chunk, and follow the dotted gray line to create a separate chunk VBG 1007
— framing. We can also leave the NP unexpanded in this chunk, and follow the dotted 10
gray line to make a separate chunk NP — *T*. These are “minimal chunks” that can be 100
considered by a PCFG, AG, or FG. Combining these chunks together allows the fifth treelet 1100
in the Computations row (VP — framing *T*). 1101

Notably, the third table option seems to offer the highest probability chunk options for 1o
generating these treelets, since its chunks involve more probability (“people”): VP — VBG 103
*T* (2 people) and VBG — drawing/framing (2 or 3 people). Only the FG can consider the 10
first chunk of this option, which is larger than a minimal PCFG chunk but still includes 105
unexpanded non-terminals. 1106

Appendix A.4. Implementation of the FG modeled child 1107

We follow T. J. O'Donnell (2015) for the FG Pitman-Yor parameter settings: a=0, b=1. 10s
We set the Dirichlet hyperparameter 77=1, capturing a weak uniform prior over possible 110
chunks. 1110
The probability that a potential chunk expands a non-terminal to make a larger chunk un
(Pexpana in the main text) is sampled from a beta distribution (T. ]. O’Donnell et al., 2009), 12
with a mean (“sticky concentration parameter”) v = 1 and a sample size (“sticky distribution 111
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parameter”) u = 0.5. These settings correspond to Beta(0.5,0.5) in the traditional « and 1114
parameterization of this distribution. With « and g <1, this distribution places much of 1us
the probability mass on the extremes of 0 and 1. So, the modeled child will often learn 16
strategies that expand a particular non-terminal with probability close to 1 (almost always) 17
or close to 0 (almost never). 118

We performed 1,000 sweeps of the Metropolis-Hastings sampling algorithm to iden- 1us
tify potential fragment grammars (chunk inventories). We used the highest-probability 1120
grammar. uz

To assign probabilities to particular data points (syntactic paths), we calculate the 12
maximum a posteriori score under the grammar (Eisenstein, 2018), corresponding to the the 1.2s

highest-probability parse for the item. 1124
Appendix B. Comparison learners s
Appendix B.1. Implementation of the PCFG and AG modeled children 1126

For the PCFG modeled child, peypquq4 should = 0, which is parameterized via a beta w2
distribution with a mean (“sticky concentration parameter”) v = 1 and a sample size (“sticky 12
distribution parameter”) p = 0. This corresponds to Beta(0,1) in the traditional « and f 12
parameterization, and places all the probability mass on 0. So, the modeled child will only 1130
learn strategies that never expand a non-terminal. 131

For the AG modeled child, p,ypang should = 1, which is parameterized via a beta us
distribution with a mean (“sticky concentration parameter”) v = 1 and a sample size us
(“sticky distribution parameter”) p = 1. This corresponds to Beta(1,0) in the traditional & 113
and  parameterization, and places all the probability mass on 1. So, the modeled child w3
will only learn strategies that always expand a non-terminal. 1136

The remaining implementation is the same as the FG modeled child (i.e., Pitman-Yor us
parameter settings, Dirichlet settings, Metroplis-Hastings sweeps, grammar selection, and 1
calculating highest-probability parses for items). 1139

Appendix B.2. Implementation of trigram-based modeled children 1140

Each trigram ¢t € Trigrams is comprised of three units: u;-uz-u3. We calculate the ua
probability of t from the input, by observing the trigram’s frequency and using Laplace 1.
smoothing to account for unseen trigrams, as in (A1). 1143

count(uq-up-uz) + 1

Al Pi(uq-ur-usz) =
(A1) ti-tz-t3) count(uy-uy) + |Trigrams|

1144

We score a data point as follows: For each element in the data point sequence S, we s
calculate the joint log probability of S by summing over the log probabilities of each trigram 114

that comprises the sequence ts € S, as in (A2). 1147
S
(AZ) IOg P(S) = Z IOg(Pts (1/[1—1/{2-1/[3)) 1148
ts=1
Appendix B.3. LSTM implementation 1149

The long-short term memory (LSTM) model (Hochreiter & Schmidhuber, 1997)isa  uso
type of Recurrent Neural Network with an additional memory gating mechanism, making s
it better at learning that requires information to propagate across long sequences (Eisenstein, us
2018). 1153
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The input sequences to the LSTM we used are the length of the maximum sequence s
(14) plus a start symbol and an end symbol. A padding character was added for shorter s
sequences. This padding character was masked when calculating loss. We trained a uss
single-layer LSTM on each sample of the training data with the objective of minimizing s
cross-entropy loss. We selected the size of the hidden state to be the size of the vocabulary: s
344. We held out 20% of the data for each sample of the training data and performed s
a hyperparameter grid search to determine which values resulted in a minimum of the 1o
held-out loss. We found that the following parameter setting resulted in the lowest held-out 1
loss across samples: embedding dimension = 300, batch size = 300, number of epochs =500, 1.
learning rate = 0.0001. 1163

We score a data point as follows: For each element in the data point sequence S, we 1
perform a logsoftmax over the LSTM hidden state to get log probabilities for the following 1
unit u;1. This log probability distribution corresponds to the model’s expectation about 16
the next unit. Extracting the correct next unit from this distribution gives us a list of 16
log probabilities corresponding to each observed unit in the sequence. Summing these 1.

probabilities gives us the joint log probability of the sequence, as summarized in (A3). 1169
T-1

(A3) log P(S) = ¥ log P(uy1ur)
t=1

Appendix C. LSTM results un

Appendix C.1. Sprouse et al. (2012) island pattern 172
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Figure A2. Zoomed-in results of the LSTM model for the behavioral patterns from Sprouse et al.
(2012).

As mentioned in the main text, the LSTM model is capturing behavioral patterns for 1
all island types except the Adjunct Island (see Figure A2, where 4 of 10 runs show an island w7
difference with a non-positive slope). The model runs that struggle seem to fail due to us
improperly dealing with the complementizer lexical information. In particular, the failing 1
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runs strongly expect the high-probability “null" lexical item following the “CP", and aren’t
sensitive to the low-probability “that" vs. unseen “if" distinction.

Appendix C.2. De Villiers et al. (2008) child preferences

Recall that the chunk-based modeled children showed a general dispreference for the
embedded-clause wh-dependency. In contrast, the LSTM model predicts preferences close
to 50% for all items (see Figure A3).

o
o
[5)]
H{w]]

o
I3
o

o
S
o

significance
Not Significant

Significant

Predicted Long Distance Preference

0.40
[a}6
g
0.35
0.0 0.2 0.4 0.6 0.8

Behavioral Long Distance Preference

Figure A3. LSTM model predictions (across 10 runs) vs. the behavioral results from De Villiers et al.
(2008). The runs are grouped according to whether the linear regression—-predicting behavioral scores
from model output-yielded a statistically significant result (p < 0.05).

Interestingly, the best and worst model runs for the Adjunct island behavioral patterns
were also the best and worst runs for these child preference patterns. As with the Adjunct
behavioral patterns, the complementizer lexical items seem to offer one explanation for the
predicted child preference patterns. In particular, the failing runs fail to detect that unseen
complementizers (e.g., “what”, “how”, “where”) are much worse than other lexical item
options.

References

Arnon, I. (2021). The Starting Big approach to language learning. Journal of Child Language, 48(5), 937-958.

Arnon, I, & Clark, E. V. (2011). Why brush your teeth is better than teeth—Children’s word production is facilitated in familiar
sentence-frames. Language Learning and Development, 7(2), 107-129.

Behm, L., Turk-Browne, N. B., & Kibbe, M. M. (2025). The ubiquity of episodic-like memory during infancy. Trends in Cognitive Sciences.

Boeckx, C. (2012). Syntactic islands. Cambridge University Press.

Borsley, R. D., & Crysmann, B. (2021). Unbounded dependencies. In Head-driven phrase structure grammar: The handbook (2nd ed., Vol. 9,
pp. 571-634). Berlin: Language Science Press.

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive psychology, 4(1), 55-81.

Chater, N., & Vitanyi, P. (2007). ‘Ideal learning’of natural language: Positive results about learning from positive evidence. Journal of
Mathematical psychology, 51(3), 135-163.

Chomsky, N. (1981). Lectures on Government and Binding.

Chomsky, N., Anderson, S., & Kiparsky, P. (1973). Conditions on transformations. 1973, 232-286.

Cuneo, N., & Goldberg, A. E. (2023). The discourse functions of grammatical constructions explain an enduring syntactic puzzle.
Cognition, 240, 105563.

Davis, K. F,, Parker, K. P., & Montgomery, G. L. (2004). Sleep in infants and young children: Part one: normal sleep. Journal of Pediatric
Health Care, 18(2), 65-71.

Derrick, D., Mayer, C., & Gick, B. (2024). Uniformity in speech: The economy of reuse and adaptation across contexts. Glossa: a journal
of general linguistics, 9(1).

https://doi.org/10.3390/1010000

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207


https://doi.org/10.3390/1010000

Version January 19, 2026 submitted to Journal 35 of 38

De Villiers, J., Roeper, T., Bland-Stewart, L., & Pearson, B. (2008). Answering hard questions: Wh-movement across dialects and
disorder. Applied Psycholinguistics, 29(1), 67-103.

Dickson, N. (2025). Acquiring syntax by chunking trees: A computational account of child syntactic learning (Unpublished doctoral
dissertation). University of California, Irvine.

Dickson, N., Futrell, R., & Pearl, L. (2024). I Forgot but It's Okay: Learning about Island Constraints under Child-Like Memory
Constraints. In The proceedings of the 48th annual boston university conference on language development.

Dickson, N., Pearl, L., & Futrell, R. (2022). Learning constraints on wh-dependencies by learning how to efficiently represent
wh-dependencies: A developmental modeling investigation with Fragment Grammars. Proceedings of the Society for Computation
in Linguistics, 5(1), 220-224.

Ding, N. (2025). Sequence chunking through neural encoding of ordinal positions. Trends in Cognitive Sciences.

Dowman, M. (2000). Addressing the Learnability of Verb Subcategorization with Bayesian Inference. In Proceedings of the annual
meeting of the cognitive science society (Vol. 22).

Eisenstein, J. (2018). Natural language processing. Jacob Eisenstein, 507.

Engdahl, E. (1983). Parasitic gaps. Linguistics and philosophy, 5-34.

Fandakova, Y., Sander, M. C., Werkle-Bergner, M., & Shing, Y. L. (2014). Age differences in short-term memory binding are related to
working memory performance across the lifespan. Psychology and Aging, 29(1), 140.

Feldman, N. H., Griffiths, T. L., Goldwater, S., & Morgan, J. L. (2013). A role for the developing lexicon in phonetic category acquisition.
Psychological review, 120(4), 751.

Foraker, S., Regier, T., Khetarpal, N., Perfors, A., & Tenenbaum, J. (2009). Indirect evidence and the poverty of the stimulus: The case of
anaphoric one. Cognitive Science, 33(2), 287-300.

Forsythe, H., & Pearl, L. (2020). Immature representation or immature deployment? Modeling child pronoun resolution. Society for
Computation in Linguistics, 3(1).

Frank, M. C., Goldwater, S., Griffiths, T. L., & Tenenbaum, J. B. (2010). Modeling human performance in statistical word segmentation.
Cognition, 117(2), 107-125.

Frank, S., Goldwater, S., & Keller, F. (2013). Adding sentence types to a model of syntactic category acquisition. Topics in Cognitive
Science, 5(3), 495-521.

Freudenthal, D., Gobet, F., & Pine, ]. M. (2024). MOSAIC+: A Crosslinguistic Model of Verb-Marking Errors in Typically Developing
Children and Children With Developmental Language Disorder. Language Learning, 74(1), 111-145.

Freudenthal, D., Pine, J. M., & Gobet, E. (2006). Modeling the development of children’s use of optional infinitives in Dutch and
English using MOSAIC. Cognitive Science, 30(2), 277-310.

Freudenthal, D., Pine, ]J. M., Jones, G., & Gobet, F. (2015). Simulating the cross-linguistic pattern of Optional Infinitive errors in
children’s declaratives and Wh-questions. Cognition, 143, 61-76.

Futrell, R., & Mahowald, K. (2025). How linguistics learned to stop worrying and love the language models. arXiv preprint
arXiv:2501.17047.

Gagliardi, A., Feldman, N. H., & Lidz, ]. (2017). Modeling statistical insensitivity: Sources of suboptimal behavior. Cognitive Science,
41(1), 188-217.

Gathercole, S. E., Pickering, S.]., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age.
Developmental psychology, 40(2), 177.

Gazdar, G. (1985). Generalized phrase structure grammar. Harvard University Press.

Goldberg, A., Cuneo, N., & Fergus, A. (2024). Addressing a challenge to the Backgroundedness account of islands. DOI: https://doi.
0rg/10.31234/osf. io/hmc9n.

Goldberg, A. E. (1995). Constructions: A construction grammar approach to argument structure. University of Chicago.

Goldberg, A. E. (2006). Constructions at work: The nature of generalization in language. Oxford University Press.

Goldwater, S., & Griffiths, T. (2007). A fully Bayesian approach to unsupervised part-of-speech tagging. In Annual meeting-Association
for Computational Linguistics (Vol. 45, p. 744).

Griffiths, T. L., Chater, N., & Tenenbaum, J. B. (2024). Bayesian models of cognition: Reverse engineering the mind. MIT Press.

Grosu, A. (1973). On the nonunitary nature of the coordinate structure constraint. Linguistic Inquiry, 4(1), 88-92.

Gulrajani, A., & Lidz, ]. (2024). Reassessing a model of syntactic island acquisition. In Proceedings of the society for computation in
linguistics 2024 (pp. 43-51).

Gutman, A., Dautriche, L., Crabbé, B., & Christophe, A. (2015). Bootstrapping the syntactic bootstrapper: Probabilistic labeling of
prosodic phrases. Language Acquisition, 22(3), 285-309.

Harmon, Z., Barak, L., Shafto, P., Edwards, J., & Feldman, N. H. (2021). Making heads or tails of it: a competition—compensation
account of morphological deficits in language impairment. In Proceedings of the annual meeting of the cognitive science society
(Vol. 43).

https://doi.org/10.3390/1010000

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261


https://doi.org/10.3390/1010000

Version January 19, 2026 submitted to Journal 36 of 38

Hirzel, M. R. (2022). Island constraints: What is there for children to learn? (Unpublished doctoral dissertation). University of Maryland,
College Park.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.

Hockenmaier, J., & Steedman, M. (2007). CCGbank: a corpus of CCG derivations and dependency structures extracted from the Penn
Treebank. Computational Linguistics, 33(3), 355-396.

Huang, J.-T. (1982). Logical relations in Chinese and the theory of grammar. Doctoral dissertation, MIT.

Jessop, A., Pine, ], & Gobet, F. (2025). Chunk-based incremental processing and learning: An integrated theory of word discovery,
implicit statistical learning, and speed of lexical processing. Psychological Review.

Johnson, M., Griffiths, T., & Goldwater, S. (2007). Adaptor grammars: A framework for specifying compositional nonparametric
Bayesian models. Advances in neural information processing systems, 19.

Kobzeva, A., & Kush, D. (2025). Acquiring constraints on filler-gap dependencies from structural collocations: Assessing a
computational learning model of island-insensitivity in Norwegian. Language Acquisition, 1-44.

Kwiatkowski, T., Goldwater, S., Zettlemoyer, L., & Steedman, M. (2012). A probabilistic model of syntactic and semantic acquisition
from child-directed utterances and their meanings. In Proceedings of the 13th conference of the european chapter of the association for
computational linguistics (pp. 234-244).

Lau, J. H., Clark, A., & Lappin, S. (2015). Unsupervised prediction of acceptability judgements. In Proceedings of the 53rd annual meeting
of the association for computational linguistics and the 7th international joint conference on natural language processing (volume 1: Long
papers) (pp. 1618-1628).

Lau, J. H., Clark, A., & Lappin, S. (2017). Grammaticality, acceptability, and probability: A probabilistic view of linguistic knowledge.
Cognitive science, 41(5), 1202-1241.

Lieder, F,, & Griffiths, T. L. (2020). Resource-rational analysis: Understanding human cognition as the optimal use of limited
computational resources. Behavioral and brain sciences, 43, el.

Liu, Y., Ryskin, R., Futrell, R., & Gibson, E. (2022). A verb-frame frequency account of constraints on long-distance dependencies in
English. Cognition, 222, 104902.

Matchin, W., Almeida, D., Hickok, G., & Sprouse, J. (2025). A Functional Magnetic Resonance Imaging Study of Phrase Structure and
Subject Island Violations. Journal of Cognitive Neuroscience, 37(2), 414-442.

Mayer, C. (2021). Capturing gradience in long-distance phonology using probabilistic tier-based strictly local grammars. In Proceedings
of the society for computation in linguistics 2021 (pp. 39-50).

McCauley, S. M., & Christiansen, M. H. (2019). Language learning as language use: A cross-linguistic model of child language
development. Psychological review, 126(1), 1.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information.
Psychological review, 63(2), 81.

Momma, S., & Dillon, B. (2023). Discourse factors do not explain islands. Available at SSRN 4635713.

Nguyen, E., & Pearl, L. (2019). Using developmental modeling to specify learning and representation of the passive in English children.
In Proceedings of the boston university conference on language development (Vol. 43, pp. 469-482).

O’Donnell, T., Snedeker, J., Tenenbaum, J., & Goodman, N. (2011). Productivity and reuse in language. In Proceedings of the Annual
Meeting of the Cognitive Science Society (Vol. 33).

O’Donnell, T. J. (2015). Productivity and reuse in language: A theory of linguistic computation and storage. MIT Press.

O’Donnell, T. J., Tenenbaum, J. B., & Goodman, N. D. (2009). Fragment grammars: Exploring computation and reuse in language.

Omaki, A., Davidson White, 1., Goro, T., Lidz, J., & Phillips, C. (2014). No fear of commitment: Children’s incremental interpretation in
English and Japanese wh-questions. Language Learning and Development, 10(3), 206-233.

Paris, S. G. (1978). The development of inference and transformation as memory operations. In Memory development in children (pp.
129-156). Psychology Press.

Pearl, L. (2022). Poverty of the stimulus without tears. Language Learning and Development, 18(4), 415-454.

Pearl, L. (2023a). Computational cognitive modeling for syntactic acquisition: Approaches that integrate information from multiple
places. Journal of Child Language, 50(6), 1353-1373.

Pear], L. (2023b). Modeling syntactic acquisition. In J. Sprouse (Ed.), The Oxford Handbook of Experimental Syntax (pp. 209-270).

Pearl, L., & Bates, A. (2022a). A new way to identify if variation in children’s input could be developmentally meaningful: Using
computational cognitive modeling to assess input across socio-economic status for syntactic islands. Journal of Child Language,
51(4), 800-833.

Pearl, L., & Bates, A. (2022b). A new way to identify if variation in children’s input could be developmentally meaningful: Using
computational cognitive modeling to assess input across socio-economic status for syntactic islands. Journal of Child Language,
51(4), 800-833.

https://doi.org/10.3390/1010000

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314


https://doi.org/10.3390/1010000

Version January 19, 2026 submitted to Journal 37 of 38

Pearl, L., & Forsythe, H. (2025). Learning to be inaccurate like an adult: Using computational cognitive modeling to investigate the acquisition
of pronoun interpretation in spanish. University of California, Irvine. Available online: https://ling.auf.net/lingbuzz/006141
(accessed on).

Pearl, L., Goldwater, S., & Steyvers, M. (2010). Online learning mechanisms for Bayesian models of word segmentation. Research on
Language and Computation, 8, 107-132.

Pearl, L., Ho, T., & Detrano, Z. (2017). An argument from acquisition: Comparing English metrical stress representations by how
learnable they are from child-directed speech. Language Acquisition, 24(4), 307-342.

Pearl, L., & Sprouse, . (2013). Syntactic islands and learning biases: Combining experimental syntax and computational modeling to
investigate the language acquisition problem. Language Acquisition, 20(1), 23-68.

Pearl, L., & Weinberg, A. (2007). Input filtering in syntactic acquisition: Answers from language change modeling. Language learning
and development, 3(1), 43-72.

Pearl, L. S. (2021). How statistical learning can play well with Universal Grammar. Wiley Online Library.

Pearl, L. S., & Mis, B. (2016). The role of indirect positive evidence in syntactic acquisition: A look at anaphoric one. Language, 92(1),
1-30.

Pearl], L. S., & Sprouse, J. (2019). Comparing solutions to the linking problem using an integrated quantitative framework of language
acquisition: Supplementary material. Language, 95(4).

Perfors, A., Tenenbaum, ]. B., & Regier, T. (2011). The learnability of abstract syntactic principles. Cognition, 118(3), 306-338.

Perkins, L., Feldman, N., & Lidz, J. (2017). Learning an input filter for argument structure acquisition. In Proceedings of the 7th workshop
on cognitive modeling and computational linguistics (cmcl 2017) (pp. 11-19).

Perkins, L., & Lidz, J. (2021). Eighteen-month-old infants represent nonlocal syntactic dependencies. Proceedings of the National Academy
of Sciences, 118(41), €2026469118.

Perruchet, P, Poulin-Charronnat, B., Tillmann, B., & Peereman, R. (2014). New evidence for chunk-based models in word segmentation.
Acta psychologica, 149, 1-8.

Perruchet, P, & Vinter, A. (1998). PARSER: A model for word segmentation. Journal of memory and language, 39(2), 246-263.

Phillips, L., & Pearl, L. (2015). The utility of cognitive plausibility in language acquisition modeling: Evidence from word segmentation.
Cognitive science, 39(8), 1824-1854.

Pinker, S. (1999). Words and rules: The ingredients of language. New York, NY: Harper Collins.

Pitman, J., & Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. The Annals of
Probability, 855-900.

Pulido, M. F. (2021). Individual chunking ability predicts efficient or shallow L2 processing: Eye-tracking evidence from multiword
units in relative clauses. Frontiers in Psychology, 11, 607621.

Ramkumar, P.,, Acuna, D. E., Berniker, M., Grafton, S. T., Turner, R. S., & Kording, K. P. (2016). Chunking as the result of an efficiency
computation trade-off. Nature communications, 7(1), 12176.

Rosenbloom, P., & Newell, A. (1982). Learning by chunking: A production system model of practice (tech. rep. no. 82-135). Carnegie-Mellon
University Computer Science Department.

Ross, J. R. (1967). Constraints on variables in syntax.

Rowe, M. L. (2012). A longitudinal investigation of the role of quantity and quality of child-directed speech in vocabulary development.
Child development, 83(5), 1762-1774.

Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2010). Rational approximations to rational models: alternative algorithms for category
learning. Psychological review, 117(4), 1144.

Sprouse, J., Villata, S., & Goodall, G. (2021). Island effects. The Cambridge handbook of experimental syntax, 227-257.

Sprouse, J., Wagers, M., & Phillips, C. (2012). A test of the relation between working-memory capacity and syntactic island effects.
Language, 82-123.

Steedman, M., & Baldridge, J. (2011). Combinatory categorial grammar. Non-Transformational Syntax: Formal and Explicit Models of
Grammar, 181-224.

Thalmann, M., Souza, A. S., & Oberauer, K. (2019). How does chunking help working memory? Journal of Experimental Psychology:
Learning, Memory, and Cognition, 45(1), 37.

Tomasello, M. (2001). First steps toward a usage-based theory of language acquisition.

Warstadt, A., Choshen, L., Mueller, A., Williams, A., Wilcox, E., & Zhuang, C. (2023). Call for Papers-The BabyLM Challenge:
Sample-efficient pretraining on a developmentally plausible corpus. arXiv preprint arXiv:2301.11796.

Winckel, E., Abeillé, A., Hemforth, B., & Gibson, E. (2025). Discourse-based constraints on long-distance dependencies generalize
across constructions in English and French. Cognition, 254, 105950.

https:/ /doi.org/10.3390/1010000

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366


https://ling.auf.net/lingbuzz/006141
https://doi.org/10.3390/1010000

Version January 19, 2026 submitted to Journal 38 of 38

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

1367
1368

1369

https:/ /doi.org/10.3390/1010000


https://doi.org/10.3390/1010000

	Syntactic islands and acquisition
	Efficient chunking for syntactic islands
	Why chunking?
	Previous models of syntactic chunking
	Finding efficient chunks: The Fragment Grammar learner

	The FG modeled child: Implementation
	The FG modeled child's acquisition task
	Input
	A modeled child's intake
	Modeled child target behavior
	Adult judgment data
	Child judgment data


	Evaluating the FG modeled child
	Linking probabilities with target behavior patterns
	Probabilities to acceptability judgments
	Probabilities to interpretation preferences

	Comparison: Other modeled children and models
	Modeled children with simpler chunks
	A neural network model with many free parameters


	Results
	Target behavior: Superadditivity
	Subject and Complex NP islands
	Whether and Adjunct islands
	Summary for superadditivity

	Target behavior: Positive correlation
	Target behavior: Child preferences

	Discussion
	Assumptions of the current implementation
	Intake
	Chunking preferences
	Cognitive limitations

	The target of acquisition
	Additional empirical data about wh-dependencies
	Immature wh-dependency knowledge
	Linguistic variation

	Theoretical implications

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4

	Appendix B
	Appendix B.1
	Appendix B.2
	Appendix B.3

	Appendix C
	Appendix C.1
	Appendix C.2

	References

