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Abstract

Poverty of the stimulus has been at the heart of ferocious and tear-filled debates at the nexus
of psychology, linguistics, and philosophy for decades. This review is intended as a guide for
readers without a formal linguistics or philosophy background, focusing on what poverty of the
stimulus is and how it’s been interpreted, which is traditionally where the tears have come in.
I discuss poverty of the stimulus from the perspective of language development, highlighting
how poverty of the stimulus relates to expectations about learning and the data available to
learn from. I describe common interpretations of what poverty of the stimulus means when
it occurs, and approaches for determining when poverty of the stimulus is in fact occurring.
I close with illustrative examples of poverty of the stimulus in the domains of syntax, lexical
semantics, and phonology, and discuss the value of identifying instances of poverty of the
stimulus when it comes to understanding language development.

Keywords: poverty of the stimulus, nativism, quantitative approaches, syntax, lexical
semantics, phonology

1 Introduction
“Poverty of the stimulus” is essentially a claim about the data available to children when they’re
trying to learn certain pieces of knowledge (more on this in the next section). Notably, poverty
of the stimulus has been at the heart of debates in cognitive science – in particular, the intersec-
tion of psychology, linguistics, and philosophy – for decades. Here are just some of the papers
focusing on it over the years: Chomsky (1965); Kimball (1973); Chomsky (1975); Baker (1978);
Stich (1978); Pinker (1979); Chomsky (1980a, 1980b); Baker and McCarthy (1981); Hornstein
and Lightfoot (1981); Gordon (1986); Chomsky (1988); Lasnik (1989); Lightfoot (1989); Pinker
(1989); Sampson (1989); Crain (1991); Ramsey and Stich (1991); Wexler (1991); Marcus (1993);
Garfield (1994); Jackendoff (1994); Morgan, Bonamo, and Travis (1995); Pullum (1996); Seiden-
berg (1997); Ambridge, Rowland, and Pine (2008); Lightfoot (1998); Cowie (1998); Laurence
and Margolis (2001); Matthews (2001); Crain and Pietroski (2002); Fodor and Crowther (2002);
Legate and Yang (2002); Pullum and Scholz (2002); Scholz and Pullum (2002); Chouinard and
Clark (2003); Dresher (2003); Collins (2004); Pinker (2004); Idsardi (2005); Scholz and Pullum
(2006); Ambridge et al. (2008); Valian (2009); Hsu and Chater (2010); Perfors, Tenenbaum, and
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Wonnacott (2010); Clark and Lappin (2011); Hsu, Chater, and Vitányi (2011); Perfors, Tenen-
baum, and Regier (2011); Hsu, Chater, and Vitányi (2013); Pearl and Sprouse (2013b, 2013a);
Rey (2014); Chater, Clark, Goldsmith, and Perfors (2015); King (2015); Han, Musolino, and Lidz
(2016); Pearl and Mis (2016); Skidelsky (2016); Abend, Kwiatkowski, Smith, Goldwater, and
Steedman (2017); Belletti (2017); Fodor and Sakas (2017); Lasnik and Lidz (2017); Piattelli-
Palmarini (2017); Zenker and Schwartz (2017); Fitz and Chang (2017); Lidz (2018); McCoy,
Frank, and Linzen (2018); Pearl and Sprouse (2018); and Rawski and Heinz (2019). Interestingly,
people who have written on poverty of the stimulus are often quite exercised by it. Much of the ink
spilled above has been spent expressing (in my opinion) rather strong feelings, in addition to actual
debate. So, why has poverty of the stimulus gotten so much continuous – and often quite feisty –
attention? I believe that this is because of the implications people take poverty of the stimulus to
have, which I’ll discuss in more detail throughout this article.

More generally, I’ll try to give an overview of what poverty of the stimulus is and how it’s
been interpreted, which is really where all the tears have traditionally come in. My goal is to
accomplish this overview without the tears, as much as possible, particularly for readers without
a formal linguistics or philosophy background. To do this, I approach poverty of the stimulus
from the perspective of language development, and focus on how poverty of the stimulus relates
to expectations about learning and the data available to learn from. I then describe how people
interpret poverty of the stimulus when it occurs. Because a lot of debate surrounding poverty of
the stimulus is actually about when poverty of the stimulus occurs, I’ll discuss some approaches
people have taken for determining if poverty of the stimulus is in fact occurring. These approaches
often focus on determining how much data is required for children to learn what they do when
they do; if the quantity of data required is more than the quantity of data children seem to get,
then poverty of the stimulus is occurring. I’ll then discuss some potential examples of poverty
of the stimulus and how I think it best to interpret them, given our current understanding. I’ll
conclude with what seem to me to be the best ways to make progress on determining (i) when
poverty of the stimulus occurs, and (ii) what it means when it does, particularly if we’re interested
in understanding language development better.1

1.1 Alright, what is it?
At its heart, poverty of the stimulus is a developmental claim, i.e., a claim about whether something
is in fact learnable (and more practically, learnable by typically-developing children). Poverty of
the stimulus occurs when there’s unresolvable ambiguity in the data – in this way, the data are
insufficient on their own (i.e., the stimulus is too “impoverished”) for children to infer the correct
answer (Laurence & Margolis, 2001; Scholz & Pullum, 2002; Clark & Lappin, 2011; Chater et
al., 2015; Skidelsky, 2016; Lasnik & Lidz, 2017). So, unresolvable ambiguity causes an induction
problem; this means that “poverty of the stimulus” is just another way of saying that there’s an
induction problem for the child. Researchers are then rather impressed when children nonetheless

1I recognize that this review is rather long, as I attempted to draw together information on many different aspects
of poverty of the stimulus. Given this, some readers may find it helpful to skip to sections targeting aspects of poverty
of the stimulus that they’re particularly interested in, after reading the introductory section.
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seem to reliably resolve that ambiguity, and end up with the right answer despite the induction
problem (Chomsky, 1975; Ramsey & Stich, 1991; Garfield, 1994; Laurence & Margolis, 2001;
Matthews, 2001; Collins, 2004).

Figure 1: A visual demonstration of poverty of
the stimulus for two-dimensional data. Each
X corresponds to an observed data point, and
A-F correspond to potential representations that
speakers could use to generate the observed data.
The correct representation (C) is in dashed lines.
Poverty of the stimulus occurs because all these
representations are compatible with the data.

I think it’s helpful to see this kind of unre-
solvable ambiguity more concretely, as in Fig-
ure 1. Here we see a two-dimensional space,
where some data points are observed (each in-
dicated with an X). Now, let’s assume learn-
ers believe that observable data are generated
by speakers using some internal representation
(e.g., an observed vowel pronunciation gener-
ated from an underlying vowel definition of
some kind, or an observed utterance generated
from an underlying syntactic rule set of some
kind). So, for this kind of learner, the data
in Figure 1 were generated from some internal
representation the speakers used. The learner
is then trying to figure out what that represen-
tation was, on the basis of these observed data.
In a two-dimensional space like what’s shown
in Figure 1, a representation might correspond
to a mean value for each dimension, which has
some variance in each dimension (leading to ellipses like those shown in Figure 1). So, speakers
generate data points that fall within the bounds of that internally-defined ellipse. This means the
child’s job is to figure out which ellipse, corresponding to a particular internal representation, is
the one speakers used to generate those data. Some sample hypotheses are shown (A-F), with the
correct one (C) indicated with a dashed line. The problem here is that all these hypotheses are
compatible with the data. That is, these data could be generated by a speaker who had representa-
tions corresponding to A, B, C, D, E, or F. So, these data are ambiguous about which hypothesis is
correct, and this ambiguity is unresolvable without some kind of additional guidance about which
one to pick. Thus, an induction problem, i.e., poverty of the stimulus.

Now, imagine if all the children we observe always end up with hypothesis C. Maybe they
explore some other hypotheses along the way (like A or B or F), but they all still converge on C as
the underlying representation for these data. This would be very surprising. Put simply, why C?
What does C have going for it that the other hypotheses don’t? Why not A or B or F as the final
answer, given these data? What’s causing this constrained generalization to C? This constrained
generalization becomes even more surprising when the hypothesis space has more than these 6
hypotheses in it. Generally, language scientists think of children’s hypothesis spaces being quite
vast. So, when we observe poverty of the stimulus and we see constrained generalization – that
is, children not picking hypotheses that are perfectly compatible with the available data and so
avoiding “tempting errors” (Laurence & Margolis, 2001) – we get very interested in why children
are doing this.
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This is really where all the interest in poverty of the stimulus comes from. Poverty of the
stimulus means the data are insufficient for explaining how children make the generalizations they
do. This is because the data are compatible with multiple hypotheses that children seem to ignore
(Laurence & Margolis, 2001; Belletti, 2017; Piattelli-Palmarini, 2017). So, children must be using
something else to help them decide among the possible hypotheses – and that something else
doesn’t come from the data themselves. It has to come from somewhere else. But, where else
is there, if the data are the only external signal the child has to work with? The answer is that
the something else is internal – it comes from the child herself. Prior to learning from these data,
the child already knows something (or is able to do something), and that something helps her
navigate through these hypotheses that are equally compatible with the data. That is, the prior
something (sometimes called the child’s “inductive bias”) allows the child to make constrained
generalizations.2

So, the argument from poverty of the stimulus can be summed up as in (1), which shows why
poverty of the stimulus and children making constrained generalizations should lead us to believe
children have prior knowledge or abilities. I want to note that tears often arise about the nature of
the prior knowledge or abilities required (more discussion of this in section 1.4), though sometimes
tears do come in at other points in the reasoning process described in (1), as discussed in other parts
of this review.

(1) The argument from poverty of the stimulus: Poverty of the stimulus and constrained gen-
eralizations together imply prior knowledge or abilities
a. Data: There are data external to the child that are available for learning about some

underlying representation humans have (e.g., about language).
b. Poverty of the stimulus: These data are compatible with more than one hypothesis

about the underlying representation. This is why they’re considered impoverished or
insufficient – they don’t pinpoint the correct hypothesis on their own.

c. Constrained generalization: Children figure out the correct representation anyway.
d. Prior knowledge or abilities: Therefore, children have prior knowledge or abilities

that cause them to make the constrained generalization.

1.2 How do we tell that data are insufficient?
One key component to this chain of reasoning is the actual poverty of the stimulus part itself, i.e.,
that the data are insufficient on their own to guide the child to the correct answer. This is why
children have to somehow go beyond the information provided in those data (Ramsey & Stich,
1991; Wexler, 1991; Pullum & Scholz, 2002; Skidelsky, 2016; Lasnik & Lidz, 2017). Above,
I described this insufficiency as the data being compatible with more than one hypothesis (with
the visual example in Figure 1). However, there’s been considerable discussion (sometimes with
tears) of precisely how data can be insufficient, which I’ll briefly summarize now. Where possible,
I’ll connect each idea to the poverty of the stimulus definition used above, where the data are

2It’s important to underscore that “prior” isn’t the same as “innate”, something which will be discussed more
thoroughly in section 1.3.
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compatible with more than one hypothesis. I also want to note that only the first idea mentioned
below (where the data just aren’t there) is in line with the poverty of the stimulus definition here.
The other ideas are often related, but don’t necessarily mean the data are compatible with more than
one hypothesis. (This has been a definite source of confusion in the debate surrounding poverty of
the stimulus, and so has caused some tears.) For each of those other ideas, I’ll note why those ideas
have been connected to poverty of the stimulus, even though they themselves may not be poverty
of the stimulus.

The data just aren’t there. One way poverty of the stimulus is discussed is that the required
data simply aren’t available (Chomsky, 1965; Kimball, 1973; Baker, 1978; Hornstein & Lightfoot,
1981; Gordon, 1986; Lasnik, 1989; Ramsey & Stich, 1991; Lightfoot, 1998; Legate & Yang, 2002;
Pullum & Scholz, 2002; Lasnik & Lidz, 2017; Zenker & Schwartz, 2017; Lidz, 2018). What does
it mean for data to be required? Required data are those that pinpoint the correct hypothesis.
For example, there are no data points in the hypothesis space in Figure 1 that would uniquely
identify hypothesis C as the correct hypothesis. This is because every data point in C is also in
F (i.e., C is a subset of F), so even the least ambiguous “C” data points still have unresolvable
ambiguity between C and F (i.e., there’s a “Subset Problem” caused by F if the child needs to learn
C. In particular, there is no obvious C-but-not-F data point available – and this is exactly what’s
caused both significant worry and theories for how children deal with it (Brown & Hanlon, 1970;
Bowerman, 1988; Marcus, 1993; Hsu et al., 2013; Chater et al., 2015; Lasnik & Lidz, 2017; Pearl,
in press-b).3 This situation aligns exactly with our current definition of poverty of the stimulus
– multiple hypotheses are compatible with the available data. In this particular case, multiple
hypotheses will always be compatible with data points covered by the correct hypothesis C.

As a concrete example of this situation, suppose we consider wh-words like what in English,
and where they appear.4 Let’s suppose hypothesis C is that wh-words must always appear at the
front of the clause (this is the default for English); so, C predicts a simple question (which is a main
clause) to have a form like (2a) and embedded clauses (indicated with [...] in (2)) to have forms
like (2b) and (2c). In each case, the what is at the front of the clause. Suppose that hypothesis F is
that wh-words can either appear at the front of the clause or instead remain in place where they’re
understood (“in-situ”), as in (2d)-(2f). So, F includes data that aren’t the default for English (though
they may be acceptable in certain situations, discussed more below) – I’ve indicated these with a *
in (2).

3One modern solution to the Subset Problem involves a domain-general ability to leverage ambiguous C-and-F data
by considering how likely each hypothesis is to generate those kind of data (here, C is more likely than F to generate
C-and-F data). This has been called the Size Principle (Tenenbaum & Griffiths, 2001), and is discussed recently in
more detail for the Subset Problem in Lasnik and Lidz (2017) and Pearl (in press-a). This ability to leverage ambiguous
data would allow children to use ambiguous data as indirect evidence for C (and against F). Indirect evidence is an
evidence type discussed later on in this section when considering the data available to children.

4I want to note that this is a hypothetical example, rather than one motivated by a particular empirical debate.
However, I think this example sketches out a potential hypothesis space for the child that makes the distinctions I
discuss later on easier to follow.
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(2) wh-word position examples
a. Main clause, fronted: “What did this penguin do?”
b. Embedded clause, fronted: “I saw [what this penguin did].”
c. Doubly embedded clause, fronted: “I thought [I saw [what this penguin did]].”
d. *Main clause, in-situ: “This penguin did what?”
e. *Embedded clause, in-situ: “I saw [this penguin did what].”
f. *Doubly embedded clause, in-situ: “I thought [I saw [this penguin did what]].”

This means that hypothesis C allows only the first three examples in (2) to occur, while hypoth-
esis F allows all the examples in (2) to occur. So, if hypothesis C is correct (and an English child
has to learn that from this hypothesis space), there’s no obvious C-but-not-F data point available:
the three data points compatible with C ((2a)-(2c)) are also compatible with F.

A lot of debate (and tears) then happens about exactly what kind of data are required to pinpoint
the correct hypothesis. This in turn depends on quite a number of things: (i) what the correct
hypothesis is, (ii) what the hypothesis space looks like, (iii) what data are available, and (iv) how
children are able to leverage those available data. In particular, there can often be significant
disagreement about any of these components, with specific ideas for each component changing
over time as we learn more about how humans represent linguistic knowledge (component (i)),
how children represent linguistic knowledge (component (ii)), what children’s input looks like
(component (iii)), and how children’s information processing abilities develop (component (iv)).5

To begin with, it matters quite a lot what the hypothesis space looks like. Imagine if the
hypothesis space was like the one shown in Figure 2 – there are certainly possible data points that
would uniquely pinpoint C in this hypothesis space (some are shown as Xs in Figure 2). That is, if
those unambiguous C data were available, no poverty of the stimulus would happen.

As a concrete example with the position of wh-words, suppose hypothesis E is that wh-words
must always appear at the front of main clauses (like (2a)) but must always remain in place in
embedded clauses (like (2e)-(2f)). (Remember that hypothesis C is that wh-words must always
appear at the front of both main and embedded clauses, corresponding to (2a)-(2c).) So, while
both C and E allow (2a), only C allows (2b)-(2c). This means that data points like (2b)-(2c) would
correspond to Xs in Figure 2 and signal unambiguously that hypothesis C is correct.

Let’s turn now to the availability of data to children, which is also a place where a lot of tears
have historically occurred. For instance, researchers have often described children as learning
primarily (or only) from what’s called direct positive evidence (Pinker, 1989; Seidenberg, 1997;
Marcus, 1993; Laurence & Margolis, 2001; Fodor & Crowther, 2002; Fodor & Sakas, 2017).
In Figure 2, this means that to learn C is correct, children need to encounter data that are only
compatible with C (like the Xs shown). These data are then positive examples of hypothesis C that
children directly observe.

Direct positive evidence contrasts with both negative evidence and indirect evidence. Negative
evidence is evidence about what’s not the correct hypothesis. An example would be the frowny face
in Figure 2. Continuing with the wh-word example, this might be a data point where the wh-word
is in-situ in an embedded clause, like (2e)-(2f) – these data points are compatible with E but not C.

5For a concrete example of changing ideas, see the discussion in section 3.1 about structure dependence.
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Figure 2: A hypothesis space where there are un-
ambiguous data available for the correct hypoth-
esis C, shown with dashed lines. Unambiguous
(direct positive evidence) data points for C are
shown with Xs. A negative evidence data point
for C is shown with a frowny face.

One way to think about negative evidence is
that someone directly tells the child that this
data point isn’t in fact right (i.e., it’s not cov-
ered by the correct hypothesis C - something
like “You can’t say I saw this penguin did
what.”). However, we don’t often go around
telling people what isn’t so unless they’ve
somehow indicated they think it might be so.
Here, this might correspond to children indicat-
ing they think that data point is part of the cor-
rect hypothesis, and then being corrected (i.e.,
the child says “I saw this penguin did what”
and her caretaker replies, “No, honey, you can’t
say that.”). But, it turns out that children aren’t
often explicitly corrected (Bowerman, 1988);
even when they are, they seem to ignore those explicit corrections (McNeill, 1996; Brown & Han-
lon, 1970). Still, there are other kinds of corrective feedback they receive (Quine, 1960; Morgan
et al., 1995; Saxton, 1997; Saxton, Kulcsar, Marshall, & Rupra, 1998; Saxton, 2000; Chouinard
& Clark, 2003; Saxton, 2005; King, 2015), and this feedback potentially highlights the “negative”
status of the data point (i.e., that this data point isn’t covered by the correct hypothesis).

As a concrete example of corrective feedback, let’s consider recasts (Saxton, 1997; Saxton et
al., 1998; Saxton, 2000, 2005), where the child says something incorrect and the caretaker responds
by recasting that incorrect thing into something correct. In Figure 2, this might occur if the child
said the frowny face data point, and the caretaker responded by recasting it as an X data point. A
language example might be something like the child saying “I saw this penguin did what”, and the
caretaker recasting that as “Right, you saw what this penguin did”: the in-situ what is recast as
fronted what in the embedded clause. In this way, the caretaker has indirectly communicated the
negative status of the frowny face data point – that is, if the child is astute enough to notice the
recast. This particular issue of the child noticing the recast as negative evidence highlights why
even this kind of corrective feedback may also have limited effectiveness (Morgan et al., 1995).

This relates to the second distinction I mentioned above: indirect evidence. Indirect evidence
means the data point isn’t directly about the correct hypothesis – instead, the child has to infer what
information from that data point is relevant for pinpointing the correct hypothesis. For recasts, the
indirect part was recognizing that what the caretaker said was a replacement to be used instead
of the frowny face data point. More specifically, in the case of the fronted what recast for in-situ
what, the child has to infer that the caretaker wasn’t saying fronted what simply because she felt
like it; instead, the child must infer that fronted what is the correct way to express that meaning;
this makes the recast, if reasoned about correctly by the child, indirect negative evidence for in-situ
what.6 This train of required reasoning also highlights how harnessing indirect evidence is likely
to take more effort from the child.

6When indirect evidence is also negative evidence like this, it’s sometimes referred to as “implicit negative evi-
dence” (Rohde & Plaut, 1999) rather than “indirect negative evidence”.
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So, the availability of indirect evidence in children’s input very much depends on the child’s
ability to make (potentially sophisticated) inferences. In theory, many types of data could function
as indirect evidence (typically indirect negative evidence) for a particular hypothesis. For example,
we saw that the recast of fronted what for in-situ what can function as indirect negative evidence
for hypotheses that front wh-words. It could also be that echo questions, which have distinctive
prosody (e.g, You saw that this penguin did WHAT?”), function as indirect negative evidence in
favor of wh-word fronting; however, this is only true if children infer from this distinctive prosody
that in-situ wh-words are unusual – and therefore, fronted wh-words are the norm. But, can children
in practice harness one or both of these types of indirect negative evidence for wh-word fronting?
It really hinges on children’s ability to make these inferences.

Figure 3: A hypothesis space with different types
of data available for the correct hypothesis C,
shown with dashed lines. Data points that are
hard to use are shown with an H, while data
points that are simpler to use are shown with an
S.

This then relates to the final point: we need
to be clear about how we think children are able
to leverage the available data. If data are avail-
able in the input, but children can’t use them
(perhaps because these data are just too indi-
rect), we might well have poverty of the stim-
ulus after all. For instance, imagine a scenario
like Figure 3, where C is the correct hypothesis
and there are in fact unambiguous data avail-
able, but they’re hard for the child to use for
whatever reason (these are labeled H in Figure
3).

In our wh-word example, these might cor-
respond to data points like (2c) where the wh-
word is in an embedded clause inside a sec-
ond embedded clause (i.e., a doubly embedded
clause). These data points could be hard for a
child to use because her developing processing abilities might not yet let her accurately process
a doubly embedded clause. If a particular child is in fact unable to use the hard data points, this
leaves that child with a smaller set of (simpler) useable data (these are labeled S in Figure 3 – in
our wh-word example, they would correspond to data points like (2a) that involve main clauses).
Then, these data do in fact cause poverty of the stimulus because they’re compatible with multiple
hypotheses (correct hypothesis C, and incorrect hypothesis E).

The data are noisy. Because of speech errors on the part of the speakers or processing errors on
the part of the child listeners, the data may be “noisy” (Chomsky, 1965; Hornstein & Lightfoot,
1981; Ramsey & Stich, 1991; Garfield, 1994; Seidenberg, 1997; Laurence & Margolis, 2001;
Piattelli-Palmarini, 2017). I want to emphasize that noisy data don’t automatically cause poverty
of the stimulus. In fact, Clark and Lappin (2011) note that noise in the input signal is something
children have to deal with in many areas of cognitive development (e.g., auditory perception and
vision). The issue related to poverty of the stimulus is that the data are noisy in a way that leads to
unresolvable ambiguity.
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For example, let’s consider the left panel of Figure 4, where C is the correct hypothesis and
potential noisy data are shown as Ns. For our wh-word example, suppose hypothesis B is that wh-
words can be either fronted or in-situ in main clauses, but must be fronted in embedded clauses. So,
the N data points could be like (2d), with the wh-word in-situ in the main clause (This penguin did
what?). This situation might occur if someone is speaking English as a second language, and her
first language is one where wh-words aren’t fronted in main clauses, such as Japanese, Hungarian,
Igbo, or Zulu. That is, by accident, the speaker transfers her use of wh-words from her native
language to English, and creates these kind of noisy data points in English children’s input.

Figure 4: A visual demonstration of noisy data (left panel) and misleading data (right panel). Each
X corresponds to an observed non-noisy data point while each N is a noisy data point in the left
panel and each M is a misleading data point in the right panel. The correct representation (C) is in
dashed lines.

These N noisy data points are compatible with B and F, but not compatible with C. So, these
noisy data would cause poverty of the stimulus because all the data (that is, the data points shown
as Xs as well as the additional noisy N data points) are still compatible with multiple hypotheses.
In this case, those noisy data points would make the entire available data compatible with both B
and F.

However, separate from the poverty of the stimulus issue, these data unfortunately would rule
out the correct hypothesis C. This is the (other) main problem with noisy data, and the one that
seems to get more discussion: noisy data throw the child off the right track. This isn’t poverty
of the stimulus necessarily, because there may be only one hypothesis left after the noisy data are
considered. However, that one hypothesis isn’t the outcome we want (remember: children should
end up with C in this scenario). So, children have to ignore the noisy data somehow. But again,
this is a separate issue from poverty of the stimulus, which is when noisy data create unresolvable
ambiguity.

The data are misleading. This is related to the idea of noisy data, where perhaps due to the
vagaries of what people choose to talk about or how children interpret the data, the data are mis-
leading. That is, it’s not that speakers are making errors and so generating noise; rather, something
internal to children (e.g., their developing knowledge or their developing processing capabilities)
causes children to perceive these perfectly correct data incorrectly. Belletti (2017) describes an
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instance where an incorrect hypothesis seems to be the one the data suggest, if the child is viewing
the data in a particular (unhelpful) way. So, the child is then thrown off the right track.

In our wh-word example, we might again have data points where the wh-word is in-situ in
the main clause (as in (2d): The penguin did what?), but these are produced by native English
speakers. Remember that in English this form is called an echo question; echo questions are often
used in casual conversation (perhaps the speaker is surprised by what the penguin did, with the what
emphasized) and teaching scenarios (“Now, do you see the penguin? The penguin did something.
Tell me: The penguin did what?”). English children have to be savvy that these are special uses
of wh-words in main clauses, and there’s typically some kind of clue that they’re special. Perhaps
the speaker’s prosody isn’t the default (as when a speaker emphasizes the what) or the context is a
special teaching context. But, suppose children miss the cue that these data are special uses; then,
these data can be misleading data that seem to signal it’s perfectly okay to just leave the wh-word
in-situ in main clauses as a default word order for English (i.e., without special prosody or a special
context).

In the right panel of Figure 4, we see this situation: many misleading data (shown with Ms)
appear, and these data can’t be captured by the correct hypothesis C. So, these data would mislead
the child, in this case away from generalization C. As before with noisy data, this situation is
actually separate from poverty of the stimulus: while misleading data might cause poverty of the
stimulus, they don’t have to. In the right panel of Figure 4, they do cause poverty of the stimulus
– the child again sees data that are compatible with more than one hypothesis (here: B and F). But
the real problem, and the one that causes much discussion, is the fact that the correct hypothesis
(C) isn’t one of the compatible hypotheses. Again, as with noisy data, this is a separate issue from
poverty of the stimulus.

Children learn so quickly and uniformly. Another point that often comes up is how quickly
typically-developing children learn language, given those children’s immature cognitive abilities
(Jackendoff, 1994; Laurence & Margolis, 2001; Crain & Pietroski, 2002). This is related to the
concept of computational complexity or computational efficiency in formal learnability studies
(Clark & Lappin, 2011) – in essence, how complex is it to navigate to the right answer and how
efficiently can that navigation be done, given the data? If children compute something complex
very fast, this is pretty surprising.

The surprise at children’s quickness can link to poverty of the stimulus, though it does so
implicitly. In particular, if we have poverty of the stimulus, as in Figures 1, 3, or 4, the fact
that children converge on the right answer at all is already surprising. The fact that children do it
despite not being as cognitively adept as adults is really a bonus surprise. This surprise at children’s
quickness may also relate more directly to the idea of noisy or misleading data; when those are
present in the input, it’s surprising that children can so quickly navigate to the right answer.

An associated idea is that children learn uniformly – that is, typically-developing children all
seem to end up with the same answer (Chomsky, 1965; Crain & Pietroski, 2002; Lasnik & Lidz,
2017). This is again a surprise if we assume poverty of the stimulus is happening. In fact, recall
from (1), where I summarized the argument from poverty of the stimulus, that children ending up
with the same (correct) answer is the “constrained generalization” part that comes after we see
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that poverty of the stimulus exists. That is, children showing constrained generalization is part
of the argument from poverty of the stimulus that leads to the idea that children must have prior
knowledge (as the papers cited above are careful to note); this contrasts with constrained gener-
alization being an argument in favor of poverty of the stimulus. In particular, children showing
“constrained generalization” depends on poverty of the stimulus already being established – it’s
only really surprising that children all end up with the same answer if there was more than one
answer possible.

1.3 So what does it mean if the data are insufficient?
Wait, does that really happen? There’s definitely debate (and tears) about when the data do in
fact seem insufficient (e.g., see Morgan, 1986; Pinker, 1989; Pullum & Scholz, 2002; Scholz &
Pullum, 2006; Ambridge et al., 2008; Chater et al., 2015). This has a lot to do with what goes
into figuring out all those components I mentioned above: what the correct hypothesis is, what the
hypothesis space looks like, what data really are available in children’s input, and how children
are able to leverage those available data. In order to claim poverty of the stimulus is occurring, we
need to assume something about each of these components. Only then can we concretely specify
the data that are available (and useable), which was the “Data” in (1). Sometimes, people aren’t
as explicit about the assumptions that underlie a particular definition of the available data. But, if
someone declares some dataset is the relevant data for some learning problem, this person must
have in mind (even if implicitly) a correct hypothesis the child is trying to identify from those
data, a hypothesis space with competing hypotheses to choose from, a notion of what data children
actually encounter, and ideas about which data children are able to use. This is why it’s helpful
to state these components explicitly – that way, we can at least identify where the disagreement is
occurring, if and when it occurs. That is, is there disagreement because we don’t think the child is
trying to identify that particular hypothesis? Or because we don’t think those are the correct set of
competing hypotheses? Or because we think other data are actually available, and those other data
are useable by children?

Okay, but if it does happen. If we agree about all the components that go into defining the data,
we can then agree when poverty of the stimulus is occurring. Then, if we agree that children show
constrained generalization despite that poverty of the stimulus, we can agree that children have
some kind of prior knowledge or abilities.

It seems to me that this is where another round of tears happens – there’s often significant
disagreement about the nature of that prior knowledge or those prior abilities. Children must have
the necessary knowledge or abilities available internally if they’re not derivable from the external
information currently available. So, one option is that children derived the necessary knowledge or
acquired the necessary abilities from external information that was previously available. Because
they completed that knowledge derivation or ability acquisition before the current time, the knowl-
edge or abilities they gained are therefore prior knowledge or abilities. If that’s what’s happening,
then we need an explanation for how children could derive that necessary knowledge or those nec-
essary abilities beforehand from the data that was available beforehand. That is, this “derived prior
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knowledge or abilities” is just a placeholder for another learning story that we need to fill in (see
Lidz (2018) for this same idea, applied to a specific linguistic knowledge piece about interpreting
pronouns like herself ). That learning story may in fact rely on knowledge or abilities that were
derived previously, so then we need a learning story about how that knowledge or those abilities
were derived from the child’s previous data. And so on.

At some point, however, the learning story we come up with will have to involve something
about knowledge or abilities that were already built into the child. That is, any learning story (es-
pecially a learning story about language) eventually comes back to some kind of innate knowledge
or abilities the child has. Why? Because something internal about typically-developing children
causes them to develop language when they’re exposed to linguistic data, and something about
kittens and rocks doesn’t (Chomsky, 2000). This internal something is sometimes referred to as
children’s “biological endowment” (Lasnik & Lidz, 2017). The idea that typically-developing
children have innate knowledge or abilities that allow them to learn has been called the nativist
position.7

So, this line of argument is how the prior knowledge or abilities implied by poverty of the stim-
ulus and constrained generalization leads to the assumption of innate knowledge or abilities. Many
people have noted that even once we recognize the need for innate knowledge or abilities, nowhere
have we specified the nature of that innate knowledge or those innate abilities (Stich, 1978; Lau-
rence & Margolis, 2001; Scholz & Pullum, 2006; Chater et al., 2015; Skidelsky, 2016). A range
of nativist positions are compatible with the necessary prior knowledge or abilities. Importantly,
once we’ve decided that innate knowledge or abilities are required, we then have to explain how
they got into human biology. This requires explanations from both developmental neurobiology
and evolutionary biology. So, it’s often a good idea to be very careful about what we want to
claim regarding that innate knowledge or those innate abilities that enable children to make their
constrained generalizations in the face of poverty of the stimulus. Once we decide on the nature of
the innate something, we’ve just created explanatory work to do on the biological front.

Nativism isn’t crazy from a language evolution perspective. Related to the explanatory work
I noted above, I want to briefly mention some evolutionary modeling work by Kirby (2017) that
takes on the explanatory challenge of innate knowledge or abilities for learning language. In par-
ticular, Kirby’s work ties directly into poverty of the stimulus; this computational modeling work
demonstrates why we could find ourselves with children who just happen to have the right innate
knowledge or abilities to converge on the correct language answers in the face of the unresolvable
ambiguity that poverty of the stimulus presents. I’ll summarize the essence of those modeling re-
sults below, following along with the caricatures in Figure 5, where we consider the transmission
of language over time from one generation to the next. The idea is that parents generate language
data from their underlying representation, and children try to figure out that underlying represen-
tation from those data. Then, the children grow up and become the ones producing language data
for the next generation of children. Language thus survives in a specific form because that form
can be successfully transmitted from parents to children.

7More on this terminology in the next section, especially since it’s been taken to mean different things by different
people. That is, the use of the term “nativist” has itself caused some tears.
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Figure 5: A visual demonstration of how poverty of the stimulus can cause children to have just the
right innate biases for learning language from ambiguous data, given parents transmitting language
to their children over time.

More specifically, at some initial stage, parents have an underlying representation (the blue
dotted ellipse over the parent’s head at the top of Figure 5) that they use to generate the observable
data for their children (an example data point is the X inside the speech bubble at the top of Figure
5). These data are compatible with multiple hypotheses about the underlying representation (e.g.,
our classic poverty of the stimulus, as shown in the first adult speech bubble in Figure 5). The
children still have to learn an underlying representation. However, the children can’t do it on the
basis of the external data, because we have that unresolvable ambiguity. So, what do they use?
Something internal, of course – their prior (or innate) knowledge and abilities, shown with an
arrow in the first child’s mind in Figure 5. That is, the children converge on whatever answer
already best suits their own internal biases (the thicker purple ellipse in Figure 5).

These children then grow up and are the ones producing data for the next generation of chil-
dren. What representation are our grown-up children using to generate the data? The one their
internal biases guided them towards, as shown by the thicker purple ellipse in the grown-up child
(which is the second adult) in Figure 5. So, here they are, generating the same ambiguous data
they themselves learned from (the X in Figure 5), but from an underlying representation they’re
naturally inclined towards. Now, which representation will their children pick out when given
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those same ambiguous data? The one their children’s internal biases steer the children towards,
shown with an arrow in the second child’s mind in Figure 5, which leads children to that underlying
representation they’re naturally inclined towards (the thicker purple ellipse in Figure 5).

All this is to say that, over time, language may well have been shaped to capitalize on the
internal biases children have (i.e., the innate knowledge and abilities they have), and it may have
done this precisely because the data were ambiguous. Put simply, when the data are ambiguous,
children have the freedom to pick a representation suited to their internal biases; this in turn al-
lows these children, once grown up, to continue generating ambiguous data for their children to
learn from. Importantly, those children will converge on the same answer, which aligns with their
internal biases, despite the unresolvable ambiguity in the data. There’s no need to make the data
unambiguous – children’s innate biases will guide them safely to the right answer anyway, just as
it guided their parents. So, poverty of the stimulus causes children to rely on their innate biases to
shape the language; future generations can successfully learn that same-shaped language knowl-
edge from ambiguous data by relying on those innate biases. This then is how we end up with
typically-developing children who have remarkably helpful innate biases for learning language as
it’s shaped today.

1.4 So what is that special prior something?
As I mentioned above, once researchers agree that poverty of the stimulus and constrained gener-
alization are happening, they generally can agree that at some point in development, innate knowl-
edge or abilities are required (Pullum & Scholz, 2002; Clark & Lappin, 2011; Rawski & Heinz,
2019). After that, opinions often sharply diverge (with tears). I’ll describe the two most prominent
viewpoints I’m aware of.

Linguistic nativism and Universal Grammar. One form of nativism is linguistic nativism, a
term used (among others) to describe the view that the innate knowledge or abilities are language-
specific (Pullum & Scholz, 2002; Scholz & Pullum, 2002, 2006; Clark & Lappin, 2011). That is,
the innate knowledge or abilities that children are equipped with is something that’s only useful for
learning language, and not for other aspects of cognition – some proponents of this view include
Chomsky (1971), Hornstein and Lightfoot (1981), Baker and McCarthy (1981), Crain and Pietroski
(2002), and Valian (2009). Innate, language-specific knowledge or abilities often goes by the name
Universal Grammar (e.g., Pearl and Sprouse (2013b) and Skidelsky (2016) use this term for it).
However, sometimes Universal Grammar is used to describe plain nativism (Clark & Lappin, 2011)
– that is, whatever innate knowledge or abilities (language-specific or not) are needed for children
to learn language successfully from ambiguous data. So, if someone says they believe in Universal
Grammar because poverty of the stimulus exists and children show constrained generalization, it’s
useful to determine what kind of Universal Grammar that person is supporting.

More generally, proponents of linguistic nativism traditionally have been interested in showing
that poverty of the stimulus and constrained generalization both occur; they then draw the conclu-
sion that the prior knowledge or abilities needed ultimately come from innate language-specific
knowledge or abilities. However, this causes tears, because it’s not the only conclusion to draw.
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Non-linguistic nativism and empiricism. In particular, other people see both poverty of the
stimulus and constrained generalization occurring, and conclude the required innate knowledge or
abilities aren’t specific to language (e.g., see Clark & Lappin, 2011; Chater et al., 2015; Piantadosi
& Kidd, 2016).8 We might reasonably think of this viewpoint as non-linguistic nativism, because
the innate knowledge or abilities required are claimed not to be language-specific So, in this way, it
contrasts with linguistic nativism, though both viewpoints are perfectly fine with innate knowledge
or abilities being required (i.e., plain nativism).

However, sometimes linguistic nativism is described simply as “nativism” – this leads to yet
more tears, as people then conflate nativism (innate knowledge or abilities required) with linguistic
nativism (innate, linguistic knowledge or abilities required). This conflation causes non-linguistic
nativists to prefer terms that contrast with nativism: non-nativism or empiricism (Chater et al.,
2015; Piantadosi & Kidd, 2016).9 But, non-nativism and empiricism might sound odd when de-
scribing child language development, because a non-nativist/empiricist child wouldn’t have any
innate knowledge or abilities; this seems strange when we think about children learning language,
where everyone’s pretty happy with children having innate knowledge or abilities of some kind
(Quine, 1969; Pinker, 2004; Scholz & Pullum, 2006; Heinz & Rawski, to appear). As I said
though, what’s happened is that the non-linguistic nativists have co-opted these terms to make
clear their viewpoint is distinct from the viewpoint of the linguistic nativists. That is, those who
call themselves non-nativists or empiricists are in fact nativists, as I’ve defined here.

For example, Clark and Lappin (2011) note that “No empiricist that we are aware of denies that
humans have innate cognitive abilities through which they acquire language”. In fact, Quine (1969)
noted over 50 years ago that a behaviorist (the contrasting position to linguistic nativist at that time)
“is knowingly and cheerfully up to his neck in innate mechanisms”. The non-linguistic nativists
have gravitated recently towards the term “empiricist” in particular to highlight their belief that
children harness the data much more effectively than linguistic nativists have traditionally thought
(Chater et al., 2015). That is, today’s empiricists believe there’s a larger role for the available
empirical data, even though they still believe in innate knowledge or abilities.

Linguistic vs. non-linguistic nativists. So, it seems that everyone who agrees that poverty of
the stimulus and constrained generalization occur then believes in some kind of innate knowledge
or abilities (that is, we’re all nativists). People simply split on the nature of that innate knowledge
or those innate abilities. Linguistic nativists believe that at some point sometime in children’s
language development, there’s required innate knowledge or abilities that are specific to learning
language; non-linguistic nativists don’t believe this. Instead, non-linguistic nativists believe all
required prior knowledge and abilities are derivable from the child’s experience coupled with non-
linguistic innate knowledge and abilities.

The reason this split causes so many tears is that it’s currently quite hard to prove which per-
spective is right, even for a specific poverty of the stimulus and constrained generalization pairing.
The good news for linguistic nativists is that it only takes one piece of innate linguistic knowledge
or one innate linguistic ability for them to be right. That is, linguistic nativism doesn’t specify how

8See sections 2.4 and 3.2 for concrete examples of this kind of proposed innate knowledge.
9Special thanks to Vic Ferreira for first pointing this out to me.
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much innate linguistic knowledge or how many innate linguistic abilities are needed – just that
some are. Of course, it may be that many people who identify as linguistic nativists think quite a
lot of the required innate knowledge or abilities are linguistic – but technically, a linguistic nativist
is someone who believes at least one piece of required innate knowledge or ability is linguistic.
This contrasts with the non-linguistic nativists, who believe that absolutely no innate linguistic
knowledge or ability is required, ever. So, for them to be right, they have to demonstrate that for
every poverty of the stimulus and constrained generalization pairing, children never need innate
linguistic knowledge or abilities. That’s a tall order.

However, the good news for all the nativists is that we can make progress on this debate about
the nature of the built-in knowledge or abilities by showing concretely which prior knowledge and
abilities will allow children to show constrained generalization for specific poverty of the stimulus
instances. Computational modeling is a particularly effective way to do this (Clark & Lappin,
2011; Chater et al., 2015; Pearl, in press-b), and this approach is discussed more in the next
section, with some examples reviewed in section 3. Once we know which prior knowledge and
ability options will allow children to show constrained generalization, we can argue about which
options, linguistic or non-linguistic, we think are best among the options that do in fact work.

2 How to tell if we have poverty of the stimulus
A first step is to identify if poverty of the stimulus is occurring for a particular piece of language
knowledge. This means we need to be clear about what the correct hypothesis is, what the hy-
pothesis space is, what the available data are, and how children leverage those data. If all of those
align to show unresolvable ambiguity in the child’s input, we have poverty of the stimulus. Below
I’ll review two general approaches for doing exactly this: demonstrations of poverty of the stim-
ulus in principle and demonstrations in practice, discussing how each can leverage specific case
studies and why doing so is helpful for understanding when poverty of the stimulus is occurring.
I’ll then connect this to children’s constrained generalization, where the idea is that the ambiguity
is unresolvable given the time constraints children have to resolve it and the quantity of data they
encounter. This means we need to determine how much data would be enough to resolve that
ambiguity as quickly as children do, and I’ll review some current approaches for doing that.

2.1 Show it in principle
Formal learnability approaches (interpret with caution). One way to show the data are insuf-
ficient is to use formal learnability approaches to show it in principle (Gold, 1967; Horning, 1969;
Wharton, 1974; Angluin, 1980; Valiant, 1984; Angluin, 1988; Jain, Osherson, Royer, Sharma,
et al., 1999; Niyogi, 2006; Clark & Eyraud, 2007; Heinz, 2016). The reason these approaches
have the caveat “in principle” is because they attempt to idealize away from aspects of the learning
problem in order to be able to draw very general conclusions that should hold, no matter what the
specifics are of the particular learning problem. So, when formal learnability approaches yield a
learning result suggesting the data are insufficient, it holds in principle, given the assumptions that
were made.
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This is often where the trouble comes in. Formal learnability results are hard to interpret
out of context – see Johnson (2004), Clark and Lappin (2011), and Heinz (2016) for how results
from Gold (1967) have notoriously been misinterpreted (a lot). In particular, Gold’s results were
used to assume that poverty of the stimulus exists for “language” as a whole, where language is
something that generates sequences of units – so, we can think about this as sequences of sounds
or morphemes or words or phrases or sentences, or whatever else. That is, because linguistic
knowledge is implemented as allowed vs. unallowed sequences of units, Gold’s results have the
potential to inform us about many different kinds of linguistic knowledge, as long as the linguistic
knowledge can be realized as a sequence of units. On the flip side, this means that these results are
disconnected from any particular piece of linguistic knowledge (e.g., the case studies discussed in
section 3). This is especially true if the linguistic knowledge isn’t about sequences of units (e.g.,
the lexical semantic knowledge discussed in section 3.2). Still, to be able to have such a general
result about any kind of language knowledge involving sequences of units was very exciting, as
many types of linguistic knowledge can be realized as allowed vs. unallowed sequences. For
example, the wh-word position example from before can be thought of as sequences of words that
are allowed (i.e., word sequences with the wh-word fronted for English’s default) vs. unallowed
(i.e., word sequences with the wh-word in-situ for English’s default).

Importantly, however, Gold’s result was based on assumptions about the nature of the learning
process that are unlikely to be true for children. So, drawing parallels between what happens for
those learners and what happens for children isn’t recommended. That is, asserting that poverty of
the stimulus holds for children learning language on the basis of these results isn’t safe to do. Why
not? In essence, the idealizing assumptions idealized away too much from the learning situation
children actually face. I encourage interested readers to see Heinz (2016) for a recent detailed
discussion about these assumptions. But, the main problematic assumption was that children need
to succeed for all possible presentations of the input – whether these are realistic input samples
or strategically difficult ones concocted to purposefully lead a learner astray. In real life, children
only need to succeed on the particular presentations of the input they actually encounter, i.e., the
realistic ones. So, because of these idealizing assumptions, the results weren’t applicable to people
interested in the learning problems children face. (Again, see Johnson (2004), Clark and Lappin
(2011), and Heinz (2016) for more detailed discussion about why these learning results tend not
to bear on poverty of the stimulus for children. In this particular case, the idealizations made the
learning problem far harder than the one children actually face.)

However, other formal learnability results relied on assumptions that made the learning prob-
lem being investigated more similar to the learning problem children face (see Clark and Lappin
(2011) for more detailed discussion of how those learning problems were more similar). For in-
stance, Clark and Lappin (2011) discuss learnability results where the learning scenario is much
more similar to a child’s learning scenario in several key ways.

First, the learner has to converge on target knowledge that’s “close enough” to the true target in
some measurable way (rather than being identical). We might think of this as children generating
adult-like behavior in an experimental task. When we see children behaving in adult-like ways, we
typically interpret them as having adult-like knowledge. In point of fact, these children might not
have identical knowledge to that of adults – but the knowledge they’ve acquired is “close enough”
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to lead to adult-like observable behavior.
Second, the input examples aren’t labeled as to whether they’re positive examples of what’s

grammatical in the language or instead noise, and there is in fact noise in the input. We might
think of this as a child being around a non-native speaker who says something ungrammatical in
the language, or a native speaker who has a slip of the tongue and says something ungrammatical.
These ungrammatical items aren’t explicitly tagged in children’s input (e.g., “Whoops, just kidding
– I can’t say that form!”). Instead, the child has to figure out (perhaps using other cues and some
sophisticated inference) that these items aren’t grammatical items in the language, but instead noise
that should be ignored when trying to determine the correct generalizations for the language.

Third, the learner has to learn in a “reasonable” amount of time instead of getting an infinite
amount of time to learn. We might think of this as learning occurring within a defined learning
period. For instance, this learning period could correspond to the age when children seem to
acquire adult-like knowledge of a particular linguistic representation.

When all these restrictions on the learning scenario are in place, Clark and Lappin (2011) note
that the learners can succeed as long as they leverage indirect negative evidence in a particular way:
the learners must interpret an item with relatively low probability as ungrammatical. That is, direct
evidence that an item occurs in the language very rarely must be interpreted as indirect evidence
that the item in fact doesn’t really occur in the language (it’s noise). With respect to the wh-word
position example, if the learner rarely hears a wh-word in situ, then this learner will assume that
the default rule for English doesn’t involve allowing the wh-word to be in situ. So, these learners
must be able to leverage the data in a certain way in order to succeed – i.e., they need a specific
type of learning process in order to show constrained generalization in the face of poverty of the
stimulus.

Clark and Lappin (2011) demonstrate both that (i) poverty of the stimulus exists in the hypoth-
esis space they define, given the hypothesis the learners must identify and the available data, and
(ii) what learners need to do (and thus know how to do) to solve this poverty of the stimulus. Here,
the necessary knowledge is to leverage indirect negative evidence (and have the innate ability to
do so). To the extent that the assumptions that Clark and Lappin (2011) made are translatable
to children’s learning, we can translate the insight about relying on indirect negative evidence to
children as well. More specifically, for children to succeed in a learning scenario where they need
to identify a close-enough generalization from noisy input in a limited amount of time, these learn-
ability results suggest children must rely on indirect negative evidence in this particular way: they
need to believe that sufficiently low probability indicates ungrammaticality.

A reasonable person might wonder why someone would use formal learnability approaches,
given how difficult it is to idealize away details of children’s learning scenarios without also losing
relevance to those learning scenarios. Clark and Lappin (2011), referencing Pinker (1979), offer
this explanation: it can be useful to adopt idealizations that are demonstrably false when those
idealizations make the learning problem harder than the one children face. If the harder learning
problem can be solved, then the easier real problem that children face should also be solvable.
However, just because we can’t solve the harder problem doesn’t mean children can’t solve the
easier problem – this was a key misinterpretation of the Gold (1967) results, where the idealized
learning problem was much harder. This potential for misinterpretation underscores how careful
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we have to be when interpreting formal learnability results, as they apply to children’s potential
poverty of the stimulus.

Ideal learner approaches that use realistic hypothesis spaces and available data. A related
“in principle” approach is to focus on a set of learning scenarios that map more directly to chil-
dren’s learning scenarios. For example, Chater and colleagues (Hsu & Chater, 2010; Hsu et al.,
2011, 2013; Chater et al., 2015) have developed a “rigorous formal framework for understanding
what can, in principle, be learned from positive linguistic evidence alone” (ch.5, p.150 of Chater et
al., 2015). This contrasts with additionally learning from indirect negative evidence, as Clark and
Lappin’s (2011) ideal learner did. That is, this learning approach only pays attention to examples
that are in the input, and doesn’t try to make inferences based on examples that either aren’t in the
input or aren’t in the input often enough.

This approach also assumes an ideal learner who can extract the maximal possible information
from the available input; the available input is restricted to the input we believe is available to
children (this is the positive linguistic evidence mentioned by Chater and colleagues). For this
reason, the target hypothesis and hypothesis space are also more directly tied to specific linguistic
phenomena where we know what these look like for children. That is, this ideal learner approach
focuses on specific case studies where we know information about the data available to children,
and have concrete proposals for both the correct hypothesis and the hypothesis space that children
have to navigate. So, this ideal learner approach defines the correct hypothesis, the hypothesis
space, and the available data to be what they are for children, and then idealizes how children
leverage those data.

Idealizing how children leverage the available data allows us to define an upper limit on what
could be learned from the available data – that is, what’s possible in principle for children to
learn from the available data when they don’t have limitations on relevant cognitive abilities (like
memory or parsing) that allow them to harness all the information in the data. So, if poverty of
the stimulus exists even for an ideal learner able to extract as much information as possible from
the data, it likely exists for children too (remember: this is because children aren’t ideal learners –
they’ll have an even harder time leveraging the data). This is a related line of logic to the formal
learnability approaches described above: there, if a learner could solve a harder learning problem
than the one children face, we might assume that children could solve their easier problem; here,
if we find that an ideal learner can’t solve the problem when it has the best possible information
extraction abilities (i.e., making it an easier learning problem than what children face), then we
might assume that children can’t solve their harder problem either. That is, if an ideal learner with
the optimal ability to leverage the information in children’s input fails, then it’s likely that children,
who have sub-optimal abilities to leverage the information in their input, would fail too (without
some prior knowledge or abilities helping them along).

I should note that this is the general approach of computational-level models of development,
in the sense of Marr’s (1982) framework. Marr’s framework is often used to specify different types
of explanations for problems in cognition, and includes characterizing the mental “computation”
that’s being computed (computational-level), the sequence of steps (or algorithm) used to accom-
plish that mental computation (algorithmic-level), and how that computation is implemented phys-
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ically (implementational-level). (See Pearl (in press-b) for more detailed discussion about how this
framework can be applied to models of language development.) For our purposes here, the impor-
tant idea is that a computational-level explanation involves characterizing the mental computation
we think children are accomplishing for a particular acquisition task, and seeing if that’s a mental
computation that leads to success. More specifically, the mental computation we characterize in an
ideal learner model is the task of identifying a particular linguistic generalization from a particular
linguistic hypothesis space, given realistic child-directed input and using whatever prior knowl-
edge or abilities are built into the ideal learner. If that ideal learner is successful, then that mental
computation, which involves relying on specific prior knowledge or abilities built into the ideal
learner, could be a good description of the mental computation that children are doing.

So, this approach investigates what an ideal learner can do, when given the same learning
computation to accomplish as children (i.e., the same correct hypothesis, the same hypothesis
space, the same available data, and a specific combination of prior knowledge and abilities). Then,
if we find something is possible to learn in principle with an ideal learner relying on specific prior
knowledge and abilities, we can see if it’s possible to learn in practice with child-like learners who
have constraints on how they leverage their data. (Maybe it’s not, and we still have poverty of the
stimulus after all.)

Here, I’d like to briefly note the difference between constraints and biases in learning models,
as I think this is another point where confusion (and tears) can arise. In general, I see these terms
used to describe different aspects of a modeled learner. A constraint typically separates an ideal
learner from a less-ideal (constrained) learner, with the ideal learner having unlimited abilities to
accomplish inference and the constrained learner having limited abilities. For instance, an ideal
learner may have unlimited memory and adult-like parsing abilities, while a constrained learner
may have limited memory and immature parsing abilities. In contrast, a bias is simply some
prior knowledge that the learner has (e.g., prior knowledge about hypotheses in the hypothesis
space, prior knowledge about how to leverage the available data, prior knowledge about what
kind of inference to use on the data, and so on). Notably, a constrained learner’s limitations can
give rise to biases (e.g., limited memory and immature parsing leading to a bias to only extract
information from the first clause uttered). However, a bias that can be made explicit (e.g., only
extract information from the first clause uttered) could just as easily be implemented in an ideal
learner that doesn’t have limited abilities – for instance, an ideal learner with unlimited memory
and parsing abilities could have prior knowledge built in (i.e., a bias) to only extract information
from the first clause.10 More generally, an ideal learner can incorporate explicit biases (and so
be a biased learner) while a constrained learner can be unbiased in various ways (e.g., intending
to heed all information available in the input – even if limited memory and parsing prevent this
from occurring in practice). This is why “constraint” is different from “bias” in the learning model
literature.

Returning to our discussion of how to interpret ideal learner results, suppose we find some-
thing isn’t possible to learn in principle with an ideal learner that has specific prior knowledge

10Interestingly, it’s not always true that constraints lead to biases that we can easily describe and therefore implement
in an ideal learner; in Pearl and Phillips (2018), a constraint on memory led to better acquisition performance, but it
wasn’t from anything easy to explicitly describe.
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and abilities. Then, we might plausibly assume that children, who have far more constraints on
how they leverage those data, also couldn’t learn the correct hypothesis from those data even if
they had that same specific prior knowledge and those same specific abilities. For instance, see
Pearl (2011) for a case study in learning English metrical stress (i.e., which syllables are stressed
in words such as elephant); there, modeled learners were implemented that had some of the con-
straints children have when learning. To my surprise, I discovered that every single one of those
constrained learners failed to learn the correct hypothesis from plausible English data. I then ana-
lyzed the acquisition problem from an ideal learner perspective and discovered that an ideal learner
would fail too. The issue was this: learning that hypothesis from that hypothesis space as the best
fit for those available data wasn’t possible because that hypothesis wasn’t the best fit for those
data, given the other hypotheses available, without some additional bias that would privilege the
correct hypothesis. This conception of the acquisition problem (i.e., my assumption that the mental
computation children had to solve was learning that hypothesis in that hypothesis space from those
data with that specific combination of prior knowledge and abilities) meant the learner – idealized
or constrained – was doomed to failure. What was needed was a way of changing the acquisition
problem the learner faced by changing one of those pieces.

One promising piece to change is the data children are learning from, by using some sort of
data filter. More specifically, the idea is that children don’t in fact learn from everything available.
Instead, they have helpful biases that filter the data down to a helpfully-skewed subset; that subset
makes learning the right hypothesis easier. For the English metrical stress case above, Pearl, Lu,
and Haghighi (2017) and Pearl (2017) discuss how a certain kind of data filter, which keys into
how reliable the data seem to be, can yield a subset of available data that are far more amenable
for learning the correct hypothesis.

More generally, the idea of children using a subset of the available data for whatever reason is
in line with the “less is more” hypothesis (Newport, 1990) and other data filtering approaches (e.g.,
Pinker, 1984; Lidz & Gleitman, 2004; Pearl, 2007; Pearl & Weinberg, 2007; Pearl & Lidz, 2009;
Adriaans & Swingley, 2012; Perkins, Feldman, & Lidz, 2017). In particular, children would be
using “less” data to achieve “more” language learning success. Another way to view this is “quality
over quantity”: having a helpfully-skewed subset of data to learn from yields higher quality data,
even though the overall quantity of data being learned from is smaller.

So, let’s return to our discussion of ideal learner approaches. Suppose we have the right con-
ception of the acquisition problem (i.e., the right description of the mental computation the child
is trying to accomplish): a learner with specific prior knowledge and abilities is trying to learn a
particular hypothesis from a particular hypothesis space, given a particular – perhaps filtered – set
of data. Then, the failure of a learner capable of idealized inference should mean actual children
would fail too.

But, the key is getting the right conception of the acquisition problem. Very often, inves-
tigations necessarily simplify the acquisition problem to make it tractable, and this can involve
simplifying the data in the input. That can then mean that constrained learners, whose constraints
make them less able to leverage the information available in the data, may do better than idealized
learners, whose lack of constraints make them perfectly able to leverage information available in
the data. (See Pearl and Phillips (2018) for an example of this in speech segmentation.)
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So, if a constrained learner is succeeding more than an ideal learner, the reason is that the
acquisition problem that the ideal learner is solving isn’t the right one. That is, if constrained
learners are doing better, something about their constrained inference is causing them to change
one of the key pieces of the problem (either the data considered relevant and how relevant to
consider it, the other hypotheses available for consideration, or the specific combination of prior
knowledge and abilities that’s built in). If these changes could be made explicit, an ideal learner
working with those data in that hypothesis space should also then be able to come up with the
correct hypothesis.

However, suppose we do manage to get exactly the right conception of the acquisition problem
that children face (hypothesis, hypothesis space, relevant data, and specific combination of prior
knowledge and abilities), and we find that learners capable of ideal inference fail. We can then
assume poverty of the stimulus exists for children learning that hypothesis, given that hypothesis
space, those available data, that specific combination of prior knowledge and abilities, and chil-
dren’s constrained ability to leverage the available data. The work to do at that point is to identify
a different combination of prior knowledge and abilities that would allow the learner to succeed,
whether it’s an ideal learner or a constrained learner – and so offer a concrete solution to that
instance of poverty of the stimulus.

2.2 Show it in practice for particular case studies
A very related idea is to demonstrate that poverty of the stimulus occurs in practice for specific case
studies where a constrained learner – rather than an ideal learner – is trying to identify a specific
correct hypothesis within a specific hypothesis space, given specific available data and a specific
combination of prior knowledge and abilities. The main difference for “in practice” investigations
is using use a modeled learner that’s more child-like in its constraints on leveraging the available
data (e.g., Pearl & Sprouse, 2013a; Pearl & Mis, 2016). Such child-inspired constraints are typi-
cally tied to current knowledge about how children of various ages are known to leverage available
data (e.g., statistical learning abilities at different ages: Saffran, Aslin, & Newport, 1996; Xu &
Tenenbaum, 2007; Smith & Yu, 2008; Perfors, Tenenbaum, Griffiths, & Xu, 2011; Aslin, 2017).

2.3 The usefulness of case studies for identifying poverty of the stimulus
As noted above, both “in principle” idealized learning approaches and “in practice” constrained
learning approaches for identifying poverty of the stimulus can focus on specific case studies in
language development. To me, this is valuable because researchers can be explicit about what
they think the available data are that children can leverage; disagreements about the available
data are a notorious source of tears about poverty of the stimulus. It may well be that poverty
of the stimulus exists when children can only leverage certain available data, and doesn’t exist
if children leverage other available data. One example of this is if researchers believe children
only leverage direct positive evidence for a particular piece of linguistic knowledge, as opposed to
also leveraging indirect evidence, which I discussed above in section 1.2. Another example would
be if researchers believe children only leverage positive evidence of the same kind as the target
knowledge, such as only relying on syntactic information to learn about syntactic knowledge; this
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contrasts with children relying on semantic, pragmatic, prosodic, or extralinguistic information for
learning about syntactic knowledge (Clark & Lappin, 2011).

More generally, a lot of responses to claimed poverty of the stimulus scenarios take this form:
what previous researchers assumed was the entire set of available data children can leverage in
fact isn’t. Instead, the data are richer than assumed (particularly if the child is learning a system,
rather than just an isolated piece of knowledge: Perfors, Tenenbaum, & Regier, 2011; Pearl & Mis,
2016; Abend et al., 2017; Pearl, in press-b). So, perhaps poverty of the stimulus isn’t occurring.
For me, this is a real benefit of focusing on particular case studies: I find it easier to engage with
available empirical data on linguistic representation and child development when there’s a specific
piece of knowledge we’re looking at as a possible poverty of the stimulus scenario. Then, we can
examine linguistic theory to tell us about (i) the correct hypothesis, and (ii) the hypothesis space
children are navigating; we can also examine developmental data to tell us about (iii) realistic input
data for children trying to learn that piece of knowledge, and (iv) information that children of the
appropriate age are able to leverage from their data. With this in hand, we can more explicitly
characterize the acquisition problem children are facing and determine if poverty of the stimulus
seems to be occurring.

2.4 Specifying how much data is enough
One thorny issue for identifying poverty of the stimulus scenarios, especially for particular case
studies, is that povery of the stimulus is intricately tied to children’s constrained generalization.
More specifically, it’s often tied to how quickly children make these constrained generalizations,
given the available data (Jackendoff, 1994; Laurence & Margolis, 2001; Crain & Pietroski, 2002).
Recall from the discussion in section 1.2 that children’s rapid learning has been used as a signal that
poverty of the stimulus may be occurring because it seems that children are “computing” something
complex very fast (Clark & Lappin, 2011) – in fact, faster than we would expect, given the available
data. So, in practice, it seems the actual data aren’t often unresolvably ambiguous; rather, the
ambiguity is unresolvable, given those data, as fast as children resolve it. More specifically, there
isn’t “logical” poverty of the stimulus where the data are forever ambiguous; rather there seems to
be practical poverty of the stimulus where the data are ambiguous enough to slow down learning,
and yet children aren’t slowed down as much as expected. That is, children are resolving the
ambiguity faster than expected.

How can we tell that children are resolving the ambiguity faster than expected? What’s ex-
pected? It seems that the expected time to resolve the data ambiguity must be tied to how many
informative data are present. If this amount is less than what children would need to resolve the
ambiguity as fast as they do, then we have poverty of the stimulus after all. That is, informative
data may exist, but there simply aren’t enough of them for children not to also need some prior
knowledge or abilities. So, it seems a crucial component for identifying poverty of the stimulus is
identifying how much data is enough.

Developmental benchmarking with unambiguous data. In one lively debate, Pullum and Scholz
(2002) noted that no one was saying how much data was enough, even though many people were
quite convinced poverty of the stimulus was occurring for various case studies. Legate and Yang
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(2002) took up that challenge and offered one approach to specifying how much data was enough
for children to make the constrained generalizations they did. Legate and Yang’s approach relied
on children primarily leveraging only direct positive evidence that was unambiguous (so, some-
thing like the data in Figure 2 for hypothesis C).11 Note that to determine data are unambiguous,
we need to have a clear idea of both the correct hypothesis and the hypothesis space children are
navigating, such that those data are in fact unambiguous for the correct hypothesis.

However, once we know what the unambiguous data would be, Legate and Yang (2002) sug-
gested that the quantity of unambiguous data in children’s input for any piece of linguistic knowl-
edge should correlate with the age children figure out that piece of linguistic knowledge (also
known as children’s age of acquisition). In particular, ages of acquisition that were correlated
with certain amounts of unambiguous data could serve as developmental benchmarks. The rea-
soning was that, all else being equal,12 linguistic knowledge with less unambiguous data available
should be learned later while linguistic knowledge with more unambiguous data available should
be learned earlier. If we find that something with less unambiguous data available (knowledge
Kless) is nonetheless learned earlier – as early, say, as something with more unambiguous data
available (knowledge Kmore) – this could indicate poverty of the stimulus for knowledge Kless.

Legate and Yang (2002) then proceeded to explore what was then known about (i) different
linguistic knowledge pieces in terms of age of acquisition, (ii) what could plausibly be the unam-
biguous data for a particular knowledge piece, and (iii) how frequently those unambiguous data
appear in children’s input. They found support for their suggested developmental correlation in
two different linguistic knowledge pieces that seemed to have the same amount of unambiguous
data available in children’s input (about 1.2% of children’s input) and also have the same age of
acquisition (around 3 years old). Subsequent investigations (Yang, 2004, 2012) found many more
examples of knowledge pieces that aligned with this idea, with unambiguous input frequencies
ranging from 0.2%-25% of children’s input and ages of acquisition from older than four down
to younger than two. These examples then serve as developmental benchmarks for how fast we
should expect children to show constrained generalizations. More specifically, if we assume un-
ambiguous data drive children’s acquisition and we can both define what those unambiguous data
are and how frequently children encounter them in the input, we can determine if children are
constraining their generalizations faster than expected.

Information-theoretic approaches. Another approach, which was more recently harnessed by
Hsu, Chater, and colleagues (Hsu & Chater, 2010; Hsu et al., 2011, 2013; Chater et al., 2015),
draws on information theory to specify how much data would be required for children to constrain
their linguistic generalizations the way they do. The key idea for this approach is known as Min-
imum Description Length (MDL) (Li & Vitányi, 1994; Rissanen & Ristad, 1994), and focuses

11I say “primarily” because the variational learner of Legate and Yang (2002) actually learns from ambiguous data
as well, but is really driven by unambiguous data. This is because over time, ambiguous data cancel out, leaving the
unambiguous data to drive the learner’s generalizations. See Pearl (in press-b) for more discussion about why this is.

12It’s important to note that this “all else being equal” assumption does a lot of work. As just one example, we
would need to assume that both knowledge pieces were equally complex from the perspective of the child. If not, it
might be that the simpler one was learned more quickly than the more complex one, even with the same amount of
unambiguous data.

24



on how compactly a particular representation would allow the child to represent the data she en-
counters. That is, an MDL-based learner is choosing representations based on storage capacity:
representations that enable more compact storage are viewed as better. The idea that more com-
pact representations should be favored has actually been around for quite some time – for instance,
Chomsky (1957) argues for one representation over another because the first representation is more
compact than the second one. In the context of formal learnability, Stabler (1998) uses an MDL
approach to learn about certain types of languages that have properties similar to human languages
(e.g., they allow words to move). This preference for compactness is in fact a type of prior knowl-
edge – if two representations are each compatible with the available data (i.e., we have poverty
of the stimulus), an MDL learner prefers the one that takes up less space.13 Note that this prior
knowledge is domain-general, since it could as easily apply to non-linguistic representations as it
could to linguistic representations. So, an MDL learner relies on non-linguistic innate knowledge,
and so is compatible with the non-linguistic nativist viewpoint. I should also note that the MDL
approach is quite compatible with linguistic innate knowledge (and so with the linguistic nativist
viewpoint) – for instance, the representations being compared using MDL might well be generated
using linguistic innate knowledge. But, the fact that the MDL learner prefers a more compact
representation is itself non-linguistic innate knowledge.

More specifically, as shown in the example in Figure 6, an MDL learner encodes both the rep-
resentation itself and the available data on the basis of that representation. So, a more complex
representation may take up more space, but allow more compact encoding of each data point; in
contrast, a simpler representation may take up less space, but require more space for each data
point. After enough data are encountered, this additional cost per data point can lead to the simpler
representation being less compact than the more complex representation. This is the key insight
of the MDL approach to diagnosing poverty of the stimulus: we can identify when the represen-
tation children select should overtake other competing options, on the basis of the data children
encounter. If this occurs later than children actually seem to identify the correct representation, we
have evidence that poverty of the stimulus is happening and additional prior knowledge (besides a
preference for compactness) is required.

For example, let’s look more closely at the learning scenario in Figure 6, where the child con-
siders a hypothesis space consisting only of representations C and E. C is the correct representation
(i.e., the one we observe children converging on by a certain age), and is more complex, as evi-
denced by its more complex shape – this complexity also shows up as C taking more space to
encode in the top box, compared with the simpler representation E. Now, suppose we believe the
available data are the Xs in Figure 6; they’re clearly compatible with both C and E, and so we have
classic poverty of the stimulus to begin with. However, remember that an MDL learner has prior
knowledge that causes it to prefer more compact representations. So, initially, this learner will
prefer E – E takes up less space, after all.

Then, some time passes (time 1) and the learner has encountered some quantity of those avail-
able data. When trying to encode those data with each representation, the overall storage required

13I note that I’m using the term “knowledge” more broadly than it’s traditionally been used. More specifically, I’m
referring to any kind of bias or preference as knowledge (such as the preference for more compact representations).
This contrasts with only using “knowledge” to refer to the representations in a child’s hypothesis space.

25



is shown in the middle box of Figure 6. Figure 6: An MDL encoding for hypotheses C
and E, which are both compatible with the avail-
able data (shown as Xs). Over time, the more
complex hypothesis C yields a more compact
representation than the simpler hypothesis E.

E is still more compact overall than C, but
C is definitely catching up. Still, an MDL
learner prefers E at this point. However, by
time 2, when the learner has encountered twice
as much data, the encoding with C is more
compact than the encoding with E. Therefore,
an MDL learner now prefers C.

This demonstrates how a “break even”
point can be calculated for an MDL learner –
in Figure 6 terms, how many Xs have to be en-
countered before the encoding with C is more
compact than the encoding with E? Time 1
was too soon, while time 2 was just a bit too
late. Using this approach, we can figure out
how many data are required before the encod-
ing with C is the same size as the encoding
with E. Just after that should be when an ideal
MDL learner would switch from preferring E
to preferring C. Let’s call this amount of data
Dbreakeven.

Now, how do we determine how much time corresponds to Dbreakeven? This is where we turn
to developmental data about how often children hear these data in their input, as well as how much
input children hear over time. We can calculate how often children hear these data by assessing
realistic samples of child interactions: in those interactions, how often do these data show up?
This corresponds to the input rate. Then, we just need to know how much total input children
encounter by certain ages. For this input quantity estimate, we can turn to data like those of Hart
and Risley (1995, 2003), which will tell us how many utterances children hear on average per hour
(e.g., 487 in a professional household for children ages 13-36 months); we can then turn to data
like those of Davis, Parker, and Montgomery (2004) for hours awake per day at each age (e.g.,
11-12.5 hours between the ages of 2 and 5). Multiply utterances per hour by hours per day, and we
have utterances per day at difference ages; multiply utterances per day by the input rate of our Xs,
and we know how many Xs a child of a certain age hears per day. Then, we can multiply by days
per year to estimate how many of these data a child of a certain age hears in a year. That is, with
these input quantity data in hand, we can calculate how many of our Xs from Figure 6 children
of different ages would have encountered. That’s how we translate from a quantity of data to an
estimated age of acquisition. More specifically, we can translate the quantity of data in Dbreakeven

into an estimated age of acquisition, once we know the input rate of the Xs and how much input
children hear over time.14

14Of course, this estimate of the input rate is also an idealization, in the sense that we only have samples of every
component that goes into that estimated input rate; however, in contrast to formal learnability work, this view of the
input derives from empirical estimates of children’s input.
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If the age of acquisition indicated by Dbreakeven is later than children’s observed age of acqui-
sition, then we’ve identified poverty of the stimulus. (Remember, of course, that this is poverty
of the stimulus for a child using the MDL learner’s preference for compactness. We don’t know
if it would be poverty of the stimulus for a child using different prior knowledge.) But suppose
we don’t know the exact age of acquisition for children – can we still use this MDL approach?
The answer is yes, if it turns out that Dbreakeven translates to a time much longer than childhood.
For example, Hsu and Chater (2010) estimate an age of acquisition that’s thousands of years for
learning one piece of linguistic knowledge.15 This is clearly longer than childhood (and human
lifespans more generally). Therefore, even if there’s uncertainty about precisely when children
converge on that knowledge, we can be pretty sure poverty of the stimulus is happening under this
MDL approach because children do in fact converge on that knowledge before thousands of years
have passed.

As with the developmental benchmarking discussed above, the assumptions in place are key:
what the correct hypothesis is, what the space of competing hypotheses is, what the available data
are, and how children leverage their data. For an MDL learner, another major decision is how to
encode the representations under consideration (that is, the correct hypothesis and the competing
hypotheses) – this is where prior linguistic knowledge and abilities (whether innate or derived from
experience) come in. For the available data, an MDL learner is happy to encode both ambiguous
and unambiguous data. What separates this from the developmental benchmarking approach in the
previous section is that an MDL approach will function even if there aren’t any unambiguous data
(as is the case in Figure 6). This is because the MDL learner already assumes prior knowledge
where the learner prefers compactness; so, compactness can decide between representations even
when the data are ambiguous. This in turn relates to how an MDL learner leverages the available
data: this learner is capable of encoding both the representation itself and the data via that rep-
resentation as optimally as possible. The optimal encoding is what makes this approach an ideal
learner analysis of poverty of the stimulus Then, if there’s poverty of the stimulus even for an
ideal learner, there’s likely to be poverty of the stimulus for children, who aren’t obviously ideal
learners.

3 Some potential examples and how to interpret them
I now want to step through a few illustrative examples of linguistic knowledge that have been
considered instances of poverty of the stimulus. For each one, I’ll highlight what the correct
hypothesis is, what the hypothesis space is, what the available data are, and how children leverage
those data. Where available, I’ll also include what we know about children’s age of acquisition
when they make their constrained generalizations. This makes it easier to see what the original
assumptions were that caused people to think poverty of the stimulus was occurring, and how those
assumptions may have changed across different investigations of the same linguistic knowledge
piece.

15The particular knowledge was when to contract want to into wanna in English. That is, English speakers know
they can contract Who do you want to rescue? into Who do you wanna rescue?, but not Who do you want to do the
rescuing? into Who do you wanna do the rescuing?
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I’ll conclude the discussion of each example with what prior knowledge or abilities seem to be
required, given the existing investigations, and how this relates to the linguistic vs. non-linguistic
nativist perspective. The investigations I’ll discuss are mathematical or computational approaches
(similar to those discussed in section 2), as these are particularly helpful for investigating an acqui-
sition problem that’s been concretely specified in terms of the hypothesis space, the data available,
and how children leverage the available data (Clark & Lappin, 2011; King, 2015; Chater et al.,
2015; Fodor & Sakas, 2017; Pearl, in press-b). More specifically, these approaches are helpful
because solutions that work in a concretely-specified investigation of poverty of the stimulus are
an existence proof for how that specification of poverty of the stimulus could be solved. We can
then look at the components of these solutions and consider their origin. When these components
seem likely to be innate, we can think about whether they’re language-specific (and so support the
linguistic nativist view) or not (and so support the non-linguistic nativist view).

I also want to note that poverty of the stimulus is generally discussed for syntactic knowl-
edge (e.g., structure dependence, English anaphoric one, syntactic islands, verb-raising, the link-
ing problem, binding, verb alternations: Baker & McCarthy, 1981; Hornstein & Lightfoot, 1981;
Lidz, Waxman, & Freedman, 2003; Regier & Gahl, 2004; Pearl & Lidz, 2009; Hsu & Chater,
2010; Perfors et al., 2010; Hsu et al., 2011; Pearl & Sprouse, 2013b; Chater et al., 2015; Han et
al., 2016; Pearl & Mis, 2016; Cole, Hermon, & Yanti, 2017; Pearl, 2017; Pearl & Sprouse, 2018;
Pearl, in press-b). However, poverty of the stimulus occurs all over linguistic development (and
cognitive development more generally), whenever the available data are compatible with more than
one hypothesis (Scholz & Pullum, 2006; Clark & Lappin, 2011). With this in mind, I’ll review
a syntactic example that’s received a lot of attention, a lexical semantic example that’s received
some attention, and a phonological example that hasn’t received much attention yet.

It’s important to reiterate that there’s far more discussion of specific examples of poverty of
the stimulus than what I can reasonably cover in this review. The examples I selected here are
meant to show the breadth of poverty of the stimulus in language development, though the lexical
semantic and phonological examples aren’t ones that linguistic and non-linguistic nativists have
(yet) argued about. As I mentioned above, the syntactic example is only one of many discussed
– I selected it because it’s been discussed a lot and (in my view) caused a lot of tears due to mis-
interpretation. With that said, I should note that other syntactic cases (like the ones mentioned
above after structure dependence) are often more impactful for linguistic nativists, as they con-
cern specific theories of linguistic representation that are more likely to involve language-specific
knowledge. So, any innate components needed to solve poverty of the stimulus for these syntactic
knowledge pieces are likely to support the linguistic nativist viewpoint. Interestingly, there haven’t
been many computational or mathematical investigations of these syntactic knowledge pieces. So,
that’s an exciting area for future work on poverty of the stimulus that can offer concrete evidence
for the debate between linguistic and non-linguistic nativists.

3.1 Syntactic: Structure dependence
The correct hypothesis and the hypothesis space. Linguistic representations are generally
agreed to be hierarchical, with units inside other units (e.g., phrases inside other phrases). More-
over, rules for manipulating linguistic elements rely on this structure, rather than operating over
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simpler representations such as linear word order. A traditional example of this is complex yes/no
question formation in English, where we can think about a yes/no question like (3a) as being a
structure-dependent transformation of the declarative utterance in (3b) that involves the same core
contentful elements.

(3) a. [CP Can the penguin [CP who is on the iceberg ] tcan find a fish ]?
b. [CP The penguin [CP who is on the iceberg ] can find a fish ].

Why do we call this structure-dependent? One common way to describe the transformation in (3)
is with the rule “Move the auxiliary in the main clause to a position at the front of the utterance”.
This rule relies on the structural notion of “main clause”.

Importantly, there are other potential rules that aren’t structure-dependent (i.e., they’re structure-
independent), such as “Move the last auxiliary”, “Move the first auxiliary”, “Move the auxiliary
that’s fourth from the end of the sentence”, and so on. Structure-independent rules aren’t able to
account for the full range of English complex yes/no questions, though some (like the first two
mentioned above) are often compatible with most yes/no questions in child-directed speech.

So again, for English yes/no question formation, the correct hypothesis is something like
“Move the main clause auxiliary to a position at the front of the utterance.” The hypothesis space
consists of all possible rules for transforming (3b) into (3a), including this structure-dependent
one, other structure-dependent ones (e.g., “Move the auxiliary that’s in the same phrase as the
main topic”, where phrase is the structure-dependent component), and structure-independent ones.

Of course, structure-dependence is meant to apply to the linguistic system as a whole. So, we
can translate this particular yes/no-question correct hypothesis and corresponding hypothesis space
to any other linguistic knowledge piece as well. More generally, the idea would be to translate the
correct hypothesis to something that applies to the entire linguistic system (Scholz & Pullum,
2006): an overhypothesis like “Use structure-dependent rules.” Any specific linguistic knowledge
piece then has a specific correct hypothesis and corresponding hypothesis space that is defined us-
ing this overhypothesis for that knowledge piece (Goodman, 1955; Kemp, Perfors, & Tenenbaum,
2007; Kemp & Tenenbaum, 2008; Perfors, Tenenbaum, & Regier, 2011; Pearl, in press-b).16

The available data (or so we initially thought). Interestingly, when people first considered
how children would learn that their linguistic system uses structure-dependent rules, the focus was
on the individual knowledge pieces (like complex yes/no questions) rather than the system as a
whole. This initial focus was relaxed later on, as discussed in more detail below. However, this
focus meant that the available data initially considered were only those related to English yes/no
questions specifically (e.g., see the discussion in Pullum and Scholz (2002) and Legate and Yang
(2002)). Various analyses of children’s possible input suggested that the vast majority of their data
were ambiguous between the correct structure-dependent rule and other competing rules, including
structure-independent ones.

16Note that overhypotheses are very similar to the traditional notion of linguistic parameters often used by linguistic
nativists, where a linguistic parameter is a piece of abstract structural knowledge that can be applied to may different
linguistic knowledge pieces. See Pearl and Lidz (2013) and Pearl (in press-b) for more discussion on this point.
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How children leverage the available data. Initial discussions of structure-dependence assumed
children could only use direct positive evidence (i.e., for this knowledge piece, examples of yes/no
questions); moreover, only unambiguous data were informative (e.g., see the review of prior dis-
cussion in Pullum & Scholz, 2002). Given these assumptions, the lack of sufficient unambiguous
data for structure-dependence when forming complex yes/no questions in English seemed like it
could lead to poverty of the stimulus.

Age of acquisition for constrained generalizations. Based on behavioral work by Crain and
Nakayama (1987), English children as young as three years old seem to know that rules control-
ling complex yes/no question formation in English ought to be structure-dependent. From an input
standpoint, it turns out that English children are likely to encounter very few examples of complex
yes/no questions that would unambiguously indicate that a structure-dependent rule is required
(Pullum & Scholz, 2002; Legate & Yang, 2002). So, English children’s relatively rapid develop-
ment of this structure-dependent knowledge seemed very much to be an instance of overcoming
poverty of the stimulus.

The investigations. One early computational investigation by Reali and Christiansen (2005) re-
jected the assumption that children were trying to explicitly learn a particular structure-dependent
rule, given a hypothesis space of both structure-dependent and structure-independent rules. In-
stead, this modeled learner was tuned to children’s observable behavior, and learned to distinguish
grammatical complex yes/no questions like Is the boy who is watching Mickey Mouse happy?
from ungrammatical ones like *Is the boy who watching Mickey Mouse is happy? In addition,
this investigation rejected the assumption that the only available data were those related to yes/no
questions. Instead, this modeled learner learned from all the available utterances, and leveraged
the relative frequencies of 2-word and 3-word sequences (e.g., 2-word: Is-the, the-boy, boy-who;
3-word: Is-the-boy, the-boy-who). These relative frequencies were then used to successfully dis-
tinguish grammatical from ungrammatical complex yes/no questions. This result suggested that
there wasn’t poverty of the stimulus in principle, once the hypothesis space and available data
were redefined.

However, Kam, Stoyneshka, Tornyova, Fodor, and Sakas (2008) demonstrated that the modeled
learner of Reali and Christiansen (2005) benefited from a “lucky fluke” between the particular
sample of input it learned from and the particular set of complex yes/no questions it had to judge.
When this modeled learner judged a wider range of complex yes/no questions, it failed to make
the distinctions that children were observed to. Therefore, it seemed that poverty of the stimulus
did still exist, even with the redefined hypothesis space this modeled learner assumed.

A later investigation by Perfors, Tenenbaum, and Regier (2011) broadened the focus back to
structure-dependence in the linguistic system. Here, the modeled learner considered a hypothesis
space of different representation types (some structure-independent and some structure-dependent,
including the correct structure-dependent one). Of course, these representational hypotheses con-
nected to many individual phenomena, like complex yes/no questions – so, there would be a rep-
resentation of complex yes/no questions for each hypothesized representation type. Importantly,
because the hypotheses weren’t only tied to complex yes/no questions, the modeled learner could
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learn from any data that might be informative for choosing among representation types. This meant
the available data for the modeled learner was the set of all utterances children encounter, not just
the set of complex yes/no questions they encounter. Children would then need to be able to identify
the sequences of syntactic categories that comprise each utterance (e.g., viewing the kitty slept as
determiner noun verb). However, the available data were still compatible with all the hypotheses
under consideration (i.e., there was unresolvable ambiguity) – so, poverty of the stimulus persisted,
despite a wider base of data to learn from.

Perfors, Tenenbaum, and Regier (2011) offered a concrete solution by having their modeled
learner leverage the available data with a simplicity-based approach similar to that of information-
theoretic approaches (Chater et al., 2015). In particular, the learner used Bayesian inference to
identify the representation that balanced the complexity of the representation with the ability of
that representation to encode the data. With this prior preference in hand, the modeled learner
successfully identified the correct structure-dependent representation from those available in the
hypothesis space, on the basis of the data children encounter. So, one solution in principle to the
poverty of the stimulus presented by structure-dependence is for children to have this simplicity
bias, and then they can deploy that bias successfully over their available data. This is non-linguistic
knowledge, and so would be compatible with the non-linguistic nativist perspective. Of course,
children also need the ability to define the hypothesis space so that it includes the correct structure-
dependent one. Whether that hypothesis space creation requires innate linguistic knowledge and/or
abilities is still an open question.

A subsequent investigation by Abend et al. (2017) also approached the learning problem as
a question of the representation that was appropriate for the larger linguistic system, rather than
for an individual knowledge piece like complex yes/no questions. An interesting difference from
the Perfors, Tenenbaum, and Regier (2011) investigation was the nature of the hypothesis space:
rather than explicitly defining several structure-dependent and structure-independent representa-
tions, Abend et al. (2017) implicitly defined a hypothesis space of infinite size via a set of pre-
defined structure-dependent building blocks and constraints on how those building blocks can
combine. In this way, the modeled learner assumed structure-dependence already,17 but didn’t
know which of infinitely many constructable structure-dependent representations was the correct
one. During learning, the modeled learner would generate explicit structure-dependent hypotheses
on the basis of these building blocks and constraints, and then would evaluate those hypotheses on
the basis of the available data.

Importantly, this modeled learner saw syntactic structure as part of a larger system of linguistic
representation, with syntax intimately connected to meaning (in the form of precise logical rep-
resentations). Because of this, the learner of Abend et al. (2017) not only used all the available
utterances, but also both the syntactic and meaning information in those utterances, as well as the
meaning information from the surrounding non-linguistic context.18

17We might imagine this prior knowledge about structure-dependence could result from a Perfors, Tenenbaum, and
Regier (2011) learner who figured out that structure-dependence was the right overhypothesis.

18Note that this meant the modeled learner had to be able to reliably extract both the syntactic and meaning infor-
mation from the input. This is of course an idealization – perhaps especially for the meaning information – though
see Pearl (in press-b) for more discussion about why the particular meaning information that the learner had to extract
isn’t implausible for young children to be able to extract.
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Still, with only this to work with, there seems to be poverty of the stimulus, because more than
just the correct structure-dependent representation is compatible with the available data. Abend
et al. (2017)’s learner offers a concrete solution that’s similar to that of Perfors, Tenenbaum, and
Regier (2011): the learner has a prior bias to use Bayesian inference, balancing the complexity of
a representation with how well that representation encodes the data. Like the learner of Perfors,
Tenenbaum, and Regier (2011), this learner assessed how well the representation encodes the data;
however, when calculating how costly the representation itself was to encode (i.e., its complexity),
the learner had an additional bias to prefer representations built from building blocks that were
more frequently used. The intuition is that reusing building blocks that have been used before is
efficient, so representations that reuse more building blocks are more efficient (i.e., less costly)
than representations that don’t reuse building blocks. These combined biases for “simple” rep-
resentations and representations that reuse common building blocks is sometimes referred to as
a bias for “rational rules” (Goodman, Tenenbaum, Feldman, & Griffiths, 2008), where “rational”
means optimal. So, a learner with a bias for rational rules looks for “rules”’ (i.e., representations)
that are optimal – here, that means representations that are both as simple as possible and also as
efficient as possible (in the sense of reusing common building blocks).

With these biases, the modeled learner was able to infer the representation (both syntactic and
meaning) that adults use far more often than chance, given just a few thousand utterances of real-
istic child input.19 So, Abend et al. (2017) offer a promising solution in principle to the poverty
of the stimulus occurring over a much larger hypothesis space; this solution relies on both linguis-
tic and non-linguistic prior knowledge and abilities. In particular, we might classify as linguistic
knowledge (i) the structure-dependent building blocks for linguistic representations, (ii) the con-
straints on how structure-dependent building blocks can combine, and (iii) the tight connection
between syntactic representations and logical representations. We might classify as non-linguistic
knowledge or abilities (i) the ability to perceive meaning from non-linguistic context, (ii) using
Bayesian inference, and (iii) preferring rational rules that maximize simplicity and reuse in poten-
tial representations.

Another recent approach by Fitz and Chang (2017) also capitalized on the connection be-
tween syntactic representations and meaning. Like Abend et al. (2017), this meant Fitz and Chang
(2017) had their modeled learner use both syntactic and meaning information available in chil-
dren’s utterances, though they focused on a subset of all possible utterances. However, like Reali
and Christiansen (2005), Fitz and Chang (2017) rejected the assumption that children were trying
to learn a particular structure-dependent rule for complex yes/no questions; instead, this modeled
learner was tuned to observable behavior. In particular, if the modeled learner was given a meaning
that adults would express using a complex yes/no question, would it generate the correct complex
yes/no question form (i.e., the correct sequence of words that make up a complex yes/no question)?

Fitz and Chang (2017) provided a concrete solution to this learning problem by creating a
learner that (i) knew that meaning representations were hierarchically structured, and (ii) observed
that sequences of words were generated from those underlying meaning representations. A neural

19This investigation was restricted to a small input set due to how long it takes to generate accurate annotations
of available syntactic and logical information for child input utterances. We might reasonably infer that the modeled
learner would show even more impressive performance if it was given a quantity of data more in line with what
children truly learn from.
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network was used to navigate the space of possible ways to generate observable sequences from
underlying meaning representations, given the available data.20 After training, this modeled learner
was indeed able to generate the appropriate sequence of words for a complex yes/no question, given
the intended question’s meaning representation. This suggests that a learner who knows that (i)
meaning representations are hierarchical, and (ii) meaning representations are used to generate the
observable word sequences can learn to produce specific observable sequences that correspond to
complex yes/no questions. Notably, it’s unclear what the syntactic representation looks like that
mediates between the hierarchical meaning representation and the observed sequence of words –
perhaps it’s the one English adults are thought to use, or perhaps it isn’t. This is one of the tricky
things about using non-symbolic approaches like neural networks to search a hypothesis space –
they’re notoriously difficult to interpret (Dunbar, 2019; Pearl, 2019).

McCoy et al. (2018) also use a neural network approach, but instead keep the assumption that
the learner is trying to identify a particular structure-dependent representation from the hypothesis
space of possible representations. Like the learner of Fitz and Chang (2017), this learner generates
an appropriate sequence of words corresponding to a complex yes/no question; unlike the learner
of Fitz and Chang (2017) however, this learner is given the declarative version of the complex
yes/no question (rather than the meaning representation of the question). The modeled learner was
also given access to a subset of declarative utterances of the form that children might encounter in
their input (both without modifiers like the penguin can laugh and with modifiers like the penguin
that the seals saw can laugh). Given the restricted dataset, the available data were compatible
with many different representations, including both structure-independent and structure-dependent
ones, thereby leading to poverty of the stimulus.

McCoy et al. (2018) investigated several neural-network-based learners using a variety of ar-
chitectures, and discovered that one modeled learner solved the task of transforming a declarative
utterance into an equivalent complex yes/no question by relying on a structure-dependent represen-
tation. (Other learners relied on structure-independent representations.) This result suggests two
main implications. First, it’s not necessary for the learner to already have an explicit preference for
structure-dependent representations in order to learn them from the available data.21 This is partic-
ularly salient given the restricted input set McCoy et al. (2018) had their learners learn from, and
aligns with the previous results of Perfors, Tenenbaum, and Regier (2011) that relied on Bayesian
inference. Second, because only one of the modeled learners achieved structure-dependent repre-
sentations, this underscores the poverty of the stimulus. To infer structure-dependent representa-
tions from the available data, children need some kind of internal bias. Here, it’s whatever was
encoded implicitly in the neural network architecture; for Perfors, Tenenbaum, and Regier (2011),

20Note that a neural network’s non-linear learning process is another way to navigate a large hypothesis space,
though it’s hard to interpret exactly how that space is being navigated, in contrast with symbolic approaches like
Bayesian inference (Pearl, 2019). Still, neural network results do represent an “in principle” solution to learning
problems, confirming what it’s possible to learn, given certain input and learning constraints (as encoded in the neural
network’s architecture).

21However, the caveat is that the innards of neural networks are hard to interpret, so it’s possible (though perhaps not
highly probable) that an explicit preference for structure-dependent representations was in fact present in the specific
numbers in the vectors inside the neural network. It’s just that we as humans can’t yet easily interpret vectorized
representations, and so it’s difficult to tell for sure.
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it’s a bias for overall compactness of the representation and the ability of that representation to
encode the data.

How to interpret these investigations. From this collection of structure dependence investiga-
tions, it seems to me that there are several key takeaways. First, as mentioned above with the
McCoy et al. (2018) investigation, restricting the relevant input easily leads to poverty of the stim-
ulus that requires child-internal biases to solve. So, one useful bias on the learner’s part is to
consider any individual linguistic knowledge piece as part of a larger linguistic system (e.g., the
syntactic system as a whole, or the syntactic and semantic system together). Then, many more data
are able to provide information with respect to the preferred underlying representation. A second
useful bias is a non-linguistic one: to prefer “rational rules” that prioritize compact representations,
the ability of those representations to encode the available data compactly, and representations that
rely on reusable building blocks. Additional useful biases might be construed as linguistic: (i)
which structural building blocks to use (whether syntactic or logical/conceptual), and (ii) know-
ing about the tight relationship between syntax and meaning. To the extent these latter biases are
truly linguistic (i.e., they’re not applicable outside the domain of language), they would represent
innate, linguistic knowledge. However, it remains to be seen if they can perhaps be derived from
other non-linguistic biases children might have. (For example, perhaps the knowledge of the tight
relationship between syntax and meaning is some kind of simplicity bias that assumes maximal
similarity between representational systems, unless shown otherwise. But that’s a question for fu-
ture work.) More generally, because some of the useful innate biases in current solutions to this
poverty of the stimulus seem to be linguistic, the linguistic nativist viewpoint is supported. This of
course comes with the caveat just mentioned above: if all the linguistic biases turn out to be derived
from other non-linguistic biases, then the non-linguistic nativist viewpoint would be supported.

3.2 Lexical semantic: Exact cardinal number words

Figure 7: A scenario where exact cardinal num-
ber words like eleven and a counting list are help-
ful.

The correct hypothesis and hypothesis
space. Exact cardinal number words are
those like one, two, seven, eleven, five hun-
dred eighty three, and one million seven hun-
dred sixty four thousand three hundred forty six
in English. They refer to specific quantities,
and allow speakers whose languages use these
kinds of terms to answer questions like “How
many penguins are there?” more precisely than
several, some, or a lot. (For instance, in Figure
7, there are eleven penguins.) Moreover, lan-
guages with exact cardinal number terms also
have counting lists that begin with the equiva-
lent of one, and then move through exact car-
dinal number words one by one, with the next number in the list differing by exactly one from
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the previous number in the list: two, three, four, five,..., eleven, twelve,... and so on, in English.
This is a tool speakers can use to answer the “How many” question. For example, in Figure 7, one
strategy is to use the English counting list, where each word in the counting list is mapped to an
individual penguin. When we run out of penguins, the exact cardinal number in the counting list
that we stopped with is eleven, and so that’s how many penguins we have.

Importantly, adult speakers don’t explicitly know the entire counting list of their language
(e.g., memorizing the lexical items one through one million seven hundred sixty four thousand
three hundred forty six). Instead, adults explicitly know some key items, and then generate the
counting list as needed for a specific situation (like counting lots of penguins). One key intuition
is the successor function (Kripke, 1982; Carey, 2009, 2011; Rey, 2014; Sarnecka, 2016): the
next exact number (i.e., the successor of the current exact number) differs from the current exact
number by one. So, to generate the numerical meaning for a particular exact cardinal number
word (like eleven), look to the previous exact cardinal number word on the list (i.e., ten) and add
one. This relationship between exact cardinal number words in the counting list and exact cardinal
number meaning, via the successor function, is also known as the Cardinality Principle (Wynn,
1990, 1992; Carey, 2009, 2011; Sarnecka, 2016).

So, a key element to understanding exact cardinal number words (and generating ones you
haven’t explicitly heard before on the fly) is the Cardinality Principle. The Cardinality Principle
is thus a vital component of the adult representation of all exact cardinal number words, and what
children need to converge on. However, it turns out that the hypothesis space is pretty vast for
what exact cardinal number words could mean. For instance, one hypothesis is that exact cardinal
number words are just related properties, the way color words are. Like number words, color
words can be recited in a certain order in English: red, orange, yellow, green, blue, purple. But,
this doesn’t indicate that red somehow means one unit “more” than orange or that green means one
unit “less” than blue; this situation contrasts with the exact cardinal number words in the English
counting list. Put simply, why should a child assume a successor function for exact cardinal number
words, which are in an ordered list, when color words, which are also in ordered list, don’t use this
function?

Even if the child knows the successor function is a key building block, there are still a variety
of hypotheses using that building block that aren’t right. For example, one hypothesis is to use the
successor function if the number is less than 10, but after that, only use the ones digit to determine
the exact number word meaning. So, one through nine mean what adults think those words mean;
but, two, twenty two, and five thousand six hundred twenty two all mean the same thing, which is
what adults think two means. (This is equivalent to a “mod 10” function.) This might seem like a
strange hypothesis, but timekeeping systems work like this: there are 60 seconds in a minute, but
then we loop back to 0 when counting seconds. So, seconds use a mod 60 function. The same is
true for minutes in an hour, while hours in a day use a mod 24 function (24 hours in a day), and
days in a month use a mod 28, mod 29, mod 30, or mod 31 function (28-31 days in a month),
depending on the month.

The above hypotheses are just two of many. To get a sense of some others, imagine a “mod
X” system, where X can be anything between two and whatever number you like. Then there are
hypotheses which might seem even stranger: assume a successor function, except for the number
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eleven, which gets its meaning by adding two to the previous word, instead of one. (So, eleven
means what adults thinks twelve means.) Once again, substitute any single number word you like
for eleven, and any quantity for two, and you can generate all kinds of different hypotheses.

The available data and how children leverage it. As far as I’m aware, researchers investigating
the acquisition of exact cardinal number words assume children have access to direct positive
examples, such as scenes where there are eleven penguins and someone using the word eleven to
describe how many penguins there are. More generally, the relevant data points are assumed to
be pairings of a specific number of countable things present and a cardinal number word labeling
that set of countable things. Children are then assumed to be able to observe and leverage the
correspondence between the set size and the number word.

Interestingly, Piantadosi, Tenenbaum, and Goodman (2012) found that actual child interactions
involving these data points appear in a power-law distribution, where most instances children hear
are of one or two, with three and above occurring in very, very few data points. As you might
imagine, this means children are primarily inferring what exact cardinal number words mean on
the basis of one and two, with only the occasional higher-number word appearing. So, this seems
like a solid case of poverty of the stimulus. Moreover, even if we had a lot of examples of lots of
different exact cardinal number words, we’d still have the problem of not encountering every car-
dinal number word that can be generated (like one million seven hundred sixty four thousand three
hundred forty six). This could cause children to end up with mod 60 systems, or mod 1000 sys-
tems, and so on. But even worse in reality, it seems that children’s input is highly skewed towards
a very few cardinal number words that might well permit additional incorrect hypotheses. So, it
seems like children must have some prior knowledge to help them constrain their generalizations
appropriately for what exact cardinal number words mean.

Age of acquisition for constrained generalizations. The acquisition of exact cardinal number
knowledge appears to follow a particular, staged trajectory: children settle on a variety of immature
representations before converging on the adult representation that involves the Cardinality Princi-
ple (Carey, 2009, 2011). This is true not just in English but also in Arabic, Japanese, Mandarin
Chinese, Russian, Slovenian, and Tsimane’ (Sarnecka, 2016). Children initially learn the ordered
counting list of their language (e.g., one, two, three,...) without knowing what these words mean
(Fuson, 1988; Piantadosi et al., 2012; Sarnecka, 2016) – children at this stage are sometimes called
“pre-number-knowers”. So, when a pre-number-knower is asked to give someone three penguins,
the child will simply pick out some number of penguins to give, even when told to use the counting
list (Sarnecka, 2016).

Children then progress through several subset-knower stages: one-knower, two-knower, three-
knower, and sometimes even four-knower (Wynn, 1990, 1992; Carey, 2009, 2011; Piantadosi et
al., 2012; Sarnecka, 2016). A child at a particular knower stage (e.g., three-knower) seems to
have the correct representation for each exact cardinal number up to and including that particular
number (e.g., one, two, and three for a three-knower). For instance, if we asked a three-knower to
give us three penguins, she would happily hand us exactly three penguins. However, any numbers
beyond that number (e.g., four for a three-knower) seem to be unknown, despite the child knowing
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the words in the counting list (e.g., four). For instance, if we asked a three-knower to give us four
penguins, she’d give a random number greater than three (e.g., four, seven, or nine penguins).

After the three-knower or four-knower stage, children seem to make the leap to the Cardinality
Principle, where they effectively learn all the rest of the exact number meanings at once (Wynn,
1990, 1992; Carey, 2009, 2011; Sarnecka, 2016). As mentioned above, this new adult-like repre-
sentation involves recognizing the relationship of the successor function to the counting list (i.e.,
the next word on the counting list is one more than the previous word on the counting list); having
this representation allows children (like adults) to generate the meaning of any particular exact car-
dinal number word. Interestingly, the progression from pre-number-knower to knowing the correct
representation involving the Cardinality Principle takes a surprisingly long time – for example, it
can take several months to go from being a one-knower to a two-knower in English. In English,
children seem to settle on the Cardinality Principle around age four to five (Sarnecka, 2016).

The investigation. Piantadosi et al. (2012) used an ideal learner model to attempt to understand
why children might have this staged trajectory that then leads to the correct representation in-
volving the Cardinality Principle. That is, how could this very specific trajectory emerge, given
children’s input?

The modeled learner’s hypothesis space was a set of building blocks that could be combined
to generate explicit hypotheses about the meaning of exact cardinal number words in the counting
list. These building blocks were domain-general, in that they weren’t applicable only to language
– in fact, they could be used for learning kinship relations, taxonomies, and theories of causality, in
addition to meaning. The specific building blocks included what might be thought of as conceptual
units (e.g., a function checking whether a set was size one), comparison units (e.g., a function
identifying the intersection of two sets), combinatorial units (e.g., logical and and if ), sequential
relations (e.g., a function that identifies the next word in the counting list), and the ability to
construct recursive relations. Notably, the successor function itself wasn’t a building block – rather,
it could be constructed from the building blocks in the hypothesis space. (Importantly, so could
an infinite number of other hypotheses, including the mod systems mentioned before.) So, the
correct representation was merely one of the explicit hypotheses that could be generated from these
building blocks and evaluated; others were the immature representations of pre-number-knowers,
one-knowers, two-knowers, three-knowers, and four-knowers; and still others were representations
that would correspond to five-knowers, or representations that would correspond to a two-not-one-
knower who recognizes the meaning of two, but not the meaning of one (or numbers higher than
two).

The modeled learner was given a realistic sample of English children’s exact cardinal number
input, where a data point was an exact cardinal number word like two paired with two items.
The modeled learner then used the “rational rules” approach (Goodman et al., 2008) to evaluate
which representation was the most probable at different points in time (which corresponded to
different amounts of data). In particular, the learner had built-in biases to prefer both simplicity (in
terms of a compact representation) and reuse (in terms of using building blocks that had been used
before). Moreover, representations involving recursion, like the correct one with the Cardinality
Principle, received an extra penalty – that is, because they involved a more complex building block

37



(recursion), the modeled learner was biased against them. So, these representations involving
recursion had to be even better at compactly encoding the data and reusing building blocks in
order to be viewed as more probable than equivalent representations that didn’t involve recursion.

With this setup, the ideal modeled learner was then able to reproduce the specific developmental
trajectory for exact cardinal number knowledge. In particular, the learner went through progressive
immature stages corresponding to the different knower levels before converging on the correct rep-
resentation involving the Cardinality Principle. Thus, Piantadosi et al. (2012) provided a concrete
strategy for potentially solving the poverty of the stimulus involved with mapping exact cardinal
number words to their meanings, in the same way that children seem to. This strategy identified the
child-like hypotheses at each age because those hypotheses, including the correct representation at
the end of learning, were a better balance of compactness, reuse of building blocks, and capturing
the input data than other hypotheses (e.g., the mod representations).

How to interpret this investigation. Based on this investigation, I think there are two built-in
components that collectively offer a solution to this instance of poverty of the stimulus. First, the
child has to have a set of useful building blocks for generating specific hypotheses about what
exact cardinal number words mean. The specific collection that Piantadosi et al. (2012) used
appears to be domain-general – that is, while the building blocks were clearly applied to language
items (meaning and counting words), the building blocks themselves weren’t obviously language-
specific. (Remember: they could be used for non-language concept learning, and not just when
mapping concepts to specific linguistic forms.) Second, the child has to have a preference for
“rational rules”: compact representations and representations that reuse building blocks. With this
preference in hand, a child could converge on the correct representation involving recursion, even
if the child views recursive representations as inherently more complex (and so less preferred, all
other things being equal). Because both these components aren’t specific to language, this solution
to the poverty of the stimulus is in line with the non-linguistic nativist viewpoint.

I should note, however, that this poverty of the stimulus case isn’t one that linguistic nativists
have previously held up as one likely to involve innate linguistic knowledge. In fact, I don’t
think that lexical semantic development is generally argued to involve innate linguistic knowledge.
Because of this, poverty of the stimulus in lexical semantic development tends to be less interesting
for the linguistic vs. non-linguistic nativist debate. That said, poverty of the stimulus occurs a lot
in lexical semantic development, including the specific case here of learning the meanings of exact
cardinal number words. Just like in other areas of linguistic development, the goal is to understand
how children can solve these poverty of the stimulus instances, wherever they occur.

3.3 Phonological: Word-final obstruent devoicing
The correct hypothesis and hypothesis space. In response to skepticism that poverty of the
stimulus occurs in phonology, Idsardi (2005) notes an example involving particular kinds of con-
sonants that appear at the end of words. The specific consonants are called obstruents, because
they obstruct the airflow through the vocal tract; obstruents include voiced sounds like /d/, as well
as voiceless sounds like /t/, which are made the same way in the vocal tract, except that the vocal
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folds don’t vibrate as early (or at all) for the voiceless sounds.
A certain process can occur when obstruents appear at the end of words (word-finally): if

they’re voiced like /d/, they become devoiced, like /t/. This word-final devoicing process occurs in
a large number of the world’s languages, including Dutch, Catalan, Bulgarian, Czech, Macedonian,
Armenian, Maltese, Tok Pisin, and Wolof, among many others. So, for example, the Dutch word
for the plural “dogs” is honden, while the singular “dog” is spelled hond but pronounced as if it
had a /t/ on the end (“hont”). The reason hond is pronounced hont is due to word-final obstruent
devoicing (i.e., the voiced /d/ becomes voiceless /t/ because it’s word-final).

So, one way to describe the correct rule that children must learn if their language uses this
process is this: if you have a word-final obstruent, devoice it. However, there are certainly many
other plausible hypotheses that seem to be compatible with the available data, as Idsardi (2005)
points out. For instance, a more specific hypothesis might be to devoice specific obstruents only
(like /d/), rather than assuming all obstruents are devoiced. A more general hypothesis might be
devoice the last consonant in a word, even if vowels come after. So, this more-general hypothesis
would turn hond to hont, but would also turn the nonsense Dutch word honde into honte. A
hypothesis that’s not obviously more specific or more general than the correct representation might
key into the singular vs. plural distinction rather than word-finality: perhaps the last obstruent in
a singular like hond is devoiced to hont, while the last obstruent in a plural like honden isn’t (note
that /n/ is a non-obstruent consonant, so the /d/ would be the last obstruent in honden).

The available data and how children leverage the data. The relevant data for children would
presumably be all words, with the correct rule covering words that show word-final devoicing (like
hond pronounced as if it were hont) and not covering words where devoicing doesn’t occur. To
do this, children would need to recognize that something changed about the way the devoiced
forms were pronounced – that is, they’d have to expect hond and then note that hont is what
comes out instead. Children may be able to make this connection via the similarity in meaning
to the plural honden, especially if they recognize the suffix -en as a plural marker. So, the child
reasoning would be something like honden - en = hond. When hont comes out instead, this is a
signal that devoicing happened. In terms of child capability, this doesn’t seem like an unreasonable
realization, depending on the age of the child. We know that children learn to recognize phonetic
features like voicing before one year old (Maye, Weiss, & Aslin, 2008), and also seem capable of
recognizing some regular morphology by two or three (Brown, 1973).

However, to truly know which specific word forms are available to children at certain ages for
learning about word-final devoicing, a corpus analysis would probably be the best way to go. As
far as I know, this has yet to be undertaken. Depending on what forms are found in any particular
language, it’s very possible poverty of the stimulus exists for learning about word-final obstruent
devoicing.

Age of acquisition for constrained generalizations. As far as I’m aware, we don’t currently
know a precise age of acquisition for the correct devoicing rule; we’re also unaware of intermediate
stages children might go through when trying to decide what the correct devoicing rule is, though
see Bergelson and Idsardi (2009) for some investigations about the generalizations both 8-month-
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olds and adults make about final devoicing. But, there’s some good news. First, Idsardi (2005)
notes that adults who speak languages with this devoicing rule do in fact seem to use it, even
on items they haven’t heard before (and so they couldn’t have just memorized the specific words
where it happens). Additionally, Bergelson and Idsardi (2009) find that adults can learn a word-
final devoicing rule in an artificial language where multiple generalizations are possible (i.e., a
word-final devoicing rule and other possible devoicing rules). So, no matter what, we know two
things: (i) from Idsardi (2005), that children eventually do figure out the correct devoicing rule
because adults know it, and (ii) from Bergelson and Idsardi (2009), that some kind of bias is active
that allows adults to pinpoint the right kind of devoicing rule even when the data are ambiguous.

Second, there are a lot of data about child pronunciations from a variety of languages available
through the CHILDES PhonBank database (MacWhinney, 2000). So, we may be able to identify
when children seem to produce the correct pronunciations that show word-final devoicing. Of
course, even better would be more behavioral studies that test children of different ages on novel
words – then we can be sure the children are relying on whatever internal rule they have, rather
than just repeating what they’ve heard.

Investigations and how to (eventually) interpret them. Investigations of this potential instance
of poverty of the stimulus are, of course, yet to be done. But, it may well be that a rational rules
approach might work well here, especially if we can define useful building blocks from which
children could generate explicit hypotheses to test. I do note that Idsardi (2005) cautions about how
to implement the “simplicity” component of a rational rules approach; in particular, depending on
what form the representations take, which representation is more compact may not be obvious.
More generally, I think this phonology case is a concrete, potential instance of poverty of the
stimulus that we have the tools to investigate. Depending on what solutions are found, we can see
if linguistic or non-linguistic nativists are more enthusiastic.

4 Conclusion
Here, I’ve tried to give a tears-free overview of poverty of the stimulus, including what it is and
how it relates to children’s hypothesis spaces, the data available to children, and how children
leverage those available data. Importantly, poverty of the stimulus is part of an argument (i.e.,
the “argument from poverty of the stimulus”) that includes children making constrained general-
izations, given the data available (and in practice, making those constrained generalizations faster
than we might expect). This constrained generalization then implies that children have some kind
of prior knowledge or abilities that guide them towards the correct answer. The prior knowledge or
abilities for a particular instance of poverty of the stimulus are generally believed to involve some
kind of innate knowledge or abilities, and the big divide is whether any of that innate knowledge
or those innate abilities are language-specific. If so, the linguistic nativists are pleased; if not, the
non-linguistic nativists are pleased.

I also reviewed some approaches to identifying when poverty of the stimulus is in fact happen-
ing, both in principle and in practice, both abstracting away from specific linguistic details and by
zooming in on specific case studies. I then reviewed a few illustrative examples of poverty of the
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stimulus, discussing why these are considered poverty of the stimulus, how different researchers
have approached investigating them (or could in the future), and what we might interpret from cur-
rent (or future) results. In my view, these examples highlight a way to make progress on poverty of
the stimulus (and thus language development more generally) by (i) defining the learning problem
as precisely as possible, (ii) assessing quantitatively if poverty of the stimulus is happening, and
(iii) showing how specific learning proposals could solve that particular instance of poverty of the
stimulus. As I mentioned in the introduction to the case studies, the ones I chose were meant to il-
lustrate the breadth of poverty of the stimulus in language development, rather than focus on cases
that have figured prominently (or at all) in the linguistic vs. non-linguistic nativist debate. This
means that many cases that I didn’t discuss (particularly in the realm of syntax) are ones that may
offer more impactful data for the debate between linguistic and non-linguistic nativism. Making
concrete progress on these other cases can then certainly move that debate fruitfully forward.

With that said, I think the value of poverty of the stimulus goes beyond the linguistic vs. non-
linguistic nativist debate. Poverty of the stimulus is a particular (and particularly frequent) learning
problem that children solve (and in fact solve a lot for years on end) when developing their lan-
guage knowledge. Understanding precisely what children must solve and providing concrete ways
that they might in fact solve it each time allows us to better understand how language development
works. Depending on the cognitive building blocks ultimately involved, a better understanding of
particular instances of language development may also help us better understand cognitive devel-
opment more generally as well.

By using the approach I sketched above for making progress on poverty of the stimulus, we’re
forced to be explicit about our assumptions – assumptions about both the problem itself and what
goes into a potential solution. We can examine these assumptions at a later time if we want, either
keeping them or adjusting them, based on our future understanding of the learning problem and/or
components of possible learning solutions. Poverty of the stimulus then becomes an accessible
workspace for investigating our ideas about what’s built into humans when it comes to learning
language. Importantly, in my view, all this can be done without tears.
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