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Chapter 4: The Case of Old English Word Order 

4.1 Filters on Data Intake for Syntactic Learning 

The phenomenon I examine in this chapter is an instance of syntactic learning, 
specifically the alternation between Object-Verb (OV) and Verb-Object (VO) order in 
Old English.  This case is another example where the learner has two hypotheses 
under consideration.  However, unlike the case of anaphoric one, the final state for 
adults in Old English is argued to be probabilistically distributed between the two 
hypotheses (Pintzuk, 2002; Kroch & Taylor, 1997; Bock & Kroch, 1989).  Evidence 
for this mixed adult state comes from texts in which both alternates are exhibited by a 
single author.  This is in contrast to final state where only one hypothesis is accessed 
(i.e. only one structural rule used) by adults. 

The hypothesis space for Old English OV/VO order consists of two 
hypotheses that overlap, but do not have a subset-superset relation.  Both the OV and 
VO hypotheses have data that will be unambiguous.  In addition, there is a quantity of 
data that is ambiguous between the two hypotheses since it can be analyzed 
successfully given either hypothesis.  The updating procedure is based off the one 
described in the mathematical framework in chapter 2.  I then use this definition of 
the hypothesis space and the updating procedure to investigate two filters on data 
intake proposed for syntactic learning. 

The two filters in question bias learners away from potentially misleading 
ambiguous data in the input, both stemming from a presumed preference for “simple” 
data (Dresher, 1999; Lightfoot, 1999, 1991; Fodor, 1998a).  These filters use a 
structurally-based notion of simplicity.  The first claims that children learn only from 
unambiguous data (Dresher, 1999; Lightfoot, 1999; Fodor, 1998a), and consequently 
do not activate the update algorithm whenever data is perceived as ambiguous.  The 
second proposal restricts learning to the data points found in “simple” clauses 
(Lightfoot, 1991), where simple clauses are defined as matrix clauses.  If there are 
available data points in embedded clauses, the update algorithm again is not activated 
and these data are effectively ignored by the learner.   

These filters are motivated by the perceived informativity and ease of 
comprehensibility of the relevant data.  As we saw in the previous chapter, an 
unambiguous data point allows the learner to be maximally confident in whichever 
hypothesis the data point signals.  So, the most probability is shifted when the learner 
encounters an unambiguous data point.  We can view this as unambiguous data points 
being the most informative data points available to the learner. For simple clauses, it 
has been claimed that children might restrict their attention to simple, subparts of 
utterances (Morgan, 1986), perhaps because of general cognitive restrictions on the 
complexity of data that they can handle.  So, matrix clauses, being “simpler”, are 
arguably easier for learners to extract information from. 

Nonetheless, filtering the data is not without its drawbacks.  The filters 
proposed above will radically truncate the data intake set.  It is well known that sparse 
data can inhibit a probabilistic model’s ability to converge on a solution.  Thus, we 
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must determine if the subset of data circumscribed by these two filters can still allow 
learning to succeed, even if the subset is significantly smaller than the input data set. 

In Old English, as we have already noted, the adult state is a probabilistic 
distribution between the two hypotheses, OV and VO word order.  Because the target 
state is not an endpoint (either all OV or all VO word order), it is more difficult to 
gauge learning success.  How close does the learner have to get to the adult 
probability distribution in order for learning to be deemed successful? 

At this point, we can make use of the fact that languages change over time.  
Specifically in the case of Old English, the population shifts from an OV-biased 
distribution around 1000 A.D. to a VO-biased distribution around 1200 A.D. (YCOE 
Corpus, Taylor et al., 2003; PPCME2 Corpus, Kroch & Taylor, 2000).  It has been 
proposed that certain types of change (such as the shift in Old English) result from a 
misalignment of the child’s hypothesis and the adult’s analysis of the same data 
(Lightfoot, 1999; 1991).  In other words, language change in this case results from 
imperfect learning of a very particular kind.   

Specifically, the idea is that language change in this case occurs because 
learners misconverge on the probability distribution; the learner’s probability 
distribution is very slightly different from the adult’s probability distribution. The key 
point is that the amount of difference between the learner’s probability distribution 
and the adult’s probability distribution will influence the rate of language change in a 
population over time. In order to model change at an attested pace, the acquisition 
model must hypothesize exactly the right amount of difference between the learner’s 
and adult’s probability distributions. 

Therefore, “successful” learning is defined as learning that leads to exactly the 
right amount of misconvergence within the individual learner.  This amount of 
misconvergence within the individual then leads to language change over time within 
the population of individuals.  We will find that the amount of misconvergence 
depends greatly on how the input is filtered during learning.  Thus, we can test 
proposals about data filtering by using models of language change. 

It is important to note the correlation between successful learning and 
imperfect learning for certain cases of language change.  Often, language learning 
research in synchronic cases may focus so much on the learner’s ability to reach the 
target adult state that we may overlook the fact that perfect learning will not 
necessarily lead to success in diachronic cases.  This is because perfect learning 
would entail no change over time.  This then creates a certain tension on the demands 
of a successful learning model – it must be good enough that learners can 
communicate effectively with the remainder of the population, but not so good that 
language change is impossible.  So, using successful language change as a metric for 
successful language learning attempts to keep this second point in mind.  

We will find, perhaps surprisingly, that the two proposed filters on data intake 
are crucial for a successful model of Old English language change that describes a 
population which begins strongly OV-biased at 1000 A.D. and ends strongly VO-
biased at 1200 A.D.  Without these filters, the simulated learners are unable to 
misconverge the precise amount necessary for the modeled population’s rate of 
change to match the historically attested population’s rate of change.  This supports 



 

 70 
 

the existence of these two filters on data intake during the normal course of syntactic 
learning. 

The chapter proceeds as follows.  First, I will discuss the two filtering 
proposals in detail.  Then, I will examine the available information on the language 
change in Old English.  After that, I will discuss the model of language learning and 
language change that I will use.  Finally, I will present the modeling results and 
discuss their implications for language learning. 

4.2 Restricting the Data Intake 

4.2.1 Unambiguous Data 
 
4.2.1.1 Unambiguous Data for OV and VO Word Order 
 
 Unambiguous data is defined within a hypothesis space of opposing analyses 
for a certain piece of linguistic structure, such as OV or VO word order.   
Ambiguity is often faced by a child choosing the correct grammar for his or her 
language.  Let’s consider a simple example.  The child has to decide whether the 
stream of encountered speech belongs to a VO (Verb before Objects) language 
requiring rules like (1) or to an OV (Objects before Verbs) language requiring rules 
like (2).  
 
(1)  VO rule set examples 
 (a)  VP   V  NP  PP  (b) VP   V   NP 

 
(2)  OV rule set examples 
 (a) VP   NP  PP  V  (b)  VP   NP  V 

 
Modern English chooses the VO rule set (1).  Modern Dutch and German 

choose the OV rule set, which includes those in (2).  However, modern Dutch and 
German also generate strings that are compatible with some of the rules in set (1), 
such as in (3) below: 

 
(3)   IchSubj  seheTensedVerb    [den Fuchs]Obj 

I     see        the fox 
‘I see the fox.’ 
 
This example demonstrates an option available in modern Dutch and German 

which moves the tensed Verb of the matrix clause to the “second” phrasal position in 
the matrix clause, known as V2 movement (Lightfoot, 1999; Kroch & Taylor, 1997; 
among many others).  The tensed Verb sehe moves from its original position (after 
den Fuchs) to the second phrasal position in the sentence, and some other phrase (Ich) 
moves to the first phrasal position, as in (4). 

 
 (4)  IchSubj   seheTensedVerb   tSubj   [den Fuchs]Obj  tTensedVerb. 
 I  see    the fox 
 ‘I see the fox.’ 
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 Given the example in (3), one might reasonably wonder why we posit the 
analysis in (4) instead of simply assuming that modern German (and Dutch) word 
order is VO.  The reason is that VO order does not appear in matrix clauses across the 
board.  Languages like modern Dutch and German use VO order only for tensed 
Verbs in matrix clauses.  Non-tensed Verbs in matrix clauses and all Verbs in 
embedded clauses obey OV order and appear after the Object.  This forces us to 
assume a basic OV word order with an additional operation that moves the tensed 
Verb in matrix clauses. 

In the bold part of (5a), we see the basic OV order appearing in the embedded 
clause as den Fuchs sehen kann (Object Non-TensedVerb TensedVerb). In (5b), the 
non-tensed Verb sehen appears in the matrix clause after the Object den Fuchs, again 
displaying the OV order. The V2 rule moves the tensed modal kann to the second 
phrasal position, and the Subject Ich moves to the first phrasal position.  

 
(5a) IchSubj  denkeTensedVerb,     das    ich  [den Fuchs]Obj    
 I think       that    I      the    fox   
   
 sehenNon-TensedVerb    kannTensedVerb 
 see    can 
 
            ‘I think that I can see the fox.’ 
 
 (5b)  IchSubj    kannTensedVerb   tSubj [den Fuchs]Obj   sehenNon-TensedVerb     tTensedVerb 
 I     can   the fox           see 
 ‘I can see the fox.’ 
 
 At the beginning of language learning however, the child has not set the word 
order parameter for the language.  Therefore, both the OV and VO hypotheses are 
available with some probability.  The matrix clause Ich sehe den Fuchs can be 
covered by both hypotheses.  The OV hypothesis can use the analysis described in 
(4), matrix OV order with the V2 movement rule; the VO hypothesis can use the 
analysis in (6), matrix clause VO order without the V2 movement rule (which is the 
analysis used for modern English). 
 
(6) IchSubj  seheTensedVerb    [den Fuchs]Obj. 
 I  see  the fox 
 ‘I see the fox.’ 

 
Data points like (3) are therefore ambiguous between the two hypotheses 

under consideration.  A proposal to filter data intake down to the unambiguous data 
points would cause the learner not to activate the update procedure when 
encountering ambiguous data points.20  Instead, the learner uses only data points 
perceived as unambiguous.  Examples of perceived unambiguous data are in (5) 
                                                
20 Otherwise, the learner would require some strategy for how to update the probabilities when 
encountering ambiguous data, as we saw in the previous chapter. 
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above.  In (5a), if the child uses embedded clause data as intake, then the presence of 
the Verbs (both tensed kann and non-tensed sehen) after the Object would signal that 
the VO hypothesis is correct.  In (5b), the presence of the non-tensed Verb sehen after 
the Object again implicates the OV hypothesis since that order would not be 
generated by a VO system. 
 
4.2.2.2  Identifying Unambiguous Data 

 
If we believe that children filter their intake for syntactic learning down to 

unambiguous data, it is important to provide a plausible method for identifying 
unambiguous data.  Two methods have been proposed to identify unambiguous data: 
the domain-specific knowledge of cues (Dresher, 1999; Lightfoot, 1999) and the 
domain-specific procedure of parsing (Fodor, 1998; Sakas & Fodor, 2001).   

A cue for identifying unambiguous data is defined as a specific configuration 
in the surface structure of the data point that signals one parameter value (hypothesis) 
is correct.  The knowledge of what a cue for a given parameter value looks like is 
often presumed to already be available to the learner (Dresher, 1999; Lightfoot, 
1999), whether innately specified or derived through some other knowledge. A cue 
for OV/VO word order proposed by Lightfoot (1999) is described in (7). 
 
(7)  The Object is adjacent to the Verb (on the appropriate side) and the Verb is 
not in the second phrasal position.   
 
 This is considered a cue because the V2 movement rule deriving a VO order 
from an underlying OV order only allows a single phrasal constituent to come before 
the Verb.  If the Verb is preceded by more than one phrasal constituent, then its 
position is not the result of V2 movement.21 The form of this cue could be an 
underspecified piece of sentence structure (figure 28 below) or simply a linear pattern 
retrievable from the observable data (8).  Both are representations of the domain-
specific knowledge that a cue describes. 

 

   
Figure 28.  Underspecified pieces of sentence structure that could be the learner’s 
representation of a cue for OV vs. VO word order, as described by Lightfoot (1999). 
                                                
21 Note that this is the learner’s perception of the data, given a restricted knowledge base.  The adult 
grammar, in actuality, may contain other grammatical rules that allow V2 movement to create a clause 
with the Verb in the third position.  Thus, the learner may perceive data as “unambiguous” that is 
ambiguous when a fuller range of grammatical rules is considered. 
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(8) Linear patterns that could be the learner’s representation of a cue for OV vs. VO 
word order. 
 (a) OV cue: [  ]XP … Object Verb … 
 (b) VO cue: [  ]XP1  [  ]XP2 … Verb Object … 

 
 To identify unambiguous data, the learner matches the data point (or relevant 
piece of the data point) to the cue.  Example sentences that would match these cues 
are in (9).   
 
(9a)  Matching OV cue:  Subject Object     Verb.         
  Ich denke, das ich       den Fuchs sehe.  
    (XP = Subject, … = null) 
(9b)  Matching VO cue:  Adverb Subject Verb Object.    
    Yesterday, I        saw a dragon.  
    (XP1 = Adverb, XP2 = Subject, … =  null) 
 
 The cues method gives sentences like these privileged status, and such 
sentences are viewed as unambiguous evidence for the associated parameter value, 
OV or VO. 
 An alternative approach is to use the learner’s natural language 
comprehension  processes to discover if a data point should be considered 
unambiguous for OV/VO order (Fodor, 1998b; Sakas & Fodor, 2001).  The learner 
assigns possible structures to (or parses) the datum with all values of the relevant 
parameter set (in this example, the relevant parameter set PS = {OV/VO, +V2/-
V2}).22   If only one value of a parameter (e.g. OV) will allow a successful parse of 
the entire data point, then that data point is classified as unambiguous for that value of 
that parameter.  This procedure is shown in (10). 
 
(10) Parsing to identify unambiguous data for basic word order using the set of 
parameter values PS = {OV/VO, +V2/-V2} 
 (a) Data point: Subject Object Verb. 
 Sets of values from PS that will lead to a successful parse of the data =  
  {OV, -V2} 
 In this case, the only combination of values that will allow a successful parse   
 is OV and –V2.  Therefore, given this set of relevant parameter values, this   
 data point is unambiguous for both OV and –V2. 
 
 (b) Data point: Subject TensedVerb NonTensedVerb Object. 
 Sets of values from PS that will lead to a successful parse of the data =  
  {VO, +V2}, {VO, -V2} 
 In this case, two combinations of values will allow a successful parse of the   
 data point, and both use the VO value (and neither use the OV value).  Either  
 value of the V2 parameter can be used in combination with the VO value,  
                                                
22 Note that the relevant parameter set for the learner may be (and likely is) a subset of the entire adult 
parameter set.  
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 however. Therefore, given this set of relevant parameter values, this data point 
 is unambiguous for VO only. 
 
 (c) Data point: Subject Verb Object. 
 Sets of values from PS that will lead to a successful parse of the data =  
  {OV, +V2}, {VO, -V2}, {VO, +V2} 

In this case, three combinations of values will allow a successful parse of the 
data point.  Importantly, neither parameter value for either parameter is crucial 
for parsing success.  There is at least one combination that uses the OV value, 
at least one that uses the VO value, at least one that uses the +V2 value, and at 
least one that uses the –V2 value.  Therefore, given this set of relevant 
parameter value, this data point is not unambiguous for any values of any 
parameters. 

 
 We will return in the next chapter to the discussion of the benefits and 
drawbacks of each method that the learner could use in identifying unambiguous data.  
For the case of Old English OV/VO order discussed in this chapter, both methods will 
identify the same set of utterances as unambiguous data, provided the relevant 
parameter set for parsing is restricted as described above.23   
 
4.2.2.3 Unambiguous Data Summary 

 
The unambiguous data filter reflects a very simple idea: the child learns only 

from the data perceived as “clean”, instead of guessing about data perceived as 
“unreliable”.  If the child is using cues, clean data are identified by the specific rubric 
of the cue.  If the child is using parsing, clean data are identified by having only one 
parameter value that yields successful parsing.  For both methods, it is important to 
note that a data point is unambiguous relative to a given parameter.  A data point 
unambiguous for parameter P1 may not be unambiguous for another parameter P2.  
For instance, as we saw in (10b), a data point can be unambiguous for VO order while 
being ambiguous for the V2 movement operation.   

In addition, an unambiguous filter reduces the set of data a child can learn 
from (since some data in the input are classified as unambiguous).  It is therefore 
quite important that there be enough data left in the child’s intake to learn from.  If 
the data perceived as unambiguous appear in sufficient quantity in the input, the 
learner will converge on the “correct” probability distribution for that parameter. 
Otherwise, the individual learner within the population will not be able to converge 
on the correct probability distribution, and will instead remain near the initial 
probability distribution.  Once individuals are unable to converge on the correct 
probability distribution, language change in the population as a whole will grind to a 

                                                
23 Specifically, the relevant parameter set for parsing should not include operations that can influence 
the position of the Object with respect to the Verb, such as Heavy Noun Phrase shift which will move 
the Object to a position following the Verb if the Object is phonologically “heavy enough”.  If the 
parameter set did include operations like this, many more data points would be considered ambiguous 
and therefore unusable for a learner employing an unambiguous data filter. 
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halt.  Thus, it is critical for the feasibility of an unambiguous data filter that the 
unambiguous data not be too sparse in the input. 

4.2.3 Simple Clauses 
 
 The potential problem of data sparseness becomes worse when we add a 
proposal to learn from data in simple clauses only: the “degree-0” learning filter of 
Lightfoot (1991). Degree refers to the level of embeddedness. I adopt Lightfoot’s 
terminology “degree-0” to refer to matrix clauses and “degree-1” to refer to 
embedded clauses.24 This filter is motivated by a claim that it lessens the cognitive 
load of the learner; children use only structural information that spans a single matrix 
clause and at most a complementizer in the embedded clause.25 A learner using this 
filter would not use data such as (5a) as evidence for the OV order of German, since 
the useful structural information signaling OV order is in the embedded clause.  
Nonetheless, examples such as (5b) that contain non-tensed Verbs adjacent to the 
Object in the matrix clause are still in the degree-0 learner’s intake. 
  
4.2.4 The Influence of Input Filtering on Old English Language Change 
 
 Potential data sparseness aside, filtering of the input can go a long way toward 
explaining how changes to a language’s structure can spread fairly rapidly through a 
population.  Filtering requires learners to learn only from a specific subpart of the 
observable data.  If that subpart changes (perhaps due to external factors) so that it 
does not accurately reflect the adult probability distribution for the language as a 
whole, then children will “mislearn” the adult probability distribution.  These children 
subsequently contribute observable data to the next generation of children, who will 
subsequently “mislearn” the previous children’s “mislearned” probability 
distributions. This continues, spreading through the exponentially growing 
population26, until the population as a whole has shifted its probability distribution 
dramatically.  
 The loss of a strongly OV distribution in Old English is an especially 
interesting language change because the degree-0 unambiguous data distribution of 
the two word orders appears to be significantly different from the average adult’s 

                                                
24 Lightfoot’s work follows Wexler & Culicover (1980) and Morgan (1986), who argue for less 
restrictive constraints on the learning domain. 
25 Note that this motivation wouldn’t necessarily hold for head-final languages like Japanese where the 
matrix clause can be split into two parts by an embedded clause: SubjectMain…SubjectEmbedded 
…ObjectEmbedded VerbEmbedded…ObjectMain VerbMain.  A degree-0 learner would need to track 
information spanning the embedded clause.  A learner with the cognitive resources to do that would 
most likely also have the cognitive resources to track the information in the embedded clause.  So, a 
degree-0 learner that is motivated by a limit on cognitive resources and who must learn a head-final 
language might be redefined as one using the information in the portion of the degree-0 clause that is 
adjacent, i.e. not split by any embedded clause material. 
26 Populations canonically grow at an exponential rate, with the current set of new population 
members typically outnumbering the previous set of new population members.  The exact amount that 
the current set of new members outnumbers the previous set of new members is described by the 
population growth coefficient, a constant value specific to a given population.  
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probability distribution for the language as a whole.  The V2 rule’s restriction to 
matrix clauses means that while the distribution of clauses in the matrix is mixed 
between VO and OV order, Old English (before the change) is strongly OV in 
embedded clauses (see table 4.1 in section 4.4.1.2).  This is a case where 
unambiguous data and degree-0 data filters on data intake should create a mismatch 
between the adult’s underlying probability distribution and the probability 
distribution the child converges on. 
 Since we have historical records allowing us to calculate the rate of change 
from OV to VO, I model the effect of filtering by restricting my model to learn from 
simple unambiguous structures in the quantities found in the historical record at the 
beginning of the transformation of Old English from OV to VO.  The model will then 
create a set of successive generations, each diverging from the initial distribution to a 
designated extent; this is the rate of change.  Then, I can calculate the effect of these 
two filters on the rate of change in the model, and compare it to the actual rate 
calculated from the distribution of data found at various periods during this 
transformation in the actual historical record.   
 I do this in two steps. First, I ask if a population whose learners filter their 
input down to degree-0 unambiguous data is able to follow the historically attested 
trajectory.   Then I ask whether a model that uses additional data (ambiguous or 
embedded or both) during learning could also produce the observed historical patterns 
in the simulated population.  This provides us with the evidence we need to determine 
if children should use these filters during language learning. 

4.3 Old English  

4.3.1 OV and VO word order in Old English 
 

Between 1000 A.D. and 1150 A.D., the distribution in the Old English 
population consisted of mostly OV order utterances (11a) while the distribution in the 
population at 1200 A.D. consisted of mostly VO order utterances (11b) (YCOE 
Corpus, Taylor et al., 2003; PPCME2 Corpus, Kroch & Taylor, 2000).  

 
(11a)  heSubj    GodeObj    þancodeTensedVerb 
 he     God      thanked 
 ‘He thanked God’ 
 (Beowulf, 625, ~1100 A.D.) 
 
(11b) & [mid his stefne]PP  heSubj  awecDTensedVerb  deadeObj  [to life]PP  

     &   with his stem he awakened  the-dead to   life 
“And with his stem, he awakened the dead to life.” 
(James the Greater, 30.31, ~1150 A.D.)  
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4.3.2 Unambiguous Data 
 
4.3.2.1 Unambiguous OV 

 
Unambiguous data for OV word order correlate with observable data of the 

following types in Old English: (12a) the tensed Verb appears at the end of the clause 
or (12b) the non-tensed Verb remains in the post-Object position, while the tensed 
auxiliary moves.  

 
(12a) heSubj hyneObj  gebiddeTensedVerb 
       He  him  may-pray 
       ‘He may pray (to) him’ 
       (Ælfric's Letter to Wulfsige, 87.107, ~1075 A.D.) 
 
(12b) weSubj  sculenTensedVerb [ure yfele þeawes]Obj  forlQtenNon-TensedVerb 

       we  should  our evil practices abandon 
     ‘We should abandon our evil practices.’ 
      (Alcuin's De Virtutibus et Vitiis, 70.52, ~1150 A.D.) 
 
4.3.2.2 Unambiguous VO 
 
 A reasonable assumption might be that unambiguous VO data should be the 
counterpart of unambiguous OV data in form.  Specifically, one might assume that 
since Subject Object TensedVerb is unambiguous OV data, Subject TensedVerb 
Object should then be unambiguous VO data.  However, recall the V2 movement 
rule, which moves the tensed Verb to the second phrasal position of the clause.  As 
we will see below, when this movement rule is taken into account, sentences of the 
form Subject TensedVerb Object cannot be perceived as unambiguous VO data.  

4.3.2.2.1 V2 Interference 
 

Assuming V2, a simple Subject TensedVerb Object utterance could be parsed 
with either the OV (with V2 movement) or  the VO order parameter value (with or 
without V2 movement).  Example (13) shows this: the tensed Verb clQnsaD could 
begin in sentence final position (OV order) and move to the second position (13a), or 
it could be generated in this position all along (VO order) (13b). 

 
(13a)    heoSubj   clQnsaDTensedVerb tSubj  [þa sawle þQs rQdendan]Obj tTensedVerb 
 they       purified             the souls [the advising]-Gen  
 
(13b)   heoSubj    clQnsaDTensedVerb  [þa sawle þQs rQdendan]Obj 
 they     purified            the souls [the-advising]-Gen 
 ‘They purified the souls of the advising ones.’ 
           (Alcuin’s De Virtutibus et Vitiis, 83.59, ~1150 A.D.) 
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 Because of V2 movement, unambiguous VO data in matrix clauses appears as 
the examples in (14): there is either (a) more than one phrase to the left of the Verb 
([mid his stefne]PP heSubj), ruling out a V2 analysis, or (b) some sub-piece of the 
verbal complex (upVerb-Marker) immediately preceding the Object.  
 
(14a)  & [mid his stefne]PP  heSubj  awecDTensedVerb  deadeObj  [to life]PP  

     &   with his stem he awakened  the-dead to   life 
 ‘And with his stem, he awakened the dead to life.’ 
 (James the Greater, 30.31, ~1150 A.D.) 
 
(14b) þaAdv     ahofTensedVerb    PaulusSubj   upVerb-Marker [his   heafod]Obj 
       then     lifted           Paul        up     his    head 
 ‘Then Paul lifted his head up.’ 
 (Blickling Homilies, 187.35, between 900 and 1000 A.D.) 
 

4.3.2.2.2 Verb-Markers 
 
 I will term sub-pieces of the verbal complex “Verb-Markers”.  A Verb-Marker 
is a word that is semantically associated with a Verb, such as a particle (‘up’, ‘out’), a 
non-tensed complement to tensed Verbs, a closed-class adverbial (‘never’), or a 
negative (‘not’) (Lightfoot, 1991).  Under the assumption that the learner believes all 
Verb-like words should be adjacent to each other (Lightfoot, 1991), a Verb-Marker 
can be used to determine the original position of the Verb.  For (14b), the Verb-
Marker up indicates the position where the tensed Verb originated before V2 
movement; since the Verb-Marker precedes the Object, the original position of the 
Verb is assumed to be in front of the Object as well.  So, this utterance type is 
perceived as unambiguous data for VO order. Examples of utterances with Verb-
Markers are in (15) below (Verb-Markers are in bold): the particle up is a Verb-
Marker in (15a) and the non-tensed Verb gewyrecean is a Verb-Marker in (15b). 
 
 (15a) þaAdv     ahofTensedVerb    PaulusSubj   upParticle [his   heafod]Obj  
  then      lifted               Paul       up     his    head 
 ‘Then Paul lifted his head up.’ 
 (Blickling Homilies, 187.35, between 900 and 1000 A.D.) 
 
(15b)  SwaAdv    scealTensedVerb   [geong guma]Subj    godeObj            
 Thus     shall       young men  good-things 
 gewyreceanNon-TensedVerb  
 perform 
 ‘Thus shall young men perform good things.’ 
 (Beowulf, 20, ~1100 A.D.) 
 

Interestingly, Old English Verb-Markers (unlike their modern Dutch and 
German counterparts) were unreliable as a marker of the Verb’s original position.   In 
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many cases (such as the negative ne in (15c) below), the Verb-Marker would not 
remain adjacent to the Object.  If there were no other Verb-Markers adjacent to the 
Object, then no indication of the Verb’s initial position remained and the utterance 
could be interpreted as ambiguous between the OV or VO order hypotheses. In (15c), 
the adverbial næfre remains adjacent to the Object, and so this data point would be 
perceived as unambiguous for VO order. 
 
(15c) neNegative  geseahTensedVerb     icSubj  næfreAdverbial [›a burh]Obj  
 NEG   saw       I    never  the  city 
 ‘Never did I see the city.’ 
 (Ælfric, Homilies. I.572.3, between 900 and 1000 A.D.) 

4.3.3 Causes of Language Change 
 
4.3.3.1 The Effect of the Unambiguous Data Distribution 
 
 As we have just seen, matrix clause cues (such as the location of a Verb-
Marker with respect to the Object) can be unreliable.  This causes data that potentially 
could have been perceived as unambiguous to be perceived as ambiguous.  Thus, a 
learner using an unambiguous data filter would potentially encounter a distribution of 
OV and VO data points that is different from the distribution the adult speakers of the 
population used to generate the entire data set.  In short, the learner’s intake can have 
a different distribution than that of the available input.  This difference in the intake 
can cause successive generations of Old English children to have different OV/VO 
probability distributions than their predecessors.  The Old English population would 
then shift to a strongly VO-biased distribution because of what the learners’ intake 
consists of. I will formally model this intuition by using actual quantitative data from 
the relevant historical periods coupled with an explicit probabilistic model. 
 
4.3.3.2 A Concern About Other Causes of Language Change 
 
 Before we examine the details of the model, I should address a concern about 
the cause of this particular language change in Old English.  I have assumed, based 
on Lightfoot’s (1991) claim, that language learning (an internal factor) is the 
instigator of the shift from a strongly OV-biased distribution to a strongly VO-biased 
distribution. However, one might wonder if external factors could have played a more 
significant role in this change.   
 I consider two potential external factors below: Scandinavian influence and 
Norman influence.  We will see that neither factor by itself could have caused the 
change in Old English from a strongly OV-biased distribution to a strongly VO-
biased distribution.  However, it is still possible that the correct combination and 
influence of external factors could have produced the recorded historical change, even 
in the absence of the imperfect learning approach advocated by Lightfoot (1991) and 
adopted here.  The contribution of the present work would then be to demonstrate 
how it is not necessary to have external factors in order to cause abrupt change at the 
population-level in such a limited timeframe.  
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4.3.3.2.1 Scandinavian Influence 
 
 Scandinavian influence before 1000 A.D. is claimed to have caused Old 
English Verb-Markers to become unreliable (Kroch & Taylor, 1997).  Old Norse, the 
language spoken by the Scandinavians, used VO order and therefore introduced 
variability into the OV ordered Old English.  Is it possible that continued 
Scandinavian influence alone caused the sharp change in the OV/VO distribution of 
Old English between 1150 A.D. and 1200 A.D.?  To accomplish this, a continuous 
stream of Scandinavian speakers would be the force that caused the overall 
composition of the Old English population to drift towards a VO-biased distribution 
by 1150 A.D.  These Scandinavians would learn Old English as a second language, 
and therefore likely learn it imperfectly, perhaps introducing a continuous VO bias 
into the data set available to learners in the population. 
 Old English learners, not filtering the input, would simply converge on 
exactly the distribution they encountered in the input from the mixture of native Old 
English and Scandinavian speakers using Old English as a second-language.  This 
scenario, however, would require an exponential increase of incoming Scandinavians 
in order to get the gradual population-level shift before 1150 A.D. and the sharp 
population-level shift after 1150 A.D.  This seems to be a rather unlikely event. 
 Still, there is another variant on this external factor.  Suppose there was some 
prestige associated with the Scandinavians such that Old English speakers altered 
their OV/VO usage to accommodate (see Giles & Powesland (1975) for 
accommodation theory) and sound more like the Scandinavian portion of the 
population.  So, Scandinavians would be learning Old English as a second language 
from native Old English speakers who would be more VO-biased (as a conscious 
social effort).  The overall composition of the population would then be increasingly 
more VO-biased as time went on.  Yet, in order to achieve the historical S-shaped 
trajectory of change, again there needs to be an exponential increase somewhere – 
either in the number of Scandinavians joining the Old English population or in the 
associated prestige with the Scandinavian VO-bias.  While less unlikely than the 
previous scenario, relying on an exponential increase of Scandinavian prestige 
doesn’t seem ideal as the sole factor driving change, either. 
 Nonetheless, we should not discount Scandinavian influence completely.  
Scandinavian influence combined with input filtering could well give the desired 
change.  Later in this chapter, we will see that adult utterances generated with OV 
order are more prone than their VO counterparts to becoming ambiguous in the 
observable data.  Scandinavian influence, being VO-biased, could have been 
responsible for this.  Thus, learners using an unambiguous data filter would have 
become more VO-biased over time since the VO data generated by the Old English 
speakers was less likely to become ambiguous.  Still, it is crucial to note that this 
scenario is the result of the combination of Scandinavian influence and language 
change caused by language learning.  Scandinavian influence alone seems unlikely to 
be the cause of the language change in Old English. 
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4.3.3.2.2 Norman Influence 
 
 A second external source of influence is the Norman invasion in 1066 A.D.  
The Norman invaders spoke Old French, which was OV-biased in its distribution 
(Kibler 1984): embedded clauses were predominantly OV order, as well as the matrix 
clauses. So, contact with Old French speakers would have biased the Old English 
population to become more OV.  However, between 1000 and 1150 A.D., the Old 
English population was already drifting towards being more VO in its distribution.  
So, any contact with Old French speakers would have hindered the population-level 
change to a VO-biased distribution.  This influence may have been tempered (and 
overcome) by the VO-biased Scandinavian influence.   
 Another possibility is disaccommodation with the OV-biased distribution 
from the Old French speakers if there was social stigma associated with the language 
of the Norman invaders (again, see Giles & Powesland (1975) for accommodation 
theory).  Old English speakers, disliking the invaders (and perhaps liking the 
Scandinavians) would be driven to more VO-biased usage. Still, it remains clear that 
contact with the Normans alone could not have caused the shift in Old English to a 
strongly VO-biased distribution unless, as discussed for the Scandinavian influence in 
the previous section, there was an exponential increase somewhere – in this case, in 
the social stigma associated with using an OV-biased distribution. 

4.4 The Model 
 
 I now describe the model at the individual level and the population level.  
Because I have posited that language change at the population level is driven by 
language learning at the individual level, I first examine the details of individual 
learning. In the model, the learner has different hypotheses for a structure in the 
language (such as OV and VO word order) available during learning, in line with 
work by Yang (2002), Dresher (1999), Lightfoot (1999), Fodor (1998a, 1998b), 
Niyogi & Berwick (1997, 1996, 1995), and Clark & Roberts (1993).  The target state 
after learning is complete is a probabilistic distribution between competing 
hypotheses (Yang, 2002; Pintzuk, 2002; Kroch & Taylor, 1997; Bock & Kroch, 
1989).  Because of this, individual linguistic behavior, whether child (Yang, 2003) or 
adult (Bock & Kroch, 1989), is represented as a probabilistic distribution of multiple 
structural hypotheses, specifically between OV and VO word order.  
 Population-level change in the model is the result of a build-up of individual-
level “mislearning” (Yang, 2002, 2000; Briscoe, 2000, 1999; Niyogi & Berwick, 
1997, 1996, 1995; Clark & Roberts, 1993; Lightfoot, 1991).  Thus, the population-
level model relies heavily upon the individual-level implementation. 

4.4.1 The Individual-Level Model 
 
4.4.1.1 Learning in the Individual 
 
 The individual-level model is a model of language learning.  An individual 
learner in the model is instantiated with a probability pVO of accessing VO word 
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order.  The OV word order is accessed with probability 1 – pVO, as there are only two 
hypotheses under consideration. 
 In a language system where the adult speakers have pVO = 1.0 (modern 
English) or pVO = 0.0 (modern Dutch and German), all utterances are produced with 
one word order (VO for modern English, OV for modern Dutch and German).  This 
directly impacts the distribution of unambiguous data, since all unambiguous data 
will be unambiguous for a single hypothesis (either OV words order or VO word 
order).   
 In contrast, a language system can also exist where the adult pVO is greater 
than 0.0 and less than 1.0, such as the state of Old English between 1000 A.D. and 
1200 A.D.  In a system like Old English, VO order is accessed for production with 
probability pVO (which is less than 1.0) and the OV order is accessed with probability 
1-pVO (which is greater than 0.0).  This will impact the distribution of unambiguous 
data: the data will have some distribution between pVO = 0.0 (all OV order data) and 
pVO = 1.0 (all VO order data).  The learner then determines her own pVO based on the 
distribution in the intake (which, in the model, will be filtered down to the degree-0 
unambiguous data). 
 The model assumes no initial bias for either hypothesis, so the initial value for 
a learner’s word order, pVO, is 0.5.  This can be interpreted as an unbiased value, since 
it is precisely in the middle of pVO = 0.0 (all OV order) and pVO = 1.0 (all VO order).  
Note that an unbiased pvo would predict that very young children of any language 
would have an unstable word order initially. I speculate that the reason why children 
always demonstrate knowledge of the correct word order by the time they reach the 
two word stage is because they have already been exposed to enough examples of the 
appropriate word order for their language to bias them in the correct way.   
 The final pVO value after the learning period is complete will range between 
0.0 and 1.0, and can be interpreted as a probabilistic access of the OV and VO words 
orders.   A pVO of 0.3, for example, would correspond to accessing VO order 30% of 
the time during production and OV order 70% of the time. 
 Since the initial pVO for the learner is 0.5, the learner initially expects the 
distribution of OV and VO data in the intake to be unbiased.  I use the Bayesian 
framework laid out in chapter 2 to model how the learner’s initial hypothesis about 
the OV/VO distribution (pVO) shifts with each additional data point from the intake.  
In addition to the support for its psychological validity in human cognition 
(Tenenbaum & Griffiths, 2001), Bayesian learning has also been used in other models 
of language evolution and change (Briscoe, 1999). 
 Since there are only two values for the OV/VO ordering (OV and VO), I 
represent the learner’s hypothesis of the expected distribution of OV and VO 
utterances as a binomial distribution centered around some probability p. Here, 
probability p is pVO and represents the learner’s belief about the likelihood of 
encountering a VO utterance. When pVO is 0.5, the learner is most confident that it is 
equally likely that an OV or the VO utterance will be encountered.  A pVO  near 0.0 
means the learner is most confident that a VO utterance will never be encountered; a 
pVO near 1.0 means the learner is most confident that a VO utterance will always be 
encountered. 
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 The learner’s pVO is updated by calculating the maximum of the a posteriori 
(MAP) probability of the prior belief pVOprev, given the current piece of data from the 
intake. In essence, the model is starting with a prior probability and its expected 
distribution of OV and VO utterances,  and comparing this expected distribution 
against the actual distribution encountered.  The updated probability is calculated as 
follows: 
 
(16a) If  the data point is analyzed as OV,  pVO = (pVOprev*t)/(t+c) 
(16b) If the data point is analyzed as VO, pVO = (pVOprev*t+c)/(t+c) 

 
 where t = total expected number of data points in the intake during the period 
of fluctuation (2000 in this model) and c = learner’s confidence in the input (ranging 
between 0.0 and 5.0), based on pVOprev.  Note that t refers to quantity of data points in 
the intake, and not the input.  Thus, the learner will encounter considerably more than 
2000 data points in the input; the fluctuation period, however, ends when 2000 data 
points from the intake have been encountered.  
 Also note that these equations are a modification of the update equations 
derived in chapter 2.  In those equations, c = 1.  However, I have modified this value 
since those equations (with c = 1) would not allow the learner to converge to 1.0 or 
0.0, even if all unambiguous data are of one value.  For example, with t = 2000, 
encountering all OV data points causes the final pVO to be 0.194 (not 0.0); 
encountering all VO data points causes the final pVO to be 0.816 (not 1.0).  I therefore 
modified c to allow the final pVO to be closer to the endpoint values (either 0.0 or 1.0) 
for each case. 
 The value c ranges linearly between 0 and a maximum value m, depending on 
what pVOprev is27: 
 
(17a) VO data: c = pVOprev * m 
(17b) OV data: c = (1 – pVOprev) *m 
 
 The value m ranges between 3.0 and 5.0.  The m for a particular mixture of 
degree-0 and degree-1 data is determined by seeing which m value allows the 
simulated Old English population to reach an average pVO value in the population 
between 1000 and 1150 A.D that accords with the historical data available.   For 
example, the value of m for an intake that consists only of degree-0 data is 5.0. 

With the new update functions, unambiguous data for one value the entire 
time will cause the final pVO to be much closer to the endpoint.  Seeing 2000 OV data 
points leaves pVO between .007 and .048 (depending on m); seeing 2000 VO data 
points leaves pVO between .952 and .993 (depending on m).   
 The final pVO at the end of the fluctuation period (after t data points from the 
intake have been encountered) will reflect the distribution of the data points in the 
intake.  Importantly, the distribution is reflected without the learner explicitly 
memorizing each individual piece of data for later analysis.  Instead, as each data 
                                                
27 The same effect could likely be achieved by holding c between 0 and 1, and letting t vary.  
However, this loses the intuition that t (the number of data points the learner expects, i.e. the amount of 
change allowed) should be the same across the different conditions investigated. 
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point is encountered, the information is extracted from that data point and, using the 
equations in (16) and (17), integrated into the learner’s hypothesis about what the 
distribution of OV and VO data points is expected to be.   
 The individual learning algorithm used in the model is described in (18): 
 
(18) Individual learning algorithm 
 (a) Set initial pVO to 0.5. 

(b) Get a data point from an “average” member of the population. The input 
for the learner is determined by sampling from a normal distribution around 
the average pVO of the population.   
(c) If the data point is degree-0 and unambiguous, use this data point as intake 
and then alter pVO accordingly. 

 (d) Repeat (b-c) until the fluctuation period is over, as determined by t. 
 
 For each data point encountered from the input, the learner determines if the 
data point belongs in the intake.  If so, pVO is updated using the equations in (16-17).  
This process of encountering input and integrating the information from data in the 
intake continues until the fluctuation period is over. At that point, the learner becomes 
one of the population members that contribute to the average pVO value that will 
influence future learners.  The higher the average pVO value is in the population, the 
more likely learners are to encounter unambiguous VO data. 
 
4.4.1.2 Old English Intake Data 
 
 As we have seen, the distribution in the learner’s intake controls the learner’s 
shift away from the unbiased probability of pVO = 0.5. The only way to shift pVO away 
from 0.5 is to have more data points of one word order than of the other in the intake.  
I will refer to this quantity as the bias one word order has over the other. 28 So, if the 
intake distribution is OV-biased, there are more OV data points in the learner’s 
intake.  If the intake distribution is VO-biased, there are more VO data points in the 
learner’s intake.  Note that if the intake is a subset of the input (due to filtering), the 
bias with respect to the available input is smaller than the bias with respect to the 
learner’s intake.  Table 4.1 displays the OV bias with respect to the input in the 
degree-0 (D0) and degree-1 (D1) clauses in Old English at various points in time. 
 
 
 
 
 
                                                
28 This differs from the advantage (Yang, 2000) one hypothesis has over another.  Advantage there is 
defined as inherent grammar incompatibility – one hypothesis will have an advantage when the 
opposing hypothesis is incompatible with data types.  Thus, it does not matter for advantage how 
frequent a data type is, e.g. how many data tokens appear in the intake.  It simply matters that there are 
data types one hypothesis is incompatible with. Advantage is thus different from the bias in the intake 
distribution, which very much depends on the quantity of data tokens that are unambiguous for one 
hypothesis vs. the other.  More specifically, a hypothesis with a lower advantage can still have a 
stronger bias in the data intake distribution, and vice versa. 
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D0 Total 
# Clauses 

D0 Unamb 
OV 

D0 Unamb 
VO 

D0 OV Bias 
w.r.t. the 

inputa 

D0 OV Bias 
w.r.t. the 
intakeb 

1000 A.D. 9805 1389 936 4.6% 19.5%  
1000 – 1150 A.D 6214 624 590 0.5% 2.8%      
1200 A.D. 1282 180 190 -0.8% c -2.7% c 
 

 D1 Total 
# Clauses 

D1 Unamb 
OV 

D1 Unamb 
VO 

D1 OV Bias 
w.r.t. the 

inputa 

D1 OV Bias 
w.r.t. the 
intakeb 

1000 A.D. 7559 3844 1583 29.9% 41.7% 
1000 – 1150 A.D 3636 1759 975 21.6% 28.7% 
1200 A.D. 2236 551 1460 -40.7% c -45.2% c 

Table 4.1. OV order bias in the input for degree-0 (D0) and degree-1 (D1) clauses.  
a The bias for the OV order with respect to the input is derived by subtracting the 
quantity of VO data from the quantity of OV data, and then dividing by the total 
number of clauses in the input.  For instance, the D0 OV bias at 1000 A.D. is 
calculated as (1389-936)/9805 = 4.6%. b The bias for the OV order with respect to the 
intake is derived by subtracting the quantity of unambiguous VO data from the 
quantity of unambiguous OV data, and then dividing by the total number of clauses in 
the intake.  For instance, the D0 OV bias at 1000 A.D. is calculated as (1389-
936)/(1389+936) = 19.5%. c Note that a negative OV bias means that the distribution 
is VO-biased. 
 
 The corpus data show a 4.6% bias with respect to the input for the OV order 
in the degreee-0 clauses at 1000 A.D.  We can interpret this as less than 5 out of every 
100 sentences of the available input are biasing the learner away from a pVO of 0.5 
(and towards an OV value of 0.0).  With respect to the intake, the OV order bias is 
much higher: just about 1 out of every 5 data points in the intake biases the learner 
towards 0.0 (OV order).   
 Interestingly, the OV bias in the degree-1 clauses is much higher (29.9% with 
respect to the input, and 41.7% with respect to the intake).  However, a degree-0 filter 
would cause the learner to ignore these data that would shift pVO towards 0.0 
significantly more often.  Nonetheless, the difference of the bias in the different 
distributions highlights the effect that data intake filtering can have: the bias in the 
distribution alters quite a lot depending on which data set the learner is using. 

4.4.2 Population-Level Model for Old English 
 
4.4.2.1 Population-Level Algorithm and Population Growth 

 
The population algorithm (19) centers on the individual acquisition algorithm 

in (18). 
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(19) Population-level algorithm 
(a) Set the age range of the population from 0 to 60 years old and create 
18,000 population members. 
(b) Initialize the members of the population to the average pVO at 1000 A.D. 
(c) Set the time to 1000 A.D. 
(d) Move forward 2 years. 
(e) Members age 59-60 die off.  The rest of the population ages 2 years. 
(f) New members are born.  These new members use the individual 
acquisition algorithm (18) to set their pVO. 
(g) Repeat steps (d-f) until the year 1200 A.D. 
 
The population members range in age from newborn to 60 years old. 29  The 

initial size of the population is 18,000, based on estimates from Koenigsberger & 
Briggs (1987). At 1000 A.D., all the members of the population have their pVO set to 
the same initial pVO, which is derived from the historical corpus data. Every two 
years, new members are born to replace the members that died as well as to increase 
the overall size of the population so it matches the growth rate extrapolated from 
Koenigsberger & Briggs (1987).  Populations are estimated to grow at an exponential 
rate characterized by the equation in (20). 

 
(20) Population growth equation 

population size = previous population size * ert 

 

For the Old English population in our model, r = 0.00400953 and t = time in 
years.  For example, at 1002 A.D., the estimated population size is 18000*e0.00400953*2 
= 18145.  Thus, once the oldest members (age 59-60) die off, enough new members 
are born to make the total population size at 1002 A.D. be 18145.  These new 
members encounter input from the rest of the population and follow the process of 
individual acquisition laid out previously in order to determine their final pVO. This 
process of death, birth, and learning continues until the year 1200 A.D.  
 
4.4.2.2 Population Values from Historical Data 

 
I use the historical corpus data to initialize the average pVO in the population 

at 1000 A.D., calibrate the model between 1000 and 1150 A.D. (recall that the 
confidence value c in update equation (16) needs calibration), and determine how 
strongly VO-biased the distribution has to be in the population by 1200 A.D.  But it is 
not straightforward to determine the average pVO at a given period of time.   
                                                
29 The population members begin uniformly distributed between 0 and 60 years old, though this could 
easily be modified to a more skewed distribution where there are more younger members of the 
population than older.  In addition, the age maximum (60 years old) was arbitrarily chosen.  Having a 
lower maximum (say, 40 years old) would possibly speed the rate of change through the population.  
However, the overall results would likely be the same as found here since the population model must 
be calibrated so that the population remains sufficiently OV-biased before 1150 A.D.  That is, a 
sufficient OV-bias in the population before 1150 A.D. is a precondition.  The behavior we are 
interested in is how a population that is sufficiently OV-biased before 1150 A.D. changes between 
1150 A.D. and 1200 A.D.  Specifically, can it become VO-biased enough? 
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Both the degree-0 and degree-1 unambiguous data distributions are likely to 
be distorted from the underlying unambiguous data distribution produced by pVO 
because the degree-0 and degree-1 clauses have ambiguous data. The underlying 
distribution in a speaker’s mind, however, has no ambiguous data – every clause is 
generated with OV or VO order.  As we can see in table 4.2, the degree-0 clauses 
have more ambiguous data than the degree-1 clauses.  Moreover, recall from table 1 
that the degree-1 clauses also have a magnified bias, compared to the degree-0 
clauses.  Taken together, I use these two observations to make the assumption that the 
degree-0 distribution is more distorted than the degree-1 distribution.   
 

 D0 Total # Clauses D0 # Unamb Clauses  D0 % Ambiga 

1000 A.D. 9805 2325 (9805-2325)/9805 = 76% 
1000-1150 A.D. 6214 1214 (6214-1214)/6214 = 80% 

1200 A.D. 1282 370 (1282-370)/1282 = 71% 
 

 D1 Total # Clauses D1 # Unamb Clauses D1 % Ambiga 

1000 A.D. 7559 5427 (7759-5427)/7759 = 28% 
1000-1150 A.D. 3636 2734 (3636-2734)/3636 = 25% 

1200 A.D. 2236 2011 (2236-2011)/2236 = 10% 
Table 4.2. Percentage of ambiguous clauses in the historical corpora. a The % Ambig 
is calculated by dividing the number of ambiguous clauses (Total - Unamb) by the 
total number of clauses. 

 
I then use the difference in distortion between the degree-0 and degree-1 

unambiguous data distributions to estimate the difference in distortion between the 
degree-1 distribution and the underlying unambiguous data distribution in a speaker’s 
mind.  In this way, I estimate the underlying unambiguous data distribution (produced 
by pVO) for an average Old English speaker at certain points in time.   

I will first step through the formalization of the procedure used to derive the 
underlying pVO at a given point in time.  Then, I will step through an explicit example 
from the Old English historical data. 

4.4.2.2.1 Procedure to Derive pVO from Historical Data 
 
 Let there be two hypotheses under consideration, h1 and h2.  For Old English, 
these are OV order (h1) and VO order (h2).  From historical corpora, we can gather 
unambiguous data points for h1 and h2 in both the degree-0 and degree-1 clauses.  
From these, we can calculate the number of ambiguous data points in the degree-0 
and degree-1 clauses.  The quantities gathered from historical corpora are u1d0 
(unambiguous data points for h1 in degree-0 clauses), u2d0 (unambiguous data 
points for h2 in degree-0 clauses), ad0 (ambiguous data points in degree-0 clauses), 
u1d1 (unambiguous data points for h1 in degree-1 clauses), u2d1 (unambiguous data 
points for h2 in degree-1 clauses), and ad1 (ambiguous data points in degree-1 
clauses) in table 4.3 below.   The quantities that must be derived are u1 and u2, which 
represent the quantities of unambiguous data for each hypothesis in the underlying 
distribution that the average population speaker produced.  In the underlying 
distribution, there are no ambiguous data because the speaker either accesses h1 or h2 
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to produce the data point.  Once u1 and u2 are known, pVO can be derived (pVO = 
u2/(u1 + u2)). 
 
 Unamb OV (h1) Unamb VO (h2) Amb 
Degree-0 u1d0 u2d0 ad0 

Degree-1 u1d1 u2d1 ad1 

Underlying Distribution u1 u2 0 

Table 4.3. Formalization of quantities available from historical corpora and quantities 
to derive.  Quantities in bold can be gathered from historical corpora.  Quantities in 
italics must be derived and are used to calculate the average  pVO in the population. 

 
 Let γ represent the probability that the speaker accesses h1 during production. 
Since there are only two options under consideration, 1 - γ represents the probability 
the speaker accesses h2 during production. 
 Let the total quantity of degree-0 data be d0.  So, d0 = u1d0 + u2d0 + ad0.   
 Let the total quantity of degree-1 data be d1.  So, d1 = u1d1 + u2d1 + ad1. 
 We first must normalize the degree-1 data quantity to the degree-0 data 
quantity.  After normalization, u1d1’ + u2d1’ + ad1’ = d0 = u1d0 + u2d0 + ad0. 
 
(21) Equation quantities, original and normalized 
 (a) d0 = u1d0 + u2d0 + ad0 
 (b) d1 = u1d1 + u2d1 + ad1 
 (c) d0 = u1d1’ + u2d1’ + ad1’ 
 
 Unamb OV (h1) Unamb VO (h2) Amb 
Degree-0 u1d0 u2d0 ad0 

Degree-1 u1d1’  

= u1d1*(d0/d1) 

u2d1’  

= u2d1*(d0/d1) 

ad1’ 

 = ad1*(d0/d1) 

Underlying 
Distribution 

u1 u2 0 

Table 4.4. Data quantities after normalization. 
 
 The value u1 represents the quantity of unambiguous h1 (OV) data generated 
by the speaker.  The value u2 represents the quantity of unambiguous h2 (VO) data 
generated by the speaker.  Since there are no ambiguous data, let these two quantities 
also sum to d0 (u1 + u2 = d0).  This represents the intuition that u1 and u2 have been 
“normalized” so that they can be compared against their counterpart values in the 
degree-1 and degree-0 distributions.  Note that since u1 and u2 have not been 
calculated yet, we can simply make them sum to the appropriate normalized value, 
d0. 
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(22) Underlying distribution “normalization” 
 u1 + u2 = d0 
  
 Recall that the probability that a speaker accesses h1 when producing a data 
point is γ. Since the total quantity of unambiguous data points in the underlying 
distribution has been normalized to d0, this probability can now be set equal to u1/d0.  
Thus, we can rewrite u1 as γ*d0. 
 
(23) Rewriting underlying distribution quantity u1 
 γ = u1/d0 
 u1 = γ*d0 
 
 I now make an assumption about the relation of underlying data distribution to 
the degree-1 data distribution.  Specifically, I assume that the degree-1 distribution 
originally had the same number of  h1 data points as the underlying distribution, but 
that some of these data points became ambiguous (due to various grammatical 
operations).  Thus, we can relate the underlying distribution h1 data point quantity u1 
to the degree-1 data quantities u1d1’ (normalized quantity of unambiguous data 
points for h1 in the degree-1 distribution) and ad1’ (normalized quantity of 
ambiguous data points in the degree-1 distribution). 
 
(24) Relation between u1 and u1d1’ and ad1’ 
 u1 = u1d1’ + the portion of ad1’ that were originally h1 data points 
 Let a1d1 = portion of ad1’ that were originally h1 data points  
 u1 = u1d1’ + a1d1 
  
 Recall from (23) that u1 can be rewritten in terms of γ and d0.  We can thus 
write an equation for a1d1, the portion of ad1’ that were originally h1 data points. 
 
(25) Writing an equation for a1d1 
 u1 = γ*d0   (from (23)) 
 γ*d0 = u1d1’ + a1d1   (from (24)) 
 a1d1 = γ*d0 – u1d1’ 
 
 Since there are only two hypotheses, the portion of ad1’ that were not 
originally h1 data points must have been h2 data points.  Given this, we can write an 
equation for a2d1, the portion of ad1’ that were originally h2 data points. 
 
(26) Writing an equation for a2d1 
 Let a2d1 = portion of ad1’ that were originally h2 data points 
 ad1’ = a1d1 + a2d1 
 a2d1 = ad1’ – a1d1 
 
 Moreover, using the same assumption as before about the relation between the 
underlying distribution and the degree-1 distribution, we can rewrite u2, the quantity 
of unambiguous data points for h2 in the underlying distribution. 
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(27) Rewriting u2 
 u2 = u2d1’ + the portion of ad1’ that were originally h2 data points 
 a2d1 = portion of ad1’ that were originally h2 data points  
 u2 = u2d1’ + a2d1 
 u2 = u2d1’ + ad1’ – a1d1  (from (26)) 
 
 Unamb OV (h1) Unamb VO (h2) Amb 
Degree-0 u1d0 u2d0 ad0 

Degree-1 u1d1’  

= u1d1*(d0/d1) 

u2d1’  

= u2d1*(d0/d1) 

ad1’ = 

ad1*(d0/d1) 

Underlying 
Distribution 

u1d1’ + a1d1 u2d1’ + (ad1’ – a1d1) 0 

Table 4.5. Derived quantities rewritten. 
 
 Now, we look at the relation between the degree-1 and the degree-0 
distribution.  I make an assumption similar to the one we did about the relation 
between the underlying distribution and the degree-1 distribution: specifically, I 
assume that the degree-0 distribution originally had the same number of  h1 or h2 
data points as the degree-1 distribution, but that some of these data points became 
ambiguous (due to various grammatical operations).  I can describe these quantities in 
terms of values we have already observed or calculated. 
 I assume that the quantity of  h1 data points in the degree-0 distribution was 
originally the same as the quantity of h1 data points in the normalized degree-0 
distribution, u1d1’.  However, some became ambiguous and only u1d0 remain.  So, 
the quantity of data points that became ambiguous going from the degree-1 
distribution to the degree-0 distribution can be described as u1d1’ – u1d0.  The same 
reasoning can be used for the h2 data points. 
 
(28) Quantities of  data points that became ambiguous going from the degree-1 
distribution to the degree-0 distribution 
 
Let the quantity of h1 data points that became ambiguous going from the degree-1 to 
the degree-0 distribution = a1d1to0. 

a1d1to0 = u1d1’ – u1d0 
 
Let the quantity of h2 data points that became ambiguous going from the degree-1 to 
the degree-0 distribution = a2d1to0 

a2d1to0 = u2d1’ – u2d0 
 
 We can now define an ambiguity loss ratio Ld1to0, which represents the ratio 
of h1 data points that became ambiguous compared to the h2 data points that became 
unambiguous going from the degree-1 to the degree-0 distribution. 
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(29) Ambiguity Loss Ratio Ld1to0  
(h1 data point loss over h2 data point loss going from degree-1 to degree-0 
distribution) 

 Ld1to0 = 

! 

u1d1' -  u1d0

u2d1' -  u2d0
 

 
 We can then describe the quantities of h1 and h2 data points that become 
ambiguous going from the underlying distribution to the degree-1 distribution.  Let 
a1utod1 be the quantity of h1 data points that became ambiguous going from the 
underlying distribution to the degree-1 distribution.  Let a2utod1 be the quantity of h2 
data points that become ambiguous going from the underlying distribution to the 
degree-1 distribution. 

 
(30) Describing the quantities of h1 and h2 data points that become ambiguous going 
from the underlying to the degree-1 distribution 

(a) a1utod1 (h1 data points that become ambiguous) 
 a1utod1 = u1 – u1d1’ 
 a1utod1 = (u1d1’ + a1d1) – u1d1’   (from (24)) 
 a1utod1 = a1d1 
(b) a2utod1 (h2 data points that become ambiguous) 
 a2utod1 = u2 – u2d1’ 
 a2utod1 = (u2d1’ + (ad1’ – a1d1)) – u2d1’   (from (27)) 
 a2utod1 = ad1’ – a1d1 

 
 We can now define an ambiguity loss ratio Lutod1, which represents the ratio 
of h1 to h2 data points that become “lost” to ambiguity going from the underlying 
distribution to the degree-1 distribution.  I make an assumption that Ld1to0 is the 
same as Lutod1, that is that the rate at which h1 data points become ambiguous 
compared to h2 data points does not change depending on which distributions are 
being compared.  For example, if h1 data points are twice as likely as h2 data points 
to become ambiguous going from the degree-1 to the degree-0 distribution , then I 
assume h1 data points are twice as likely as h2 data points to become ambiguous 
going from the underlying distribution to the degree-1 distribution. 
 
(31)  Ambiguity Loss Ratio Assumption 

 Lutod1 = Ld1tod0 = 

! 

u1d1' -  u1d0

u2d1' -  u2d0
 

 
 Now, we have all the pieces in place to write an equation that relates the 
ambiguity loss of h1 data points to the ambiguity loss of h2 data points going from 
the underlying distribution to the degree-1 distribution.  The intuition is laid out in 
(32). 
 
 
 
 



 

 92 
 

(32) Intuition to relate ambiguity loss from underlying to degree-1 distribution 
 
 % of h1 data points “lost”  = Lutod1* % of h2 data points “lost” 
 

 

! 

#  of h1 data points lost

total #  of h1 data points
= Lutod1*

#  of h2 data points lost

total #  of h2 data points
 

 
 This intuition can be instantiated as in (33).  We can then use the equations we 
have already derived to solve for γ, the probability of accessing h1 in the underlying 
distribution.  
 
(33) Solving for γ 
 

! 

(from (32)) 
a1utod1

u1
= Lutod1*

a2utod1

u2
 

 

! 

(from (31))  
a1utod1

u1
= Ld1tod0 *

a2utod1

u2
   

 

! 

(from (25))  
a1utod1

" * d0
= Ld1tod0 *

a2utod1

u2
   

 

! 

(from (27))  
a1utod1

" * d0
= Ld1tod0 *

a2utod1

u2d1' +  ad1' -  a1d1
   

 

! 

(from (30))  
a1d1

" * d0
= Ld1tod0 *

ad1' -  a1d1

u2d1' +  ad1' -  a1d1
   

 
 

! 

(from (25))  
" * d0 -  u1d1' 

" * d0
= Ld1tod0 *

ad1' -  (" * d0 -  u1d1' )

u2d1' +  ad1' -  (" * d0 -  u1d1' )
   

 

! 

" 2
(Ld1tod0 +1)(d0

2
) 

     +  "(d0)(d0 +  u1d1' -  Ld1tod0 * (ad1' +  u1d1')) 

     +  (-1)(d0 * u1d1') =  0  

  

 
 Now, we can use the quadratic formula to solve for  γ. 
 

! 

a =  (Ld1tod0 +1)(d0
2
)

b =  (d0)(d0 +  u1d1' -  Ld1tod0 * (ad1' +  u1d1')) 

c =  (-1)(d0 * u1d1') 

 

 



 

 93 
 

 

! 

" =
-(d0)(d0 +  u1d1' -  Ld1tod0 * (ad1' +  u1d1'))

2(Ld1tod0 +1)(d0
2
)

+ /#
((d0)(d0 +  u1d1' -  Ld1tod0 * (ad1' +  u1d1')))

2 # 4(Ld1tod0 +1)(d0
2
)((-1)(d0 * u1d1'))

2(Ld1tod0 +1)(d0
2
)

 

 
 This formula can be easily resolved once we insert the observable quantities 
from the historical corpus, as we will see in the next section.  Once we have solved 
for γ, we have the probability with which h1 is accessed in the underlying 
distribution.  We can calculate the probability with which h2 is accessed in the 
underlying distribution by using 1 - γ.  

4.4.2.2.2 A Concrete Example of Deriving pVO from Historical Data 
 
 For our Old English corpus, let h1 be the OV word order hypothesis and h2 be 
the VO word order hypothesis.  I will step through the derivation of the underlying 
pVO value at 1000 A.D.  First, we observe the various quantities available from the 
historical corpus at 1000 A.D. 
 
 Unamb OV (h1) Unamb VO (h2) Amb 
Degree-0 1389 936 7480 

Degree-1 3844 1583 2132 

Underlying Distribution u1 u2 0 

Table 4.6. Quantities available from historical corpora and quantities to derive. 
Quantities in bold are gathered from historical corpora.  Quantities in italics must be 
derived and are used to calculate the average  pVO in the population. 
 
 Then, we normalize the degree-1 quantities to the degree-0 quantities.  The 
total quantity of degree-0 data d0 is 1389 + 936 + 7480 = 9805.  The total quantity of 
degree-1 data d1 is 3844 + 1583 + 2132 = 7559.  To normalize the degree-1 
quantities, we therefore multiply each quantity by (d0/d1) = (9805/7559). 
 
 Unamb OV (h1) Unamb VO (h2) Amb 
Degree-0 1389 936 7480 

Degree-1 4986 2053 2766 

Underlying 
Distribution 

u1 u2 0 

Table 4.7. Data quantities after normalization. 
 
 We then calculate the ambiguity loss ratio between the degree-1 and degree-0 
distribution, Ld1tod0. 
 



 

 94 
 

 (34) Ld1tod0 = 

! 

u1d1' -  u1d0

u2d1' -  u2d0
=  

4986 -  1389

2053 -  936
"  3.22  

 
 So, we see that the OV data points are over three times as likely to become 
ambiguous as the VO data points at 1000 A.D.   I assume that this loss ratio is the 
same going from the underlying distribution to the degree-1 distribution (Lutod1), 
that is that OV data points are three times as likely as VO data points to become 
ambiguous going from the underlying to the degree-1 distribution.   
 We now have all the quantities we need to calculate γ (from (33)).  
 

! 

" =
-(9805)(9805 +  4986 -  3.22 * (2766 +  4986))

2(3.22 +1)(9805
2
)

+ /#
((9805)(9805 +  4986 -  3.22 * (2766 +  4986)))

2 # 4(3.22 +1)(9805
2
)((-1)(d0 * 4986'))

2(3.22 +1)(9805
2
)

 

 
 Solving for γ, we obtain 0.766 and -.299.  Since we know γ is a probability 
and must be between 0.0 and 1.0, the correct solution for γ is 0.766.  So, given these 
historical data distributions, I estimate that the OV word order option was accessed 
with probability 0.766 at 1000 A.D.  The VO word order option was thus accessed 
with probability 1-0.766 = 0.234.  Since we are tracking the probability with which 
the VO word order option is accessed, pVO is 0.234 at 1000 A.D.   The average pVO 
values in the population at the other two periods of time we consider (1000-1150 
A.D. and 1200 A.D.) can be calculated in the same fashion by using the quantities in 
table 4.1.  Table 4.8 below displays the three pVO values I will be using in my 
simulations. 
 

Degree-0 Clauses Degree-1 Clauses Underlying  
Total OV 

Unamb 
VO 

Unamb 
Total OV 

Unamb 
VO 

Unamb 
pVO 

1000 A.D. 9805 1389 936 7559 3844 1583 .234 
1000 – 1150 A.D. 6214 624 590 3636 1759 975 .310 

1200 A.D. 1282 180 190 2236 551 1460 .747 
Table 4.8. Data from historical corpora and calculated pVO. 
 

To model the data from the historical corpus, a population must start with an 
average pVO of 0.234 at 1000 A.D., reach an average pVO of 0.310 between 1000 and 
1150 A.D.30, and reach an average pVO of 0.747 by 1200 A.D. 

 

                                                
30 This is what is meant by calibration.  If the population is unable to reach this checkpoint, it is unfair 
to compare its pVO at 1200 A.D. against other populations’ pVO values at 1200 A.D.  The value which 
must be calibrated is the learner’s confidence value c in the current piece of data,  which determines 
how much the current pVO is updated for a given data point.   
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4.4.2.3 Answering Questions About Learning Filters 
 
 Armed with these models of individual-level learning and population-level 
change, we can now answer two questions about filters on the learner’s intake.  First, 
I address the question of descriptive sufficiency: can an Old English population whose 
learners filter their intake down to the degree-0 unambiguous data shift from a 
strongly OV biased distribution to a strongly VO biased distribution at the appropriate 
time?  Recall that the data intake set is significantly smaller than the data input set, 
and so there is a potential data sparseness problem.  Moreover, recall that exactly the 
right amount of misconvergence on the pVO value must happen for each set of new 
population members in order for the population as a whole to change at the correct 
rate.  We can ask if input filtering in the specified manner can cause this precise 
amount of misconvergence. 

Second, we address the question of necessity.  If the proposed intake filtering 
is sufficient to cause an Old English population to change at the correct rate, is it in 
fact necessary?  One might wonder if an Old English population that does not use 
either filter, or only uses one (either unambiguous data or degree-0),  would achieve 
the same results.  With the model described here, we can find out. 

4.5 Modeling Results 

4.5.1 Sufficient Filtering  
 
 We first examine the descriptive sufficiency of the data intake filters.  Does 
our simulated Old English population, whose learners filter their intake down to the 
degree-0 unambiguous data, undergo change at the historically attested rate?  Figure 
29 shows the average population pVO over time.  Based on these simulation data, an 
Old English population using these filters can indeed shift from a strongly OV-biased 
distribution to a strongly VO-biased distribution at the historically correct time.  
Specifically, these filters yield a data set with the right bias at each point in time.  
This then allows individual learners in the population to misconverge exactly the right 
amount, which then leads to population-level change at the correct rate.   
 Moreover, we can see that the concern over data sparseness can be put aside. 
Despite the significantly smaller quantity of data that comprises the intake for these 
learners, the trajectory of the population is still in line with the known historical 
trajectory. We also note that the S-shaped curve so often observed in language change 
(Bailey, 1973; Weinreich, Labov, & Herzog, 1968; Osgood & Sebeok, 1954; among 
others) emerges here from the learners filtering their input and the subsequent small 
changes spreading through an exponentially growing population.31   
 

                                                
31 As mentioned previously, this demonstrates that external factors are not necessary to cause swift 
population-level change.  Here, the population-level change results from internal factors: the language-
learning mechanism at the individual-learning level. 
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Figure 29.  The trajectory of a population learning only from degree-0 unambiguous 
data, compared against estimates from historical corpora. 

4.5.2 Necessary Filtering 
 
 We have just seen that these data intake filters are sufficient to cause the right 
rate of population-level change to occur.  But are they necessary?  Specifically, we 
wish to know if language change can occur at the historically attested rate without 
these filters.  I examine the effects of removing each filter in turn, and then the effects 
of removing both. 
 
4.5.2.1 Removing the Unambiguous Data Filter 
 
 I examine the unambiguous data filter first.  A model could reasonably choose 
to drop this filter and assume that a learner attempts to activate the update algorithm 
for data that are ambiguous.  In particular, the learner then requires some strategy to 
extract information from a given ambiguous data point.  One simple strategy is for the 
learner to have a preference for analyzing strings as base-generated.  This strategy 
would cause the learner to discard any analyses involving movement (for example, 
V2 movement) until forced to do so (Fodor, 1998b). 
 The effect of this strategy for the OV/VO word order cases we consider in Old 
English is that many more data points are used by the learner.  Primary among these 
new data points are those of the form Subject TensedVerb Object. When V2 
movement was considered in the analysis, this was ambiguous between OV order 
(OV, +V2) and VO order (VO, +/-V2), as we saw in example (13).   However, if non-
movement analyses are given preference, then the learner would take this ambiguous 
data point as evidence in favor of the VO word order hypothesis.  Table 4.9 displays 
the data intake distribution for a learner who does not use an unambiguous data filter, 
as well as the OV word order bias at different points in time. 
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D0 Total 
# Clauses 

OV Data 
Intake 

VO Data 
Intake 

D0 OV Bias 
w.r.t. the inputa 

D0 OV Bias 
w.r.t. the intakeb 

1000 A.D. 9805 2537 3889 -13.8% -21.0%c  
1000 – 1150 A.D 6214 1221 2118 -14.4%  -26.9%        
1200 A.D. 1282 389 606 -16.9%  -21.8%  
Table 4.9. OV order bias in the degree-0 (D0) clauses. a We derive the bias for the OV 
order with respect to the input by subtracting the quantity of VO data from the 
quantity of OV data, and then dividing by the total number of data points in the input.  
For instance, the D0 OV bias at 1000 A.D. is calculated as (2537-3889)/9805 = 
13.8%.  b We derive the bias for the OV order with respect to the intake by 
subtracting the quantity of VO data from the quantity of OV data, and then dividing 
by the total number of data points in the intake.  For instance, the D0 OV bias at 1000 
A.D. is calculated as (2537-3889)/(2537+3889) = 21.0%. c Note that a negative OV 
bias means that the distribution is VO-biased.  
 
 A very serious problem becomes apparent: even at the earliest time period 
when the population is supposed to be strongly OV-biased, the data intake 
distribution strongly favors the VO order.  The VO word order has a 21.0% bias in 
the data intake at 1000 A.D (and a 13.8% bias in the input).  Thus, about 21 out of 
every 100 data points encountered in the intake are biasing the learner towards the 
VO hypothesis.  A population of learners using this data intake distribution could not 
remain strongly OV-biased for very long, and certainly not until 1150 A.D.   
 Therefore, I conclude that dropping the unambiguous data filter in this way 
will not allow the model to simulate what is actually observed in the Old English 
population.  So, these results suggest that the unambiguous data filter is necessary.32   
 

   
Figure 30. The trajectory of a population learning only from degree-0 data 
(ambiguous and unambiguous), compared against estimates from historical corpora. 
 

                                                
32 Unless we can find a strategy to deal with ambiguous data which includes a different set of data as 
intake, or values the ambiguous data in a manner that gives the OV hypothesis the advantage early on.  
The strategy explored here was the simplest (and most justifiable) one I could devise, but there may be 
more complex strategies that yield the desired results.  If so, then we would need an explanation for the 
learner’s knowledge and adoption of these more complex strategies. 
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4.5.2.2 Removing the Degree-0 Filter 
 
 I turn now to the degree-0 data filter.  Suppose we drop this filter and allow 
the modeled learner to activate the update algorithm for both matrix (degree-0) and 
embedded (degree-1) clauses. Note that this learner still has the unambiguous data 
filter, and so will only activate the update procedure if the learner perceives the data 
point as unambiguous.  Recall from table 4.1 that the degree-1 data intake distribution 
has a much higher OV bias before 1150 A.D. (28.7 – 41.7%).  Given how high this 
OV bias is, it is possible that if there were enough degree-1 data in the input set, the 
learner would converge on a final pVO that is too OV-biased.  This slows the rate of 
change from OV-biased to VO-biased, and so a population made up of such learners 
would proceed much more slowly towards becoming VO-biased. I have estimated 
from the historical record that the Old English population should have an average pVO 
value of 0.747 at 1200 A.D.  This is the mark a simulated population must then reach. 
 With the model presented here, we can test the population-level effects of 
different compositions of data in the input set of the individual learner.  Specifically, 
we can see how much (strongly OV-biased) degree-1 data can be in the input (and 
thus in this learner’s intake) and still have the population as a whole be VO-biased 
enough by 1200 A.D.  We can then compare this threshold against the estimated 
amount of degree-1 data available to learners and see if the degree-0 data filter is 
necessary.  If the estimated amount of degree-1 data available to learners is less than 
the permissible threshold that allows correct population-level behavior, then the 
degree-0 filter is not necessary.  The same population-level results can be obtained 
with or without the filter.  In contrast, if the estimated amount of degree-1 data 
available to learners is greater than the permissible threshold, then we have support 
for the necessity of the degree-0 filter.  This is because only by ignoring the degree-1 
data available in the input can correct population-level behavior be obtained. 
 Figure 31 displays the average pVO in the population at 1200 A.D. for 6 Old 
English populations whose learners had their input composed of different percentages 
of degree-1 data.  For these populations, all the degree-1 data was in the intake set.  
Thus, a population with 16% degree-1 data in the input set activated the updating 
procedure for the 84% of the unambiguous data points that were degree-0 and the 
16% of the unambiguous data points that were degree-1.  Data points that were 
ambiguous were ignored. 
 The modeling results suggest that having even 4% degree-1 data available in 
the input (and thus in the learner’s intake) is enough to prevent the simulated Old 
English population from reaching an average pVO of 0.747 by 1200 A.D.  We must 
now compare this threshold to the estimated amount of degree-1 data in the input to 
Old English learners. 
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Figure 31. Average probability of using VO order at 1200 A.D. for populations with 
differing amounts of degree-1 data available during learning, as compared to the 
estimated average from historical corpora.  Confidence intervals of 95% are shown.  
 
 I assume that amount of degree-1 child-directed data is approximately the 
same no matter what the time period (and I am currently unaware of studies that 
suggest otherwise).  Given this, we can examine samples of modern English child-
directed data to see what its composition is.  The two samples I chose were a portion 
of the CHILDES database (MacWhinney, 2000) and some young children’s stories 
(some of which can be found at  http://www.magickeys.com/books/index.html). I 
used CHILDES since it is recorded speech to children and young children’s stories 
because it is (storytelling) language designed to be directed at children.  As we can 
see from Table 4.10, the CHILDES sample has approximately 8.8% degree-1 data 
points while the young children’s stories sample has approximately 23.9% degree-1 
data points.  I take the average of these two sources to get an estimate of about 16% 
degree-1 data available in children’s input.   This is very similar to the 15% degree-1 
data estimate from Sakas (2003), who examined several thousand sentences from the 
CHILDES database. 
 The modeling results (see figure 31) show that input comprised of 16% 
degree-1 data causes the simulated Old English population to be far too slow in 
shifting to a strongly VO-biased distribution.  This is much higher than the 
permissible threshold of approximately 2%.  Unless there is a way for the learner to 
allow in only an eighth of the degree-1 data available in the input, these results 
suggest that the degree-0 data intake filter is also necessary.33 
 
 
 
 
 
 

                                                
33 Another option is for the learner to weight the degree-1 data’s influence so it is only an eighth as 
strong as the degree-0’s influence.  This particular weighting would then have to be justified. 
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A subsection of CHILDES 
Total Utterances Total Data Pointsa Total D0 Total D1 % D1 
4068 2760 2516 244 8.8 
Sample D0 Utterances Sample D1 Utterances 
“What’s that?”, “I don’t know.”, “There’s a 
table.”, “Can you climb the ladder?”, “Shall 
we stack these?”, “That’s right.” 

“I think it’s time…”, “Look what happened!”, “I think 
there may be one missing.”, “Show me how you play 
with that.”, “See if you can get it.”, “That’s what he 
says.” 

 

Young Children’s Stories 
Total Utterances Total Data Pointsa Total D0 Total D1 % D1 
4031 3778 2955 927 23.9 
Sample D0 Utterances Sample D1 Utterances 
“Ollie is an eel.”, “She giggled.”, “…but he 
climbs the tree!”, “This box is too wide.”, 
“…to gather their nectar.”b, “This is the 
number six.” 

“…that even though he wishes hard,…”, “…that only 
special birds can do.”, “…that can repeat words people 
say.”, “…when the sun shines.”, “…that goes 
NEIGH…NEIGH…”, “…know what it is?” 

Table 4.10. Data gathered from speech directed to young children. a The number of 
data points is much less than the number of utterances since many of these utterances 
include “Huh?” and exclamations like “A ladder!” in the case of the spoken 
CHILDES corpus.  For the young children’s stories, there are often “sentences” like 
“Phew!” and “Red and yellow and green” which were excluded under Total Data 
Points.  b I note that clauses with infinitives such as “…to gather their nectar” are 
included under degree-0 data, based on Lightfoot’s (1991) definition of clause-union 
structures as degree-0.  If this were not the case, the percentage of degree-1 clauses 
would only be higher than what I have calculated here – thus, this is a lower bound on 
the amount of degree-1 data available in the input. 
 
4.5.2.3 Removing Both Filters  

 
We have just observed that the loss of each of the data intake filters has a different 

effect on the rate of change at the population-level.  Without the unambiguous data 
filter, the intake distribution is too heavily VO-biased.  The population becomes 
strongly VO-biased too soon, and so changes too quickly.  Without the degree-0 data 
filter, the intake distribution is too heavily OV-biased.  The population becomes 
strongly VO-biased too late, and so changes too slowly.  Given these opposite effects, 
one might wonder if dropping both filters would allow the simulated population to 
change at the correct rate.  We must again examine the data intake distributions that 
learners would be using to see the effects of removing both filters. 

 
 
 

Total # 
Clauses 

OV Data 
Intake 

VO Data 
Intake 

D0 OV Bias 
w.r.t. the inputa 

D0 OV Bias 
w.r.t. the intakeb 

Degree-0 Data 9805 2537 3889 -13.8% -21.0%c  
Degree-1 Data 7559 4650 2610 26.9%  28.1%      
Table 4.11. OV order bias at 1000 A.D. with no filters. a We derive the bias for the 
OV order with respect to the input by subtracting the quantity of VO data from the 
quantity of OV data, and then dividing by the total number of data points in the input.  
For instance, the D0 OV bias at 1000 A.D. is calculated as (2537-3889)/9805 = 
13.8%.  b We derive the bias for the OV order with respect to the intake by 
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subtracting the quantity of VO data from the quantity of OV data, and then dividing 
by the total number of data points in the intake.  For instance, the D0 OV bias at 1000 
A.D. is calculated as (2537-3889)/(2537+3889) = 21.0%. c Note that a negative OV 
bias means that the distribution is VO-biased. 
 

In order for the Old English population to remain strongly OV-biased before 
1150 A.D., the data intake distribution must at least be OV-biased at 1000 A.D.  As 
we can see from table 4.11, the degree-0 data intake is heavily VO-biased (21.0% VO 
data bias).  In order to drop the VO bias in the intake down to zero (so the OV order 
has at least a fighting chance with learners at 1000 A.D.), about 43% of the intake 
would need to consist of degree-1 data.  

My estimate of the available amount of degree-1 data in child-directed data 
suggests that less than half of this amount of degree-1 data is available, at best 
(16%).34  So, I conclude that we cannot drop both the unambiguous data filter and the 
degree-0 data filter, lest the population be driven to become strongly VO-biased too 
soon.  The claim that both data intake filters are necessary is thus strengthened. 

4.6 General Discussion 

4.6.1 Necessary Filters 
 

The results presented here serve as an existence proof that a population model 
whose individual learners employ data intake filtering can handle the specific case of 
word order change in Old English.  The two critical filters are (a) use only data 
perceived as unambiguous and (b) use only degree-0 data.  This means that the update 
procedure is only activated when data points obeying these constraints are 
encountered.  Otherwise, the update procedure is not activated and the data points are 
effectively ignored for the purposes of learning. 

I now examine what effects input filtering in general could have on language 
change, as well as the feasibility of input filtering. 

4.6.2 Intake Filtering and Language Change 
 
 The nature of the input filter may be what differentiates situations of language 
change from situations of stable variation. If the intake becomes too mixed for the 
child to converge on the same probability weighting as the adult, then language 
change will occur.  In cases where only one structural option is used in the adult 
population (as is often the case), the adult probability distribution will be 0.0 or 1.0. 
Given children’s tendency to generalize to an extreme value from noisy data (Hudson 
Kam & Newport, 2005), the intake would have to be quite mixed in order to force 
children away from the adult distribution. 
 In this way, we see that learning can tolerate some variation in the input 
without causing the  language to change. In this, our model’s behavior differs notably 
                                                
34  Moreover, since not all the data in the input becomes intake, even more than 43% of the input 
would need to consist of degree-1 data.  Give that, the available quantity of degree-1 data is certainly 
insufficient. 
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from Briscoe’s (2000), who observed constant oscillation in the population due to 
slight variation in the input to learners.  The model here differs from his by using only 
unambiguous data to update the learner’s hypothesis. I also allow the learner’s final 
probability to be a value other than 0.0 or 1.0.  I hypothesize that this is what yields 
the historically correct behavior.  In addition, the model here has more realistic 
estimates for input quantity, population size, and learner lifespan. 

4.6.3 The Feasibility of Filters 
 
One might well be skeptical of the generality of the proposed filters.  The 

unambiguous data filter in particular raises the question of how abundant such data 
points are for any given learning problem and the complexity of determining if a 
given data point is unambiguous.  As a concrete example of both these issues for the 
word order case considered here, we can look to the “cartographic” approach to 
syntax (Rizzi, 2004; 1997; Cinque, 1999).  This approach suggests that there are 
several positions in front of the VP that the Verb can move to if V2 movement is 
used.  Languages are thought to differ on exactly which position it is. Given that, 
even knowing V2 movement has happened does not allow an unambiguous analysis 
of the sentence with respect to V2 movement; the learner still has more than one 
option for the Verb’s exact position.  If the initial intake is to contain any data points 
at all, it may be necessary to allow data points that are actually ambiguous to be 
perceived as unambiguous at the initial stages of learning.   

If the learner is using cues to identify unambiguous data, then the level of 
specificity for a cue may be abstract enough to perceive ambiguous data as 
unambiguous.  For instance, a cue may only specify one general position in front of 
the VP to identify V2 movement, rather than the multiple positions that the 
cartographic approach advocates.  Only later would the learner then elaborate cues to 
include multiple positions in front of the VP.  If the learner is using parsing to 
identify unambiguous data, then the learner could initially use a subset of the set of 
parameters an adult would use when parsing.35 Later on, when more parameter values 
are known, the learner would expand the set of parameters used for parsing.  

Another approach for both cues and parsing is that the learner has default 
values or assumptions (Fodor, 1998b) that are in place until the learner is forced to 
the marked values or assumptions.  For example, in the word order case discussed 
here, the learner might assume as a default that there is no movement (thus perceiving 
simple SVO structures as unambiguous for VO word order).  This assumption would 
then need to be revised at a later stage.  The cost of reanalysis may not trivial, 
however, particularly when parameters and assumptions interact with each other. 

Suppose, for instance, that default assumption A1 (e.g. no movement) allows 
the learner to perceive “unambiguous” data for a given value of P1 (e.g. OV/VO 
order),  say, P1a (e.g. VO order).  Later on, the learner is forced to remove default 
assumption A1.  Suppose the lack of assumption A1 causes the learner to observe that 
(a) the “unambiguous” data for P1a are now ambiguous (e.g. SVO data) and (b) there 
now exist “unambiguous” data for P1b (e.g. more OV data).  The learner must now 
                                                
35  A candidate set for the initial pool of parameters might be derived from a hierarchy of parameters, 
along the lines of the one based on cross-linguistic comparison that is described in Baker (2005, 2001). 
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re-evaluate the correct value for parameter P1 (OV/VO order), and so is delayed in 
attaining the adult target state.  This same situation occurs when there are multiple 
parameters interacting (say, +/- V2 movement and OV/VO order).  The issue of 
identifying unambiguous data in a system with multiple interacting parameters will be 
discussed in the next chapter. 

The identification of unambiguous data is significantly aided by the 
assumption that parameters are independent structural pieces.  Suppose we assume n 
parameters with 2 options each.  If all parameters are independent, then every data 
point has at most 2n possible structural pieces that can be used to analyze it (Fodor, 
1998a; 1998b; Sakas & Fodor, 1998).  In contrast, if parameters are not independent, 
every data point can be analyzed with 2n possible structures (since each “structure” is 
a combination of the smaller 2n structural pieces).  It is thus enormously more 
efficient for ambiguity analysis to have independent parameters.  

Moreover, if parameters are independent, data are unambiguous relative to a 
particular parameter.  A given data point may be unambiguous for parameter P1 (e.g. 
OV ordering) while being ambiguous for many other parameters (e.g. wh-fronting).  
In contrast, if parameters are not independent, only data points that are unambiguous 
for all parameters are perceived as unambiguous – for otherwise, more than one 
structure of the available 2n structural pieces leads to a successful analysis.  Such data 
points are likely to be extremely sparse, if they exist at all. 

4.6.4 Future Directions 
 Despite the ground covered in this chapter, there are of course a number of 
avenues that remain to be explored.  The first concerns the relaxation of the 
unambiguous data filter, the second concerns the implementation of population 
models, and the third concerns experimental extensions. 
 In section 4.5.2.1, I explored one principled way a learner might use 
ambiguous data, which was to ignore possible movement rules in the system and 
assume that surface word order matched the underlying word order of the system.  So, 
the hypothesis consistent with the surface order was fully credited for those data 
points, i.e. a data point with Verb Object anywhere in it would be credited to the Verb 
Object hypothesis.  But there are other strategies that a learner might employ when 
encountering ambiguous data. 
 One method is to weight ambiguous data points such that they’re not as 
influential as unambiguous data.  In fact, I instantiated a method to do precisely this 
in the case study of anaphoric one in chapter 3, and the actual instantiation appears in 
the update procedure.  The same concept of weighting could be applied to the syntax 
case examined in this chapter.  If learners weight ambiguous data less than 
unambiguous data, it may be possible for them to achieve successful acquisition.  If 
so, it behooves us to know what the successful weightings are for ambiguous and 
unambiguous data – and if we can find any experimental evidence to support such 
weightings. 
 Continuing the idea of weighting data, models of populations (such as the one 
examined here) can include additional sociolinguistic complexity in the relationships 
of the speakers that impact how learners view the data.  Learners might, for instance, 
be more influenced by speakers who are in close spatial proximity, have a kinship 
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relationship, or are from the same or higher social class.  This weighting again would 
be instantiated in the update procedure.  In addition, the frequency of various data 
types in the data intake distribution could depend on what speakers are nearby and/or 
are prominent in the learner’s life.  Family members will be a more frequent source of 
data than random, spatially distant population members. 
 Finally, the existence of data intake filtering for learning syntax – and 
specifically, using data perceived as unambiguous – can be explored in experimental 
regimes such as artificial language experiments for both adults (Thompson & 
Newport, 2007; Bonatti et al., 2005; Newport & Aslin, 2004) and children (Saffran, 
Aslin, & Newport, 1996; Saffran, Newport, & Aslin, 1996; among others).  
Specifically, learners could be exposed to data that would favor one word order if 
ambiguous data is used, but favor the other order if only unambiguous data is used.  
The generalization learners extract from such a dataset would implicate what data 
they use for learning. 

4.6.5 Conclusion 
 
 In this chapter,  I have investigated the effect of data intake filters in a system 
where the target adult state is a probability distribution between two opposing options 
for a single parameter.  This was accomplished by employing language change 
modeling and using the assumption that a given case of language change was driven 
by language learning.  Specifically, I adopted Lightfoot’s (1991) assumption that Old 
English language change was driven by imperfect learning.  The goal of the modeling 
was to see if I could replicate the precise amount of imperfect learning that causes the 
Old English population to change at a certain rate.  As we have seen, this imperfect 
learning can result when the two data intake filters of unambiguous data and degree-0 
data are used.  Moreover, the historically correct population-level behavior does not 
result when either or both of the two filters is discarded, primarily because the data 
intake then does not have the proper bias in its distribution.  Thus, through the 
language change model, I have provided empirical support for data intake filtering in 
language learning. 
 Now that we have seen evidence for the necessity of data intake filtering, we 
can now explore the feasibility of data intake filtering.  This is particularly important 
for the unambiguous data filter, since identifying unambiguous data is a nontrivial 
task.  In fact, it is quite reasonable to wonder how to identify unambiguous data in a 
system more complex than the one I have considered in this chapter (which 
considered 2 interacting parameters: OV/VO word order and +/- V2 movement).  In 
the next chapter, I will examine the feasibility of the unambiguous data filter in a 
more complex system with 9 interacting parameters: English metrical phonology 
(Dresher, 1999).   
 

 




