

The Learning Problem

There is often a non-transparent relationship between the observable form of the data and the underlying system that produced it.

Metrical Phonology System
Observable form: stress contour
Difficulty: interactive structural pieces
af ter noon

Learner Bias: Parameters

Premise: learner considers finite range of hypotheses (parameters) (Halle \& Vergnaud, 1987)

But this doesn't solve the learning problem..
"Assuming that there are n binary parameters, there will be 2^{n} possible core grammars." - Clark (1994)

The Mechanism of Language Learning: Extracting Systematicity

Data is often ambiguous
"It is unlikely that any example ... would show the effect of only a single parameter value; rather, each example is the result of the interaction of several different principles and parameters" - Clark (1994)

Learner Bias: Data Filtering

Potential solution: the learner is biased to focus in on an informative subset of the data.

[^0]
Useful Tool: Modeling

Why? Can easily and ethically manipulate some part of the learning process and observe the effect on learning.

Recent computational modeling surge: Niyogi \& Berwick, 1996; Boersma 1997; Yang, 2000; Boersma \& Levelt, 2000; Boersma \& Hayes, 2001; Sakas \& odor, 201 , 200 , 2006; Pearl \& Weinberg, 2007; Hayes \& Wilson, 2007

Questions

How viable are these kind of biases in a realistic environment?

Is a complex parametric system really learnable?
Are there enough data to learn from if the learner filters the input set and learns only from a select subset?

Feasibility: Is there a data sparseness problem?
Sufficiency: Can the learner filter and still display correct learning behavior?

Questions

How viable are these kind of biases in a realistic environment?

Is a complex parametric system really learnable?
Are there enough data to learn from if the learner filters the input set and learns only from a select subset?

Questions

How viable are these kind of biases in a realistic environment?

Is a complex parametric system really learnable?
Are there enough data to learn from if the learner filters the input set and learns only from a select subset?

Feasibility: Is there a data sparseness problem?
Sufficiency: Can the learner filter and still display correct learning behavior?

Key: Learning from a realistic data set (CHILDES: MacWhinney, 2000)

Today's Plan: Demonstrate Viability

Learning a complex parametric system from a noisy data set by filtering the data intake is both feasible and sufficient

> Filter: Learn only from unambiguous data

Data Set: highly noisy English child-directed speech (540505 words)

Road Map

Learning Framework Overview

Computational Modeling: Learning Metrical Phonology
Data intake filtering and learning a complex parametric system for metrical phonology

Important Features: empirical grounding

- searching realistic data space for evidence of underlying system - considering psychological plausibility of learning methods

Investigating the Hypothesis Space

Hypothesis Space: theoretical work on what hypotheses children entertain, how this knowledge is instantiated, and how it might be learned

Metrical Phonology

Constraint-Satisfaction Systems (Tesar \& Smolensky, 2000)

Parametric Systems (Halle \& Vergnaud, 1987; Dresher, 1999)

How viable is this system?

Investigating the Hypothesis Space

Hypothesis Space: theoretical work on what hypotheses children entertain, how this knowledge is instantiated, and how it might be learned

Metrical Phonology

Constraint-Satisfaction Systems (Tesar \& Smolensky, 2000)

Parametric Systems (Halle \& Vergnaud, 1987; Dresher, 1999)

Investigating Data Intake Filtering

Intuition 1: Use all available data to uncover a full range of systematicity, and allow probabilistic mode enough data to converge.
 Intuition 2: Use more "informative" data or more "accessible" data only.

Road Map

Learning Framework Overview

Computational Modeling: Learning Metrical Phonology Metrical phonology overview: interacting parameters

Finding unambiguous data for a complex system: cues vs. parsing
English metrical phonology: noisy data sets
Viability of parametric systems \& unambiguous data filters
Predictions \& open questions

Metrical Phonology

What tells you to put the EMphasis on a particular SYLlable
sample metrical phonology structure from parametric system

Quantity Sensitivity: QI

Quantity-Insensitive (Ql): All syllables are treated the same (S)

S	S	S
VV	V	VC
CVV	CV	CCVC
lu	di	crous

Quantity Sensitivity: QS
Quantity Sensitivity: Stress
Quantity-Sensitive (QS):
Syllables are separated into Light and Heavy
\checkmark are always L, VV are always H
VC-Light (QSVCL) = VC syllable is L VC-Heavy $($ QSVCH $)=$ VC syllable is H

Rule of Stress: If a syllable is Heavy, it should have stress - unless some other parameter interacts with it

H	L	L/H
VV	V	VC
CVV	CV	CCVC
lu	di	crous

Extrametricality, Metrical Feet, and Stress

Rule of Stress: If a syllable is extrametrical, it cannot have stress because it is not included in a metrical foot.

Rule of Stress: Exactly one syllable per metrical foot must have stress.

Feet Directionality

Feet Direction: What edge of the word metrical foot construction begins at

Feet Direction Left: start from left edge
H L
H

Feet Direction Right: start from right edge

H L H

Feet Directionality

Feet Direction: What edge of the word metrical foot construction begins at

Feet Direction Left: start from left edge

$$
(H \quad L)(H)
$$

Feet Direction Right: start from right edge

H L H

Feet Directionality

Feet Direction: What edge of the word metrical foot construction begins at

Feet Direction Left: start from left edge

$$
(H \quad L)(H)
$$

Feet Direction Right: start from right edge
(H) (
H)

Feet Directionality

Feet Direction: What edge of the word metrical foot construction begins at

Feet Direction Left: start from left edge

$$
\left(\begin{array}{ll}
H & L
\end{array}\right.
$$

Feet Direction Right: start from right edge
H L H

Boundedness: Unbounded Feet

Unbounded: a metrical foot extends until a heavy syllable is encountered

Boundedness: Unbounded Feet

Boundedness: Unbounded Feet

Unbounded: a metrical foot extends until a heavy syllable is encountered

$$
\text { start from left } \Rightarrow(\mathrm{L} \quad \mathrm{~L} \quad \mathrm{~L})\left(\begin{array}{ll}
\mathrm{H} & \mathrm{~L})
\end{array}\right.
$$

Boundedness: Unbounded Feet

start from left $>$ (L L L) (H L)
$\mathrm{L} \mathrm{L} \mathrm{L} H(\mathrm{~L})<\underset{\substack{\text { start from right }}}{\sqrt{2}}$

Boundedness: Unbounded Feet

Unbounded: a metrical foot extends until a heavy syllable is encountered
start from left $>(\mathrm{L} \quad \mathrm{L} \quad \mathrm{L})\left(\begin{array}{ll}\mathrm{H} & \mathrm{L})\end{array}\right.$
$(\mathrm{L} L \mathrm{~L} \quad \mathrm{H})(\mathrm{L}) \underset{\substack{\text { start from right }}}{\substack{ }}$

Boundedness: Unbounded Feet

Unbounded: a metrical foot extends until a heavy syllable is encountered
start from left $\underset{\square}{ }>(\mathrm{L} \quad \mathrm{L})\left(\begin{array}{ll}\mathrm{H} & \mathrm{L}\end{array}\right)$
$(L \quad L \quad \mathrm{H})(\mathrm{L})<$ start from right
start from left $\underset{\mathrm{J}}{\mathrm{D}} \mathrm{L} \mathrm{L} \quad \mathrm{L} \quad \mathrm{L}$

Boundedness: Bounded Feet

Bounded: a metrical foot only extends a certain amount (cannot be longer)

Bounded-2: a metrical foot only extends 2 units

Bounded-3: a metrical foot only extends 3 units

Boundedness: Unbounded Feet

Unbounded: a metrical foot extends until a heavy syllable is encountered

$$
\text { start from left } \Rightarrow\left(\begin{array}{lll}
\mathrm{L} & \mathrm{~L}
\end{array}\right)\left(\begin{array}{ll}
\mathrm{H} & \mathrm{~L}
\end{array}\right)
$$

$(\mathrm{L} \mathrm{L} \mathrm{L}$ H)(L) <start from right

$(\mathrm{L} L \mathrm{~L} \mathrm{~L} \mathrm{~L})<\overline{\text { start from right }}$

Boundedness: Bounded Feet

Bounded: a metrical foot only extends a certain amount (cannot be longer)

Bounded-2: a metrical foot only extends 2 units

```
start from left }\downarrow\times\times\times\times
```

Bounded-3: a metrical foot only extends 3 units

Boundedness: Bounded Feet

Bounded: a metrical foot only extends a certain amount (cannot be longer)

Bounded-2: a metrical foot only extends 2 units

```
start from left }>>(\textrm{x
```

Bounded-3: a metrical foot only extends 3 units

Boundedness: Bounded Feet

Bounded: a metrical foot only extends a certain amount (cannot be longer)

Bounded-2: a metrical foot only extends 2 units

Bounded-3: a metrical foot only extends 3 units

```
start from left }>>(\begin{array}{lll}{x}&{x}&{x}\end{array})(\begin{array}{ll}{x}&{x}\end{array}
```


Boundedness: Bounded Feet

Bounded: a metrical foot only extends a certain amount (cannot be longer)

Bounded-2: a metrical foot only extends 2 units

Bounded-3: a metrical foot only extends 3 units

```
start from left }\underset{~}{>}\times\times\times\times
```


Boundedness: Bounded Feet

Bounded-Syllabic: counting unit is syllable

Bounded-Moraic: counting unit is mora H = 2 moras, L = 1 mora

Boundedness: Bounded Feet
Bounded-Syllabic: counting unit is syllable

```
start from left }>>>(|,H)(L,L)(H
bounded-2
```

Bounded-Moraic: counting unit is mora $\mathrm{H}=\mathbf{2}$ moras, $\mathrm{L}=1$ mora

Boundedness: Bounded Feet
Bounded-Syllabic: counting unit is syllable

Bounded-Moraic: counting unit is mora $\mathrm{H}=\mathbf{2}$ moras, $\mathrm{L}=1$ mora

Boundedness: Bounded Feet
Bounded-Syllabic: counting unit is syllable

Bounded-Moraic: counting unit is mora
$\mathrm{H}=2$ moras, $\mathrm{L}=1$ mora

Boundedness: Bounded Feet

Bounded-Syllabic: counting unit is syllable

$$
\begin{aligned}
& \text { start from left } \stackrel{L}{\nabla}\left(\begin{array}{ll}
L
\end{array}\right)(L, L)(H) \\
& \text { bounded-2 } \\
& \text { bounded-2 } \\
& \text { (H H)(L L) (H) } \\
& \text { S S S S S }
\end{aligned}
$$

Bounded-Moraic: counting unit is mora $\mathrm{H}=2$ moras, $\mathrm{L}=1$ mora

Boundedness: Bounded Feet

Bounded-Syllabic: counting unit is syllable

start from left 2	$\left(\begin{array}{lll}\mathrm{L} & H\end{array}\right)(\mathrm{L}$

Bounded-Moraic: counting unit is mora
$\mathrm{H}=\mathbf{2}$ moras, $\mathrm{L}=1$ mora

Boundedness: Bounded Feet
Bounded-Syllabic: counting unit is syllable

Bounded-Moraic: counting unit is mora

Bounded-Moraic: counting unit is mora

Feet Headedness

Feet Headedness: which syllable of metrical foot gets stress

Feet Head Left: leftmost syllable in foot gets stress

$$
\text { (H) }\left(\begin{array}{ll}
\mathrm{L} & \mathrm{H})
\end{array}\right.
$$

Feet Head Right: rightmost syllable in foot gets stress

Feet Headedness

Feet Headedness: which syllable of metrical foot gets stress

Feet Head Left: leftmost syllable in foot gets stress

$$
\text { (H) (} \mathrm{L} \quad \mathrm{H} \text {) }
$$

Feet Head Right: rightmost syllable in foot gets stress
(H) (L H)

$$
(H)\left(\begin{array}{ll}
\mathrm{L} & \mathrm{H}
\end{array}\right)
$$

Road Map

Learning Framework Overview

Computational Modeling: Learning Metrical Phonology

> Finding unambiguous data for a complex system: cues vs. parsing
English metrical phonology: noisy data sets
Viability of parametric systems \& unambiguous data filters
Predictions \& open questions

Filter Feasibility
Metrical phonology (9 interacting parameters)

How feasible is an unambiguous data filter for a complex system with a noisy data set as input?

Data sparseness: are there unambiguous data? (Clark 1992) How could a learner identify such data?

Interactive Parameters

Current knowledge of system influences perception of unambiguous data: The order in which parameters are set may determine if they are set correctly (Dresher, 1999).

Data initially ambiguous may later be perceived as unambiguous.
Data initially unambiguous may later be perceived as exceptional.

Identifying unambiguous data:
Cues (Dresher, 1999; Lightfoot, 1999)

Parsing (Fodor, 1998; Sakas \& Fodor, 2001)

Cues: Overview

A cue is a local "specific configuration in the input" that corresponds to a specific parameter value. A cue matches an unambiguous data point. (Dresher, 1999)

Cues for Metrical Phonology Parameters

Recall: Cues match local surface structure (sample cues below)

QS: 2 syllable word with 2 stresses
VV VV

Em-Right: Rightmost syllable is Heavy ... H and unstressed

Parsing with Metrical Phonology Parameters

Sample Datum: VC VC VV ('afternoon')
Sample Datum: VC VC VV ('afternoon')
(QS, QSVCL, Em-None, Ft Dir Right,
B, B-2, B-Syl, Ft Hd Right)

(x)	$(x$	$x)$
L	L	$H)$
VC	VC	$V V$

Parsing with Metrical Phonology Parameters

Sample Datum: VC VC VV ('afternoon')
(QS, QSVCL, Em-None, Ft Dir Right,
B, B-2, B-Syl, Ft Hd Right)
(QS, QSVCL, Em-None, Ft Dir Left,

(x)	$(x$	$x)$
L	L	$H)$
$V C$	$V C$	$V V$

$(x$	$x)$	(x)
$(L$	L	H
VC	VC	VV

Parsing with Metrical Phonology Parameters
Sample Datum: VC VC VV ('afternoon')
(QS, QSVCL, Em-None, Ft Dir Right,
B, B-2, B-Syl, Ft Hd Right)

(x)	(x	x)	B, B-2, B-Syl, Ft Hd Left)		
L	L	H)			
VC	VC	VV	(X	x)	(x)
			(L	L	H
(Ql, Em-None, Ft Dir Right,			VC	VC	VV

(Ql, Em-None, Ft Dir Right,
B, B-2, B-Syl, Ft Hd Right)

$(x$	$x)$	(x)
S	S	$S)$
VC	VC	VV

Parsing with Metrical Phonology Parameters

```
Values leading to successful parses of datum
(Ql, Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syl)
(Ql, Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl)
@S, asVCL, Em-None, FIDitLeft FtHd Letit, UnB
QS OSVCL, Em-None, Ft DII Lett. Fifacett, B, B-2, B-SyI)
Datum is unambiguous for Em-None
Perception of unambiguous data changes over time:
    If Ql already set, datum is unambiguous for Em-None, B, B-2,
    and B-Syl.
```


Parsing with Metrical Phonology Parameters

Values leading to successful parses of datum:

(Ql, Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syl)
(QI, Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl)
(QS, QSVCL, Em-None, Ft Dir Left, Ft Hd Left, UnB)
(QS, QSVCL, Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syl)
(QS, QSVCL, Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl)

Datum is unambiguous for Em-None.

Cues vs. Parsing:
A Note on Psychological Plausibility

Both cues and parsing are learning methods that are incremental. They operate over a single data point at a time, and do not require the learner to conduct analyses across the entire collection of data points encountered.

Finding Unambiguous Data: English Metrical Phonology

Non-trivial parametric system: metrical phonology

Non-trivial language: English (full of exceptions) data unambiguous for the incorrect value in the adult system

Adult English system values:
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right,
Bounded, B-2, B-Syllabic, Ft Hd Left

Exceptions:

QI, QSVCL, Em-None, Ft Dir Left, Unbounded,
B-3, B-Moraic, Ft Hd Right

Empirical Grounding in Realistic Data: Estimating English Data Distributions

Caretaker speech to children between the ages of 6 months and 2 years (CHILDES: MacWhinney, 2000)

Total Words: 540505
Mean Length of Utterance: 3.5
Words parsed into syllables and assigned stress using the American English CALLHOME database of telephone conversation (Canavan et al., 1997) \& the MRC Psycholinguistic database (Wilson, 1988)

Road Map

```
Learning Framework Overview
```

Computational Modeling: Learning Metrical Phonology
Metrical phonology overview: interacting parameters
Finding unambiguous data for a complex system: cues vs. parsing
English metrical phonology: noisy data seis
Viability of parametric systems \& unambiguous data filters
Predictions \& extensions

Sufficient Filters:
 Viable Parameter-Setting Orders

Can learners using unambiguous data (identified by either cues or parsing) learn the English parametric system? What parametersetting orders lead to the correct English system?

Viable orders are derived for each method via an exhaustive walkthrough of all possible parameter-setting orders.

Viable Parameter-Setting Orders:

Encapsulating the Knowledge for Acquisition Success
Worst Case: learning with unambiguous data produces insufficient behavior No orders lead to correct system - parametric system is unlearnable

Better Cases: learning with unambiguous data produces sufficient behavior Slightly Better Case: Viable orders available, but fairly random

Better Case: Viable orders available, can be captured by small number of order constraints

Best Case: All orders lead to correct system

Identifying Viable Parameter-Setting Orders
(a) For all currently unset parameters, determine the unambiguous data distribution in the corpus.

Quantity Sensitivity		Extrametricality	
QI:		QS:	None:
.00398	0.0205	0.0294	Some:
Feet Directionality		Boundedness	
Left:		Right:	Unbounded:
0.000	0.00000925	Bounded:	
0.00000370		0.00435	
Feet Headedness			
Left:		Right:	
0.00148	0.000		

Identifying Viable Parameter-Setting Orders

(a) For all currently unset parameters, determine the unambiguous data distribution in the corpus.
(b) Choose a currently unset parameter to set. The value chosen for this parameter is the value that has a higher probability in the data the learner perceives as unambiguous.

Quantity Sensitivity		Extrametricality		
Ql:	QS:	None:	Some:	
.00398	0.0205	0.0294	.0000259	
Feet Directionality		Boundedness		
Left:		Right:	Unbounded:	
0.000	0.00000925	0.00000370	Bounded:	
Feet Headedness				
Left:		Right:		
0.00148	0.000			

Identifying Viable Parameter-Setting Orders

(a) For all currently unset parameters, determine the unambiguous data distribution in the corpus.
(b) Choose a currently unset parameter to set. The value chosen for this parameter is the value that has a higher probability in the data the learner perceives as unambiguous.
(c) Repeat steps (a-b) until all parameters are set.

Identifying Viable Parameter-Setting Orders

(a) For all currently unset parameters, determine the unambiguous data distribution in the corpus...

QS-VC-Heavy/Light		Extrametricality	
Heavy: . 00265	$\begin{aligned} & \text { Light: } \\ & 0.00309 \end{aligned}$	$\begin{aligned} & \hline \text { None: } \\ & 0.0240 \end{aligned}$	Some: . 0485
Feet Directionality		Boundedness	
Left: 0.000	$\begin{aligned} & \text { Right: } \\ & 0.00000555 \end{aligned}$	Unbounded: 0.00000370	$\begin{aligned} & \text { Bounded: } \\ & 0.00125 \end{aligned}$
Feet Headedness			
$\begin{gathered} \text { Left: } \\ 0.000588 \end{gathered}$	$\begin{gathered} \text { Right: } \\ 0.0000204 \end{gathered}$		

Identifying Viable Parameter-Setting Orders

(a) For all currently unset parameters, determine the unambiguous data distribution in the corpus.
(b) Choose a currently unset parameter to set. The value chosen for this parameter is the value that has a higher probability in the data the learner perceives as unambiguous.
(c) Repeat steps (a-b) until all parameters are set.
(d) Compare final set of values to English set of values. If they match, this is a viable parameter-setting order.

Identifying Viable Parameter-Setting Orders

(a) For all currently unset parameters, determine the unambiguous data distribution in the corpus
(b) Choose a currently unset parameter to set. The value chosen for this parameter is the value that has a higher probability in the data the learner perceives as unambiguous.
(c) Repeat steps (a-b) until all parameters are set.
(d) Compare final set of values to English set of values. If they match, this is a viable parameter-setting order.
(e) Repeat (a-d) for all parameter-setting orders.

Sufficiency of an Unambiguous Filter for a Complex Parametric System

Are there any viable parameter-setting orders for a learner using unambiguous data (identified by either cues or parsing)?

Cues: Parameter-Setting Orders

Cues: Sample viable orders
(a) QS, QS-VC-Heavy, Bounded, Bounded-2, Feet Hd Left, Feet Dir Right, EmSome, Em-Right, Bounded-Syl
(b) Feet Dir Right, QS, Feet Hd Left, Bounded, QS-VC-Heavy, Bounded-2, EmSome, Em-Right, Bounded-Syl

Cues: Sample failed orders
(a) QS, Bounded, Feet Hd Left, Feet Dir Right, QS-vC-Heavy, Em-Some, EmRight, Bounded-Syl, Bounded-2
(b) Feet Hd Left, Feet Dir Right, Bounded, Bounded-Syl, Bounded-2, QS, QS-vCHeavy, Em-Some, Em-Right

Parsing: Parameter-Setting Orders

Parsing: Sample viable orders

(a) Bounded, QS, Feet Hd Left, Feet Dir Right, QS-VC-Heavy, Bounded-Syl, EmSome, Em-Right, Bounded-2
(b) Feet Hd Left, QS, QS-VC-Heavy, Bounded, Feet Dir Right, Em-Some, EmRight, Bounded-Syl, Bounded-2

Parsing: Sample failed orders
(a) Feet Dir Right, QS, Feet Hd Left, Bounded, QS-vC-Heavy, Bounded-2, EmSome, Em-Right, Bounded-Syl
(b) Em-Some, Em-Right, QS, Bounded, Feet Hd Left, Feet Dir Right, QS-VCHeavy, Bounded-Syl, Bounded-2

Cues vs. Parsing: Order Constraints

Feasibility \& Sufficiency of the Unambiguous Data Filter for Learning a Parametric System

Either method of identifying unambiguous data (cues or parsing) is successful. Given the non-trivial parametric system (9 interactive parameters) and the non-trivial data set (English is full of exceptions), this is no small feat.

```
"It ls unukely that any example ... would show the effect of
```

(1) Unambiguous data can be identified in sufficient quantities to extract the correct systematicity for a complex parametric system
(2) The data intake filtering strategy is robust across a realistic

(highly ambiguous, exception-filled) data set.
(1) Feasibility

No data sparseness problem, even for a complex system with multiple interactive parameters.
(2) Sufficiency

Learning from unambiguous data yields the correct learning behavior.

Big Questions for Learning a Complex Parametric
System and the Data Intake Filtering Strategy: English Metrical Phonology

Take Home Message

(1) Modeling results support the viability of both the parametric
implementation of metrical phonology knowledge and the unambiguous data filter as a learning strategy, even for a noisy data set.
(2) Computational modeling is a very useful tool:
(a) empirically test learning strategies that would be difficult to
investigate with standard techniques
(b) generate experimentally testable predictions about learning

Thank You

\longrightarrow
Amy Weinberg
Bill Idsardi

Jeff Lidz
Charles Yang
the Department of Cognitive Sciences at UC Irvine

Cues vs. Parsing
 in a Probabilistic Framework

Critique of Learning Behavior:
"Both models ... cannot capture the variation in and the gradualness of language development...when a parameter is set, it is set in an all-or-none fashion." - Yang (2002)

Benefit of using learning framework to sidestep this problem separable components used in combination:
(1) cues/parsing to identify unambiguous data
(2) probabilistic framework of gradual updating based on unambiguous data

Why Parameters?

Why posit parameters instead of just associating stress contours with words?

Arguments from stress change over time (Dresher \& Lahiri, 2003)

Why Parameters?

Why posit parameters instead of just associating stress contours with words?

Arguments from stress change over time (Dresher \& Lahiri, 2003):
(1) If word-by-word association, expect piece-meal change over time at the individual word level. Instead, historical linguists posit changes to underlying systems to best explain the observed data

Why Parameters?

Why posit parameters instead of just associating stress contours with words?

Arguments from stress change over time (Dresher \& Lahiri, 2003)
(1) If word-by-word association, expect piece-meal change over time at the individual word level. Instead, historical linguists posit changes to underlying systems to best explain the observed data.
(2) If stress contours are not composed of pieces (parameters), expect start and end states of change to be near each other. However, examples exist where start \& end states are not closely linked from perspective of observable stress contours.

Relativizing Probabilities

Relativize-against-all:

- probability conditioned against entire input set
- relativizing set is constant across methods

Cues or Parsing

	QI	QS
Unambiguous Data Points	2140	11213
Relativizing Set	540505	540505
Relativized Probability	0.00396	0.0207

Relativizing Probabilities

Relativize-against-potential:

- probability conditioned against set of data points that meet preconditions of being an unambiguous data point
- relativizing set is not constant across methods

Parsing: able to be parsed
word with both syllables stressed)

	QI	QS
Unambiguous Data Points	2140	11213
Relativizing Set	2755	85268
Relativized Probability	0.777	0.132

	QI	QS
Unambiguous Data Points	2140	11213
Relativizing Set	p	p
Relativized Probability	$2140 / p$	$11213 / p$

Cues vs. Parsing: Preference?

Is there any (additional) reason to prefer one method of identifying unambiguous data over the other?

Cues
W W LHH
... L L L L
H L L... ...S S S S...
Parsing (QII, Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syl)
(Q1, Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl)
 (QS, QSVCL, Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl)
S S S...

Cues vs. Parsing:
 Success Across Relativization Methods

	Cues	Parsing
Relative-Against-All	Successful	Successful
Relative-Against-Potential	Unsuccessful	Successful

..so parsing seems more robust across relativization methods.

Deriving Constraints from Properties of the Learning System

Data saliency: presence of stress is more easily noticed than absence of stress, and indicates a likely parametric cause

Data quantity: more unambiguous data available

Default values (cues only): if a value is set by default, order constraints involving it disappear

Note: data quantity and default values would be applicable to any system. Data saliency is more system-dependent.

Deriving Constraints: Cues

(a) QS-VC-Heavy

before Em-Right
(b) Em-Right
before Bounded-Syl
(c) Bounded-2
before Bounded-Syl

Deriving Constraints: Cues

(a) QS-VC-Heavy before Em-Right

Em-Right: absence of stress is less salient (data saliency)
(b) Em-Right
before Bounded-Syl
(c) Bounded-2
before Bounded-Syl

Deriving Constraints: Cues

(a) QS-VC-Heavy
before Em-Right

Em-Right: absence of stress is less salient (data saliency)

Bounded-Syl as default (default values)
(b) Em-Right
before Bounded-Syl
(c) Bounded-2
before Bounded-Syl

Deriving Constraints: Cues
(a) QS-VC-Heavy
before Em-Right $\quad \begin{aligned} & \text { Em-Right: absence of stress is less } \\ & \text { salient (data saliency) }\end{aligned}$

Bounded-Syl as default (default values)
 Em-Right: more unambiguous data than Bounded-Syl (data quantity)

(c) Bounded-2
before Bounded-Syl

Deriving Constraints: Cues

(a) QS-VC-Heavy
 before Em-Right

Em-Right: absence of stress is less
salient (data saliency)

Bounded-Syl as default (default values)
Em-Right: more unambiguous data
than Bounded-Syl (data quantity)
(b) Em-Right

Bounded-Syl as default (default values)

Deriving Constraints: Cues

(a) QS-VC-Heavy

Em-Right: absence of stress is less salient (data saliency)

(b) Em-Right | before Bounded-Syl |
| :--- |

values)
Em-Right: more unambiguous data than Bounded-Syl (data quantity)
(c) Bounded-2
before Bounded-Syl
Bounded-Syl as default (default values)
Bounded-2 has more unambiguous data once Em-Right is set; Em-Right has much more than Bounded-2 or Bounded-Syl (data quantity)

Deriving Constraints: Parsing
Group 1:
QS, Ft Head Left, Bounded

Group 2:
Ft Dir Right, QS-VS-Heavy
Deriving Constraints: Parsing
Group 1:
QS, Ft Head Left, Bounded
Group 2:
Ft Dir Right, QS-VS-Heavy

Group 3:
Em-Some, Em-Right, Bounded-2, Bounded-Syl

Em-Some, Em-Right: absence of stress is less salient (data saliency)

Deriving Constraints: Parsing
Group 1:
QS, Ft Head Left, Bounded
Group 2:
Ft Dir Right, QS-VS-Heavy

Other groupings cannot be derived from data quantity, however...

Group 3:
Em-Some, Em-Right, Bounded-2, Bounded-Syl

> Em-Some, Em-Right: absence of stress is less salient (data saliency)

Combining Cues and Parsing

Cues and parsing have a complementary array of strengths and weaknesses

Problem with cues: require prior knowledge
Problem with parsing: requires parse of entire datum

Viable combination of cues \& parsing: parsing of datum subpart = derivation of cues?

Cues vs. Parsing: Comparison

	Cues	Parsing
Easy identification of unambiguous data	+	
Can find information in datum sub-part	+	
Can tolerate exceptions	+	
Is not heuristic		+
Does not require additional knowledge		+
Does not use default values	+	+
Psychological plausibility: does not require entire data set at once to learn from	+	

Combining Cues and Parsing

Em-Right: Rightmost syllable is Heavy ..$H(H)$ and unstressed

If a syllable is Heavy, it should be stressed.
If an edge syllable is Heavy and unstressed, an immediate solution (given the available parameteric system) is that the syllable is extrametrical.

Non-derivable Constraints: Predictions Across Languages?

Parsing Constraints
Group 1:
QS, Ft Head Left, Bounded
Group 2:
Do we find these same groupings if we look at other languages?

Ft Dir Right, QS-VS-Heavy
Group 3:
Em-Some, Em-Right, Bounded-2, Bounded-Syl

The Necessity of Data Intake Filtering

Alternate Strategy: learn from all data (no filters)
Yang (2002): Naïve Parameter Learner (NP Learner)
Learner has probabilities associated with each parameter value For each data point

- learner randomly chooses a parameter value combination, based on the associated probabilities
- learner tries to parse data point with this random parameter value combination
- if parse succeeds, all participating values rewarded - if parse fails, all participating values punished

Idea: unambiguous data will only be parseable by correct parameter value; incorrect value eventually punished into zero probability

Preliminary results: not successful for English data set (possibly due to numerous exceptions in data set); Batch Learner version also not successful.

[^0]: feasibility issue: data sparseness

