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Motivating Universal Grammar

One explicit motivation: The argument from acquisition

Universal Grammar (UG) allows children to acquire knowledge about
language as effectively and rapidly as they do (chomsky 1980, crain 1991,
Hornstein & Lightfoot 1981, Lightfoot 1982b, Legate & Yang 2002, among many others).



Motivating Universal Grammar

Specifically, Universal Grammar consists of the necessary learning biases
that are both innate and domain-specific (chomsky 1965, Chomsky 1975).
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Motivating Universal Grammar

What'’s so hard about acquiring language?

There seem to be induction problems, given the available data.
(Poverty of the Stimulus, Logical Problem of Language Acquisition, Plato’s Problem)




Motivating the contents of UG

Proposals have traditionally come from characterizing a specific
induction problem pertaining to a particular linguistic phenomenon,
and describing the (UG) solution to that specific characterization.



Motivating the contents of UG

Proposals have traditionally come from characterizing a specific
induction problem pertaining to a particular linguistic phenomenon,
and describing the (UG) solution to that specific characterization.

e Structure-dependent rules (Chomsky 1980)
Pirates who can dance can often fight well.
Can pirates who can dance __ often fight well? gy



Motivating the contents of UG

Proposals have traditionally come from characterizing a specific
induction problem pertaining to a particular linguistic phenomenon,
and describing the (UG) solution to that specific characterization.

* Constraints on long-distance dependencies (Chomsky 1973)
Where did Jack think Lily bought the necklace from _ ?
*Where did Jack think the necklace from __ was too expensive?



Motivating the contents of UG

Proposals have traditionally come from characterizing a specific
induction problem pertaining to a particular linguistic phenomenon,
and describing the (UG) solution to that specific characterization.

* English anaphoric one representation (Baker 1978)
Look — a red bottle! Do you see another one? one= ?



Motivating the contents of UG

Benefits of a specific characterization of an induction problem:
* Precisely describe a potential solution
* Explicitly test that solution & compare it to other potential solutions



Motivating the contents of UG

Benefits of a specific characterization of an induction problem:
* Precisely describe a potential solution
* Explicitly test that solution & compare it to other potential solutions

When we find a potential solution, we can examine the nature of the

learning biases it involves.
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Motivating the contents of UG

Benefits of a specific characterization of an induction problem:
* Precisely describe a potential solution
* Explicitly test that solution & compare it to other potential solutions

Benefits for investigating UG:

 If all the solutions involve UG biases:
— supports the existence of UG
— provides specific proposals for its contents



Motivating the contents of UG

Benefits of a specific characterization of an induction problem:
* Precisely describe a potential solution
* Explicitly test that solution & compare it to other potential solutions

Benefits for investigating UG:
 If all the solutions involve UG biases:

— supports the existence of UG
— provides specific proposals for its contents

* |f some solutions do not involve UG biases

— takes away the support for UG that comes from that characterization of the
induction problem



Characterizing induction problems

Initial state:
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Characterizing induction problems

Initial state:

- initial knowledge state
ex: grammatical categories exist and can be identified N N’, NP, DP, ...

ex: phrase structure exists and can be identified %
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Characterizing induction problems

Initial state:

- initial knowledge state
ex: grammatical categories exist and can be identified N° N’, NP, DP, ...
ex: phrase structure exists and can be identified

- learning biases & capabilities
ex: frequency information can be tracked NO= NO+1
ex: distributional information can be leveraged
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Characterizing induction problems

Initial state: initial knowledge state + learning biases & capabilities

Data intake:
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Characterizing induction problems

Initial state: initial knowledge state + learning biases & capabilities

Data intake:

- data perceived as relevant for learning (rodor 1998)

ex: all wh-utterances for learning about wh-dependencies
ex: syntactic data for learning syntactic knowledge
[defined by knowledge & biases/capabilities in the initial state]

Pearl & Mis submitted



Characterizing induction problems

Initial state: initial knowledge state + learning biases & capabilities
Data intake: data perceived as relevant for learning

Learning period:
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Characterizing induction problems

Initial state: initial knowledge state + learning biases & capabilities
Data intake: data perceived as relevant for learning

Learning period:

- how long children have to reach the target knowledge state
ex: 3 years, ~1,000,000 data points
ex: 4 months, ~36,500 data points

Pearl & Mis submitted



Characterizing induction problems

Initial state: initial knowledge state + learning biases & capabilities
Data intake: data perceived as relevant for learning
Learning period: how long children have to learn

Target state:
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Characterizing induction problems

Initial state: initial knowledge state + learning biases & capabilities
Data intake: data perceived as relevant for learning
Learning period: how long children have to learn

Target state:
- the knowledge children are trying to attain
ex: *Where did Jack think the necklace from __ was too expensive?
ex: one is category N’ when it is not NP
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Characterizing induction problems

Initial state: initial knowledge state + learning biases & capabilities
Data intake: data perceived as relevant for learning
Learning period: how long children have to learn

Target state: the knowledge children must attain

Pearl & Mis submitted



Characterizing induction problems

Initial state: initial knowledge state + learning biases & capabilities
Data intake: data perceived as relevant for learning
Learning period: how long children have to learn

Target state: the knowledge children must attain

knowledge
state 2

knowledge

Induction problem: state 1

Given a specific initial state, data {
intake, and learning period, the target
state is not the only knowledge state

that could be reached.

Pearl & Mis submitted



To characterize potential induction problems, we need to
draw on a variety of research methods.



To characterize potential induction problems, we need to
draw on a variety of research methods.

Theoretical methods:

What knowledge of language is (and what children have to learn)
[initial state, target state]

SEE the Kltty see/>\

the kitty

+stop
+consonant

*[f]/

+vowel }

+vowel }

+stressed -stressed

see’(the kitty)(Xistener)

+alveolar



To characterize potential induction problems, we need to
draw on a variety of research methods.

Experimental methods:
When knowledge is acquired, what the input looks like, & plausible
capabilities underlying how acquisition works

[initial state, data intake, learning period] p(ki tt}’)
p(ki)
p(H1| )
< p( | H1) p(H1)
Performance

Age



To characterize potential induction problems, we need to
draw on a variety of research methods.

Computational methods:
Strategies that are both useful and useable for how children
acquire knowledge + quantitative anaIyS|s of input

[initial state, data intake] R
V Pro env m
v
om
v
det mod i

XP-YP-ZP...
A
start-XP-YP + 1




Road Map

|. Potential induction problem:

Learning constraints on long-
distance dependencies

Il. Potential induction problem: det
Learning English anaphoric one /

one




Road Map

|. Potential induction problem:

Learning constraints on long-
distance dependencies



Syntactic islands

 Why? Central to UG-based syntactic theories.

 What? Dependencies can exist between two non-adjacent items. They
do not appear to be constrained by length (Chomsky 1965, Ross 1967), but
rather by whether the dependency crosses certain structures (called
“syntactic islands”).

Pearl & Sprouse forthcoming



Syntactic islands

 Why? Central to UG-based syntactic theories.

 What? Dependencies can exist between two non-adjacent items. They
do not appear to be constrained by length (Chomsky 1965, Ross 1967), but
rather by whether the dependency crosses certain structures (called
“syntactic islands”).

What does Jack think _ ?

What does Jack think that Lily said that Sarah heard that Jareth believed  ?

Pearl & Sprouse forthcoming



Syntactic islands

 Why? Central to UG-based syntactic theories.

 What? Dependencies can exist between two non-adjacent items. They
do not appear to be constrained by length (Chomsky 1965, Ross 1967), but
rather by whether the dependency crosses certain structures (called
“syntactic islands”).

Some example islands

Complex NP island:

*What did you make [the claim that Jack bought _ ]?
Subject island:

*What do you think [the joke about ] offended Jack?

Whether island:

*What do you wonder [whether Jack bought __ ]?
Adjunct island:

*What do you worry [if Jack buys _ ]?

Pearl & Sprouse forthcoming



Syntactic islands

* Predominant theory in generative syntax:
syntactic islands require innate, domain-specific learning biases

Example: Subjacency (chomsky 1973, Huang 1982, Lasnik & Saito 1984)
(1) A dependency cannot cross two or more bounding nodes.

Wh o [ o Loy )
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Syntactic islands

* Predominant theory in generative syntax:
syntactic islands require innate, domain-specific learning biases

Example: Subjacency (chomsky 1973, Huang 1982, Lasnik & Saito 1984)
(1) A dependency cannot cross two or more bounding nodes.

(2) Bounding nodes: language-specific
(CP, IP, and/or NP — must learn which ones are relevant for language)

[BN2 [BNl ]]
\/@ —

{CP, IP, NP}?

Pearl & Sprouse forthcoming



Syntactic islands

Predominant theory in generative syntax:

syntactic islands require innate, domain-specific learning biases...in
addition to whatever else they might require.

domain-specific
Not 2+ bounding nodes (BNs)
BN = {CP, IP, NP}

derived innate

domain-general
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Syntactic islands

e How do we test this?

(1) Explicitly define the target knowledge state, using adult acceptability
judgments.

(2) Identify the data available in the input, using realistic samples. (Is there
an induction problem, given what we think children’s data intake is?)

(3) Implement a probabilistic learner that can learn about syntactic islands
and see what kind of learning biases it requires. This requires making the
initial state and learning period explicit.

Pearl & Sprouse forthcoming



The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)
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The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Complex NP islands

Who  claimed that Lily forgot the necklace? matrix | non-island
What did the teacher claim that Lily forgot  ? embedded | non-island
Who  made the claim that Lily forgot the necklace? matrix | island

*What did the teacher make the claim that Lily forgot ? embedded | island

Pearl & Sprouse forthcoming



The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Subject islands

Who _ thinks the necklace is expensive? matrix | non-island
What does Jack think __ is expensive? embedded | non-island
Who  thinks the necklace for Lily is expensive? matrix | island

*Who does Jack think the necklace for __ is expensive? embedded | island

Pearl & Sprouse forthcoming



The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Whether islands

Who _ thinks that Jack stole the necklace? matrix | non-island
What does the teacher think that Jack stole  ? embedded | non-island
Who  wonders whether Jack stole the necklace? matrix | island

*What does the teacher wonder whether Jack stole  ? embedded | island

Pearl & Sprouse forthcoming



The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Adjunct islands

Who  thinks that Lily forgot the necklace? matrix | non-island

What does the teacher think that Lily forgot  ? embedded | non-island

Who _ worries if Lily forgot the necklace? matrix | island
*What does the teacher worry if Lily forgot  ? embedded | island

Pearl & Sprouse forthcoming



The target state:
Adult knowledge of syntactic islands

Syntactic island = superadditive interaction of the two factors (additional
unacceptability that arises when the two factors are combined, above and

beyond the independent contribution of each factor).
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The target state:

Adult knowledge of syntactic islands

Sprouse et al. (2012)’s data on the four island types (173 subjects)

Superadditivity

present for all islands
tested

Knowledge that
dependencies cannot
cross these island
structures is part of the
adult knowledge state
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Characterizing the induction problem:

Syntactic islands

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data
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The data in the input

Data from five corpora of child-directed speech (Brown-Adam, Brown-Eve,
Brown-Sarah, Suppes, Valian) from CHILDES (MacWhinney 2000): speech to

25 children between the ages of one and five years old.
Total words: 813,036
Utterances containing a wh-dependency: 31,247
Sprouse et al. (2012) stimuli types:

ungrammatical

MATRIX + EMBEDDED + MATRIX + EMBEDDED +

NON-ISLAND NON-ISLAND ISLAND ISLAND

Complex NP 7 295 0 0
Subject 7 29 0 0
Whether 7 295 0 0
Adjunct 7 295 15 0

Pearl & Sprouse forthcoming



The data in the input

wh-dependency rarity
These kinds of utterances are fairly rare in general - the most frequent
appears about 0.9% of the time (295 of 31,247).

Sprouse et al. (2012) stimuli types (out of 31,247):

ungrammatical

MATRIX + EMBEDDED + MATRIX + EMBEDDED +

NON-ISLAND NON-ISLAND ISLAND ISLAND

Complex NP 7 295 0 0
Subject 7 29 0 0
Whether 7 295 0 0
Adjunct 7 295 15 0

Pearl & Sprouse forthcoming



The data in the input

Being grammatical doesn’t necessarily mean an utterance will appear in
the input at all.

Sprouse et al. (2012) stimuli types (out of 31,247):

ungrammatical

MATRIX + EMBEDDED + MARIX+ EMBEDDED +

NON-ISLAND NON-ISLAND ISIAND ISLAND

Complex NP 7 295 0
Subject 7 29 0
Whether 7 295 0
Adjunct 7 295 5 0

Pearl & Sprouse forthcoming



The data in the input

Unless the child is sensitive to very small frequencies, it’s difficult to tell
the difference between grammatical and ungrammatical dependencies
sometimes...

Sprouse et al. (2012) stimuli types (out of 31,247):

ungrammatical

MATRIX + EMBEDDED + MATRIX + EMBEDDED +

NON-ISLAND NON-ISLAND ISLAND ISLAND

Complex NP 295 0 0
Subject 29 0 0
Whether 295 0 0

U
o
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The data in the input

...and impossible to tell no matter what the rest of the time.

Sprouse et al. (2012) stimuli types (out of 31,247):

ungrammatical

MATRIX + EMBEDDED + MATRIX + EMBEDDED +

NON-ISLAND NON-ISLAND ISLAND ISLAND

Complex NP 7 295 0 y
Subject 7 29 0 0
Whether 7 295 0 0
Adjunct 7 295 15 0

Pearl & Sprouse forthcoming



The data in the input

If children are relying only on direct evidence and keying grammaticality
directly to frequency, this looks like an induction problem.

Sprouse et al. (2012) stimuli types (out of 31,247):

ungrammatical

MATRIX + EMBEDDED + MATRIX + EMBEDDED +

NON-ISLAND NON-ISLAND ISLAND ISLAND

Complex NP 7 295 0 0
Subject 7 29 0 0
Whether 7 295 0 0
Adjunct 7 295 15 0

Pearl & Sprouse forthcoming



Characterizing the induction problem:
Syntactic islands

initial state:
Bias: Learn only from direct evidence.

data intake: examples of specific wh-dependencies in the input

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data

Pearl & Sprouse forthcoming



Building a computational learner

Idea: Use indirect positive evidence, too.

Similar in spirit to linguistic parameters: Data are deemed informative, even
if they are not data about the specific phenomenon of interest.

— —
. o -,

v’ Y
Knowledge,_ -=-—"" Knowledge,
P
Data,

Here: Dependencies other than the ones of interest (the Sprouse et al.
2012 stimuli) are useful to learn from.

Pearl & Sprouse forthcoming



Characterizing the induction problem:
Syntactic islands

initial state:

+Bias: Learn from both direct and indirect evidence coming from wh-
dependencies.

data intake: all wh-dependencies in the input

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data

Pearl & Sprouse forthcoming



Building a computational learner

Learning Bias: Children track the occurrence of structures that can be
derived from phrase structure trees during parsing - container nodes.

[» Who did [;, she [, like __11]?
P VP

Container node sequence: IP-VP

[cp Who did [|; she [, think [, [;p [y the gift] [,p was [pp from __]]1111117
P VP CPIP VP PP

Container node sequence: IP-VP-CP-IP-VP-PP

Pearl & Sprouse forthcoming



Building a computational learner

Children’s hypotheses are about what container node sequences are

grammatical for dependencies in the language.

""""""

Ungrammatical
IP-VP-NP-CP-IP-VP

Grammatical

IP-VP
IP-VP-NP

|P-V/P-CP-IP-V/P-IP-VP-IP-VP

IP-VP-PP

IP-VP-CP-IP-NP-PP

| Pearl & Sprouse forthcoming



Characterizing the induction problem:
Syntactic islands

initial state:
Bias: Learn from both direct and indirect evidence coming from wh-

dependencies.
+Capability: Be able to parse data in the input into phrase structure trees.
+Bias: Characterize dependencies as sequences of container nodes.

data intake: all wh-dependencies in the input

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data

Pearl & Sprouse forthcoming



What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Complex NP islands Subject islands

IP matrix | non-island IP

|P-VP-CP-IP-VP embedded | non-island |P-VP-CP-IP

IP matrix | island IP
*IP-VP-NP-CP-IP-VP embedded | island *IP-VP-CP-IP-NP-PP

All the ungrammatical dependencies are distinct from all the grammatical
dependencies for these syntactic islands.

Pearl & Sprouse forthcoming



What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Whether islands Adjunct islands
IP matrix | non-island IP
|P-VP-CP-IP-VP embedded | non-island |P-VP-CP-IP-VP
IP matrix | island IP

*|P-VP-CP-1P-VP embedded | island *IP-VP-CP-IP-VP

Pearl & Sprouse forthcoming



What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Whether islands

|P

IP-VP-CP-IP-VP

IP

*|P-VP-CP-IP-VP

matrix | non-island
embedded | non-island

matrix | island
embedded | island

Adjunct islands

|P

IP-V/P-CP-IP-VP

IP

*[P-VP-CP-IP-VP

Uh oh - the ungrammatical dependencies look identical to some of the
grammatical dependencies for these syntactic islands.

Pearl & Sprouse forthcoming



Building a computational learner

Learning bias solution:

Have CP container nodes be more specified for the learner:
Use the lexical head to subcategorize the CP container node.
CP

CP,pger CP CP,, etc.

null? whether?

The learner can then distinguish between these structures:

IP-VP-CP,,,y/por- | P-VP
IP-VP-CP,etper /i IP-VP

Pearl & Sprouse forthcoming



What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Complex NP islands Subject islands
IP matrix | non-island IP
IP-VP-CP,, -IP-VP embedded | non-island IP-VP-CP,,-IP
IP matrix | island IP
*IP-VP-NP-CP,, -IP-VP embedded | island *IP-VP-CP, ,-IP-NP-PP

All the ungrammatical dependencies are still distinct from all the
grammatical dependencies for these syntactic islands.

Pearl & Sprouse forthcoming



What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Whether islands Adjunct islands
IP matrix | non-island IP
IP-VP-CP,, -IP-VP embedded | non-island IP-VP-CP,, -IP-VP
IP matrix | island IP

*IP-VP-CP,, ..., |P-VP embedded | island *IP-VP-CP-IP-VP

Now the ungrammatical dependencies are distinct from all the grammatical
dependencies for these syntactic islands, too.

Pearl & Sprouse forthcoming



Characterizing the induction problem:
Syntactic islands

initial state:
Bias: Learn from both direct and indirect evidence coming from wh-

dependencies.
Capability: Be able to parse data in the input into phrase structure trees.
Bias: Characterize dependencies as sequences of container nodes.
+Bias: Subcategorize container nodes by CP lexical content.

data intake: all wh-dependencies in the input

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data

Pearl & Sprouse forthcoming



Building a computational learner

Learning Bias: Implicitly assign a probability to a container node sequence by
tracking trigrams of container nodes. A sequence’s probability is the smoothed
product of its trigrams.

Pearl & Sprouse forthcoming



Building a computational learner

Learning Bias: Implicitly assign a probability to a container node sequence by
tracking trigrams of container nodes. A sequence’s probability is the smoothed
product of its trigrams.

[cp Who did [, she [, think [ [}p [yp the gift] [\, Was [ from __]1]1111117

IP VP CP,,, IP VP PP
start-IP-VP-CP, ,-IP-VP-PP-end =
start-IP-VP
IP-VP-CP,,
VP-CP,,-IP
CP,,-IP-VP
IP-VP-PP
VP-PP-end

Pearl & Sprouse forthcoming



Building a computational learner

Learning Bias: Implicitly assign a probability to a container node sequence by
tracking trigrams of container nodes. A sequence’s probability is the smoothed
product of its trigrams.

[cp Who did [, she [, think [ [}p [yp the gift] [\, Was [ from __]1]1111117

IP VP CP,,, IP VP PP
start-IP-VP-CP, ,-IP-VP-PP-end =
start-IP-VP
IP-VP-CP,,
VP-CP,,-IP
CP,,-IP-VP
IP-VP-PP
VP-PP-end

Probability(IP-VP-CP, ,-IP-VP-PP) = p(start-IP-VP-CP, ,-IP-VP-PP-end)
= p(start-IP-VP) * p(IP-VP-CP,,)*p(VP-CP

*p(IP-VP-PP)*p(VP-PP-end)

null

null_I P)*p(CPnull_I P-VP)

Pearl & Sprouse forthcoming



Building a computational learner

Learning Bias: Implicitly assign a probability to a container node sequence by
tracking trigrams of container nodes. A sequence’s probability is the smoothed
product of its trigrams.

What this does:
e longer dependencies are less probable than shorter dependencies, all other
things being equal

e individual trigram frequency matters: short dependencies made of infrequent
trigrams will be less probable than longer dependencies made of frequent trigrams

Effect: the frequencies observed in the input can temper the detrimental effect of
dependency length.

Pearl & Sprouse forthcoming



Characterizing the induction problem:
Syntactic islands

initial state:
Bias: Learn from both direct and indirect evidence coming from wh-

dependencies.
Capability: Be able to parse data in the input into phrase structure trees.
Bias: Characterize dependencies as sequences of container nodes.
Bias: Subcategorize container nodes by CP lexical content.
+Bias: Track trigrams of container nodes in the input.
+Capability: Generate probability of wh-dependency from trigrams of
container nodes characterizing it.

data intake: all wh-dependencies in the input

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data

Pearl & Sprouse forthcoming



Learning process

/Hear utterance Parse utterance, characterizing Identify trigrams and updg
dependencies as container trigram frequencies
node sequences

start-XP-YP + 1

— XP-YP-ZP... ——>

\ \Repeat until learning period ends /

Pearl & Sprouse forthcoming



Generating grammaticality preferences

/Parse structure,

characterizing dependencies
as container node sequences

Calculate probability of
Identify trigrams container node sequence
from trigrams

tart-XP-YP mmssss) | Probability =
——> S
XP-YP-ZP... XP-YP-ZP p(start-XP-YP) *
p(XP-YP-ZP) *

- y

Pearl & Sprouse forthcoming



Building a computational learner:
Empirical grounding
Child-directed speech (Brown-Adam, Brown-Eve, Suppes, Valian) from CHILDES:

What kind of dependencies are present?

76.7% IP-VP What did you see __?

12.8% IP What __ happened?
5.6% |P-VP-IP-VP What did she wanttodo __?
2.5% |P-VP-PP What did she read from __?

1.1% IP-VP-CP_ -IP-VP  What did she think he said __?

null

Pearl & Sprouse forthcoming



Characterizing the induction problem:
Syntactic islands

initial state:
Bias: Learn from both direct and indirect evidence coming from wh-
dependencies.
Capability: Be able to parse data in the input into phrase structure trees.
Bias: Characterize dependencies as sequences of container nodes.
Bias: Subcategorize container nodes by CP lexical content.
Bias: Track trigrams of container nodes in the input.
Capability: Generate probability of wh-dependency from trigrams of
container nodes characterizing it.

data intake: all wh-dependencies in the input

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data

Pearl & Sprouse forthcoming



Building a computational learner:
Empirical grounding

Hart & Risley 1995: Children hear approximately one million utterances in their first
three years.

Assumption: learning period for modeled learners is 3 years (ex: between 2 and 5
years old for modeling children’s acquisition), so they would hear one million
utterances.

Total learning period: 200,000 wh-dependency data points (wh-dependencies
make up approximately 20% of the input)

Pearl & Sprouse forthcoming



Characterizing the induction problem:
Syntactic islands

initial state:
Bias: Learn from both direct and indirect evidence coming from wh-
dependencies.
Capability: Be able to parse data in the input into phrase structure trees.
Bias: Characterize dependencies as sequences of container nodes.
Bias: Subcategorize container nodes by CP lexical content.
Bias: Track trigrams of container nodes in the input.
Capability: Generate probability of wh-dependency from trigrams of
container nodes characterizing it.

data intake: all wh-dependencies in the input
learning period: ~3 years = ~200,000 wh-dependency data points

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data

Pearl & Sprouse forthcoming



Success metrics

Compare learned grammaticality preferences to Sprouse et al. (2012) judgment
data.

Then, for each island, we plot the predicted grammaticality preferences from the
modeled learner on an interaction plot, using log probability of the dependency on
the y-axis. Non-parallel lines indicate knowledge of islands.
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Superadditivity
observed for all four
islands:

This learner has
knowledge of these
syntactic islands!

That means this learner
can solve this induction
problem.

Now...what did it need
to do so?

Learning results

Complex NP Island

log probabilities
log probabilities

—— non-island structure *
- - - island structure

[ |
matrix embedded

Whether Island

log probabilities

— non-island structure N
- -- island structure +

[ |
matrix embedded

L
o
|

|
[y

I
o
|

matrix

Subject Island

— non-island structure ~~.
island structure

[ |
embedded

Adjunct Island

—— non-island structure
- - - island structure +

[ |
matrix embedded
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Proposed learning biases/capabilities

Several learning biases/capabilities are potentially both innate and domain-specific.

Innate Derived Domain- Domain-

specific  general

Learn from all wh-dependencies ? ? *

Parse data into phrase structure trees ? ? *

Attend to container nodes & subcategorize by CP ? ? *

Extract & track container node trigrams * *
* *

Calculate dependency probability from trigrams
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Innate Derived Domain- Domain-

specific  general

Learn from all wh-dependencies ? ? *

Pearl & Sprouse forthcoming



Innate Derived Domain- Domain-

specific  general

Learn from all wh-dependencies ? ? *

Clearly domain-specific, since this is language data.

May seem reasonable to attend to wh-dependency data when learning about
wh-dependencies (and so this would be derived)

Pearl & Sprouse forthcoming



Innate Derived Domain- Domain-

specific  general

Learn from all wh-dependencies ? ? *

Clearly domain-specific, since this is language data.

May seem reasonable to attend to wh-dependency data when learning about
wh-dependencies (and so this would be derived)

...but then why not attend to all dependencies (ex: relative clause dependencies,
binding dependencies) since wh-dependencies are a kind of dependency?

Empirical necessity of just using wh-dependency data:

There are different island effects for relative clauses (Sprouse et al. submitted) and no
island effects for binding dependencies, so the learner needs to know to pay
attention just to wh-dependencies.

Pearl & Sprouse forthcoming



Innate Derived Domain- Domain-

specific = general

Parse data into phrase structure trees ? ? *
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Innate Derived Domain- Domain-

specific = general

Parse data into phrase structure trees ? ? *

Clearly domain-specific, since the structure is specific to language.

May be possible to bootstrap this information (acquiring syntactic categories: Mintz 2003,

2006; acquisition of hierarchical structure given syntactic categories as input: Klein & Manning 2002).
If so, this would be derived...

Pearl & Sprouse forthcoming



Innate Derived Domain- Domain-

specific = general

Parse data into phrase structure trees ? ? *

Clearly domain-specific, since the structure is specific to language.

May be possible to bootstrap this information (acquiring syntactic categories: Mintz 2003,
2006; acquisition of hierarchical structure given syntactic categories as input: Klein & Manning 2002).
If so, this would be derived...

...but it’s currently unclear if all the necessary phrase structure knowledge can be
bootstrapped.

Important:

The need for this capability is not specific to learning islands — it’s (presumably)
needed for learning any kind of syntactic knowledge.
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Innate Derived Domain- Domain-

specific  general

Attend to container nodes & subcategorize by CP ? ? *
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Derived Domain- Domain-

specific  general

Attend to container nodes & subcategorize by CP ? ? *

Identifying container nodes
- applies to language data: domain-specific
- derived from ability to parse utterances

Pearl & Sprouse forthcoming



Innate Derived Domain- Domain-

specific  general

Attend to container nodes & subcategorize by CP ? ? *

Identifying container nodes
- applies to language data: domain-specific
- derived from ability to parse utterances

Attending to container nodes (among all the other data out there)
- applies to language data: domain-specific
- innate vs. derived?

* could be specified innately (like bounding nodes)

* could be derived from a bias to use representations that are already

being used for parsing

Pearl & Sprouse forthcoming



Innate Derived Domain- Domain-

specific  general

Attend to container nodes & subcategorize by CP ? ? *

Pearl & Sprouse forthcoming



Innate Derived Domain- Domain-

specific  general

Attend to container nodes & subcategorize by CP ? ? *

About a linguistic representation: domain-specific

Innate vs. derived?
 Could be specified innately

Pearl & Sprouse forthcoming



Innate Derived Domain- Domain-

specific  general

Attend to container nodes & subcategorize by CP ? ? *

About a linguistic representation: domain-specific

Innate vs. derived?
 Could be specified innately

* Could be derived from prior linguistic experience:
* Uncontroversial to assume children learn to distinguish different
types of CPs since the lexical content of CPs has substantial

consequences for the semantics of a sentence.

* Also, adult speakers are sensitive to the distribution of that
versus null complementizers (Jaeger 2010).

...but still have to know this is the right thing to subcategorize.
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Innate Derived Domain- Domain-

specific  general

Extract & track container node trigrams * *

Pearl & Sprouse forthcoming



Innate Derived Domain- Domain-

specific  general

Extract & track container node trigrams * *

Applied in different cognitive domains: domain-general

Likely innate — learning with sequences of three units (transitional

probabilities: Saffran et al. 1996, Aslin et al. 1998, Graf Estes et al. 2007, Pelucchi et al. 20093,
Pelucchi et al. 2009b; frequent frames for grammatical categorization: Mintz 2006, Wang &

Mintz 2008)

...though why trigrams instead of some other n-gram?
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Innate Derived Domain- Domain-

specific  general

Calculate dependency probability from trigrams * *
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Innate Derived Domain- Domain-

specific  general

Calculate dependency probability from trigrams * *

Applied in different cognitive domains: domain-general

Likely innate
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Main implications of this learner

(1) Even though there is an induction problem for
these syntactic islands, it may not require Universal
Grammar learning biases to solve it.

Innate Derived Domain- Domain-

specific general

Learn from all wh-dependencies ? ? *

Parse data into phrase structure trees ? ? *

Attend to container nodes & subcategorize by CP ? ? *

Extract & track container node trigrams * *
* %

Calculate dependency probability from trigrams

Pearl & Sprouse forthcoming



Main implications of this learner

(2) Even if Universal Grammar learning biases are
required, they are different from (and less specific than)
the biases previously proposed.

In particular, while one bias also specifies a particular
linguistic representatio;-j, there is no bias defining the
“constraint”. This falls out from the other non-UG
Iearri@ng biases. g

Innate Derived Domain- Domain-

specific general

Learn fF‘pm all Wh—dépe;ﬁdencies ? ? *
Attend to container nodes & subcategorize by CP ? ? *
| | Vs.
LoV
Attend to qundlng nodes (BNs) * *
Dependencies crossing 2+ BNs are not allowed * *
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Road Map

v

Il. Potential induction problem: det
Learning English anaphoric one /

one




English anaphoric one

Look - a red bottle!
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English anaphoric one

Look - a red bottle!

Do you see another one?
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English anaphoric one

Look - a red bottle!

red bottle
Do YOu See another one?

Process: First determine the antecedent of one (what string one is referring to).
- “red bottle”

Pearl & Mis submitted



English anaphoric one

Look - a red bottle!

red bottle
Do YOu See another one?

Process: Because the antecedent (“red bottle”) includes the modifier “red”, the
property RED is important for the referent of one to have.
- referent of one = RED BOTTLE Pearl & Mis submitted



English anaphoric one

Look - a red bottle!

Do you see another one?

Two steps:
(1) Identify syntactic antecedent
(2) Identify semantic referent (based on syntactic antecedent)

Pearl & Mis submitted



Anaphoric one: Syntactic category

Standard linguistic theory (Chomsky 1970, Jackendoff 1977) posits that one in these
kind of utterances is a syntactic category smaller than an entire noun phrase
(NP), but larger than just a noun (N°). This category is N’. This category
includes strings like “bottle” and “red bottle”.

NP

N

det N’

another NO

bottle

[\p @nother [, [, bottle]]]

NP

N

det N’

VAN

another  4; N’

red NO
|

bottle
[\p @nother [, red [ [y, bottle]]]]
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Anaphoric one: Syntactic category

Standard linguistic theory (Chomsky 1970, Jackendoff 1977) posits that one in these
kind of utterances is a syntactic category smaller than an entire noun phrase

(NP), but larger than just a noun (N°). This category is N’. This category
includes strings like “bottle” and “red bottle”.

one

[\p @another [, [, bottle]]] [yp @another [, red [ [yobO
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Anaphoric one: Syntactic category

Importantly, one is not N°. If it was, it could only have strings like “bottle” as
its antecedent, and could never have strings like “red bottle” as its

antecedent.

NP

N

det N’

another N©

bottle

[\p @nother [, [, bottle]]]

NP

N

det N’

VAN

another  4; N’

red N©
|

bottle

[\p @another [, red [, [y, bottle]
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Anaphoric one:
Interpretations based on syntactic category

If one was N°, we would have a different interpretation of

“Look — a red bottle! Do you see another one?”

Because one’s antecedent could only be “bottle”, we would have to
interpret the second part as “Do you see another bott/e?” and the
purple bottle would be a fine referent for one.

Since one’s antecedent is “red bottle”, and “red bottle” cannot be N¢,
one must not be NO.

Pearl & Mis submitted



Anaphoric one: Adult knowledge

“Look — a red bottle! Look, there’s another one!”
=~ “Look — a red bottle! Look, there’s another red bottle!”

Target state:
Syntactic knowledge: category N’

Semantic knowledge: mentioned property (“red”) is included in the
linguistic antecedent (antecedent = “red bottle”)

Pearl & Mis submitted



Anaphoric one: Children’s knowledge

Lidz, Waxman, & Freedman (2003) [LWF] found that 18-
month-olds have a preference for the red bottle in
the same situation.

“Look —a red bottle! Do you see another one?”

LWF interpretation & conclusion:

Preference for the RED BOTTLE means the preferred
syntactic antecedent is “red bottle”.

Pearl & Mis submitted



Anaphoric one: Children’s knowledge

Lidz, Waxman, & Freedman (2003) [LWF] found that 18-
month-olds have a preference for the red bottle in
the same situation.

“Look —a red bottle! Do you see another one?”

LWF interpretation & conclusion:

Preference for the RED BOTTLE means the preferred
syntactic antecedent is “red bottle”.

LWF concluded that 18-month-old knowledge =
syntactic category of one = N’

syntactic antecedent when modifier is present (i.e.,

property is mentioned) includes modifier (e.g.,
“red”) = referent has modifier property

Learning period = completed by 18 months

Pearl & Mis submitted



Characterizing the induction problem:
English anaphoric one

initial state:
Knowledge: Syntactic categories exist, in particular N°, N’, and NP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the same
category.

Bias: Only direct evidence of one is useful.
Bias: Only unambiguous evidence of one is useful (Baker 1978).

data intake:
All unambiguous one evidence in the input.

learning period:
Completed by 18 months (LWF 2003)

target state:
One is category N’ and its antecedent includes the mentioned modifier when present.

Behavior signal: Generate adult interpretation in utterances with mentioned modifier
(“Look — a red bottle. Do you see another one?”)
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Anaphoric one: The available data

Acquisition: Children must learn the right syntactic category for one, and the right
interpretation preference for one in situations with more than one option.

Pearl & Mis submitted



Anaphoric one: The available data

Acquisition: Children must learn the right syntactic category for one, and the right
interpretation preference for one in situations with more than one option.

Problem: Unambiguous data are rare (<0.25%: LWF 2003, 0.00%: Pearl & Mis submitted)
Unambiguous (UNAMB) data:

“Look — a red bottle! Hmmm - there doesn’t seem to be another one here,
though.”

one’s referent = BOTTLE? If so, one’s antecedent = “bottle”.
But it’s strange to claim there’s not another bottle here.
So, one’s referent must be RED BOTTLE, and one’s antecedent = [, red[ [, bottle]]].
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Anaphoric one: The available data

Acquisition: Children must learn the right syntactic category for one, and the right
interpretation preference for one in situations with more than one option.

Problem: Most data children encounter are ambiguous.

Syntactically (SYN) ambiguous data:
“Look — a bottle! Oh, look —another one.”

one’s referent = BOTTLE
one’s antecedent = [, bottle]] or [, bottle]?

Pearl & Mis submitted



Anaphoric one: The available data

Acquisition: Children must learn the right syntactic category for one, and the right
interpretation preference for one in situations with more than one option.

Problem: Most data children encounter are ambiguous.

Semantically and syntactically (SEM-SYN) ambiguous:
“Look — a red bottle! Oh, look —another one.”

one’s referent = RED BOTTLE Or BOTTLE?
one’s antecedent = [, red[,.[yo bottle]]] or [[yo bottle]] or [, bottle]?

Pearl & Mis submitted



Previous learning strategies

Update the initial state

Baker (1978) (also Hornstein & Lightfoot 1981, Lightfoot 1982, Hamburger & Crain 1984, Crain
1991): Only unambiguous data are informative. Because they’re so rare,
they can’t be responsible for the acquisition of one.

How then?

Children have innate, domain-specific knowledge restricting the
hypotheses about one: one cannot be syntactic category N,

What about when there are multiple N’ antecedents?

[\ red[y[yobottle]]] or [[y, bottle]]?
(No specific proposal for this.)

Pearl & Mis submitted



Previous learning strategies
Update the initial state

Baker (1978) [DirectUnamb]
initial state

Knowledge: Syntactic categories exist, in particular N°, N’, and NP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the
same category.

Bias: Only direct evidence of one is useful.
Bias: Only unambiguous evidence of one is useful (Baker 1978).
+ (UG) Knowledge: one is not N°.

Successful at solving induction problem w.r.t syntactic category.
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Previous learning strategies

Update the initial state

Regier & Gahl 2004 [R&G]: Sem-Syn ambiguous data can be leveraged, in
addition to using unambiguous data.

“Look — a red bottle! Oh, look — another onel”

How?

Use innate domain-general statistical learning abilities (Bayesian inference)
to track how often one’s referent has the mentioned property (e.g. red). If
the referent often has the property (RED BOTTLE), this is a suspicious
coincidence unless the antecedent really does include the modifier (“red
bottle”) and one’s category is N’

[\ red[y[yo bottle]]]
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Previous learning strategies

Update the initial state

Regier & Gahl 2004 [R&G]
initial state

Knowledge: Syntactic categories exist, in particular N°, N’, and NP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the same
category.

Bias: Only direct evidence of one is useful.
- Bias: Only unambiguous evidence of one is useful (Baker 1978).

+ Bias: Use Bayesian inference.

Successful at solving induction problem.

Pearl & Mis submitted



Previous learning strategies
Update the initial state

Pearl & Lidz 2009 [P&L]: Syn ambiguous data must not be leveraged, even if Sem-Syn
and unambiguous data are used.

“Look — a bottle! Oh, look — another one!”

Why?
These data cause an “equal-opportunity” (EO) probabilistic learner to think one’s
category is NO,
[\o bOttle]
How?

P&L propose a domain-specific learning bias to ignore just these ambiguous data,
though they speculate how this bias could be derived from an innate domain-
general preference for learning when there is local uncertainty.
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Previous learning strategies

Update the initial state

Pearl & Lidz 2009 [R&G in practice, Equal Opportunity = DirectEO]
initial state

Knowledge: Syntactic categories exist, in particular N°, N’, and NP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the same
category.

Bias: Only direct evidence of one is useful.

- Bias: Only unambiguous evidence of one is useful (Baker 1978).
+ Bias: Use Bayesian inference.

Not successful at solving induction problem.
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Previous learning strategies

Update the initial state

Pearl & Lidz 2009 [R&G intended, P&L filtered = DirectFiltered]
initial state

Knowledge: Syntactic categories exist, in particular N°, N’, and NP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the same
category.

Bias: Only direct evidence of one is useful.

- Bias: Only unambiguous evidence of one is useful (Baker 1978).
+ Bias: Use Bayesian inference.

+ (UG?) Bias: Ignore Syn ambiguous data.

Successful at solving induction problem.
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A new strategy:
Using indirect positive evidence

Pearl & Mis (2011, submitted) [+OtherPro]: Other words in the language
can also be used anaphorically: him, her, it, ...

Look at the cute penguin. | want to hug it.

[\p the [ cute [ [yo PENgUIN]]]] —> [pit]

Look! A cute penguin. | want one.

[wp @ [ cute [ [yo PENgUIN]]]] > [, One]

Note: The issue of one’s category only occurs when one is used in a syntactic
environment that indicates it is smaller than an NP (<NP).
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A new strategy:
Using indirect positive evidence

Pearl & Mis (2011, submitted) [+OtherPro]: Track how often the referent of
the anaphoric element (one, him, her, it, etc.) has the property
mentioned in the potential antecedent, using innate domain-general
statistical learning abilities (Bayesian inference).

Important: This applies, even when the syntactic category is known.

Look at the cute penguin. | want to hug it.

Look! A cute penguin. | want one.

Is the referent cute? Yes!
So the antecedent includes
the modifier “cute”.
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A new strategy:
Using indirect positive evidence

Pearl & Mis (2011, submitted) [+OtherPro]: Track how often the referent of
the anaphoric element (one, him, her, it, etc.) has the property
mentioned in the potential antecedent, using innate domain-general
statistical learning abilities (Bayesian inference).

Important: This applies, even when the syntactic category is known.

Look at the cute penguin. | want to hug it.

Look! A cute penguin. | want one.

These kind of data points will always include the modifier in the
antecedent, since the category of the pronoun is NP and so the
antecedent is the entire NP. These data are unambiguous: The

referent must have the mentioned property & the antecedent
must include the modifier corresponding to that property.
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A new strategy:
Using indirect positive evidence

Pearl & Mis (2011, submitted) [+OtherPro]

initial state
Knowledge: Syntactic categories exist, in particular N°, N’, and NP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the
same category.

- Bias: Only direct evidence of one is useful.

- Bias: Only unambiguous evidence of one is useful (Baker 1978).
+ Bias: Use Bayesian inference.

+ (UG?) Bias: Learn from other pronoun data.

Successful at solving induction problem?
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Data set comparisons

Unamb <NP
“Look — a red bottle! Hmmm - there doesn’t seem to be another one here, though.”

Learners: DirectUnamb, DirectFiltered, DirectEO, +OtherPro

Sem-Syn Amb
“Look — a red bottle! Oh, look — another one!”

Learners: DirectFiltered, DirectEO, +OtherPro

Syn Amb
“Look — a bottle! Oh, look — another one

III

Learners: DirectEO, +OtherPro

Unamb NP
“Look — a red bottle! | want one/it.”

Learners: +OtherPro
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——————————

R
T
Pro || env m |
v '
o-m |

[ ]= observed
[]= latent

Information in the data

Understanding a referential expression
Includes both syntactic and semantic/referential

information, since both are used to determine the
linguistic antecedent.
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.......... \ Information in the data

“Look, a red bottle! Look, another one!”

Syntactic information

o-m R = referential expression used
v ex: “another one”

Pro = pronoun used in referential expression
ex: “one”

[]=observed env = smaller than NP?
[]=latent ex: yes
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.......... \ Information in the data

|
R |

: “Look, a red bottle! Look, another one!”
|

Pro|lenv| i |m — .
! Syntactic information
v
|

| 0-m C = syntactic category of pronoun used (= syntactic category

Ly of linguistic antecedent)

det || mod | | | i ex: N’
I

det = antecedent includes determiner?

€ex: no

[ ]= observed
[]= latent

mod = antecedent includes modifier?
ex: yes
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R
Pro || env i m
'
LV
det || mod | i

@)

[ ]= observed
[]= latent

Information in the data

“Look, a red bottle! Look, another one!”

Semantic/referential information

m = property mentioned in previous linguistic context
ex: yes

o-m = referent (object) in current context has mentioned
property

ex: yes

i = mentioned property is included in antecedent?
ex: yes
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R
Pro || env m
v
o-m
v
det || mod i

@)

[ ]= observed
[]= latent

Information in the data

“Look, a red bottle! Look, another one!”

A = antecedent
ex: “red bottle”

(depends on both syntactic information of det and mod,

and semantic/referential information from i.)

O = intended object (learner can usually observe this)

eXx: RED BOTTLE

Pearl & Mis submitted



The online probabilistic learning framework

semantic/referential knowledge

Pr m
1 When an object has the property mentioned in
| o-m i the potential antecedent (o-m=yes), track the
E | probability that the property is included in the

R
0
det

antecedent (i=yes):

d

_____

Pine = Pli=yes | o-m=yes)

Two values: (i=yes or i=no)

[ ]= observed
[]= latent

env
mo
O
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The online probabilistic learning framework

[ ]= observed

D = |latent

syntactic knowledge

When the syntactic environment indicates the
category is smaller than NP (env=<NP), track the
probability that the syntactic category is N’ (C=N’):

py = P(C=N" | env=<NP)

Two values: (C=N’ or C=N?)
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The online probabilistic learning framework

General form of online update equations for p, (adapted from Chew 1971):
data seen suggesting x is true

Dx = @ +@ @) A very weak prior
a + B Ktotaldatax

total informative data seen w.r.t x

After every informative data point encountered:
datax = datax + Incremented by probability that data point suggests x is true

totaldatax = totaldatax -I-@ One informative data point seen
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Corpus analysis & learner input

Brown/Eve corpus (CHILDES: MacWhinney 2000)

17,521 utterances of child-directed speech, 2874 referential pronoun utterances

Unamb <NP 0.00%
Sem-Syn Amb 0.66%
Syn Amb 7.52%
Unamb NP 8.42%

Uninformative 83.4%

Pearl & Lidz 2009: Children learn one’s representation between 14 and 18 months.
Based on estimates of the number of utterances children hear from birth until 18 months

(Akhtar et al., 2004), we can calculate the data distribution in their input (36,500 referential
pronoun utterances total).
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Corpus analysis & learner input

Brown/Eve corpus (CHILDES: MacWhinney 2000)

17,521 utterances of child-directed speech, 2874 referential pronoun utterances

DirectUnamb DirectFiltered DirectEO +OtherPro
Unamb <NP 0.00% 0 0 0 0
Sem-Syn Amb 0.66% 0 242 242 242
Syn Amb 7.52% 0 0 2743 2743
Unamb NP 8.42% 0 0 0 3073
Uninformative 83.4% 36500 36258 33515 30442

Pearl & Lidz 2009: Children learn one’s representation between 14 and 18 months.
Based on estimates of the number of utterances children hear from birth until 18 months

(Akhtar et al., 2004), we can calculate the data distribution in their input (36,500 referential
pronoun utterances total).
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Measures of success:
Children’s behavior

In addition to directly assessing p...,and p,, we can measure how often a
learner would reproduce the behavior in the LWF experiment (p,.,).

Look — a red bottle!

Do you see another one?
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Testing assumptions about what behavior means

Does target behavior in the LWF experiment mean the learner has the target
representation for one in general (as measured by p,.,and p,,)?

Signal: p,., is high only when p,, ,and p,. are both high.

Does the target behavior in the LWF experiment mean the learner has the
target representation for one at the time the behavior is being produced?

Prep|ben: GiVEN that the learner has looked at the red bottle, what is the probability that
the learner has the target knowledge representation (N’, “red bottle”) while doing so?

Signal: p,., pen is high (irrespective of p,, ,and p,).

Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

DirectUnamb

Pini 0.50 (<0.01)

Py 0.50 (<0.01)

Ppeh 0.56 (<0.01)

Prepiben  0-23 (<0.01)

Since the input data include no Unambiguous <NP data, and those are the only
data the DirectUnamb learner learns from, it learns nothing.
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Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

DirectUnamb

Pini 0.50 (<0.01)

Py 0.50 (<0.01)

Ppeh 0.56 (<0.01)

Prepiben  0-23 (<0.01)

It is at chance for having the target syntactic and semantic representation.

It is only slightly above chance at producing the observed toddler behavior, and
when it does, it is unlikely to have the target representation when doing so.

Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

DirectUnamb

Pini 0.50 (<0.01)

Py 0.50 (<0.01)

Ppeh 0.56 (<0.01)

Prepiben  0-23 (<0.01)

Implication:
This is an induction problem if only unambiguous <NP data are relevant.

Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

DirectUnamb DirectFiltered

Pinc 0.50 (<0.01) 0.91 (<0.01)
Py 0.50 (<0.01) 0.98 (<0.01)
Pbeh 0.56 (<0.01) 0.88 (<0.01)
Prepiben  0-23 (<0.01) 0.87 (<0.01)

Other learning strategies: DirectFiltered learner (R&G, P&L’s filtered)

This learner believes a mentioned property should be included in the antecedent
and one is N” when it is smaller than NP, which is similar to previous findings by
R&G & P&L.

Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

DirectUnamb DirectFiltered

Pinc| 0.50 (<0.01) 0.91 (<0.01)
Py 0.50 (<0.01) 0.98 (<0.01)
Pbeh 0.56 (<0.01) 0.88 (<0.01)
Prepiben  0-23 (<0.01) 0.87 (<0.01)

Other learning strategies: DirectFiltered learner (R&G, P&L’s filtered)

In addition, it is likely to generate the observed toddler behavior, and have the
target representation when doing so.

Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

DirectUnamb DirectFiltered DirectEO
Pini 0.50 (<0.01) 0.91 (<0.01) 0.10 (0.05)
Py 0.50 (<0.01) 0.98 (<0.01) 0.18 (0.03)
Ppeh 0.56 (<0.01) 0.88 (<0.01) 0.50 (<0.01)
Prep|beh 0.23 (<0.01) 0.87 (<0.01) 0.01 (0.01)

Other learning strategies: DirectEO learner (P&L’s EO)

The learner does not believe the mentioned property should be included in the
antecedent, and prefers one to be N° when it is smaller than NP.
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Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

DirectUnamb DirectFiltered DirectEO
Pini 0.50 (<0.01) 0.91 (<0.01) 0.10 (0.05)
Py 0.50 (<0.01) 0.98 (<0.01) 0.18 (0.03)
Ppeh 0.56 (<0.01) 0.88 (<0.01) 0.50 (<0.01)
Prep|beh 0.23 (<0.01) 0.87 (<0.01) 0.01 (0.01)

Other learning strategies: DirectEO learner (P&L’s EO)
This causes the learner to be at chance at generating the observed toddler

behavior, and unlikely to have the target representation when generating that
behavior.
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Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

DirectUnamb DirectFiltered DirectEO +OtherPro
Pini 0.50 (<0.01) 0.91 (<0.01) 0.10 (0.05) >0.99 (<0.01)
Py 0.50 (<0.01) 0.98 (<0.01) 0.18 (0.03) 0.37 (0.04)
Ppeh 0.56 (<0.01) 0.88 (<0.01) 0.50 (<0.01) >0.99 (<0.01)
Prep|beh 0.23 (<0.01) 0.87 (<0.01) 0.01 (0.01) >0.99 (<0.01)

The +OtherPro learner robustly decides the antecedent should include the
mentioned property.

However, the learner has a moderate dispreference for believing one is N” when it
is smaller than NP.

This is therefore not the target representation.
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Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

DirectUnamb DirectFiltered DirectEO +OtherPro
Pini 0.50 (<0.01) 0.91 (<0.01) 0.10 (0.05) >0.99 (<0.01)
Py 0.50 (<0.01) 0.98 (<0.01) 0.18 (0.03) 0.37 (0.04)
Ppeh 0.56 (<0.01) 0.88 (<0.01) 0.50 (<0.01) >0.99 (<0.01)
Prep|beh 0.23 (<0.01) 0.87 (<0.01) 0.01 (0.01) >0.99 (<0.01)

However...this learner still generates the observed toddler behavior with high

probability, and has the target representation when doing so.
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Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

DirectUnamb DirectFiltered DirectEO +OtherPro
Pini 0.50 (<0.01) 0.91 (<0.01) 0.10 (0.05) >0.99 (<0.01)
Py 0.50 (<0.01) 0.98 (<0.01) 0.18 (0.03) 0.37 (0.04)
Ppeh 0.56 (<0.01) 0.88 (<0.01) 0.50 (<0.01) >0.99 (<0.01)
Prep|beh 0.23 (<0.01) 0.87 (<0.01) 0.01 (0.01) >0.99 (<0.01)
Why?

The learner believes very strongly that the mentioned property must be included
in the antecedent.

Only one representation allows this: [, red[.[y, bottle]]]
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Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

DirectUnamb DirectFiltered DirectEO +OtherPro
Pini 0.50 (<0.01) 0.91 (<0.01) 0.10 (0.05) >0.99 (<0.01)
Py 0.50 (<0.01) 0.98 (<0.01) 0.18 (0.03) 0.37 (0.04)
Ppeh 0.56 (<0.01) 0.88 (<0.01) 0.50 (<0.01) >0.99 (<0.01)
Prep|beh 0.23 (<0.01) 0.87 (<0.01) 0.01 (0.01) >0.99 (<0.01)
Why?

So, because the antecedent includes the mentioned property, it and the referential
pronoun referring to it (one) must be N’ in this context - even if the learner believes
one is not N’ in general.
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Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

DirectUnamb DirectFiltered DirectEO +OtherPro
Pini 0.50 (<0.01) 0.91 (<0.01) 0.10 (0.05) >0.99 (<0.01)
Py 0.50 (<0.01) 0.98 (<0.01) 0.18 (0.03) 0.37 (0.04)
Ppeh 0.56 (<0.01) 0.88 (<0.01) 0.50 (<0.01) >0.99 (<0.01)
Prep|beh 0.23 (<0.01) 0.87 (<0.01) 0.01 (0.01) >0.99 (<0.01)

Take away point:
A learner using an indirect positive evidence strategy can generate target behavior

without reaching the target state — instead, this learner has a context-sensitive
representation (depending on whether a property was mentioned).

Pearl & Mis submitted



Learning strategies & induction problems

Using indirect positive evidence:
Generate observed target behavior without having target state knowledge

What does this mean for the induction problem?

target state:
One is category N’ and its antecedent includes the mentioned modifier when present.

Behavior signal: Generate adult interpretation in utterances with mentioned modifier
(“Look — a red bottle. Do you see another one?”) ????

The link between observed behavior and underlying knowledge representation may
not be so clearcut.

Pearl & Mis submitted



Learning strategies & induction problems

Using indirect positive evidence:
Generate observed target behavior without having target state knowledge

What does this mean for the induction problem?

target state:
One is category N’ and its antecedent includes the mentioned modifier when present.

Behavior signal: Generate adult interpretation in utterances with mentioned modifier
(“Look — a red bottle. Do you see another one?”)

+Behavior signal: Recognize ungrammaticality of utterances where one is used as an
NO, like *“Jack sat by the side of the road and Lily sat by the one of the river.”

Children may achieve this later than 18 months.

Pearl & Mis submitted



Learning strategies & induction problems

Using indirect positive evidence:
Generate observed target behavior without having target state knowledge

What does this mean for the induction problem?

target state:
One is category N’ and its antecedent includes the mentioned modifier when present.

[Stage 1] Behavior signal: Generate adult interpretation in utterances with mentioned
modifier (“Look — a red bottle. Do you see another one?”)

[Stage 2] Behavior signal: Recognize ungrammaticality of utterances like
*”Jack sat by the side of the road and Lily sat by the one of the river.”

Maybe there are (at least) two stages of acquisition?

Pearl & Mis submitted



Motivating UG

What kind of biases does the +OtherPro learner use, if we want to achieve
stage 1?

initial state: Two new biases
Knowledge: Syntactic categories exist, in particular N°, N’, and NP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the same
category.

+ Bias: Use Bayesian inference.
+ Bias: Learn from other pronoun data.

Pearl & Mis submitted



Motivating UG

What kind of biases does the +OtherPro learner use, if we want to achieve
stage 1?

Bias to use Bayesian inference:

innate, domain-general statistical learning ability (not UG)

Pearl & Mis submitted



Motivating UG

What kind of biases does the +OtherPro learner use, if we want to achieve
stage 1?

Bias to learn from other pronoun data:

concerns language data, so clearly domain-specific

innate or derived?

Pearl & Mis submitted



Motivating UG

What kind of biases does the +OtherPro learner use, if we want to achieve
stage 1?

Bias to learn from other pronoun data:

concerns language data, so clearly domain-specific

innate or derived?
If innate, then this is a UG bias.

If so, this is a specific proposal for the contents of UG that is less specific than
Baker’s proposal and doesn’t involve limiting the data intake like the
DirectFiltered strategy.

Pearl & Mis submitted



Motivating UG

What kind of biases does the +OtherPro learner use, if we want to achieve
stage 1?

Bias to learn from other pronoun data:

concerns language data, so clearly domain-specific

innate or derived?

Could be derived from prior linguistic experience with pronouns (and noticing
overlapping syntactic environments for “one” and other referential pronouns.)

If so, this is a non-UG learning strategy that will produce the desired behavior.
This then takes away support for UG that comes from this induction problem
characterization.

Pearl & Mis submitted



The big picture:
Making an argument from acquisition for UG

Universal Grammar: a theory of linguistic knowledge that is
explicitly motivated by the existence of induction problems during
acquisition and the solutions to those problems.

Existence
Requires a specific characterization that defines initial state,
data intake, learning period, and target state

Solutions
Here: Exploring an indirect positive evidence learning strategy
as a general approach, and applying it to two different
induction problems. We can then examine the biases involved.



Making progress on UG

|. Potential induction problem:

Learning constraints on long-
distance dependencies

Target state knowledge indicated by adult judgment behavior.
Indirect positive evidence strategy can generate this behavior.

Strategy may involve UG biases, but if so, they’re much less specific
than those previously proposed.



Making progress on UG
 Target state knowledge thought to be indicated by 18-month-old behavior...
but may not actually be (potential recharacterization of induction problem).
* Indirect positive evidence strategy can generate this behavior, though.

e  Strategy may involve a UG bias, but if so, it’s much less specific than what
was previously proposed.

« May mean there are two stages of knowledge acquisition.

NP

Il. Potential induction problem: det
Learning English anaphoric one /

one




Empirically investigating UG

Empirical investigation of UG involves drawing on multiple
research methods to

(1) make sure we’re all worried about the same problem, and

(2) make headway on the UG debate by providing a formal
mechanism for evaluating induction problem solutions

Computational methods

Theoretical methods
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Extra Material



Why learning from container node trigrams works

For each island-spanning dependency, there is at least one extremely low
probability container node trigram in the dependency.

Complex N

start-1P-

P island

VP

N P_CPfhaf-

|P

Whether island

-VP-end

start-

IP-

VP

CP

whether’

P-

VP!

end

Subject island

start-IP-VP-CP_ .#IP-NP-PP:end
Adjunct island
startrIPVP-CP.+IP-VP-end

These trigrams are never observed in the input — which is crucially different than
being observed rarely. Thus, these islands are worse than dependencies
involving trigrams that are rarely seen (e.g., dependencies with CP,, .,) and even
longer dependencies that involve more frequenct trigrams (e.g., triply
embedded object dependencies using CP, )

Pearl & Sprouse forthcoming



The empirical necessity of trigrams

Not unigrams
A unigram model will successfully learn Whether and Adjunct islands, as there

are container nodes in these dependencies that never appear in grammatical
dependencies (CP,;.iher and CP)....but it will fail to learn Complex NP and
Subject islands, as all of the container nodes in these islands are shared with

grammatical dependencies.

Complex NP:  *IP-VP-NP-CP,, -IP-VP

Subject: *IP-VP-CP_-IP-NP-PP
Whether: IP-VP-CP,, ... -|P-VP
Adjunct: IP-VP-CP-IP-VP

Pearl & Sprouse forthcoming



The empirical necessity of trigrams

Not bigrams
At least for Subject islands, there is no bigram that occurs in a Subject island

violation but not in any grammatical dependencies. The most likely candidate
for such a bigram is IP-NP...However, sentences such as What, again, about Jack
impresses you? or What did you say about the movie scared you? suggest that a
gap can arise inside of NPs, as long as the extraction is of the head noun (what),
not of the noun complement of the preposition.

Complex NP:  IP-VP-NP-CP,,_.-IP-VP
Subject: *IP-VP-CP__-IP-NP-PP
Whether: IP-VP-CP,, ... -|P-VP
Adjunct: IP-VP-CP-IP-VP

Pearl & Sprouse forthcoming



Parasitic gaps

The learner can’t handle parasitic gaps, which are dependencies that span an

island (and so should be ungrammatical) but which are somehow rescued by
another dependency in the utterance.

*Which book did you laugh [before reading  ]?
Which book did you judge __,. . [before reading

—parasitic] :

Adjunct island

*What did [the attempt to repair __] ultimately damage the car?
What did [the attempt to repair __, . ;.] ultimately damage

?
— true*

Complex NP island

Pearl & Sprouse forthcoming



Parasitic gaps

Why not? The current learner would judge the parasitic gap as ungrammatical

since it is inside an island, irrespective of what other dependencies are in the
utterance.

*Which book did you laugh [before reading  ]?
Which book did you judge [before reading

—true —parasitic] :

Adjunct island

*What did [the attempt to repair __] ultimately damage the car?
What did [the attempt to repair __, . ;.] ultimately damage

?
— true*

Complex NP island

This may be able to be addressed in a learner that is able to combine information
from multiple dependencies in an utterance (perhaps because the learner has
observed multiple dependencies resolved in utterances in the input).

Pearl & Sprouse forthcoming



Across-the-board constrcutions

A similar problem occurs for across-the-board constructions.

Which book did you [ [read __ ] and [then review _ ]]?
dependency for both gaps: IP-VP-VP

*Which book did you [[read the paper] and [then review __ ]]?
dependency for gap: IP-VP-VP

*Which book did you [[read __ ] and [then review the paper]]?
dependency for gap: IP-VP-VP

Again, this may be able to be addressed in a learner that is able to combine
information from multiple dependencies in an utterance (perhaps because the
learner has observed multiple dependencies resolved in utterances in the input).

Pearl & Sprouse forthcoming



Some cross-linguistic issues

High probability trigrams that may be ungrammatical

Rizzi (1982): reports situations in Italian where simply doubling a grammatical
sequence of trigrams leads to ungrammaticality...

IP-VP-CP,, -IP-VP
but
*IP-VPICP,,-P-VPICP,, IP:VP

-|P-VP

But these involve the same trigrams, so the learner in Pearl & Sprouse

(forthcoming) will treat both the same (either grammatical or ungrammatical). If
humans do have different judgments of these, then this cannot be accounted for
by this learning algorithm.

Pearl & Sprouse forthcoming



Complementizer that

That-trace effects

*Who do you think that __ read the book?
Who do you think ___read the book?

The current learning strategy captures this distinction.

Pearl & Sprouse forthcoming



Complementizer that

That-trace effects

...but the current learning strategy will also generate a preference for object gaps
without that compared to object gaps with that. (object that-trace effect)

What do you think that he read _ ? [prefers this one]
What do you think heread °?

Interestingly, Cowart 1997 finds an object that-trace effect, but it is much smaller
than the subject that-trace effect

The model generates an asymmetrical dispreference when using adult-directed
corpora, which contain more instances of that (5.40 versus 2.81). This could be
taken to be a developmental prediction of the current algorithm: Children may
disprefer object gaps in embedded that-CP clauses more than adults, and this
dispreference will weaken as they are exposed to additional tokens of that in
utterances containing dependencies.

Pearl & Sprouse forthcoming



English anaphoric one



Information in the data: Unamb <NP

“Look, a red bottle! Hmm — there isn’t another
one here though!”

R
Pro || env m
0-m R = “another one”
v Pro = “one” m = yes
det || mod i env =<NP 0-m = yes
C=N
det=no
[]=observed mod = yes i =yes
D= latent
O
A = “red bottle”

O = RED BOTTLE

Pearl & Mis submitted



Information in the data: Sem-Syn ambiguous

R
Pro m
v
o-m
det d

env
mo
O

[ ]= observed
[]= latent

“Look, a red bottle! Look — another one!”

R = “another one”

Pro = “one” m = yes

env =<NP O-m =yes

C =N or NO?

det =no

mod = yes or no? i =yes orno?

A = “red bottle” or “bottle”?
O = RED BOTTLE

Pearl & Mis submitted



Information in the data: Syn ambiguous

R “Look, a bottle! Look — another one!”
Pro || env m
o-m R = “another one”
‘1' Pro = “one” m = no
det || mod i env =<NP o-m = N/A
' C =N’ or N9?
det = o
[ ]= observed mod = no i = N/A
D= latent
(@)
A = “bottle”
O = BOTTLE

Pearl & Mis submitted



Information in the data: Unamb NP

“Look, a red bottle! | want it.”

R
Pro || env m
v Pro = “it” m = yes
det || mod | env = NP O-m =yes
C=NP
det = yes
[]= observed mod = yes i = yes

D = |latent

@)

A = “a red bottle”
O = RED BOTTLE

Pearl & Mis submitted



The online probabilistic framework:

Updating p,,
b Explanation
Unamb <NP 1 Property definitely included
Unamb NP 1 Property definitely included
Syn Amb N/A Not informative for p,

repi
Sem-Syn Amb  repi+rep2+ reps Probability property is included

repi = pn* m * Category = N’, choose N’ with modifier, property is included
m+n
. . .1 Category = N’, choose N’ without modifier, property is not
rep2 = pwn " (L= pinet) § included, choose object with property by chance

reps = (1= px')* (1 = pinct) * L Category = N9, property is not included, choose object with

§  property by chance
Pearl & Mis submitted



The online probabilistic framework:

Updating p,,
by Explanation
Unamb <NP 1 Category definitely N’
Unamb NP N/A Not informative for p,,
Syn Amb reps Probability category is N’
repa+ reps
repi+rep2 ope . )
Sem-Syn Amb PP Probability category is N
repi + rep2 + rep3
repi = pn* m * Category = N’, choose N’ with modifier, property is included
m+n
. . .1 Category = N’, choose N’ without modifier, property is not
repz = pv " (L= pinet)  included, choose object with property by chance

reps = (1= px')* (1 = pinct) * L Category = N9, property is not included, choose object with

§  property by chance
Pearl & Mis submitted



The online probabilistic framework:

Unamb <NP
Unamb NP
Syn Amb

Sem-Syn Amb

n

reps = py*
m+n

reps =1- pw

Updating p,,
by Explanation
1 Category definitely N’
N/A Not informative for p,,
rep4 Probability category is N’
reps + reps
repi + rep: ,

Probability category is N

repi+ rep2+reps

Category = N’, choose N’ without modifier

Category = NO

Pearl & Mis submitted



Example updates

Start with p,, =p;,,=0.50, m = 1‘,\n =}.9, s=10
[from Pearl & Lidz 2009]

One Unamb <NP data point:  p,. =0.67, p,,, =0.67
One Unamb NP data point: p, =0.50,p. , =0.67

One Sem-Syn Amb data point: p,. =0.59, p,,, =0.53

One Syn Amb data point: p, =0.48,p. , =0.50

Pearl & Mis submitted



Corpus analysis & learner input

Brown/Eve corpus (CHILDES: MacWhinney 2000): starting at 18 months

17,521 utterances of child-directed speech, 2874 referential pronoun utterances

Baker  DirectFiltered DirectEO +OtherPro
Unamb <NP 0.00% 0 0 0 0
Sem-Syn Amb 0.66% 0 242 242 242
Syn Amb 7.52% 0 0 2743 2743
Unamb NP 8.42% 0 0 0 3073
Uninformative 83.4% 36500 36258 33515 30442

Free parameters:

m=1, n=2.9 (from corpus estimates done by P&L)

s (concerns number of salient properties learner is considering):
Child may only be aware of a few salient properties or may consider all known properties (#
of adjectives known by 16 months = 49 (MacArthur CDI: Dale & Fenson 1996). Use range

from 2 to 49.

Pearl & Mis submitted



Measures of success:
LWF children’s behavior

In addition to directly assessing p...,and p,, we can measure how often a
learner would reproduce the behavior in the LWF experiment

(Ppen )- 2 choices
s =2

Any outcome where learner looks at red bottle

pbeh = s D D
ES *k
rep! +@ Additional two outcomes where learner looks at other
bottle
repi = pn* m_ pna  Category = N’, antecedent = “red bottle”
m+n
n 1 Category = N’, antecedent = “bottle”

rep: = pn* *(1 = pinct) * —
n S

reps = (1= pv)* (1 = pinet) * 1 category = N°, antecedent = “bottle”
S

Pearl & Mis submitted



Testing LWF’s assumption about what
behavior means

In addition to directly assessing the learner’s behavior, we can assess LWF’s
assumption that target behavior indicates the children have the target

representation for one.

Is it possible to get target behavior in the LWF experiment without having the
target representation for one in general (as measured by p,.,and p,)?

Is it possible to get target behavior in the LWF experiment without having the
target representation for one at the time the behavior is being produced?

the probability the look to the red bottle is because the learner

_ has the target representation (N’, “red bottle”)
preplbeh -
@ given that the learner looks at the red bottle

Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.
s=2,5,7,10, 20, 49

DirectUnamb

Pini 0.50 (<0.01)

Py 0.50 (<0.01)

Poeh 0.56 (<0.01)

Prepiben  0-23 (<0.01)

Since the input data include no Unambiguous <NP data, and those are the only data the
Baker learner learns from, it learns nothing.

It is at chance for having the target syntactic and semantic representation.

It is only slightly above chance at producing the observed toddler behavior, and when it
does, it unlikely to have the target representation when doing so.

Implication: This is an induction problem if only unambiguous <NP data are relevant.

Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.
s=2,5,7,10, 20, 49

DirectUnamb +OtherPro

Pinc 0.50 (<0.01) >0.99 (<0.01)
Py 0.50 (<0.01) 0.34-0.38 (0.03-0.05)
Poen 0.56 (<0.01) >0.99 (<0.01)
Prepiben  0-23 (<0.01) >0.99 (<0.01)

The learner robustly decides the antecedent should include the mentioned property.

However, the learner has a moderate dispreference for believing one is N’ when it is smaller
than NP.

This is therefore not the target representation.

Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.
s=2,5,7,10, 20, 49

DirectUnamb +OtherPro

Pinci 0.50 (<0.01) >0.99 (<0.01)
Py 0.50 (<0.01) 0.34-0.38 (0.03-0.05)
Poeh 0.56 (<0.01) >0.99 (<0.01)
Prepiben  0-23 (<0.01) >0.99 (<0.01)

However...this learner still generates the observed toddler behavior (not what LWF would
expect) with high probability, and has the target representation when doing so (is what LWF
would expect).

Why? Because the learner believes so strongly that a mentioned property must be included
in the antecedent, the only representation that allows this (e.g., [ red[y [y, bottle]]])
overpowers the other potential representations’ probabilities. Thus, the +OtherPro learner
will conclude the antecedent includes the mentioned property, and so it and the referential
pronoun referring to it (one) must be N’ in this context - even if the learner believes one is

not N’ in general.
Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

s=7,10, 20, 49
DirectUnamb  DirectFiltered +OtherPro
Pini 0.50 (<0.01) 0.91-0.99 (<0.01) >0.99 (<0.01)
Py 0.50 (<0.01) 0.98-0.99 (<0.01) 0.37-0.38 (0.04-0.05)
Ppeh 0.56 (<0.01) 0.88-0.99 (<0.01) >0.99 (<0.01)
Prep|beh 0.23 (<0.01) 0.87-0.99 (<0.01) >0.99 (<0.01)

Other learning strategies: DirectFiltered learner (R&G, P&L's filtered)
Variability, depending on the value of s, which determines how suspicious a coincidence it is
that the intended object just happens to have the mentioned property.

When s =7 or above, this learner believes a mentioned property should be included in the
antecedent and one is N” when it is smaller than NP, which is similar to previous findings by
R&G & P&L. In addition, it is likely to generate the observed toddler behavior, and have the
target representation when doing so.

Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

s=5
DirectUnamb  DirectFiltered +OtherPro
Pinci 0.50 (<0.01) 0.68 (<0.01) >0.99 (<0.01)
Py 0.50 (<0.01) 0.94 (<0.01) 0.36 (0.04)
Ppeh 0.56 (<0.01) 0.70 (<0.01) >0.99 (<0.01)
Prep|beh 0.23 (<0.01) 0.58 (<0.01) >0.99 (<0.01)

Other learning strategies: DirectFiltered learner (R&G, P&L's filtered)

Variability, depending on the value of s, which determines how suspicious a coincidence it is
that the intended object just happens to have the mentioned property.

However, when s=5, the learner is less sure the mentioned property should be included in
the antecedent, which causes the learner to be less likely to generate the observed toddler

behavior, and only slightly above chance at having the target representation when
generating that behavior.

Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

s=2
DirectUnamb  DirectFiltered +OtherPro
Pinci 0.50 (<0.01) 0.02 (<0.01) >0.99 (<0.01)
Py 0.50 (<0.01) 0.34 (<0.01) 0.34 (0.03)
Ppeh 0.56 (<0.01) 0.50 (<0.01) >0.99 (<0.01)
Prep|beh 0.23 (<0.01) <0.01 (<0.01) >0.99 (<0.01)

Other learning strategies: DirectFiltered learner (R&G, P&L's filtered)
Variability, depending on the value of s, which determines how suspicious a coincidence it is
that the intended object just happens to have the mentioned property.

When s=2, the learner is sure the mentioned property should not be included in the
antecedent, and prefer one to be N° when it is smaller than NP. This causes the learner to
be at chance for generating the observed toddler behavior, and very unlikely to have the
target representation when generating that behavior.

Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

s=2,5
DirectUnamb  DirectFiltered +OtherPro
Pini 0.50 (<0.01) 0.02, 0.68 (<0.01) >0.99 (<0.01)
Py 0.50 (<0.01) 0.34, 0.94 (<0.01) 0.34-0.36 (0.03-0.04)
Ppeh 0.56 (<0.01) 0.50, 0.70 (<0.01) >0.99 (<0.01)
Prep|beh 0.23 (<0.01) <0.01, 0.58 (<0.01) >0.99 (<0.01)

What’s going on?

If the suspicious coincidence isn’t strong enough, Sem-Syn ambiguous data don’t help the
learner increase p,,, — in fact, they cause p, . to drop. Because both p, , and p,. are used to
calculate ¢, and ¢, a very low p, ., can eventually drag p,, down.

Ex: s=2
If the first 20 data points are Sem-Syn ambiguous data points, p; ,=0.12 and p,, = 0.48.

Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

s=2,5,7,10
DirectUnamb  DirectFiltered DirectEO +OtherPro
Pinci 0.50 (<0.01) 0.02-0.96 (<0.01) <0.01-0.38 (<0.01-0.18) >0.99 (<0.01)
Py 0.50 (<0.01) 0.34-0.99 (<0.01) 0.14-0.25 (<0.01-0.06)  0.34-0.37 (0.03-0.04)
Ppeh 0.56 (<0.01) 0.50-0.98 (<0.01) 0.50-0.53 (<0.01-0.04) >0.99 (<0.01)
Prep|beh 0.23 (<0.01) <0.01-0.95 (<0.01) <0.01-0.11 (<0.01-0.11) >0.99 (<0.01)

Other learning strategies: DirectEO learner (P&L’s EO)
Variability, depending on the value of s, which determines how suspicious a coincidence it is
that the intended object just happens to have the mentioned property.

When s is less than 10, the learner does not believe the mentioned property should be
included in the antecedent, and prefers one to be N° when it is smaller than NP.

This causes the learner to be at chance at generating the observed toddler behavior, and
unlikely to have the target representation when generating that behavior.

This is similar to what P&L previously found.
Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

s =20, 49
DirectUnamb  DirectFiltered DirectEO +OtherPro
Pini 0.50 (<0.01) 0.99 (<0.01) 0.93-0.99 (<0.01-0.03) >0.99 (<0.01)
Py 0.50 (<0.01) 0.99 (<0.01) 0.34-0.37 (0.05)  0.37-0.38 (0.04-0.05)
Ppeh 0.56 (<0.01) 0.98-0.99 (<0.01) 0.79-0.94 (0.02-0.07) >0.99 (<0.01)
Prep|beh 0.23 (<0.01) 0.98-0.99 (<0.01) 0.72-0.94 (0.02-0.11) >0.99 (<0.01)

Other learning strategies: DirectEO learner (P&L’s EO)
Variability, depending on the value of s, which determines how suspicious a coincidence it is
that the intended object just happens to have the mentioned property.

However, when s is 20 or 49, the learner strongly believes the mentioned property should
be included in the antecedent, though it still prefers one to be N° when it is smaller than NP.
This causes the learner to be likely to generate the observed toddler behavior, and likely to
have the target representation when generating that behavior.

This is different from what P&L found, and more like the +OtherPro learner results.
Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.

s =20, 49
DirectUnamb  DirectFiltered DirectEO +OtherPro
Pinci 0.50 (<0.01) 0.99 (<0.01) 0.93-0.99 (<0.01-0.03) >0.99 (<0.01)
Py 0.50 (<0.01) 0.99 (<0.01) 0.34-0.37 (0.05)  0.37-0.38 (0.04-0.05)
Ppeh 0.56 (<0.01) 0.98-0.99 (<0.01) 0.79-0.94 (0.02-0.07) >0.99 (<0.01)
Prep|beh 0.23 (<0.01) 0.98-0.99 (<0.01) 0.72-0.94 (0.02-0.11) >0.99 (<0.01)

What’s going on?

The flip side of what we saw with the R&G learner. If the suspicious coincidence is very
strong, Sem-Syn ambiguous data help the learner increase p,.,, (and p,) — in fact, they
become almost as powerful as Unambiguous <NP data. Because both p,,, and p, are used
to calculate ¢, and ,, a very high p. , can bolster p,,, and overpower the effect of the
troublesome Syn ambiguous data.

Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.
s=2,5,7,10, 20, 49

DirectUnamb  DirectFiltered DirectEO +OtherPro
Pini 0.50 (<0.01) 0.02-0.99 (<0.01) <0.01-0.99 (<0.01-0.18) >0.99 (<0.01)
Py 0.50 (<0.01) 0.34-0.99 (<0.01) 0.14-0.37 (<0.01-0.06)  0.34-0.38 (0.03-0.05)
Ppeh 0.56 (<0.01) 0.50-0.99 (<0.01) 0.50-0.94 (<0.01-0.07) >0.99 (<0.01)
Prep|beh 0.23 (<0.01) <0.01-0.95 (<0.01) <0.01-0.94 (<0.01-0.11) >0.99 (<0.01)

Why isn’t the +OtherPro learner as succeptible to changing s values?

Unambiguous NP data only ever increase p,,,, no matter what the value of s. So, because
there are so many of them, they can overwhelm the effect of Sem-Syn ambiguous data on
P.. (Whether s is low or high). This helps keep p,, from plumetting, though it still drops due
to the troublesome Syn ambiguous data in the learner’s intake.

Pearl & Mis submitted



Learner results: Strategy comparison

Averages over 1000 simulations, standard deviations in parentheses.
s=2,5,7,10, 20, 49

DirectUnamb  DirectFiltered DirectEO +OtherPro
Pini 0.50 (<0.01) 0.02-0.99 (<0.01) <0.01-0.99 (<0.01-0.18) >0.99 (<0.01)
Py 0.50 (<0.01) 0.34-0.99 (<0.01) 0.14-0.37 (<0.01-0.06)  0.34-0.38 (0.03-0.05)
Ppeh 0.56 (<0.01) 0.50-0.99 (<0.01) 0.50-0.94 (<0.01-0.07) >0.99 (<0.01)
Prep|beh 0.23 (<0.01) <0.01-0.95 (<0.01) <0.01-0.94 (<0.01-0.11) >0.99 (<0.01)

Take away points:.

An indirect positive evidence learning strategy has a beneficial impact on learning anaphoric
one — it makes the learner’s behavior robust, no matter how suspicious a coincidence the
Sem-Syn ambiguous data are (or aren’t).

A learner using an indirect positive evidence strategy can generate target behavior without
reaching the target state — instead, this learner has a context-sensitive representation
(depending on whether a property was mentioned).

Pearl & Mis submitted



Other induction problem characterizations

A different target state

Baker 1978 & Foraker et al. 2009
target state
One is category N’ and its antecedent includes the modifier.

Just learning about the syntactic representation of one when it is smaller
than NP.

Baker’s original proposal:
initial state includes UG knowledge that one is not N°.

Pearl & Mis submitted



Other induction problem characterizations

A different target state

Baker 1978 & Foraker et al. 2009
target state

One is category N’ and its antecedent includes the modifier.

Just learning about the syntactic representation of one when it is smaller
than NP.

Foraker et als proposal:
Use Bayesian inference on the available syntactic data only, given domain-
specific knowledge of complements and modifiers.

Pearl & Mis submitted



Modifiers & complements

Syntactic modifier: not “conceptually evoked by its head noun”, indicates
noun string is N’

Ex: “the ball with dots” (I like the one with dots.)

Syntactic complement: “conceptually evoked by its head noun”, indicates
noun string is N9

Ex: “the side of the road” (*| waited by the one of the road.)

Pearl & Mis submitted



The Foraker et al. learning strategy

Foraker et al. 2009
initial state
Knowledge: Syntactic categories exist, in particular N°, N’, and NP.
Knowledge: Anaphoric elements like one take linguistic antecedents of the same
category.
+ Bias: Only syntactic data are useful.
+ Bias: Use Bayesian inference.
+ Bias: Learn from all linguistic elements that take complements or modifiers.

+ Knowledge: Complements conceptually evoke their head noun while modifiers
do not.

+ Knowledge: Syntactic category N° is sister to a complement, not a modifier.

This strategy was successful at learning one is category N’ (not N°) from child-
directed speech data.

Pearl & Mis submitted



Foraker et al. bias types

Foraker et al. 2009
initial state
Knowledge: Syntactic categories exist, in particular N°, N’, and NP.
Knowledge: Anaphoric elements like one take linguistic antecedents of the same
category.
+ Bias: Only syntactic data are useful.

This bias could be derived from the target knowledge only pertaining to the
syntactic representation.

Pearl & Mis submitted



Foraker et al. bias types

Foraker et al. 2009

initial state
Knowledge: Syntactic categories exist, in particular N°, N’, and NP.
Knowledge: Anaphoric elements like one take linguistic antecedents of the same
category.
+ (non-UG) Bias: Only syntactic data are useful.
+ Bias: Use Bayesian inference.

This bias is likely innate and domain-general.

Pearl & Mis submitted



Foraker et al. bias types

Foraker et al. 2009
initial state
Knowledge: Syntactic categories exist, in particular N°, N’, and NP.
Knowledge: Anaphoric elements like one take linguistic antecedents of the same
category.
+ (non-UG) Bias: Only syntactic data are useful.
+ (non-UG) Bias: Use Bayesian inference.
+ Bias: Learn from all linguistic elements that take complements or modifiers.

This indirect positive evidence bias is clearly domain-specific. It could be specified
innately, though it could possibly be derived by noticing salient properties of
nominal phrases.

Pearl & Mis submitted



Foraker et al. bias types

Foraker et al. 2009
initial state
Knowledge: Syntactic categories exist, in particular N°, N’, and NP.
Knowledge: Anaphoric elements like one take linguistic antecedents of the same
category.
+ (non-UG) Bias: Only syntactic data are useful.
+ (non-UG) Bias: Use Bayesian inference.
+ (UG?) Bias: Learn from all linguistic elements that take complements or modifiers.

+ Knowledge: Complements conceptually evoke their head noun while modifiers
do not.

Knowing complements evoke their head nouns while modifiers do not is domain-
specific knowledge that is not obviously derivable.

Pearl & Mis submitted



Foraker et al. bias types

Foraker et al. 2009
initial state
Knowledge: Syntactic categories exist, in particular N°, N’, and NP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the same
category.

+ (non-UG) Bias: Only syntactic data are useful.
+ (non-UG) Bias: Use Bayesian inference.
+ (UG?) Bias: Learn from all linguistic elements that take complements or modifiers.

+ (UG) Knowledge: Complements conceptually evoke their head noun while
modifiers do not.

+ Knowledge: Syntactic category N° is sister to a complement, not a modifier.

Knowing NO is sister to complement is also domain-specific knowledge that is not
obviously derivable.

Pearl & Mis submitted



Foraker et al. bias types

Foraker et al. 2009
initial state
Knowledge: Syntactic categories exist, in particular N°, N’, and NP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the same
category.

+ (non-UG) Bias: Only syntactic data are useful.
+ (non-UG) Bias: Use Bayesian inference.
+ (UG?) Bias: Learn from all linguistic elements that take complements or modifiers.

+ (UG) Knowledge: Complements conceptually evoke their head noun while
modifiers do not.

+ (UG) Knowledge: Syntactic category N° is sister to a complement, not a modifier.

Upshot: This form of the induction problem leads to a different proposal for the
contents of UG, even when Bayesian inference is used.

Pearl & Mis submitted



Other induction problem characterizations

A different initial & target state: Alternate theoretical representations

NO N’ and NP  vs.N9 N’, NP, and DP



Other induction problem characterizations

A different initial & target state: Syntactic categories N°, N’, NP, DP

initial state

Knowledge: Syntactic categories exist, in particular N°, N’, NP, and DP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the same
category.

Bias: Only direct evidence of one is useful.
Bias: Only unambiguous evidence of one is useful.

target state

Knowledge: In utterances like “Look, a red bottle! Look, another one!”, one is
category NP and so its antecedent includes the modifier (“red”).



Other induction problem characterizations

A different initial & target state: Syntactic categories N°, N’, NP, DP

What an indirect positive evidence strategy like +OtherPro would do

initial state
Knowledge: Syntactic categories exist, in particular N°, N’, NP, and DP.

Knowledge: Anaphoric elements like one take linguistic antecedents of the same
category.

- Bias: Only direct evidence of one is useful.

- Bias: Only unambiguous evidence of one is useful.
+ (non-UG) Bias: Use Bayesian inference

+ (UG?) Bias: Learn from other pronoun data.



Other induction problem characterizations

A different initial & target state: Syntactic categories N°, N’, NP, DP

What an indirect positive evidence strategy like +OtherPro would do

(1) Syn ambiguous data still ambiguous between two
categories (N° and N’), and Bayesian inference causes
learner to prefer the hypotheses that includes fewer
strings, which is still the N° category. (N’ includes noun
+complement strings)

Syn ambiguous data still cause p,, to drop, though
perhaps not as fast.



Other induction problem characterizations

A different initial & target state: Syntactic categories N°, N’, NP, DP

What an indirect positive evidence strategy like +OtherPro would do

(2) Sem-Syn ambiguous data still ambiguous between
three antecedents. When s is high enough (>5), the
suspicious coincidence still causes the learner to
increase p; .-

Sem-Syn ambiguous data still cause p;, to increase
when the suspicious coincidence is strong enough.



Other induction problem characterizations

A different initial & target state: Syntactic categories N°, N’, NP, DP

What an indirect positive evidence strategy like +OtherPro would do
(3) Unmbiguous <NP data still indicate antecedent that

includes modifier — it’s just that the category label is NP

(rather than N’).

P, @and pyp both increase.

Unambiguous <NP data still cause p,,, and the category
that includes the modifier (NP) to increase.



Other induction problem characterizations

A different initial & target state: Syntactic categories N°, N’, NP, DP

What an indirect positive evidence strategy like +OtherPro would do
(4) Unambiguous NP data still indicate antecedent that

includes modifier — it’s just that the category label is DP

(rather than NP).

P.q Still increases.

Unambiguous NP data still cause p,, to increase.



Other induction problem characterizations

A different initial & target state: Syntactic categories N°, N’, NP, DP

What an indirect positive evidence strategy like +OtherPro would do

Given that the updates from the different data types are
effectively the same, the overall outcome should be

similar: p,, should be high while py, should be low.
(Note: p,, should also be very low, since no data cause it to increase.)

Non-target context-dependent representation.
P, = high, pyp = low

LWF experiment: target behavior (and target
representation when displaying that behavior) because

Of pincl'



