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Premise

The knowledge representation provided by Universal Grammar is
what makes acquisition happen so fast and so well.
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Premise

The knowledge representation provided by Universal Grammar is
what makes acquisition happen so fast and so well.

Knowledge representation — What hypotheses are available

. and how are they defined?
Universal

Grammar

Grammar = ...
...set of parameters

...set of violable constraints

...rules over phrasal nodes

Premise

The knowledge representation provided by Universal Grammar is
what makes acquisition happen so fast and so well.

Knowledge representation — What hypotheses are available

. and how are they defined?
Universal

Grammar l

What part of the encoded input is

relevant = acquisitional intake
(Lidz & Gagliardi 2015)

Competing theories

So how do we choose when we have multiple theories about how
knowledge is represented?

Ex: Parameters vs. violable constraints
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Ex: Different implementations of dependencies

Wh o eng Klens = lons - lena - lens _1

Competing theories

One answer: Use each one for acquisition. Does that knowledge
representation make acquisition possible from the available data?

Is the hypothesis space helpfully constrained by the representation?

Well...how do we tell?

Is the acquisitional intake defined by the hypothesis space sufficient to get
the job done?

Well...how do we tell?




A helpful tool: Computational modeling

We can computationally model a learner who incorporates the
assumptions of a representation, set that learner up in a cognitively
plausible learning scenario, and see if acquisition succeeds.

Is the acquisitional intake defined by the hypothesis spacejsufficient to get
the job done?

Well...how do we tell?

A helpful tool: Computational modeling

We can computationally model a learner who incorporates the
assumptions of a representation, set that learner up in a cognitively
plausible learning scenario, and see if acquisition succeeds.

What we learn from computational modeling:

e Which representations allow acquisition to succeed

¢ What needs to be true about the learning scenario for a learner to
succeed using those representations

The goal

This computational modeling feedback helps us refine our theories
about both the knowledge representation and the acquisition process
that uses that representation.

(Lidz & Gagliardi 2015)

Today’s goal:
Computational acquisition modeling
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Today’s goal:
Computational acquisition modeling

Case studies

Metrical phonology
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Metrical phonology: Target knowledge

Account for word-level stress patterns

Observable data: stress contour OCtopus

Underlying representation?

Points of agreement:

Use metrical feet:
Units 2 syllables

but (often) smaller than words (o) (v )

- VC V VC

‘ Look only at syllable rimes ‘ ok & us
ak ta pus

‘ Divide word into syllables ‘ oc to pus
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Metrical phonology: Target knowledge

Account for word-level stress patterns

Observable data: stress contour OCtopus

Underlying representation?

Points of cross-linguistic variation: 'I)

‘ How to classify syllables ‘ ‘(H L) HH(H L L) H(S S)SH(S s s)

‘ What metrical feet are allowed ‘

VC V VC

How stress interacts with ak a ws
metrical feet ak ta pus

oc to pus
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Metrical phonology: Target knowledge

Account for word-level stress patterns

Observable data: stress contour OCtopus

Points of disagreement: Underlying grammar = ....?

Parameters with values set Ranked violable constraints
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Metrical phonology:
Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

|
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Metrical phonology:
Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011 \
5 parameters & 3 sub-parameters m
Hypothesis space: 156 grammars N

Foot headedness
Quantity sensitivity

z @

Extrametricality .

Foot directionality

Boundedness

Grammar = Set of parameter
& sub-parameter values
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Metrical phonology:
Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011 \
5 parameters & 3 sub-parameters m
Hypothesis space: 156 grammars N
ity sensiity This grammar, comprised of particular
&> Boundedness parameter values, generates the correct

stress contour.

Extrametricality .

Foot directionality

(H L) H
OC to pus

Parameter values used:
QS-VC-H, Em-Rt, FtDir-Rt,

-
, FtHd-Left @

...which are the values of the English grammar.
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Metrical phonology:
Three knowledge representations

Parametric systems Correct grammar builds

compatible contour
Hayes: Hayes 1995 \

Degenerate feet

Extrametricality - -
Foot inventory
Syllable weight @ ‘

Foot directionality Parsing locality

8 parameters

Hypothesis space: 768 grammars

Pearl, Ho, & Detrano 2014, under rev.




Metrical phonology:
Three knowledge representations

Parametric systems Correct grammar builds

compatible contour
Hayes: Hayes 1995 \

This grammar, comprised of particular

8 parameters

Hypothesis space: 768 grammars

Degenerate fe

parameter values, generates an incorrect
Extrametricality - . Foot inventory stress contour.
Syllable weight @ - ’
o e (H)(L L)
Foot directionality  Parsing locality oC T pus

Parameter values used:
Bot, Em-RtCons, VC-H, FtDir-Rt,
PL-Strong, , DF-Strong, WLER-Rt

J
..*8: >
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..which are the values of the English grammar.
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Metrical phonology:
Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

i
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Metrical phonology:
Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 X
9 violable constraints

Constraint-ranking systems

Premise: Many different candidates for a word’s stress
representation and contour are generated and then ranked according
to which constraints are violated. Violating higher-ranked constraints
is worse than violating lower-ranked constraints.

c1 Jcz e Jea | 7T
(OC to) pus * *
oc (TO pus) : R I P
(oc TO) pus i N
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Metrical phonology:
Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 \

Grammar = ranked ordering of all constraints

Constraint-ranking systems

9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars
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Metrical phonology:
Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 \

Official grammars for languages are often described as partial
orderings of constraints.

Constraint-ranking systems

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

English grammar

Pearl, Ho, & Detrano 2014, under rev.

Metrical phonology:
Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

This means the “grammar” for a language is often a set of the
possible rankings (grammars) that obey those orderings.

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000
9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Ex: The English “grammar” is
compatible with 26 rankings.
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Metrical phonology:

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 X

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

Nonfinality, Parse-o

Foot binarity
Trochaic

Weight-to-Stress
Align left, Align right
*Sonorant nucleus

i

Pearl, Ho, & Detrano 2014, under rev.

Metrical phonology:
Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 \

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

—
e Nonfinality, Parse-o
S— oot binarity
o chaic
—
EEEwwwwwun] Weight-to-Stress
(I
e— /g0 left, Align right
S— Sonorant nucleus

Sample candidates

A sample grammar — (OC to) (PUS) (OC to) pus
that is a version of the =~ =====o
R “ ” —
English “grammar”: — (oc TO) (PUS) oc (TO pus)
[
s
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Metrical phonology:
Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 X

Only one candidate left,

9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

—
" Nonfinality, Parse-o . .
oot binari and it has a compatible
—

o—— 0" contour.

FEEENENENE Weightto-Stress

ITTITTITITITITITITT A O

— Sororant nucleus

Sample candidates

(OC to) pus

owd
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A sample grammar
that is a version of the
English “grammar”:

—
]
Eaeww
—
—
—
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Metrical phonology:
Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000
9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

— iy Parse-o
oot binarity
0 haic
EEEEEEEEEE) Weightto-Stress
DT e e
S *Sonorant nucleus
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A sample grammar English “grammar”

that is a version of the ~E=====
—
English “grammar”: —

Jresissseses ]
R
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Knowledge representation comparison

Foot headedness
Quantity sensitivity Degenerate feet
ry

.¢ exramerricaliy @Y D
susnevcies @Y s weign D L

Foot di

tionality

Foot directionality Parsing locality
HV: 5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars

Hayes: 8 parameters

Hypothesis space: 768 grammars

EEEmwmwwway Weight-to-Stress
ST i e, g right
N *Sonorant nucleus
OT: 9 violable constraints

Hypothesis space: 362,880 grammars

Pearl, Ho, & Detrano 2014, under rev.

Metrical phonology:
Acquisitional intake

Acquisition goal: Identify the grammar that can account for the word-level
stress patterns in the language

Observable data: stress contour

All representations: use metrical

feet based on syllable rimes -
ak & wos
VC Vv VC

Pearl, Ho, & Detrano 2014, under rev.




Metrical phonology:
Acquisitional intake

Acquisition goal: Identify the grammar that can account for the word-level

stress patterns in the language
J

Observable data: stress contour
All representations: use metrical

feet based on syllable rimes

Parametric inference:
Does this set any values?
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Metrical phonology:
Acquisitional intake

Acquisition goal: Identify the grammar that can account for the word-level
stress patterns in the language

Observable data: stress contour

All representations: use metrical
feet based on syllable rimes

Parametric inference:
Does this set any values?

OT inference:
Does this implicate any
constraint rankings?

Pearl, Ho, & Detrano 2014, under rev.

Computational acquisition evaluation:
English

Pearl, Ho, & Detrano 2014, under rev.

English grammar

q -
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HV: 5 parameters & 3 sub-parameters Hayes: 8 parameters

Hypothesis space: 156 grammars Hypothesis space: 768 grammars

Note: These values/rankings are
derived from stress patterns for
 English words in the adult lexicon

OT: 9 violable constraints
Hypothesis space: 362,880 grammars
(English = 26 grammars)

Pearl, Ho, & Detrano 2014, under rev.

Learning English metrical phonology: Non-trivial

Non-trivial because there are many data that are ambiguous for which
parameter value or constraint ranking they implicate

OCtopus ?

® ®

This is generally a problem for acquisition (poverty of the stimulus =
the data are compatible with many hypotheses).

Pearl, Ho, & Detrano 2014, under rev.

Learning English metrical phonology: Non-trivial

Non-trivial because there are many irregularities. This is less common for

acquisition — usually there aren’t a lot of exceptions to the system being
acquired.

Pearl, Ho, & Detrano 2014, under rev.




Learning English metrical phonology: Non-trivial

Non-trivial because there are many irregularities. This is less common for

acquisition — usually there aren’t a lot of exceptions to the system being
acquired.

Some causes of irregularity:

Interactions with morphology (Chomsky & Halle 1968, Hayes 1982, Kiparsky 1979)

Example: Adding productive morphology doesn’t change the stress
pattern, even though all grammars base their stress patterns on the
syllables present in the word.

EARly PREtty senshtion
X . senSAtional
EARlier PREttiest A
senSAtionally
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Learning English metrical phonology: Non-trivial

Non-trivial because there are many irregularities. This is less common for

acquisition — usually there aren’t a lot of exceptions to the system being
acquired.

Some causes of irregularity:

Interactions with grammatical category (Hammond 1999, Hayes 1982, Cassidy & Kelly
2001, Christiansen & Monaghan 2006)

Stress contours may be different across grammatical categories, even
though the syllabic word form doesn’t change.

NOUNS VERBS Syllabic word form
CONduct conDUCT Ve vee
DEsert deSERT v vce
SUspect SUSPECT v vce

Pearl, Ho, & Detrano 2014, under rev.

Learning English metrical phonology: Non-trivial

These irregularities can cause multiple stress contours to be associated

with a syllabic word form. This is problematic for the grammars in these
knowledge representations...

Syllabic word form: V. VvV

Kl tty a WAY UH OH
Vv ARAY VvV W

Pearl, Ho, & Detrano 2014, under rev.

Learning English metrical phonology: Non-trivial

These irregularities can cause multiple stress contours to be associated
with a syllabic word form. This is problematic for the grammars in these
knowledge representations, since a grammar can only generate a single
stress contour per syllabic word form...

Syllabic word form: V. VV

Generate Kl tty a WAY UH OH
one of these... Vwv v VW VvV W

Quantity sensitivity

@ — L
o
Extrametricality . Syllable weight e -

Foot directionalit Parsing locality
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Learning English metrical phonology: Non-trivial

These irregularities can cause multiple stress contours to be associated
with a syllabic word form. This is problematic for the grammars in these
knowledge representations, since a grammar can only generate a single
stress contour per syllabic word form or select a single stressed syllabic
word form as the best candidate.

Syllabic word form: V. VvV

Select Kl tty a WAY UH OH
one of these... Vwv v W vV W

—
EEEEEEEE Nonfinality, Parse-o
—

t bina
E—
—
Weight-to-Stress
(I

e /20 left, Align right
— *Sonorant nucleus
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Learning English metrical phonology: Non-trivial

Upshot of multiple stress contours: No one grammar can account for all
the stressed words in the input.

But how big of a problem is this in English child-directed speech?

Syllabic word form: V. VV

Kl tty a WAY UH OH
Vv v W VvV W

Pearl, Ho, & Detrano 2014, under rev.




Learning English metrical phonology: Non-trivial

Analysis of Brent corpus (CHILDES
database): 4780 word types (99,968
tokens) of American English speech
directed at children between the ages of 6
and 12 months

Syllabic word form: V. VV

Kl tty a WAY UH OH
Vw v W vV W

Multiple stress contours

HV: 73 of 123 syllabic word forms
Hayes: 86 of 149 syllabic word forms
oT: 166 of 452 syllabic word forms

This occurs a lot!

Pearl, Ho, & Detrano 2014, under rev.

Learning English metrical phonology:
Target state update

Acquisition success: Identify the grammar that can account forthe word-level

stress patterns in the language a good portion of

Is this reasonable?

i

Probably.

A grammar is useful because it provides a compact representation of
some aspect of the data. Even if it doesn’t cover all the data, covering
some is helpful.

Pearl, Ho, & Detrano 2014, under rev.

Learning English metrical phonology:
Acquisition evaluation

How easily does a knowledge representation allow children to learn
their specific language’s grammar, when given realistic data?

Learnability analysis provides a quantitative way to compare competing
knowledge representations (pearl 2011, Legate & Yang 2012)

Working premise: Rational learners

el
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Learning English metrical phonology:
Acquisition evaluation

How easily does a knowledge representation allow children to learn
their specific language’s grammar, when given realistic data?

Learnability analysis provides a quantitative way to compare competing
knowledge representations (Pearl 2011, Legate & Yang 2012)

Working premise: Rational learners

A learner trying to learn which grammar is the
right one for the language will choose the
grammar perceived to be the best.

Al

Pearl, Ho, & Detrano 2014, under rev.

Learning English metrical phonology:
Acquisition evaluation

How easily does a knowledge representation allow children to learn
their specific language’s grammar, when given realistic data?

Learnability analysis provides a quantitative way to compare competing
knowledge representations (Pearl 2011, Legate & Yang 2012)

Working premise: Rational learners

A learner trying to learn which grammar is the
right one for the language will choose the
grammar perceived to be the best.

able to account for the most data in the
acquisitional intake = most useful to have

Pearl, Ho, & Detrano 2014, under rev.

Quantifying learnability

Once we define the acquisitional intake, we can then ask
which grammar in the hypothesis space defined by the
knowledge representation is best, assuming a rational
learner that will choose the grammar compatible with
the most data.

D
-l
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Quantifying learnability

Once we define the acquisitional intake, we can then ask
which grammar in the hypothesis space defined by the
knowledge representation is best, assuming a rational
learner that will choose the grammar compatible with
the most data.

Compatibility with a data point: A grammar Individual grammar evaluation

is compatible with a data point if the
grammar can account for that data point.

Here: Matching stress contour.

Intuition: More compatibility is better.
A grammar that can account for 70% of the data is better than a grammar
that can only account for 55% of the data.

Pearl, Ho, & Detrano 2014, under rev.
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Quantifying learnability

Once we define the acquisitional intake, we can then ask
which grammar in the hypothesis space defined by the
knowledge representation is best, assuming a rational
learner that will choose the grammar compatible with
the most data.

.
-
e —

o Individual grammar evaluation
Raw compatibility for a grammar: The amount &

of data that grammar can account for.

Example: A grammar that can account for 70%
of the data has a raw compatibility of 0.70.

Pearl, Ho, & Detrano 2014, under rev.

Quantifying learnability

Once we define the acquisitional intake, we can then ask
which grammar in the hypothesis space defined by the
knowledge representation is best, assuming a rational
learner that will choose the grammar compatible with
the most data.

Relative compatibility for a grammar: The
proportion of other grammars that this
grammar is better than, based on raw
compatibility.

Individual grammar evaluation

Example: The best grammar in the knowledge
representation has ~1.00 relative compatibility. This is
the one that’s easiest to learn, given the data.

v\
R

dcquisitional intake

~ -
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Quantifying learnability

Once we define the acquisitional intake, we can then ask
which grammar in the hypothesis space defined by the
knowledge representation is best, assuming a rational
learner that will choose the grammar compatible with
the most data.

P
-
e —

Learnability potential for a knowledge Knowledge representation evaluation

representation: The amount of data the best
grammar is compatible with. This is how
much of the data that knowledge
representation is capable of accounting for
with any of its grammars.

Nonfinality, Parse-c
ot binarity
Trochaic
Weight-to-Stress
Align left, Align right
*Sonorant nucleus

1]

Example: If the best grammar can account for 70% of the data, this knowledge
representation has a learnability potential of 0.70.

Pearl, Ho, & Detrano 2014, under rev.

English learnability:
Knowledge representations

So what’s the best any grammar in a given knowledge representation
actually does, given realistic child-directed data?

Learnability potential = proportion of data the best grammar (relative
compatibility = 1.00) can account for

Raw compatibility of best grammar
HV: 0.668 types
Hayes: 0.683 types
OoT: 0.657 types

Around 2/3 of the word types

_acquisitional intake
..

Pearl, Ho, & Detrano 2014, under rev.

English learnability:
Knowledge representations

Implication:

The best grammar in any of these knowledge ™~
representations is pretty useful to have. It allows a learner “
to account for a good proportion of the input, even if .
there’s a significant chunk that can’t be accounted for. —_

Raw compatibility of best grammar
HV: 0.668 types
Hayes: 0.683 types
oT: 0.657 types

Around 2/3 of the word types

/
%, acquisitional intake
Ss

Pearl, Ho, & Detrano 2014, under rev.




English learnability:
Knowledge representations
Implication:

The best grammar in any of these knowledge ?9
representations is pretty useful to have. It allows a learner \“\
to account for a good proportion of the input, even if -
there’s a significant chunk that can’t be accounted for. —

But...is that really the best they can do?

Pearl, Ho, & Detrano 2014, under rev.

Data filters

Previous working assumption: The learner will try to learn a grammar that can
account for all the data encountered.

all data

Pearl, Ho, & Detrano 2014, under rev.

Data filters

Updated working assumption: The learner will try to learn a grammar that can
account for all the productive data encountered (Legate & Yang 2012).

all data

all productive data

i
‘ Acquisitional intake =
only productive data

|
|
~ — |
(Lidz & Gagliardi 2015) Pearl, Ho, & Detrano 2014, under rev.

Productive data filter for metrical phonology

Updated working assumption: The learner will try to learn a grammar that can
account for all the productive data encountered (Legate & Yang 2012).

. Principled way to implement
Syllabic word form: this = Tolerance Principle

. A% COO kie Productive
- Q ® DA ddy data filter

C:?UC" — | funny ?9
x

a WAY
be LOW
to DAY
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English learnability:
Knowledge representations

So what’s the best any grammar in a given knowledge representation
actually does, given realistic child-directed data and a productive data filter?

Learnability potential = proportion of data the best grammar (relative
compatibility = 1.00) can account for

Raw compatibility of best grammar
HV: 0.949 productive types
Hayes: 0.933 productive types 84-95% of the productive word types
oT: 0.843 productive types

Pearl, Ho, & Detrano 2014, under rev.

English learnability:
Knowledge representations

This looks even better! Though the parametric |
representations are a little ahead, all

representations can generate a grammar that g
accounts for a very large proportion of the \J

productive data. Quite useful! ¥

Raw compatibility of best grammar
HV: 0.949 productive types
Hayes: 0.933 productive types 84-95% of the productive word types
oT: 0.843 productive types

Pearl, Ho, & Detrano 2014, under rev.




English learnability:
English grammars

What about the “English” grammar in each knowledge representation?

LA P
®JL®
- »
) @ Hayes

Working assumption for acquisition:
The “English” grammar should be the best grammar in a representation
(relative compatibility = 1.00) for the data of English.

Isit?

Pearl, Ho, & Detrano 2014, under rev.

English learnability:
English grammars

How does the (best) English grammar compare to the other grammars
defined by the knowledge representation, when looking at all the data?

Relative compatibility of the English grammar = proportion of grammars in
the hypothesis space the (best) English grammar is better than

Relative compatibility of English grammar
HV: 0.673 out of 156 grammars

Hayes: 0.676 out of 768 grammars

oT: 0.817 out of 362,880 grammars

Better than many...but many are still better
HV: 51 are better

Hayes: 249 are better

OT: 66,407 are better

isitionahjnta
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English learnability:
English grammars

Implication:

There are many other grammars in the hypothesis space
that are more compatible with the data. It would be easier ’
to pick one of these other more compatible grammars.

Relative compatibility of English grammar
HV: 0.673 out of 156 grammars

Hayes: 0.676 out of 768 grammars

OoT: 0.817 out of 362,880 grammars

Better than many...but many are still better
HV: 51 are better

Hayes: 249 are better

OT: 66,407 are better

quisitionahintak
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English learnability:
English grammars

What about if children have a productive data filter
on their acquisitional intake?

Relative compatibility of English grammar
HV: 0.622 out of 156 grammars

Hayes: 0.680 out of 768 grammars

oT: 0.798 out of 362,880 grammars

Little if any improvement...and sometimes worse:
HV: 59 are better

Hayes: 246 are better

OT: 73,302 are better

Pearl, Ho, & Detrano 2014, under rev.

English learnability:
English grammars

Implication:

There are still many other grammars in the hypothesis space
that are more compatible with the data. It would be easier to
pick one of these other more compatible grammars.

Relative compatibility of English grammar
HV: 0.622 out of 156 grammars

Hayes: 0.680 out of 768 grammars

oT: 0.798 out of 362,880 grammars

Little if any improvement...and sometimes worse:
HV: 59 are better

Hayes: 246 are better

OT: 73,302 are better
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English learnability:
English grammars

Implication:

There are still many other grammars in the hypothesis space =
that are more compati . - d be easier to o
pick one of these@ther more compatible graﬂni&)

So what do these other more compatible grammars look like anyway?
What values/constraint rankings do they use?
Can the current English grammar definitions be adjusted?

Pearl, Ho, & Detrano 2014, under rev.




English learnability:
English grammars

What values/constraint rankings do the grammars use that are more
compatible with the data than the official English grammar?

Parametric: HV English grammar

Foot headedness
Quantity sensitivity
L)

[ )
Extrametricality .¢'
(

Foot directionality

Pearl, Ho, & Detrano 2014, under rev.

English learnability:
English grammars

What values/constraint rankings do the grammars use that are more
compatible with the data than the official English grammar?

Parametric: HY It turns out that many high compatibility

T f\.Hd grammars use a different Quantity Sensitivity
Lo Boundedness . : i
®. ® value: Quantity Insensitive (Ql), rather than

Quantity Sensitive (QS).

Extrametricality .

This allows them to handle
words like bellybutton, which
have an unstressed internal
heavy syllable.

BE lly BU tton
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English learnability:
English grammars

What values/constraint rankings do the grammars use that are more
compatible with the data than the official English grammar?

Parametric: HY It turns out that many high compatibility

Foot headedness grammars use a different Quantity Sensitivity
& value: Quantity Insensitive (Ql), rather than
Quantity Sensitive (QS).

Quantity sensitivity
L=

Extrametricality .

Foot drectionalty So what happens if we swap the English
definition’s quantity sensitivity value?

Qs —>Qql o@D

% Relative compatibility over all data = 0.94!

.

Pearl, Ho, & Detrano 2014, under rev.

English learnability:
English grammars

What values/constraint rankings do the grammars use that are more

compatible with the data than the official English grammar?

Parametric: HV It turns out that many high compatibility

Foot headedness grammars use a different Quantity Sensitivity
condednesyalue: Quantity Insensitive (Ql), rather than

Quantity Sensitive (QS).

Quantity sensitivity
L")

Extrametricality .
[
footdrectionaity So what happens if we swap the English
definition’s quantity sensitivity value?

Qs —>ql [ =

Relative compatibility over all data = 0.94!
But relative compatibility over productive data = 0.71...

Pearl, Ho, & Detrano 2014, under rev.

English learnability:
English grammars

What values/constraint rankings do the grammars use that are more
compatible with the data than the official English grammar?

Parametric: HV English grammar

Foot headedness ~
Quantity sensitivity @ 4
Boundednes: B g > Q
.b‘ < o
Extrametricality . (’ @

Foot directionality

Upshot: For the HV knowledge representation, the learning problem could be
ameliorated by simply switching one parameter value as long as children
aren’t using a productive data filter.

Pearl, Ho, & Detrano 2014, under rev.

English learnability:
English grammars

What values/constraint rankings do the grammars use that are more
compatible with the data than the official English grammar?

Parametric: Hayes English grammar

S - 5
@B D '
L N

Syllable weight

Foot directionality Parsing locality

Pearl, Ho, & Detrano 2014, under rev.




English learnability:
English grammars

What values/constraint rankings do the grammars use that are more
compatible with the data than the official English grammar?

Parametric: Hayes It turns out that many high compatibility

~ grammars use a different Foot Inventory

ety @ ‘\‘ ‘ ‘ valuef SyIIabr:c Trochees (Syl-Tro) rather than
®% P Moraic Trochees (Mor-Tro).
L N -

Syllable weight
foctdrectonaliy - Parng ocelly This allows them to handle
words like baby and kitty,
which have a final unstressed
heavy syllable.
BA by
KI tty

Pearl, Ho, & Detrano 2014, under rev.

English learnability:
English grammars

What values/constraint rankings do the grammars use that are more
compatible with the data than the official English grammar?

Parametric: Hayes It turns out that many high compatibility

grammars use a different Foot Inventory

ey @D C ) o ’m valuef SyIIabr:c Trochees (Syl-Tro) rather than
®%- Moraic Trochees (Mor-Tro).
L X

Syllable weight

So what happens if we swap the English
definition’s foot inventory value?

Mor-Tro —> Syl-Tro @GP

oot directionality Parsing locality

Relative compatibility over all data = 0.91
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English learnability:
English grammars

What values/constraint rankings do the grammars use that are more
compatible with the data than the official English grammar?

Parametric: Hayes It turns out that many high compatibility

grammars use a different Foot Inventory

ey @ ‘L o valuef Syllabic Trochees (Syl-Tro) rather than
S @ Moraic Trochees (Mor-Tro).
® @

Foot directionality  Parsing locality

So what happens if we swap the English
definition’s foot inventory value?

Mor-Tro —> Syl-Tro @@

Relative compatibility over all data = 0.91
And relative compatibility over productive data = 0.96!

Pearl, Ho, & Detrano 2014, under rev.

English learnability:
English grammars

What values/constraint rankings do the grammars use that are more
compatible with the data than the official English grammar?

Parametric: Hayes English grammar

Degenerate feet < o D >
comaticiy @D {J v .& :
® ® @

Foot directionality  Parsing locality

Upshot: For the Hayes knowledge representation, the learning problem could
be ameliorated by simply switching one parameter value especially if children
are using a productive data filter.

Pearl, Ho, & Detrano 2014, under rev.

English learnability:
English grammars

What values/constraint rankings do the grammars use that are more
compatible with the data than the official English grammar?

Constraint-based: OT English grammar obeys this ordering

Nonfinality, Parse-o
Foot binarity
Trochaic
Weight-to-Stress
Align left, Align right
*Sonorant nucleus

I
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English learnability:
English grammars

What values/constraint rankings do the grammars use that are more
compatible with the data than the official English grammar?

Constraint-based: OT It turns out that all high compatibility grammars

use a different ordering of Non-Finality (Non-Fin)
and Weight-to-Stress VV (WSP-VV):
Non-Fin is ranked higher than WSP-VV

— ity s
N oot binarity
S T(0Chaic
Enswwwwwww) Weight-to-Stress
N *Sonorant nucleus

This allows them to handle
words like baby and kitty,
which have a final unstressed
VV syllable.
BA by
Kl tty

Pearl, Ho, & Detrano 2014, under rev.




English learnability:
English grammars

What values/constraint rankings do the grammars use that are more
compatible with the data than the official English grammar?

Constraint-based: OT It turns out that all high compatibility grammars

use a different ordering of Non-Finality (Non-Fin)
and Weight-to-Stress VV (WSP-VV):
Non-Fin is ranked higher than WSP-VV

Nonfinality, Parse-o

Weight-to-Stress
Align left, Align right
*Sonorant nucleus

I

So what happens if we swap the English
definition’s ordering of these constraints?

: — ——
Non-Fin >> WSP-VV | e .

b Relative compatibility over all data = 0.99!
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English learnability:
English grammars

What values/constraint rankings do the grammars use that are more
compatible with the data than the official English grammar?

Constraint-based: OT It turns out that all high compatibility grammars

use a different ordering of Non-Finality (Non-Fin)
and Weight-to-Stress VV (WSP-VV):
Non-Fin is ranked higher than WSP-VV

—
ey Nonfinality, Parse-
—

S Tochaic
——
EEssswwwss] WeighttoStress

[T
EE— Alien left, Align right
— Sonorant nucleus

rity

So what happens if we swap the English
definition’s ordering of these constraints?

P =T —
Non-Fin >> WSP-VV | -y .

Relative compatibility over all data = 0.99!

Relative compatibility over productive data = 0.93!

Pearl, Ho, & Detrano 2014, under rev.

English learnability:
English grammars

What values/constraint rankings do the grammars use that are more
compatible with the data than the official English grammar?

Constraint-based: OT English grammar obeys this ordering

I S
wwwwww; Nonfinality, Parse-o e
— oot binarity >
E— 7o chaic e
— N
CEEEwwmwww) Weight-to-Stress « — e
EEE— Aien eft, Align right e
— *Sonorant nucleus

Upshot: For the OT knowledge representation, the learning problem could be
ameliorated by simply switching one constraint ordering especially if children
aren’t using a productive data filter.

Pearl, Ho, & Detrano 2014, under rev.

Metrical phonology learnability:
Take away

Athree knowledge representations are useful for acquisition:
They can generate grammars that account for a large portion of realistic English
child-directed speech data, especially if children are using a productive data filter.

3= TRk

1

Pearl, Ho, & Detrano 2014, under rev.

Metrical phonology learnability:
Take away

A{hree knowledge representations are useful for acquisition
especially if children are using a productive data filter.

However, the current English grammar definitions in each representation are
not the grammars most easily learnable from the data.

Pearl, Ho, & Detrano 2014, under rev.

Metrical phonology learnability:
Take away

%Ithree knowledge representations are useful for acquisition
especially if children are using a productive data filter.

However, the current English grammar definitions in each representation are
not the grammars most easily learnable from the data.

But each representation has a grammar that is very close to the current English
grammar definition (change one parameter value or one constraint ordering)
which is much more easily learnable.

Parametric: HV
Fine only if children aren’t using a productive data filter. @

) 4
G v
&N
[\ 4
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Metrical phonology learnability:
Take away

%Ithree knowledge representations are useful for acquisition
especially if children are using a productive data filter.

However, the current English grammar definitions in each representation are
not the grammars most easily learnable from the data.

But each representation has a grammar that is very close to the current English
grammar definition (change one parameter value or one constraint ordering)
which is much more easily learnable.

Parametric: HV

Fine only if children aren’t using a productive data filter. « @ -« ', )

Parametric: Hayes x &

Better if children are using a productive data filter. L J -
b > D
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Metrical phonology learnability:
Take away

%Ithree knowledge representations are useful for acquisition
especially if children are using a productive data filter.

However, the current English grammar definitions in each representation are
not the grammars most easily learnable from the data.

A each representation has a grammar that is very close to the current English
grammar definition (change one parameter value or one constraint ordering)
which is much more easily learnable.

Parametric: HV
Fine only if children aren’t using a productive data filter.

Parametric: Hayes
Better if children are using a productive data filter.

Constraint-based: OT =
Alittle better if children aren’t using a productive data filter.

Pearl, Ho, & Detrano 2014, under rev.

Metrical phonology learnability:
Take away

Open questions:

Theory of acquisition:
Are children using a productive data filter? This affects how much data any
representation can account for and which particular representation has an

English-like grammar that is easily learnable from realistic child-directed
English data.

Parametric: HV
Fine only if children aren’t using a productive data filter.

Parametric: Hayes
Better if children are using a productive data filter.

Constraint-based: OT
A little better if children aren’t using a productive data filter.

Pearl, Ho, & Detrano 2014, under rev.

Metrical phonology learnability:
Take away

Open questions:

Theory of representation for English:

Are these English-like grammars the ones children have? Are these the ones
adults have? Can verify experimentally.

Are these English-like grammars (more?) compatible with adult-directed
English data? Can verify computationally.

If so, this supports these grammars as the actual
English grammar in each representation.

Pearl, Ho, & Detrano 2014, under rev.

Metrical phonology: Big picture

This approach allows us to evaluate metrical phonology
representations by using them for acquisition. We can then
refine our theories of acquisition and representation.

Pearl, Ho, & Detrano 2014, under rev.

Today’s goal:
Computational acquisition modeling

Case studies

Metrical phonology

Wh
Syntax




Syntax: Syntactic islands

*  Why? Central to UG-based syntactic theories.

* What? Dependencies can exist between two non-adjacent items. They
do not appear to be constrained by length (Chomsky 1965, Ross 1967), but
rather by whether the dependency crosses certain structures (called
“syntactic islands”).

What does Jack think __?

What does Jack think that Lily said that Sarah heard that Jareth believed __?

Pearl & Sprouse 2013a, 2013b, under review

Syntax: Syntactic islands

¢ Why? Central to UG-based syntactic theories.

* What? Dependencies can exist between two non-adjacent items. They
do not appear to be constrained by length (Chomsky 1965, Ross 1967), but
rather by whether the dependency crosses certain structures (called
“syntactic islands”).

Some example islands

Complex NP island:

*What did you make [the claim that Jack bought __]? g
Subject island: ;

*What do you think [the joke about ] offended Jack?
Whether island:

*What do you wonder [whether Jack bought _ ]?
Adjunct island:

*What do you worry [if Jack buys _ ]?

v

X

Pearl & Sprouse 2013a, 2013b, under review

Syntactic islands: Acquisition target

Adult knowledge as measured by acceptability judgment behavior

What does Jack think __?

What does Jack think that Lily said that Sarah heard that Jareth believed __?

Complex NP island:
*What did you make [the claim that Jack bought __]?

Subject island:
*What do you think [the joke about _] offended Jack?

Whether island:
*What do you wonder [whether Jack bought __]?

Adjunct island:
*What do you worry [if Jack buys __]?

Pearl & Sprouse 2013a, 2013b, under review

Syntactic islands: Acquisition target

Adult knowledge as measured by acceptability judgment behavior

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Pearl & Sprouse 2013a, 2013b, under review

Syntactic islands: Acquisition target

Adult knowledge as measured by acceptability judgment behavior

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Complex NP islands
Who __ claimed that Lily forgot the necklace? matrix | non-island
What did the teacher claim that Lily forgot __? embedded | non-island
Who __ made the claim that Lily forgot the necklace? matrix | island
*What did the teacher make the claim that Lily forgot __? embedded | island

Pearl & Sprouse 2013a, 2013b, under review

Syntactic islands: Acquisition target

Adult knowledge as measured by acceptability judgment behavior

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Subject islands
Who __ thinks the necklace is expensive? matrix | non-island
What does Jack think __is expensive? embedded | non-island
Who __ thinks the necklace for Lily is expensive? matrix | island
*Who does Jack think the necklace for __is expensive?  embedded | island

Pearl & Sprouse 2013a, 2013b, under review




Syntactic islands: Acquisition target

Adult knowledge as measured by acceptability judgment behavior

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Whether islands

Who __ thinks that Jack stole the necklace?

What does the teacher think that Jack stole __? embedded | non-island

Who __ wonders whether Jack stole the necklace? matrix | island
*What does the teacher wonder whether Jack stole _ ? embedded | island

matrix | non-island

Pearl & Sprouse 2013a, 2013b, under review

Syntactic islands: Acquisition target

Adult knowledge as measured by acceptability judgment behavior

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Adjunct islands

matrix | non-island
embedded | non-island

matrix | island
embedded | island

Who __ thinks that Lily forgot the necklace?

What does the teacher think that Lily forgot __?

Who __ worries if Lily forgot the necklace?
*What does the teacher worry if Lily forgot __ ?

Pearl & Sprouse 2013a, 2013b, under review

Syntactic islands: Acquisition target

Adult knowledge as measured by acceptability judgment behavior
Syntactic island = superadditive interaction of the two factors (additional

unacceptability that arises when the two factors are combined, above
and beyond the independent contribution of each factor).

" island effect e no island effect

1\
i— Teo I
COI- S
: T I
| — non-island structure "~~~ ._ H —  non-island structure
- island structure I -~ iland sructure
matrix embedded matrix embedded

Pearl & Sprouse 2013a, 2013b, under review

Syntactic islands: Acquisition target

Adult knowledge as measured by acceptability judgment behavior
(from Sprouse et al. 2012 data on the four island types, with 173 subjects)

ol Complex NP: p < 0001 Sutject: p < 0001

Superadditivity present for all
islands tested =

Knowledge that dependencies
cannot cross these island structures a8

2-8c0r8 rating
2-0c08 ratig

s

non-sland structure non-island structuse

is part of adult knowledge about T IR, B iy

syntactic islands S Luminas e anlidind
AL Whather: p < 0001 184 Adunct: p < 0001

Importance for acquisition: This is 'ﬁ‘ 054 S § o] =

one kind of target behavior that § o § o = .

we’d like a learner to produce. asd

non-isiand svucion.
istand structure

matrx enbesmng matrix embedsed

Pearl & Sprouse 2013a, 2013b, under review

Syntactic islands: Representations

Subjacency (chomsky 1973, Huang 1982, Lasnik & Saito 1984)
(1) A dependency cannot cross two or more bounding nodes.

Wh o lgn - lanp e _1 ;
-]
{CP, IP, NP}?

Bounding nodes are language-specific
(CP, IP, and/or NP — must learn which ones are relevant for language)

Pearl & Sprouse 2013a, 2013b, under review

Syntactic islands: Representations

Subjacency (Chomsky 1973, Huang 1982, Lasnik & Saito 1984)
(1) A dependency cannot cross two or more bounding nodes.

Who o Ly o Do _

Subjacency-ish (pearl & Sprouse 2013a, 2013b)
(2) A dependency cannot cross a very low probability region of structure
(represented as a sequence of container nodes).

1

'I

=

Wh _1

Container node: phrase structure node that contains dependency

[ceWhat do  [,you [ like__ [eein this picture?]]]]

Pearl & Sprouse 2013a, 2013b, under review




Syntactic islands: Representations

Subjacency (chomsky 1973, Huang 1982, Lasnik & Saito 1984)
(1) A dependency cannot cross two or more bounding nodes.

Wh o Dg o Denae |

Subjacency-ish (pearl & Sprouse 2013a, 2013b)
(2) A dependency cannot cross a very low probability region of structure
(represented as a sequence of container nodes).

Wh o o -

low probability?

Low probability regions are language-specific
(defined by sequences of container nodes that must be learned)

Pearl & Sprouse 2013a, 2013b, under review

Syntactic islands: Representations

Subjacency (chomsky 1973, Huang 1982, Lasnik & Saito 1984)
(1) A dependency cannot cross two or more bounding nodes.

Wh o g o lenpe _n
"'

Subjacency-ish (pearl & Sprouse 2013a, 2013b) .
(2) A dependency cannot cross a very low probability region of structure
(represented as a sequence of container nodes}..

Wh . e _

In common: Both rely on local structure anomalies (at some level)

Pearl & Sprouse 2013a, 2013b, under review

Syntactic islands: Representations

Subjacency (Chomsky 1973, Huang 1982, Lasnik & Saito 1984)

(1) A dependency cannot cross two or more bounding nodes.
Wh o o w 1 (i) Dependencies defined over

bounding nodes — track those

(ii) Bounding node =?

. . iii) 2+ bounding nodes =

Subjacency-ish (Pearl & Sprouse 2013a, 2013b) i) € 0

(2) A dependency cannot cross a very low probability region of structure

(represented as a sequence of container nodes).

o,

Wh o leng Elona -+ lens - lena = lens _1

(i) Dependencies defined over container
node structure — track that already

(i) Container node = ?

(iii) low probability = i

Different: Amount of language-specific knowledge built in just for islands

Pearl & Sprouse 2013a, 2013b, under review

Syntactic islands: Representations
Subjacency (Chomsky 1973, Huang 1982, Lasnik & Saito 1984)

(1) A dependency cannot cross two or more bounding nodes.

Wh .. law v long e I

arl & Sprouse 2013a, 2013b)

Subjacency-i

Focus on evaluating this one today

Pearl & Sprouse 2013a, 2013b, under review

Subjacency-ish: Hypothesis space

Children’s hypotheses are about what container node sequences are
grammatical for dependencies in the language.

Ungrammatical
begin-1P-VP-NP-CP-IP-VP-end

Grammatical
begin-IP-VP-end

begin-IP-VP-CP-IP-VP-IP-VP-IP-VP-end

begin-IP-VP-PP-end

Pearl & Sprouse 2013a, 2013b, under review

Subjacency-ish: Target knowledge

Can the grammatical dependencies be distinguished from the ungrammatical ones?

Sprouse et al. (2012) stimuli:

Complex NP islands Subject islands

begin-1P-end matrix | non-island  begin-IP-end
begin-IP-VP-CP-IP-VP-end embedded | non-island  begin-1P-VP-CP-IP-end
begin-IP-end matrix | island begin-IP-end

*begin-IP-VP-NP-CP-IP-VP-end  embedded | island *begin-IP-VP-CP-IP-NP-PP-end

ﬁl the ungrammatical dependencies are distinct
from all the grammatical dependencies for these

syntactic islands.

Pearl & Sprouse 2013a, 2013b, under review




Subjacency-ish: Target knowledge

Can the grammatical dependencies be distinguished from the ungrammatical ones?

Sprouse et al. (2012) stimuli:

Whether islands Adjunct islands

Uh oh - the ungrammatical dependencies look M
identical to some of the grammatical dependencies tﬁ’&

Pearl & Sprouse 2013a, 2013b, under review

for these syntactic islands.

Subjacency-ish: Dependency representation

One solution:
Have CP container nodes be more specified for the learner:
Use the lexical head to subcategorize the CP container node.

CP,.» CP, CP, CP,, etc.

null’ that’ whether? if

The learner can then distinguish between these structures:

IP-VP-CP 1 thar~IP-VP
IP-VP-CP ooy IP-VP

Pearl & Sprouse 2013a, 2013b, under review

Subjacency-ish: Target knowledge

Can the grammatical dependencies be distinguished from the ungrammatical ones?

Sprouse et al. (2012) stimuli:

Complex NP islands Subject islands

begin-1P-end matrix | non-island begin-IP-end
begin-IP-VP-CPat-IP-VP-end embedded | non-island begin-IP-VP-CPyui-IP-end
begin-1P-end matrix | island begin-P-end

*begin-1P-VP-NP-CPsn.-IP-VP-end  embedded | island *begin-IP-VP-CPnyi-IP-NP-PP-end

ﬁl the ungrammatical dependencies are still
distinct from all the grammatical dependencies

for these syntactic islands.

Pearl & Sprouse 2013a, 2013b, under review

Subjacency-ish: Target knowledge

Can the grammatical dependencies be distinguished from the ungrammatical ones?

Sprouse et al. (2012) stimuli:

Whether islands Adjunct islands

begin-1P-end matrix | non-island  begin-IP-end
begin-IP-VP-CPyat-IP-VP-end embedded | non-island  begin-IP-VP-CPhat-IP-VP-end
begin-IP-end matrix | island begin-IP-end

*begin-1P-VP-CPwhether-IP-VP-end embedded | island *begin-IP-VP-CPi-IP-VP-end

ﬁow the ungrammatical dependencies are distinct
from all the grammatical dependencies for these
syntactic islands, too. iy

Pearl & Sprouse 2013a, 2013b, under review

Subjacency-ish: Acquisitional intake

Children must learn which local pieces of structure are low probability
for a wh-dependency. They learn this from the wh-dependencies in
their intake, which are defined over the container nodes of the wh-
dependency.

[cp Who did [, she [y, like __]]]?
IP VP

Encoding of dependency: begin-IP-VP-end

[cp Who did [, she [y, think [¢, [;» [ the gift] [, was [, from __]]111111?
P VP CPoulP VP PP

Encoding of dependency: begin-IP-VP-CPpu-IP-VP-PP-end

Pearl & Sprouse 2013a, 2013b, under review

Subjacency-ish: Realistic acquisitional intake

Child-directed speech (Brown-Adam, Brown-Eve, Suppes,
Valian) from CHILDES: 101,838 utterances containing
20,923 wh-dependencies

What kind of dependencies are present?

76.7% begin-IP-VP-end What did you see __?

12.8% begin-IP-end What __ happened?
5.6% begin-IP-VP-IP-VP-end What did she want todo__?
2.5% begin-IP-VP-PP-end What did she read from __?

1.1% begin-IP-VP-CP, -IP-VP-end What did she think he said __?

null

Pearl & Sprouse 2013a, 2013b, under review




Subjacency-ish: Modeling acquisition

Because wh-dependencies are perceived as sequences of container nodes, local pieces of
dependency structure can be characterized by container node trigrams.

[cp Who did [, she [y, think [, [;p [yp the gift] [y, was [, from __11111111?

P VP CP,IP VP PP .
begin-IP-VP-CP,,,-IP-VP-PP-end = 4
begin-IP-VP A‘
IP-VP-CP,, \ -
VP-CP,,-IP - !
cpP,,-IP-vP 4 ¢
IP-VP-PP o A

VP-PP-end for

Pearl & Sprouse 2013a, 2013b, under review

Subjacency-ish: Modeling acquisition

A child learns about the frequency of container node trigrams...

[cp Who did [}, she [y, think [, [ ;5 [yp the gift] [, was [, from __11111111?

P VP CP,IP VP PP -

begin-IP-VP  +1

null

begin-IP-VP-CP,,-IP-VP-PP-end =

nul

begin-IP-VP
P-VP-CP,, IP-VP-CPpui +1
VP-CP,,-IP
CcP,,-IP-VP
IP-VP-PP
VP-PP-end

Pearl & Sprouse 2013a, 2013b, under review

Subjacency-ish: Modeling acquisition

..and at the end of the learning period has a
sense of the probability of any given container
node trigram, based on its relative frequency.

begin-IP-VP IP-VP-CPj
IP-VP-CPrui IP-NP-PP
begin-1P-end

Pearl & Sprouse 2013a, 2013b, under review

Subjacency-ish: Modeling acquisition

A dependency can then have a probability,
based on the product of the smoothed
probabilities of its trigrams.

Who did she think the gift was from __?
Probability(begin-IP-VP-CP,
= p(begin-1P-VP)
* p(IP-VP-CP,,)

~IP-VP-PP-end)

nulf

begin-IP-VP-CP,,-IP-VP-PP-end 2

null

!
p(VP-CP,,-IP) X
* p(CP,,-1P-VP) [ [ perigrem)
* p(IP-VP-PP)

* p(VP-PP-end)

Pearl & Sprouse 2013a, 2013b, under review

Subjacency-ish: Modeling acquisition

This allows the modeled learner to
generate judgments about the
grammaticality of any dependency.

. . . begin-1P-VP-CP,,-IP-VP-PP-end = (5,
Higher probability dependencies are more

grammatical while lower probability
dependencies are less grammatical.

begin-IP-VP-CP -IP-VP-end = (f;)

Pearl & Sprouse 2013a, 2013b, under review

Subjacency-ish: Realistic learning period

P

Children hear approximately one
million utterances in their first three
years (Hart & Risley 1995).

Assumption: learning period for modeled learners is 3 years (ex: between 2
and 5 years old for modeling children’s acquisition of islands), so they would
hear one million utterances.

Total learning period: 200,000 wh-dependency data points (wh-dependencies
make up approximately 20% of the input)

Pearl & Sprouse 2013a, 2013b, under review




Subjacency-ish: Success metric

For each set of island stimuli from Sprouse et al. (2012), we generate grammaticality
preferences for the modeled learner based on the dependency’s probability.

@
LA

non-island  begin-IP-end
; »
L

We can then plot the log probability of the
dependency on the y-axis of the interaction

\ I
plot. 5 N

Non-parallel lines indicate superadditivity,
which indicates knowledge of islands. i

begin-IP-VP-CPhar-IP-VP-end
.o

~ O

island begin-IP-end *begin-1P-VP-NP-CPyar-IP-VP-end

matrix embedded

sland efect nolstand affct

— non-island siueture
- nand sructre

embegded  matrix embedded

Pea;i & Sprouse 2013a, 2013b, under review

Subjacency-ish: Success!

Complex NP Subject

the qualitative behavior suggests . X
that this learner has knowledge =~ — por-isendstucwre ™., - I"s‘;a";f‘;,"u‘;f;;:““”\*\+
of these syntactic islands.

Superadditivity observed for all
four islands —

matrix embedded matrix embedded
The subjacency-ish Whether Adjunct
representation that relies on .
container node trigrams is
useful for acquisition.

.

— non-island structure — non-island structure
- island structure + -~ island structure

matrix embedded matrix embedded

Pearl & Sprouse 2013a, 2013b, under review

Subjacency-ish: Take away

Wh

Representation validation

If dependencies are represented as container node sequences,
acquisition works well for these four syntactic islands. The learner
can leverage probabilities of container node trigrams.

Pearl & Sprouse 2013a, 2013b, under review

Subjacency-ish vs. Subjacency: What'’s in UG?

Subjacency-ish
Fewer pieces of knowledge
necessarily in UG.

Wh N

[CNl .

UG = innate + domain-specific

Innate Derived Domain-  Domain-
specific general
Attend to container nodes & subcategorize by CP ? ? L
Low probability items are dispreferred & *
Subjacency
77 N A _
Innate Derived Domain-  Domain-
specific general
Attend to bounding nodes (BNs) 2 *
Dependencies crossing 2+ BNs are not allowed & e

Pearl & Sprouse 2013a, 2013b, under review

Syntactic islands: Big picture

This approach allows us to evaluate a representation of
dependencies by using it for acquisition. We can then
refine our theories of what must be in Universal Grammar.

Pearl & Sprouse 2013a, 2013b, under review

Computational acquisition modeling:
Big picture

Informing theories of representation & acquisition

Metrical phonology:

«» Can identify learning assumptions (like productive data filters) that benefit
children using different knowledge representations

<« Can identify language-specific grammars within these representations that
are easier to learn from realistic data than the current versions




Computational acquisition modeling:
Big picture

Informing theories of representation & acquisition

Syntax

< Can validate representations that make it easy to learn syntactic islands, and
provide alternative proposals for what’s in UG

< Can provide concrete demonstrations of learning strategies using these
representations that succeed on realistic input data

Wh

Computational acquisition modeling:
Big picture

This technique is a useful tool — so let’s use it to
inform our theories of representation and acquisition!

Pearl & Sprouse 2013b, Pearl 2014, Pearl & Sprouse under review
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Extra material

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011 \
5 parameters & 3 sub-parameters m
Hypothesis space: 156 grammars

Foot headedness

Quantity sensitivity
@ - Boundedness

Extrametricality
. . Grammar = Set of parameter

& sub-parameter values

Foot directionality

Three knowledge representations

Parametric systems Correct grammar builds
compatible contour
HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011 \

5 parameters & 3 sub-parameters m
Hypothesis space: 156 grammars

Foot headedness

Quantity sensitivity
o

Extrametricality .’ :

Foot directionality

Boundedness

oc to pus




Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011 \
5 parameters & 3 sub-parameters m
Hypothesis space: 156 grammars

Foot headedness
Quantity sensitivity

Extrametricality " :

H L H
oc to pus

Quantity sensitivity

Are syllables all identical, or are they
differentiated by syllable weight (into
Heavy and Light syllables)?

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011 \
5 parameters & 3 sub-parameters m
Hypothesis space: 156 grammars N

Foot headedness
Quantity sensitivity

L )
Extrametricality ‘¢
{

Foot directionality

H L
oc to

Extrametricality
Are all syllables included in the larger units of
metrical feet, or are some excluded?

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011 \
5 parameters & 3 sub-parameters m
Hypothesis space: 156 grammars iy

Foot headedness

Quantity sensitivity Y

@,
Extrametricality .

H L) (B
Foot directionality -
oc to pus
Foot directionality
Are feet constructed from the left or from the

right?

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011 \
5 parameters & 3 sub-parameters m
Hypothesis space: 156 grammars .

Foot headedness

-\n

@,
Extrametricality .

Foot directionality

Quantity sensitivity

(H L) (H
oc to pus

Boundedness
How big are metrical feet?

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011 \
5 parameters & 3 sub-parameters m
Hypothesis space: 156 grammars N

Foot headedness
Quantity sensitivity
-

Extrametricality " :

Foot headedness
Which syllable in a foot is stressed?

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011 \
5 parameters & 3 sub-parameters m
Hypothesis space: 156 grammars N

Foot headecness This grammar, comprised of particular

parameter values, generates the correct
stress contour.

Quantity sensitivity
-

Extrametricality " :

Foot directionality

(H L) H
OC to pus

Parameter values used:
Quantity sensitive, VC syllables = Heavy, Extrametricality on rightmost syllable, Feet
built from the right, , Leftmost syllable in foot stressed




Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

HV: Halle & Vergnaud 1987, Dresher 1999, Pearl 2011 \

This grammar, comprised of particular
oundedness parameter values, generates the correct
stress contour.

5 parameters & 3 sub-parameters

Hypothesis space: 156 grammars

Foot headedness

Quantity sensitivity

Extrametricality . |
(H L) H

OC to pus

Parameter values used:
QS-VC-H, Em-Rt, FtDir-Rt, , FtHd-Left

...which are the values of the English grammar.

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

Hayes: Hayes 1995 \

8 parameters m
Hypothesis space: 768 grammars N

Degenerate feet

Extrametricality - -
Foot inventory
Syllable weight ‘

Foot directionality Parsing locality

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

Hayes: Hayes 1995 \

8 parameters m
Hypothesis space: 768 grammars iy

e @ D
Syllable weight @ -

ctionality Parsing locality

oc to pus

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

Hayes: Hayes 1995 \

8 parameters m

Hypothesis space: 768 grammars N

extametricalty QY ey
® o

oot directionality Parsing locality

(...feet first...)

oc to pus

Stress analysis direction

Are metrical feet created before word-
level stress is assigned to the edge
syllables or after?

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

Hayes: Hayes 1995 \

8 parameters m
Hypothesis space: 768 grammars N

Extrametricality ‘ Foot inventory
sylable wight D
Foot directionality Parsing locality
arsing locality oc to pL@

Extrametricality
Are syllables on the edge (or parts of
syllables) excluded from metrical feet?

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

Hayes: Hayes 1995 \

8 parameters m
Hypothesis space: 768 grammars N

Degenerate feet
exrametricaly @ L
Foot inventory
sylable weight D D

Foot directionality  Parsing locality

H L L
oc to pu®

Syllable weight

Syllables are distinguished into Heavy and
Light. Are syllables ending in VC (like oc)
Heavy or Light?




Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

Hayes: Hayes 1995 \

8 parameters m
Hypothesis space: 768 grammars

ety @ D
o e HoL L)
Foot directionality Parsing locality oc to pl@

Foot directionality
Are metrical feet constructed from the left
or the right?

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

Hayes: Hayes 1995 \

8 parameters m
Hypothesis space: 768 grammars N

Extrametricality - [ o)
Sytobe weignt CD L
® o HoL L

Foot directionality  Parsing locality

oc to pu®

Parsing locality
Is one Light syllable skipped between
metrical feet?

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

Hayes: Hayes 1995 \

8 parameters m
Hypothesis space: 768 grammars iy

e @ D
Syllable weight @ -

ctionality Parsing locality

Foot inventory
How big are metrical feet?
Where does the stress fall within them?

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

Hayes: Hayes 1995 \

8 parameters m

Hypothesis space: 768 grammars N

extametricalty QY ey
® o

oot directionality Parsing locality

(H)(L L)
oc to pu®
Degenerate feet

What do you do with leftover Light
syllables if you have any?

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

Hayes: Hayes 1995 \

8 parameters m
Hypothesis space: 768 grammars N

C
Extrametricality ‘ Foot inventory
Syllable weight @ -
® ® (H)(L L)
Foot directionality Parsing locality oc to pL@

Word layer end rule

Where does word-level stress go if there are
multiple stressed syllables? Can leftover Light
syllables have word-level stress?

Three knowledge representations

Parametric systems Correct grammar builds

compatible contour

Hayes: Hayes 1995 \

8 parameters m
Hypothesis space: 768 grammars N

This grammar, comprised of particular

B parameter values, generates an incorrect
exrametricaly @ L R stress contour.
o o (H )L L)
Foot directionality Parsing locality OC T pUS

Parameter values used:
Bottom-up, Extrametricality on rightmost consonant, VC syllables = Heavy, Feet built
from the right, Light syllables not skipped in between feet,

, Single Light edge syllables not allowed to have stress,




Three knowledge representations

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Extrametricality

‘l"g:it: S
sylable weight D
L

Correct grammar builds
compatible contour

|

This grammar, comprised of particular
parameter values, generates an incorrect
stress contour.

Degenerate fee

e (H)L L)

Foot directionality Parsing

Parameter values used:

Bot, Em-RtCons, VC-H, FtDir-Rt,
, DF-Strong, WLER-Rt

PL-Strong,

locality oC Ti pus

oy >
e
@

..which are the values of the English grammar.

Three knowledge representations
Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

i

Three knowledge representations

Constraint-ranking systems

Best candidate for the
correct grammar has a
compatible contour

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 X

9 violable constraints

Premise: Many different candidates for a word’s stress
representation and contour are generated and then ranked according
to which constraints are violated. Violating higher-ranked constraints
is worse than violating lower-ranked constraints.

c1 Jcz e Jea | 7T
(OC to) pus * *
oc (TO pus) : R I P
(oc TO) pus i N

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 \

Grammar = ranked ordering of all constraints

9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pat
9 violable constraints

Hypothesis space: 9! ran

Best candidate for the
correct grammar has a
compatible contour

er 2000, Tesar & Smolensky 2000 \

Official grammars for languages are often described as partial
orderings of constraints.

kings = 362,880 grammars

English grammar

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 \

9 violable constraints m
Hypothesis space: 9! rankings = 362,880 grammars §
This means the “grammar” for a language is often a set of the
possible rankings (grammars) that obey those orderings.

Ex: The English “grammar” is
compatible with 26 rankings.

Al

o

TG

I




Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 X

9 violable constraints m
Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Nonfinality, Parse-o

Foot binarity
Trochaic

Weight-to-Stress
Align left, Align right
*Sonorant nucleus

i

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 \

9 violable constraints m
Hypothesis space: 9! rankings = 362,880 grammars g

Principle (Rooting): All words must have stress

—
e Nonfinality, Parse-o
E— Fo0t binarity
o chaic
—

EEswswwwwn] Weight-to-Stress Nonﬁnality
AL g e, Align ight Should the final syllable not be
N *Sonorant nucleus in a metrical fODt?
RS AR
(OC to) (PUS) 1 (OC to) pus
(oc TO) (PUS) oc (TO pus)

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 X

9 violable constraints m
Hypothesis space: 9! rankings = 362,880 grammars .

Principle (Rooting): All words must have stress

S— iy, Parse-o

S oot binarit

— 1031 Parse-o

EEEEwwwwwE] Weight-to-Stress . .
ITTITTITITITITITITT A O Should all syllables be in metrical feet?
— *Sonorant nucleus

(OC to) pus

oc (TO pus)

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 \

9 violable constraints m
Hypothesis space: 9! rankings = 362,880 grammars .

Principle (Rooting): All words must have stress

Nonfinality, Parse-o

Foot binarity

UL i o ight Should all metrical feet consist
*Sonorant nucleus Of two Um\ts?

I

(OC to) (PUS) i(OC to) pus

(oc TO) (PUS) §oc (TO pus)

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 X

9 violable constraints m
Hypothesis space: 9! rankings = 362,880 grammars ,

Principle (Rooting): All words must have stress

Nonfinality, Parse-o
oot binarity

Trochaic
Irachalc Should metrical feet have stress on
Weight-to-Stress.
Align left, Align right the leftmost syllable?

*Sonorant nucleus

1

(oc TO) (PUS)

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 \

9 violable constraints BAby
Hypothesis space: 9! rankings = 362,880 grammars §

Principle (Rooting): All words must have stress

e Nonfinality, Parse-
e ot Weight-to-Stress (VV)
AT atgn eft, Algn rght Should all VV syllables be stressed?
—*Sonorant nucleus
,,,,,,,, VA
(ba BY) (BA) (BY)

(BA) by (BA by)




Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 X

9 violable constraints m
Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

S— iy, Parse-o
S— oot binari
— rOCh2IC i
EEEswwwwwnl Weight-to-Stress Weight-to-Stress (VC)
e Algn et Align right Should all VC syllables be stressed?
S *Sonorant nucleus
A
1(OC to) (PUS) | (OC to) pus
(oc TO) (PUS) oc (TO pus)

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 \

9 violable constraints m
Hypothesis space: 9! rankings = 362,880 grammars g

Principle (Rooting): All words must have stress

Ewwwwwww Nonfinality, Parse-o
— o0k b2ty Align left
rEmamaea Weight to-Stress = Should metrical feet include the
LI g e, Align ight 5
— *Sonorant nucleus leftmost syllable?
‘ v ‘ ‘ V4
{(0C to) (PUS) | 1 (OC to) pus
T
i(oc TO) (PUS) ! oc (TO pus)

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 X

9 violable constraints m
Hypothesis space: 9! rankings = 362,880 grammars N

Principle (Rooting): All words must have stress

S— iy, parse-o
— 001 bin Align right
ST Weisht to-stress = Should metrical feet include the
e rightmost syllable?

o

1(OC to) (PUS) | (OC to) pus

i /- i [— Vo
i(oc TO) (PUS) i oc (TO pus)

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 \

9 violable constraints m
Hypothesis space: 9! rankings = 362,880 grammars .

Principle (Rooting): All words must have stress

Constraint-ranking systems

Nonfinality, Parse-o

*Sonorant nucleus
Should syllables not have sonorants
(m, n, 1,1, r) as the nucleus?

Ii

W
LULLTHIHTITITIE

your (SELF) | (yr SELF)

{(YOUR) (SELF) | (YOUR slf)

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 X

9 violable constraints m
Hypothesis space: 9! rankings = 362,880 grammars ,

Principle (Rooting): All words must have stress

Nonfinality, Parse-o
ot binarity

Trochaic

Weight-to-Stress

1

Align left, Align right
*Sonorant nucleus

Sample candidates

A sample grammar (OC to) (PUS) (OC to) pus

that is a version of the ~======

feh ” —
English “grammar”: — (oc TO) (PUS) oc (TO pus)

[sassasnnnnn]

e

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 \

9 violable constraints m
Hypothesis space: 9! rankings = 362,880 grammars §

Principle (Rooting): All words must have stress

Nonfinality, Parse-o
Foot binariy Most important: Metrical feet have stress on the
Weight-to-Stress leftmost syllable.

Align left, Align right )

*Sonorant nucleus

|1

Sample candidates
A sample grammar -_(/ (OC to) (PUS) (OC to) pus
that is a version of the ~======
—
English “grammar”: —
[
R

oc (TO pus)




Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 X
9 violable constraints m
Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Nonfinality, Parse-o

—
— oot binar Next i tant: VV syllabl t d
— 0L bInartY ., ext important: VV syllables are stressed.
EEswwwwwww] Weightto-Stress /

(TN g1 e, g right
S *Sonorant nucleus '/,
Sample candidates

A sample grammar — (OC to) (PUS) (OC to) pus

that is a version of the ~=====o

English “grammar”: — oc (TO pus)

[
R

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 \

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

— iy, Parse-o
e Foot binarty Next important: The final syllable is not included
— 70" ’
EEEsswwwas WeighttoStress . in a foot.
LTI g e, Aign right
— *Sonorant nucleus Fs
Sample candidates
A sample grammar / (OC to) pus

that is a version of the
English “grammar”:

homd

Iy

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000 X

Only one candidate left,

9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

—
——"Nonfinalty, Parse-0 . .
oot binari and it has a compatible
—

B contour.

EETEEETEEE Weightto-Stress

ALTTTTTTTTTTTTTTTT Align left, Align right

— Sonorant nucleus

Sample candidates

— OC to) pus
A sample grammar @ (
_—

that is a version of the

—
English “grammar”: —

[
B

Three knowledge representations

Best candidate for the
correct grammar has a
compatible contour

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000
9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

Nonfinality, Parse-o
Foot binarity
Trochaic
Weight-to-Stress

|

[FEsssssassl
LI o pign gt

*Sonorant nucleus

A sample grammar English “grammar”
that is a version of the ~ ======

—
English “grammar”: —

Knowledge representation comparison

Foot headedness
Quantity sensitivity Degenerate feet
-

extrametricaliy @Y {J
oot inventory
syllable weight RS ‘

Foot directionality Parsing locality

Extrametricality

HV: 5 parameters & 3 sub-parameters Hayes: 8 parameters

Hypothesis space: 156 grammars Hypothesis space: 768 grammars

ooy Weight-to-Stress
I g o, Al right
N *Sonorant nucleus
OT: 9 violable constraints

Hypothesis space: 362,880 grammars

English instantiations

HV: 5 parameters & 4 sub-parameters
Hypothesis space: 156 grammars

Hayes: 8 parameters

Hypothesis space: 768 grammars

OT: 9 violable constraints
Hypothesis space: 362,880 grammars
(English = 26 grammars)




Knowledge representation comparison

Foot headedness
e feet

Quantiysenstty begenert
‘b )

Foot directionalit
oot directionality  Parsing locality

HV: 5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars

Hayes: 8 parameters
Hypothesis space: 768 grammars

Each representation assumes certain syllabic distinctions.

— iy arse 0
—
S | ot
I | 1 e, i it
. *Sonorant nucleus

OT: 9 violable constraints
Hypothesis space: 362,880 grammars

Knowledge representation comparison

Foot headet

‘# I ) L
ervemericaity. @) P sylable weight CeEe [

Foot directionality

Foot directionalit Parsing locality
HV: 5 parameters & 3 sub-parameters
Hypothesis space: 156 grammars

Hayes: 8 parameters
Hypothesis space: 768 grammars
Syllabic distinctions: 3 Syllabic distinctions: 4

(short, closed, long) (short, potentially short, closed, long)

— iy, Parseo
e oot by
S T chaic
o stress
]

— 46" left, Align right
—Sonorant nucleus

OT: 9 violable constraints
Hypothesis space: 362,880 grammars
Syllabic distinctions: 8

(short, sonorant, 4 closed variants, long,
super-long)

Productive data filter

Updated working assumption: The learner will try to learn a grammar that can
account for all the productive data encountered (Legate & Yang 2012).

Why would this occur?

Perhaps the learner realizes that some data are unproductive, and therefore
likely irregular and unpredictable. The goal then becomes to learn a grammar
that can account for all the data that are predictable.

Productive data filter

Updated working assumption: The learner will try to learn a grammar that can
account for all the productive data encountered (Legate & Yang 2012).

How would this occur?

For every syllable word form (ex: V VV) that has multiple stress contours
associated with it, the learner assumes that one of these patterns may be the
productive contour and the others are exceptions to this general “rule”.

Productive data filter

Updated working assumption: The learner will try to learn a grammar that can
account for all the productive data encountered (Legate & Yang 2012).

How would this occur?

A formal way for identifying if there is a dominant rule for a set of items is the
Tolerance Principle (Yang 2005, Legate & Yang 2012). This is used to estimate
how many exceptions a rule can tolerate in a set before it’s no longer useful for
the learner to have the rule. If there are too many exceptions, it’s better not to
have a rule and learn patterns on an individual item basis instead of having a
rule that keeps getting violated.

Productive data filter

Updated working assumption: The learner will try to learn a grammar that can
account for all the productive data encountered (Legate & Yang 2012).

How would this occur?

The number of exceptions a rule N
can tolerate for a set of N items is Y:
In(N)

(Yang 2005, Legate & Yang 2012)




The Tolerance Principle in action

For every syllable word form with multiple stress contours, the learner could
assess whether any of those contours is the dominant one (the “rule” for that
syllable word form), using the Tolerance Principle.

V vV
T 7 T —
01 [ 11
a WAY 10 UH OH
KI tty

The Tolerance Principle in action

For every syllable word form with multiple stress contours, the learner could
assess whether any of those contours is the dominant one (the “rule” for that
syllable word form), using the Tolerance Principle.

V W
— J —
01 v 11
a WAY 10 UH OH
Kl tty

If one contour is dominant, the learner should focus on accounting for that pattern,
since it’s regular and productive. The grammar should be able to generate it. The
other contours can be ignored for purposes of learning the grammar.

The Tolerance Principle in action

For every syllable word form with multiple stress contours, the learner could
assess whether any of those contours is the dominant one (the “rule” for that
syllable word form), using the Tolerance Principle.

vV v
a WAY 10 UH OH
Kl tty

If no contour is dominant, the learner should ignore this syllable word form for the
purposes of learning the grammar since there is no obvious regularity to account for.

Productive data filter in action

Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge
HV: 123 syllable word forms
3 syllable distinctions

Hayes: 149 syllable word forms
4 syllable distinctions

V VV
—? 3
01 \ 11
a WAY 10 UH OH
162 types Ki tty 19 types
3713 tokens 325 types 1509 tokens
12709 tokens

Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge
HV: 123 syllable word forms
3 syllable distinctions

Hayes: 149 syllable word forms
4 syllable distinctions

VvV VW
P 7 T —
01 , 11
a WAY 10 UH OH
162 types Ki tty 19 types
3713 tokens 325 types 1509 tokens
12709 tokens
A

v o X

These items are good for the HV English grammar.




Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge
HV: 123 syllable word forms
3 syllable distinctions

Hayes: 149 syllable word forms
4 syllable distinctions

V VW
T 7 T —
01 v 11
a WAY 10 UH OH
162 types Kitty 19 types
3713 tokens 325 types 1509 tokens
12709 tokens
X v
o X

These items are good for the Hayes English grammar.

Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge
HV: 123 syllable word forms
3 syllable distinctions

Hayes: 149 syllable word forms
4 syllable distinctions

V VW
P 7 T —
01 v 11
a WAY 10 UH OH
162 types Kitty 19 types
3713 tokens 325 types 1509 tokens
12709 tokens A

x v X\X

o X

These items aren’t good for either English grammar.

Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge
HV: 123 syllable word forms
3 syllable distinctions

Hayes: 149 syllable word forms
4 syllable distinctions

VvV VW
—? 3
01 v 11
a WAY 10 UH OH
162 types Kitty 19 types
3713 tokens 325 types 1509 tokens
12709 tokens

x v XX

o X

The Tolerance Principle looks at the word types with each stress pattern. Each
represents an individual item that might follow the regular stress pattern rule (if
there is one).

Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge
HV: 123 syllable word forms
3 syllable distinctions

Hayes: 149 syllable word forms
4 syllable distinctions

V VW
—? 7 T —
01 v 11
a WAY 10 UH OH
162 types Kitty 19 types
3713 tokens 325 types 1509 tokens
12709 tokens

x v S

o X

How many items should the stress “rule” apply to? N = 162 + 325 + 19 = 506

Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge
HV: 123 syllable word forms
3 syllable distinctions

Hayes: 149 syllable word forms
4 syllable distinctions

If this is the dominant V VV
pattern, too many
exceptions: < P 2 — T
325+19>81 01 . 11
a WAY 10 UH OH
162 types Kitty 19 types
3713 tokens 325 types 1509 tokens
12709 tokens
X v XX
o X

How many exceptions are allowed? 506 / In(506) = 81

Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge
HV: 123 syllable word forms
3 syllable distinctions

Hayes: 149 syllable word forms
4 syllable distinctions

If this is the dominant VvV VW
pattern, too many
exceptions: (’X/ 2 B —
162+19>81 01 v 11
a WAY 10 UH OH
162 types Ki tty 19 types
3713 tokens 325 types 1509 tokens
12709 tokens
x v XX
o X

How many exceptions are allowed? 506 / In(506) = 81




Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge
HV: 123 syllable word forms Hayes: 149 syllable word forms

3 syllable distinctions 4 syllable distinctions

If this is the dominant V VV
pattern, way too many
exceptions: < X/X T
162 +325>81 01 v 11
a WAY 10 UH OH
162 types Kitty 19 types
3713 tokens 325 types 1509 tokens
12709 tokens
x v x X
o X

How many exceptions are allowed? 506 / In(506) = 81

Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge
HV: 123 syllable word forms Hayes: 149 syllable word forms

3 syllable distinctions 4 syllable distinctions

V VW
01 v 11
a WAY 10 UH OH
162 types ki tty 19 types
3713 tokens 325 types 1509 tokens
12709 tokens

x v XX

v o X

Learner conclusion: No dominant stress pattern, so none of these syllable word
form data should be used to learn the English grammar.

Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge
HV: 123 syllable word forms Hayes: 149 syllable word forms
3 syllable distinctions 4 syllable distinctions

VvV VW
K N~
01 v 11
a WAY 10 UH OH

162 types Kitty 19 types
3713 tokens 325 types 1509 tokens
K 12709 tokens g o
Xi v ~ %X

A / '\X ’\ Cecce®

This will end up helping both grammars, since they won’t be penalized for the
patterns they can’t account for.

Productive data filter in action

Parametric: HV & Hayes, with inflectional knowledge
HV: 123 syllable word forms Hayes: 149 syllable word forms
3 syllable distinctions 4 syllable distinctions

V W
— T TR~
01 N 11
a WAy /100 UH OH
162 types ,rl Kitty \‘. 19 types
3713 tokens 1 325 types 1509 tokens
12709 tokehs
i
X v S X X
¥

However, the Hayes grammar is helped a little more, since it couldn’t account for
the most frequent stress pattern before, while the HV grammar could.

Productive data filter in action

Constraint-based: OT, with inflectional knowledge
452 syllable word forms
8 syllable distinctions

Productive data filter in action

Constraint-based: OT, with inflectional knowledge
452 syllable word forms
8 syllable distinctions

V W
—? 3 T —
01 \ 11
a WAY 10 UH OH
25 types Ki tty 14 types
976 tokens 316 types 1480 tokens

12664 tokens




Productive data filter in action

Constraint-based: OT, with inflectional knowledge
452 syllable word forms
8 syllable distinctions

V VW
T 7 T —
01 v 11
a WAY 10 UH OH
KI tty
25 types 14 types
976 tokens 316 types 1480 tokens
12664 tokens
A2
X

These items are bad for all English grammars.

Productive data filter in action

Constraint-based: OT, with inflectional knowledge
452 syllable word forms
8 syllable distinctions

V VW
01 v 11
a WAY 10 UH OH
25 types Kitty 14 types
976 tokens 316 types 1480 tokens
" 12664 tokens
v
X

These items are good for most English grammars (21/26).

Productive data filter in action

Constraint-based: OT, with inflectional knowledge
452 syllable word forms
8 syllable distinctions

VvV VW
—? 3
01 ¥ 11
a WAY 10 UH OH
25 types Kitty 14 types
976 tokens 316 types 1480 tokens
12664 tokens A
v X/
X }

These items are good for a few English grammars (5/26).

Productive data filter in action

Constraint-based: OT, with inflectional knowledge

452 syllable word forms
8 syllable distinctions

V VW
—? 7 T —
01 v 11
a WAY 10 UH OH
25 types Kitty 14 types
976 tokens 316 types 1480 tokens
v/ 12664 tokens
X/
X

How many items should the stress “rule” apply to? N = 25 + 316 + 14 = 355

Productive data filter in action

Constraint-based: OT, with inflectional knowledge
452 syllable word forms
8 syllable distinctions

V VW
—? 3
01 \ 11
a WAY 10 UH OH
25 types Ki tty 14 types
976 tokens 316 types 1480 tokens
12664 tokens
v X/

X

How many exceptions are allowed? 355 / In(355) = 60

Productive data filter in action

Constraint-based: OT, with inflectional knowledge
452 syllable word forms
8 syllable distinctions

If this is the dominant VvV VW
pattern, too many
exceptions: <« — 2 — —
316 +14 > 60 01 v 11

a WAY 10 UH OH

25 types Ki tty 14 types
976 tokens 316 types 1480 tokens
v/ 12664 tokens
X/
X

How many exceptions are allowed? 355 / In(355) = 60




Productive data filter in action

Constraint-based: OT, with inflectional knowledge
452 syllable word forms
8 syllable distinctions

If this is the dominant V VV
pattern, NOT too many

exceptions: (x/:i\}x

25+14<60 01 11
a WAY 10 UH OH
25 types KI tty 14 types
976 tokens 316 types 1480 tokens
/ 12664 tokens
X/
X

How many exceptions are allowed? 355 / In(355) = 60

Productive data filter in action

Constraint-based: OT, with inflectional knowledge
452 syllable word forms
8 syllable distinctions

If this is the dominant VvV VW
pattern, too many

exceptions: (X/P\)
25 +316 > 60 01 11

a WAY 10 UH OH
25 types Kl tty 14 types
976 tokens 316 types 1480 tokens
v/ 12664 tokens
X/
X

How many exceptions are allowed? 355 / In(355) = 60

Productive data filter in action

Constraint-based: OT, with inflectional knowledge
452 syllable word forms
8 syllable distinctions

VvV VW
a WAY 10 UH OH
25 types Kitty 14 types
976 tokens 316 types 1480 tokens
v/ 12664 tokens
X/
X

Under the OT syllable representation, there is a dominant stress pattern for this
word form. Therefore, this pattern should be accounted for by the English
grammar.

Productive data filter in action

Constraint-based: OT, with inflectional knowledge
452 syllable word forms
8 syllable distinctions

V VW
a WAY 10 UH OH
25 types Kl tty 14 types
976 tokens 316 types 1480 tokens
v/ 12664 tokens
N X/
X

Unfortunately, this is the only pattern the English grammars cannot account
for....this means a learner using the productivity filter would have even more
trouble learning the current English OT grammar constraints.

The learnability problem

Initial knowledge state Target knowledge state

Knowledge English
representation system

The learnability problem: One option

Intermediate knowledge state Target knowledge state

English-ish English
system system

Change the (immediate) target state. Assume there is a transitory state in
learning that the learner reaches and then leaves once additional
knowledge is acquired.

Initial knowledge state

Knowledge
representation




Learning English metrical phonology

One solution: The learner has derived additional ﬁ‘ﬁ‘»,

knowledge that helps guide learning. ) Il '

General knowledge: Interactions with morphology
(Chomsky & Halle 1968, Hayes 1982, Kiparsky 1979)

Specific knowledge: Adding productive morphology doesn’t change the
stress pattern, even though all grammars base their stress patterns on the
syllables present in the word.

EARIy PREty senSAtion

SAti |
EARIier PREttiest o > tona
senSAtionally

Learning English metrical phonology

One solution: The learner has derived additional H‘,
knowledge that helps guide learning. I| ' '

English children seem to use inflectional morphology productively around
3 (Brown 1973) — so they may be aware it doesn’t get stressed, based on their
prior linguistic experience.

EARIy PREtty senSAtion

senSAtional
EARI PREtti
I@ senSAtionally

Learning English metrical phonology

So how does the (best) English grammar compare to the other grammars
defined by the knowledge representation, once the learner knows
inflectional morphology is stressless?

Relative compatibility of the English grammar = proportion of grammars in
the hypothesis space the (best) English grammar is better than

Learning English metrical phonology

So how does the (best) English grammar compare to the other grammars
defined by the knowledge representation, once the learner knows
inflectional morphology is stressless?

Relative compatibility of the English grammar = proportion of grammars in
the hypothesis space the (best) English grammar is better than

Relative compatibility of English grammar

HV: 0.712 by types out of 156 grammars
Hayes: 0.704 by types out of 768 grammars

oT: 0.786 by types out of 362,880 grammars

Better than many...but many are still better

Learning English metrical phonology

Implication:
There remain many other grammars in the hypothesis space ?9

that are more compatible with the data, even though the \‘“\
learner knows inflectional morphology is stressless. It would be y

easier to pick one of these other more compatible grammars.

Relative compatibility of English grammar

HV: 0.712 by types out of 156 grammars
Hayes: 0.704 by types out of 768 grammars

OT: 0.786 by types out of 362,880 grammars

Better than many...but many are still better

Learning English metrical phonology

Continuing conclusion:

The same learnability issues persist for the English grammar
in all three knowledge representations, even when the
learner has some knowledge of the interactions between
morphology and metrical phonology.

@ LA
4 ® 3L ”
C:?“"’ -&-
) @

Parametric: HV

Parametric: Hayes

Constraint-based: OT




HV vs. Hayes
on most frequent word forms

water, doing, going

Xp 472 little, getting, coming Yes Yes
Ll 334 baby, sweetie, mommy Yes No
Xl 309 kitty, daddy, very Yes No
Ap 235 goodness, handsome, helper Yes Yes
LL 188 okay, byebye, TV No Yes
Al 172 window, birdie, only Yes No
La 171 peanuts, secrets, highest Yes No
Xa 170 biggest, buckets, hiccups Yes No
xL 145 below, today, hurray No Yes

The impact of morphological knowledge

Example: What happens to words of the La stressed word form when the child gets
morphological knowledge? (for the Hayes grammar, which can’t account for it without
morphological knowledge)

O e S [T 3

water, doing, going Yes Yes
Xp 472 little, getting, coming Yes Yes
Ll 334 baby, sweetie, mommy Yes No
Xl 309 kitty, daddy, very Yes No
Ap 235 goodness, handsome, helper Yes Yes
LL 188 okay, byebye, TV No Yes
Al 172 window, birdie, only Yes No
La 171 peanuts, secrets, highest Yes No
Xa 170 biggest, buckets, hiccups Yes No
xL 145 below, today, hurray No Yes

The impact of morphological knowledge

Example: What happens to words of the La stressed word form when the child gets
morphological knowledge? (for the Hayes grammar, which can’t account for it without
morphological knowledge)

Before morphological knowledge

171 La (island, giant, moment)

After morphological knowledge
57 La (54 of the 171 + 3 added from Lp form)
— Hayes still can’t account for these

100 Lp (father's>father pockets->pocket slobbered->slobber)

17L (cutest>cute nicest->nice weirdest->weird)
- Hayes can now account for these

In this case, knowing inflectional morphology is stressless helps!

The impact of morphological knowledge

In general, the Hayes English grammars benefits from morphology knowledge
(6.95% more types accounted for, due to 322 types), unlike the HV and OT English
grammars.

Where are these changes happening?
- 28 types: incorrectly derived bisyllabics become monosyllabic

Examples: cleanest > clean (La->L); biggest >  big (Xa>P); bestest > best
(Aa>A)

- 100 types: incorrectly derived La becomes correctly-derived Lp
Examples: father’s > father; pockets > pocket; slobbered >  slobber

- 112 types: incorrectly derived Xa becomes correctly-derived Xp
Examples: sister’s> sister; apples> apple; tickled> tickle;

~ 92 types: Changes in less common wordforms
Examples: messages=> message; promises = promise; modeling > model

Proposed learning biases/capabilities

Several learning biases/capabilities are potentially both innate and domain-specific.

Derived  Domain- Domain-

specific  general

Learn from all wh-dependencies ? ? *
Parse data into phrase structure trees ? ? b
Attend to container nodes & subcategorize by CP ? ? L
Extract & track container node trigrams * *
Calculate dependency probability from trigrams * *

Pearl & Sprouse 2013a, 2013b, under review

Innate  Derived  Domain- Domain-

specific  general

Learn from all wh-dependencies ? ? b

Pearl & Sprouse 2013a, 2013b, under review




Innate  Derived  Domain- Domain-
specific  general

Learn from all wh-dependencies

Clearly domain-specific, since this is language data.

May seem reasonable to attend to wh-dependency data when learning about wh-
dependencies (and so this would be derived)

Pearl & Sprouse 2013a, 2013b, under review

Innate  Derived  Domain- Domain-
specific  general

Learn from all wh-dependencies

Clearly domain-specific, since this is language data.

May seem reasonable to attend to wh-dependency data when learning about wh-
dependencies (and so this would be derived)

...but then why not attend to all dependencies (ex: relative clause dependencies,
binding dependencies) since wh-dependencies are a kind of dependency?

Empirical necessity of just using wh-dependency data:

There are different island effects for relative clauses (Sprouse et al. submitted) and no
island effects for binding dependencies, so the learner needs to know to pay
attention just to wh-dependencies.

Pearl & Sprouse 2013a, 2013b, under review

Innate Derived Domain-  Domain-

specific  general

Parse data into phrase structure trees ? ? b

Pearl & Sprouse 2013a, 2013b, under review

Innate Derived Domain- Domain-
specific  general

Parse data into phrase structure trees

Clearly domain-specific, since the structure is specific to language.
May be possible to bootstrap this information (acquiring syntactic categories: Mintz 2003,

2006; acquisition of hierarchical structure given syntactic categories as input: Klein & Manning 2002).
If so, this would be derived...

Pearl & Sprouse 2013a, 2013b, under review

Innate Derived Domain- Domain-

specific  general

Parse data into phrase structure trees ? ? 5

Clearly domain-specific, since the structure is specific to language.

May be possible to bootstrap this information (acquiring syntactic categories: Mintz 2003,
2006; acquisition of hierarchical structure given syntactic categories as input: Klein & Manning 2002).
If so, this would be derived...

..but it’s currently unclear if all the necessary phrase structure knowledge can be
bootstrapped.

Important:

The need for this capability is not specific to learning islands — it’s (presumably)
needed for learning any kind of syntactic knowledge.

Pearl & Sprouse 2013a, 2013b, under review

Innate Derived Domain- Domain-

specific  general

Attend to container nodes & subcategorize by CP ?

Pearl & Sprouse 2013a, 2013b, under review




Innate  Derived Domain-  Domain-

specific  general

Attend to container nodes & subcategorize by CP ? ?

Identifying container nodes
- applies to language data: domain-specific
- derived from ability to parse utterances

Pearl & Sprouse 2013a, 2013b, under review

Innate  Derived Domain- Domain-

specific  general

Attend to container nodes & subcategorize by CP ?

Identifying container nodes
- applies to language data: domain-specific
- derived from ability to parse utterances

Attending to container nodes (among all the other data out there)
- applies to language data: domain-specific
- innate vs. derived?
« could be specified innately (like bounding nodes)
« could be derived from a bias to use representations that are already
being used for parsing

Pearl & Sprouse 2013a, 2013b, under review

Innate  Derived Domain- Domain-

specific  general

Attend to container nodes & subcategorize by CP ? ?

Pearl & Sprouse 2013a, 2013b, under review

Innate  Derived Domain- Domain-

specific  general

Attend to container nodes & subcategorize by CP ? ?
About a linguistic representation: domain-specific

Innate vs. derived?
* Could be specified innately

Pearl & Sprouse 2013a, 2013b, under review

Innate  Derived Domain-  Domain-

specific  general

Attend to container nodes & subcategorize by CP ? ?

About a linguistic representation: domain-specific

Innate vs. derived?
* Could be specified innately

* Could be derived from prior linguistic experience:
* Uncontroversial to assume children learn to distinguish different
types of CPs since the lexical content of CPs has substantial

consequences for the semantics of a sentence.

* Also, adult speakers are sensitive to the distribution of that
versus null complementizers (Jaeger 2010).

...but still have to know this is the right thing to subcategorize.

Pearl & Sprouse 2013a, 2013b, under review

Innate Derived Domain- Domain-

specific  general

Extract & track container node trigrams

Pearl & Sprouse 2013a, 2013b, under review




Innate  Derived  Domain- Domain-
specific  general

Extract & track container node trigrams

Applied in different cognitive domains: domain-general

Likely innate — learning with sequences of three units (transitional
probabilities: Saffran et al. 1996, Aslin et al. 1998, Graf Estes et al. 2007, Pelucchi et al. 2009a,
Pelucchi et al. 2009b; frequent frames for grammatical categorization: Mintz 2006, Wang & Mintz

2008)

...though why trigrams instead of some other n-gram?

Pearl & Sprouse 2013a, 2013b, under review

Innate  Derived  Domain- Domain-

specific  general

Calculate dependency probability from trigrams

Pearl & Sprouse 2013a, 2013b, under review

Innate Derived Domain- Domain-
specific  general

Calculate dependency probability from trigrams

Applied in different cognitive domains: domain-general

Likely innate

Pearl & Sprouse 2013a, 2013b, under review

Main implications of this learner

(2) Even if Universal Grammar learning biases are
required, they are different from (and less specific than)
the biases previously proposed.

In particular, while one bias also specifies a particular
linguistic representation, there is no bias defining the
“constraint”. This falls out from the other non-UG
learning biases.

Innate Dom
general

Learn from all wh-dependencies ?

Attend to containervnodes & subcategorize by CP ? ?
Vs.

Attend to bounding n::des (BNs) L *

Y
Dependencies crossing 2+ BNs are not allowed * *

Pearl & Sprouse 2013a, 2013b, under review

Why learning from container node trigrams works

For each island-spanning dependency, there is at least one extremely low
probability container node trigram in the dependency.

Subject island

start-| P-VP-end

Adjunct island

start Eﬂmmm

Complex NP island

start-1 P—VP—end

Whether island

Start-P-VP-CP.ypye|P-VP-pnd

These trigrams are never observed in the input — which is crucially different than
being observed rarely. Thus, these islands are worse than dependencies
involving trigrams that are rarely seen (e.g., dependencies with CP,, ) and even
longer dependencies that involve more frequenct trigrams (e.g., triply embedded
object dependencies using CP_ ).

Pearl & Sprouse 2013a

The empirical necessity of trigrams

Not unigrams

A unigram model will successfully learn Whether and Adjunct islands, as there
are container nodes in these dependencies that never appear in grammatical
dependencies (CP,, ., and CPy)....but it will fail to learn Complex NP and Subject
islands, as all of the container nodes in these islands are shared with

grammatical dependencies.

Complex NP:  *IP-VP-NP-CP,,_-IP-VP
Subject: *IP-VP-CP,,,-IP-NP-PP
Whether: IP-VP-CP, ; or-IP-VP
Adjunct: IP-VP-CP,-IP-VP

Pearl & Sprouse 2013a




The empirical necessity of trigrams

Not bigrams

At least for Subject islands, there is no bigram that occurs in a Subject island
violation but not in any grammatical dependencies. The most likely candidate for
such a bigram is IP-NP...However, sentences such as What, again, about Jack
impresses you? or What did you say about the movie scared you? suggest that a
gap can arise inside of NPs, as long as the extraction is of the head noun (what),
not of the noun complement of the preposition.

Complex NP:  IP-VP-NP-CP,, -IP-VP
Subject: *IP-VP-CP, ,-IP-NP-PP
Whether: IP-VP-CP, 1 otner~IP-VP
Adjunct: IP-VP-CP,-IP-VP

Pearl & Sprouse 2013a

Parasitic gaps

The learner can’t handle parasitic gaps, which are dependencies that span an island
(and so should be ungrammatical) but which are somehow rescued by another
dependency in the utterance.

*Which book did you laugh [before reading __]?
Which book did you judge [before reading __, .qicl?

—true

Adjunct island

*What did [the attempt to repair __] ultimately damage the car?
What did [the attempt to repair ] ultimately damage ?

——parasitic —true*®

Complex NP island

Pearl & Sprouse 2013a

Parasitic gaps

Why not? The current learner would judge the parasitic gap as ungrammatical since
it is inside an island, irrespective of what other dependencies are in the utterance.

*Which book did you laugh [before reading __]?
Which book did you judge [before reading __, .qicl?

—true

Adjunct island
*What did [the attempt to repair __] ultimately damage the car?

What did [the attempt to repair __, ] ultimately damage __,.?

Complex NP island

This may be able to be addressed in a learner that is able to combine information
from multiple dependencies in an utterance (perhaps because the learner has
observed multiple dependencies resolved in utterances in the input).

Pearl & Sprouse 2013a

Across-the-board constructions
A similar problem occurs for across-the-board constructions.

Which book did you [ [read __ ] and [then review __]]?
dependency for both gaps: IP-VP-VP

*Which book did you [[read the paper] and [then review __]]?
dependency for gap: IP-VP-VP

*Which book did you [[read __] and [then review the paper]]?
dependency for gap: IP-VP-VP

Again, this may be able to be addressed in a learner that is able to combine
information from multiple dependencies in an utterance (perhaps because the
learner has observed multiple dependencies resolved in utterances in the input).

Pearl & Sprouse 2013a

Some cross-linguistic issues
High probability trigrams that may be ungrammatical

Rizzi (1982): reports situations in Italian where simply doubling a grammatical
sequence of trigrams leads to ungrammaticality...

(IP=YPICP,-IP-VP

‘but
*IP-VP-CP_, [IP-VPLCP, ,-IP-VPIIP-VP

But these involve the same trigrams, so the learner in Pearl & Sprouse
(forthcoming) will treat both the same (either grammatical or ungrammatical). If
humans do have different judgments of these, then this cannot be accounted for by
this learning algorithm.

Pearl & Sprouse 2013a

Complementizer that

That-trace effects

*Who do you think that __ read the book?
Who do you think __ read the book?

The current learning strategy captures this distinction.

Pearl & Sprouse 2013a




Complementizer that

That-trace effects

...but the current learning strategy will also generate a preference for object gaps
without that compared to object gaps with that. (object that-trace effect)

What do you think that he read __ ? [prefers this one]
What do you think heread __ ?

Interestingly, Cowart 1997 finds an object that-trace effect, but it is much smaller
than the subject that-trace effect

The model generates an asymmetrical dispreference when using adult-directed
corpora, which contain more instances of that (5.40 versus 2.81). This could be
taken to be a developmental prediction of the current algorithm: Children may
disprefer object gaps in embedded that-CP clauses more than adults, and this
dispreference will weaken as they are exposed to additional tokens of that in
utterances containing dependencies.

Pearl & Sprouse 2013a

Now what?

This learning strategy for wh-dependencies makes some
developmental predictions — can we verify these experimentally?

“that-trace” effect prediction:
Children initially disprefer all dependencies containing that, even ones adults allow

Pearl & Sprouse 2013a

Now what?

This learning strategy for wh-dependencies makes some
developmental predictions — can we verify these experimentally?

“that-trace” effect prediction:
Children initially disprefer all dependencies containing that, even ones adults allow

Subject extraction 1.
*Who do you think that __read the book? [ [/;

Who do you think __read the book? i Q g

Now what?

This learning strategy for wh-dependencies makes some
developmental predictions — can we verify these experimentally?

“that-trace” effect prediction:
Children initially disprefer all dependencies containing that, even ones adults allow

Subject extraction

1
*Who do you think that __ read the book? ‘};f,

Who do you think ~ __ read the book? i g F

Object extraction m ,!
What do you think that he read __? i A
What do you think heread __? ¥ ]
Pearl & Sprouse 2013a Pearl & Sprouse 2013a
Now what? Now what?

How does this learning strategy for wh-dependencies measure up
cross-linguistically?

Island effects vary.

Ex: Italian does not have a subject island effect when the wh-dependency is part of
a relative clause, though it does when the wh-dependency is part of a question.
(Sprouse et al. submitted)

Would the input naturally lead our kind of learner to this distinction?

Can we extend this learning strategy to create an integrated theory
of syntactic acquisition?

Related phenomena: The distribution of gaps

Parasitic gaps: Dependencies that span an island (and so should be ungrammatical) but
which are somehow rescued by another dependency in the utterance.

*Which book did you laugh Adjunct island
Which book did you judge

[before reading __]?
[before reading __, ,uc]?

—true

Pearl & Sprouse 2013a




Now what?

Can we extend this learning strategy to create an integrated theory
of syntactic acquisition?

Related phenomena: The distribution of gaps

Across-the-board (ATB) extraction: Similar situation.

Which book did you [[read __]and [then review __]]? Coordinate structure island
dependency for both gaps: IP-VP-VP

*Which book did you [[read the paper] and [then review __]]?
dependency for gap: IP-VP-VP

*Which book did you [[read __] and [then review the paper]]?
dependency for gap: IP-VP-VP

Pearl & Sprouse 2013a

Now what?

Can we extend this learning strategy to create an integrated theory
of syntactic acquisition?

Semi-related phenomena: Binding dependencies

There don’t appear to be the same restrictions on binding dependencies that
there are on wh-dependencies.

The boy thought the joke about himself was really funny.

*Who did the boy think [the joke about ] was really funny?  Subjectisland
—
s<

.“- 5

Pearl & Sprouse 2013a




