Computational models of syntactic acquisition

Lisa Pearl
University of California, Irvine

Computation of Language Laboratory
UC Irvine

Lisa S. Pearl
Associate Professor
Department of Linguistics
Department of Cognitive Sciences
SSPB 2219, SBSG 2314
University of California, Irvine
lpearl@uci.edu

August 4, 2017:

Norwegian Summer Institute on Language \& Mind
University of Oslo

Today's Plan:
 Computational models of syntactic acquisition

I. Some non-parametric examples

II. About linguistic parameters

III. Learning with parameters

Today's Plan:
 Computational models of syntactic acquisition

I. Some non-parametric examples

Some non-parametric examples

This kitty was bought as a present for someone.

Lily thinks this kitty is pretty.

What's going on here?

Who does Lily think the kitty for is pretty?

What does Lily think is pretty, and who does she think it's for?

Some non-parametric examples

What's going on here?

There's a dependency between the wh-word who and where it's understood (the gap)

This dependency is not allowed in English.

One explanation: The dependency crosses a "syntactic island" (Ross 1967)

Some non-parametric examples

What's going on here? syntactic island (Ross 1967)
Who does Lily think the kitty for \qquad is pretty?

Jack is somewhat tricksy.
He claimed he bought something.

What did Jack make the claim that he bought \qquad ?

What's going on here? syntactic island (Ross 1967)

Who does Lily think the kitty for \qquad is pretty?
What did Jack make the claim that he bought \qquad ?

Jack is somewhat tricksy.
He claimed he bought something.
Elizabeth wondered if he actually did and what it was.

What did Elizabeth wonder whether Jack bought \qquad ?

What's going on here? syntactic island (Ross 1967)
Who does Lily think the kitty for \qquad is pretty?
What did Jack make the claim that he bought \qquad ?

What did Elizabeth wonder whether Jack bought \qquad ?

Jack is somewhat tricksy.
He claimed he bought something.
Elizabeth worried it was something dangerous.

What did Elizabeth worry if Jack bought \qquad ?

What's going on here? syntactic island (Ross 1967)

Who does Lily think the kitty for \qquad is pretty?
What did Jack make the claim that he bought \qquad ?

What did Elizabeth wonder whether Jack bought \qquad ?
What did Elizabeth worry if Jack bought \qquad ?

Jack bought something.
Elizabeth met him afterwards.

What did you meet the pirate who bought \qquad ?

Lily asks Elizabeth about it.

Some non-parametric examples

What's going on here? syntactic island

Who does Lily think the kitty for \qquad is pretty?
What did Jack make the claim that he bought \qquad ?

What did Elizabeth wonder whether Jack bought \qquad ?
What did Elizabeth worry if Jack bought \qquad ?

What didyou meet the pirate who bought \qquad ?

Jack bought something.
Elizabeth was surprised by it.

Lily asks Elizabeth about it.

What's going on here? syntactic island

Who does Lily think the kitty for \qquad is pretty?
What did Jack make the claim that he bought \qquad ?

What did Elizabeth wonder whether Jack bought \qquad ?
What did Elizabeth worry if Jack bought \qquad ?
\qquad ?
What didyou meet the pirate who bought
What did that Jack bought \qquad surprise you?

What did you buy a kitty and \qquad ?

Jack bought two things - a kitty and something else.

Elizabeth wants to know about the other thing.

Some non-parametric examples

What's going on here? syntactic island

Who does Lily think the kitty for \qquad is pretty?
What did Jack make the claim that he bought \qquad $?$

What did Elizabeth wonder whether Jack bought \qquad ?
What did Elizabeth worry if Jack bought \qquad ?

What did you meet the pirate who bought \qquad ?
What did that Jack bought \qquad surprise you?

What did you buy a kitty and \qquad ?

Jack bought a specific kind of kitty.

Elizabeth wants to know about the kind.

Some non-parametric examples

What's going on here? syntactic island

Who does Lily think the kitty for \qquad is pretty?
What did Jack make the claim that he bought \qquad ?

What did Elizabeth wonder whether Jack bought \qquad ?
What did Elizabeth worry if Jack bought \qquad ?

What didyou meet the pirate who bought \qquad ?
What did that Jack bought \qquad surprise you?

What did you buy a kitty and \qquad ?
Which did you buy \qquad kitty ?

Important: It's not about the length of the dependency.

(Chomsky 1965, Ross 1967)

Some non-parametric examples

What's going on here? syntactic island

Who does Lily think the kitty for \qquad is pretty?
What did Jack make the claim that he bought
What did Elizabeth wonder whether Jack bought
What did Elizabeth worry if Jack bought \qquad
What didyou meet the pirate who bought
What did that Jack bought \qquad surprise you

What did you buy a kitty and \qquad ?
Which did you buy \qquad kitty ?

What did Elizabeth think \qquad ?

Some non-parametric examples

What's going on here? syntactic island

Who does Lily think the kitty for \qquad is pretty?
What did Jack make the claim that he bought \qquad ?

What did Elizabeth wonder whether Jack bought \qquad Jack

What did Elizabeth worry if Jack bought \qquad ?

What didyou meet the pirate who bought \qquad ?
What did that Jack bought \qquad surprise you?

What did you buy a kitty and \qquad ?
Which did you buy \qquad kitty ?

What did Elizabeth think Jack said \qquad ?

It's not about the length of the dependency.

Some non-parametric examples

What's going on here? syntactic island

Who does Lily think the kitty for \qquad is pretty?
What did Jack make the claim that he bought \qquad ?

What did Elizabeth wonder whether Jack bought \qquad
What did Elizabeth worry if Jack bought \qquad ?

What didyou meet the pirate who bought \qquad ?
What did that Jack bought \qquad surprise you?
What did you buy a kitty and \qquad ?
Which did you buy \qquad kitty ?

Some non-parametric examples

\qquad is pretty?

Adults judge these dependencies to be far worse than many others, including others that are very similar except that they don't cross syntactic islands (Sprouse et al. 2012).

Adult judgments: Target behavior

Adult knowledge as measured by acceptability judgment behavior
Sprouse et al. (2012) collected magnitude estimation judgments for four different islands, using a factorial definition that controlled for two salient properties of island-crossing dependencies: - length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Lidz \& Gagliardi 2015

Adult judgments: Target behavior

syntactic island
Adult knowledge as measured by acceptability judgment behavior
Sprouse et al. (2012)
length of dependency
(matrix vs. embedded)
presence of an island structure (non-island vs. island)

Complex NP island stimuli

Lidz \& Gagliardi 2015

Who \qquad claimed that Lily forgot the necklace? What did the teacher claim that Lily forgot __? Who __ made the claim that Lily forgot the necklace? *What did the teacher make the claim that Lily forgot
?
matrix | non-island embedded | non-island matrix | island ? embedded \| island

Adult judgments: Target behavior

syntactic island
Adult knowledge as measured by acceptability judgment behavior
Sprouse et al. (2012)
length of dependency
(matrix vs. embedded)
presence of an island structure (non-island vs. island)

Lidz \& Gagliardi 2015

Who \qquad thinks the necklace is expensive? What does Jack think __ is expensive? Who __ thinks the necklace for Lily is expensive? *Who does Jack think the necklace for \qquad is expensive?
matrix | non-island embedded | non-island matrix | island embedded | island

Adult judgments: Target behavior

syntactic island
Adult knowledge as measured by acceptability judgment behavior
Sprouse et al. (2012)
length of dependency
(matrix vs. embedded)
presence of an island structure (non-island vs. island)

Whether island stimuli

Lidz \& Gagliardi 2015

Who __ thinks that Jack stole the necklace? What does the teacher think that Jack stole \qquad ? Who __ wonders whether Jack stole the necklace?
*What does the teacher wonder whether Jack stole
matrix | non-island embedded | non-island
matrix | island embedded \| island

Adult judgments: Target behavior

Adult knowledge as measured by acceptability judgment behavior
Sprouse et al. (2012)
length of dependency
(matrix vs. embedded)
presence of an island structure (non-island vs. island)

Adjunct island stimuli

Lidz \& Gagliardi 2015

Who \qquad thinks that Lily forgot the necklace?
What does the teacher think that Lily forgot \qquad ? Who __ worries if Lily forgot the necklace? *What does the teacher worry if Lily forgot ?
matrix | non-island embedded | non-island
matrix | island embedded | island

Adult judgments: Target behavior

Adult knowledge as measured by acceptability judgment behavior
Syntactic island = superadditive interaction of the two factors (additional unacceptability that arises when the two factors - length \& presence of an island structure - are combined, above and beyond the independent contribution of each factor).

Lidz \& Gagliardi 2015

Adult judgments: Target behavior

Adult knowledge as measured by acceptability judgment behavior

Sprouse et al. (2012): acceptability judgments from 173 adult subjects

Lidz \& Gagliardi 2015
Superadditivity present for all islands tested = Knowledge that dependencies cannot cross these island structures is part of adult knowledge about syntactic islands.

Adult judgments: Target behavior

Adult knowledge as measured by acceptability judgment behavior

Sprouse et al. (2012): acceptability judgments from 173 adult subjects

Adult judgments: Target behavior

Adult knowledge as measured by acceptability judgment behavior

Sprouse et al. (2012): acceptability judgments from 173 adult subjects

Lidz \& Gagliardi 2015

So if we're focusing on these whdependencies and that specific target state, what does children's input look like?

Children's input

Children's input really doesn't look so helpful

Data from five corpora of child-directed speech (Brown-
Adam, Brown-Eve, Brown-Sarah, Suppes, Valian) from CHILDES
(MacWhinney 2000): speech to 25 children between the ages of one and five years old.
= 813,036 words
= 31,247 utterances containing a wh-dependency

Lidz \& Gagliardi 2015

Children's input

Children's input really doesn't look so helpful

Data from five corpora of child-directed speech = 31,247 utterances containing a wh-dependency

	grammatical stimuli		syntactic is/and	
	MATRIX +	EMBEDDED +	MATRIX + EMBEDDED +	
	NON-ISLAND	NON-ISLAND	ISLAND	ISLAND
Complex NP	7	295	0	0
Subject	7	29	0	0
Whether	7	295	0	0
Adjunct	7	295	15	0

These kinds of utterances are fairly rare in general the most frequent appears about 0.9% of the time
 (295 of 31,247.)

Children's input

Children's input really doesn't look so helpful

Data from five corpora of child-directed speech = 31,247 utterances containing a wh-dependency

	grammatical stimuli			syntactic island
	MATRIX + NON-ISLAND	EMBEDDED + NON-ISLAND	MATRIX ISLAND	EMBEDDED + ISLAND
Complex NP	7	295	0	0
Subject	7	29	0	0
Whether	7	295	0	0
Adjunct	7	295	15	0

Being grammatical doesn't necessarily mean an utterance will appear in the input at all.

Perceptual encoding

Extralinguistic systems (audition, pattern recognition, memory, theory of mind, etc.)

Lidz \& Gagliardi 2015

Children's input

syntactic island

Children's input really doesn't look so helpful

Data from five corpora of child-directed speech = 31,247 utterances containing a wh-dependency

	grammatical stimuli			syntactic is/and
	MATRIX + NO/-ISLAN:?	EMBEDDED + NON-ISLAND	MATRIX + ISLAND	$\begin{aligned} & \text { EMBEDDED + } \\ & \text { ISLAND } \end{aligned}$
Complex NP	7	295	0	0
Subject	7	29	0	0
Whether	7	295	0	0
Adjunct	7	295	15	0

Unless the child is sensitive to very small frequencies, it's difficult to tell the difference between grammatical and

Perceptual encoding

Extralinguistic systems (audition, pattern recognition, memory, theory of mind, etc.)

Lidz \& Gagliardi 2015 ungrammatical dependencies sometimes...

Children's input

syntactic island

Children's input really doesn't look so helpful

Data from five corpora of child-directed speech = 31,247 utterances containing a wh-dependency

	grammatical stimuli			syntactic island
	MATRIX +	EMBEDDED +	MATRIX + EMBEDDED +	
	NON-ISLAND	NON-ISLAND	ISLAND	ISLAND
Complex NP	7	295	0	0
Subject	7	29	0	0
Whether	7	295	0	0
Adjunct	7	295	15	0

Perceptual encoding

Extralinguistic systems (audition, pattern recognition, memory, theory of mind, etc.)

Lidz \& Gagliardi 2015
...and impossible to tell no matter what the rest of the time. This looks like an induction problem for the language learner
 if we're looking for direct evidence in the input.

Children's input

Children's input really doesn't look so helpful
Data from five corpora of child-directed speech = 31,247 utterances containing a wh-dependency

Lidz \& Gagliardi 2015

Children's input

Data from five corpora of child-directed speech = 31,247 utterances containing a wh-dependency

So what kinds of dependencies are in the input?

Lidz \& Gagliardi 2015

Children's input

So what kinds of dependencies are in the input?
Data from five corpora of child-directed speech = 31,247 utterances containing a wh-dependency

A lot of simpler ones!

76.7%	What did you see__?
12.8%	What __ happened?
5.6%	What did she want to do __?
2.5%	What did she read from __?
1.1%	What did she think he said __?

Perceptual encoding
Developing grammar

Children's input

The induction problem

Lidz \& Gagliardi 2015
wh-questions in input (usually fairly simple)
What did you see __?
What __ happened?

Children's input

The induction problem

syntactic island

Grammatical wh-questions

What did you see __?
What \qquad happened?
Who did Jack think that Lily saw \qquad ?

Lidz \& Gagliardi 2015

What did Jack think \qquad happened?

Children's input

The induction problem

syntactic island

Lidz \& Gagliardi 2015

Ungrammatical wh-questions: Syntactic islands

Who does Lily think the kitty for \qquad is pretty?

What did Jack make the claim that he bought \qquad ?
What did Elizabeth wonder whether Jack bought \qquad

What did Elizabeth worry if Jack bought \qquad ?

Learning strategies

Previous learning theories suggested children need syntactic-island-specific innate knowledge.

Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)
A dependency cannot cross two or more bounding nodes.

Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)
Bounding nodes come from a fixed set (CP, IP, and/or NP). The ones that act as a bounding nodes for a given language must be learned.

Inference engine
Acquisitional

Universal grammar

Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)
can't cross $2+$ bounding nodes
from a fixed set (CP, IP, and/or NP)

Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)

An alternative learning strategy proposes children need less-specific linguistic prior knowledge along with probabilistic learning.

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure

Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)
can't cross $2+$ bounding nodes Wh ... [${ }_{\text {BN1 }} \ldots$ [BN2 ... from a fixed set (CP, IP, and/or NP)

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes

Container nodes

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes

How to describe this dependency:
What phrases is the gap inside but the wh-word isn't inside?

Container nodes

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes

How to describe this dependency: What phrases is the gap inside but the wh-word isn't inside?

What did you see __?
= What did [ip you [vp see \qquad
= IP-VP

Container nodes

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes

What did you see \qquad ?
= What did [ip you [vp see
]]?
= IP-VP
What \qquad happened?
$=$ What [IP __ happened]?
= IP

Container nodes

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes

What did you see \qquad ?
$=$ What did [ip you [vp see \square]]?
$=I P-V P$
What \qquad happened?
$=$ What [IP __ happened]?
$=I \mathrm{P}$
What did she want to do \qquad
$=$ What did [ip she [vp want [ip to [vp do ___]]]]?
$=\mid P-V P-I P-V P$

Container nodes

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes

What did you see \qquad ?
= What did [ip you [vp see \qquad]]?
$=I P-V P$
What \qquad happened?

$$
=\text { What [IP __ happened]? }
$$

$$
=I P
$$

What did she want to do \qquad ?
$=$ What did [ip she [vp want [ip to [vp do __]]]]?
$=I P-V P-\mid P-V P$

What did she read from \qquad ?
$=$ What did [ip she [vp read [pp from \square
= IP-VP-PP

Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)
can't cross $2+$ bounding nodes Wh ... [${ }_{\text {BN1 }} \ldots$ [BN2 \ldots
from a fixed set (CP, IP, and/or NP)

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes

Container node: phrase structure node that contains dependency

Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)
can't cross $2+$ bounding nodes Wh ... [${ }_{\text {BN1 }} \ldots$ [BN2 \ldots
from a fixed set (CP, IP, and/or NP)

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes

Sequence of container nodes characterizes dependencies

Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)
can't cross $2+$ bounding nodes Wh ... [${ }_{\text {BN1 }} \ldots$ [BN2 \ldots
from a fixed set (CP, IP, and/or NP)

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes

Ungrammatical dependencies have low probability segments

Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)
can't cross $2+$ bounding nodes Wh ... [${ }_{\text {BN1 }} \ldots$ [BN2 \ldots
from a fixed set (CP, IP, and/or NP)

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes

Low probability container node sequences have to be learned for the language

Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)

$\left.\begin{array}{l}\text { can't cross 2+ bounding nodes } \\ \text { from a fixed set (CP, IP, and/or NP) }\end{array}\right)$

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability sequence of container nodes

In common: Local structural anomaly is the problem

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

A dependency can't cross a very low probability sequence of container nodes

Wh ... [cn1 ... [cn2 ... [câ3 .. [cna \ldots Icns ...

Implemented in an algorithmic-level learning model that learned from realistic samples of child-directed speech.

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

A dependency can't cross a very low probability sequence of container nodes

Intuition: Learn what you can from the dependencies you do actually observe in the data and apply it to make a judgment about the dependencies you haven't seen before, like these syntactic islands.

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

A dependency can't cross a very low probability sequence of container nodes

Intuition: Learn what you can from the dependencies you do actually observe in the data and apply it to make a judgment about the dependencies you haven't seen before, like these syntactic islands.

That is, leverage a broader set of data to make syntactic generalizations.

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

$$
\text { Wh } \ldots \quad\left[_ { \text { CN1 } } \ldots \left[_ { \text { CN2 } 2 } \ldots \left[_{\text {C1 } 13} \ldots\left[_{\text {CN } 4} \ldots\right]_{\text {CN5 }} \ldots\right.\right.\right.
$$

\square

What information is there to leverage exactly?

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

syntactic island

What information is there to leverage exactly?

This relates to the strategy children use for learning and then generating predictions about the grammaticality of dependencies.

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

Strategy

(1) Pay attention to the structure of dependencies.

What did she want to do __ ?
$=$ What did [Ip she [vp want [ip to [vp do __]]]]?
$=I P-V P-I P-V P$

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

 to leverage exactly?Strategy
(1) Pay attention to dependency structure.
(2) Break these dependency structures into smaller pieces made up of three units (trigrams) that you can track the frequency of in the input you encounter.

$$
\begin{array}{ll}
\text { IP-VP = } & I P= \\
\text { begin-IP-VP } & \text { begin-IP-end } \\
\text { IP-VP-end } & \\
\text { IP-VP-IP-VP } & \text { IP-VP-PP } \\
=\text { begin-IP-VP } & \text { = begin-IP-VP } \\
\text { IP-VP-IP } & \text { IP-VP-PP } \\
\text { VP-IP-VP } & \text { IP-VP-end }
\end{array}
$$

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

to leverage exactly?

Strategy

(1) Pay attention to dependency structure.
(2) Break these dependency structures into smaller pieces made up of three units (trigrams) that you can track the frequency of in the input you encounter.

$$
\begin{array}{rll}
\begin{array}{l}
\text { IP-VP }= \\
\text { begin-IP-VP } \\
\text { IP-VP-end }
\end{array} & \text { begin-IP-end } & \text { begin-IP-VP }=86 / 225 \\
& \text { IP-VP-end }=83 / 225 \\
& \text { IP-VP-PP } & \text { begin-IP-end }=13 / 225 \\
\text { IP-VP-IP-VP } & \text { IP-VP-IP }=6 / 225 \\
=\text { begin-IP-VP } & \text { begin-IP-VP } & \text { VP-IP-VP }=6 / 225 \\
\text { IP-VP-IP } & \text { IP-VP-PP } & \text { IP-VP-PP }=3 / 225 \\
\text { VP-IP-VP } & \text { VP-PP-end } & \text { VP-PP-end }=3 / 225 \\
\text { IP-VP-end } & &
\end{array}
$$

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

Wh ... [CN1 \ldots [CN2 \ldots [C13 \ldots [CN4 \ldots [CN5 \ldots, \quad]] | What information is there |
| :--- |
| to leverage exactly? |

Strategy

(1) Pay attention to dependency structure.
(2) Break these dependency structures into smaller pieces made up of three units (trigrams) that you can track the frequency of in the input you encounter.

$\mid \mathrm{P}-\mathrm{VP}=$	$\mathrm{IP}=$	
begin-IP-VP	begin-IP-end	begin-IP-VP $=86 / 225$
IP-VP-end		IP-VP-end $=83 / 225$
		begin-IP-end $=13 / 225$
IP-VP-IP-VP		IP-VP-IP = 6/225
$=$ begin-IP-VP	egin-I	VP-IP-VP $=6 / 225$
IP-VP-IP		IP-VP-PP = 3/225
VP-IP-		VP-PP-end $=3 / 225$
	VP-end	...

> Note that some of these trigrams appear in multiple dependencies that commonly occur in children's input. This will be helpful!

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

Wh ... [CN1 \ldots [CN2 \ldots [C13 \ldots [CN4 \ldots [CN5 \ldots, \quad| What information is there |
| :--- |
| to leverage exactly? |

Strategy

(1) Pay attention to dependency structure.
(2) Break dependency structures into trigrams that you can track the frequency of.
(3) Use trigram frequency to calculate the probability of that trigram occurring in a dependency.

$$
\begin{array}{ll}
\text { begin-IP-VP }=86 / 225 & \mathrm{p}(\text { begin-IP-VP })=0.38 \\
I P-V P-e n d ~=83 / 225 & \mathrm{p}(I P-V P-e n d)=0.37 \\
\text { begin-IP-end }=13 / 225 & \mathrm{p}(\text { begin-IP-end })=0.06 \\
I P-V P-I P=6 / 225 & \mathrm{p}(I P-V P-I P)=0.03 \\
V P-I P-V P=6 / 225 & p(V P-I P-V P)=0.03 \\
I P-V P-P P=3 / 225 & p(I P-V P-P P)=0.01 \\
V P-P P-e n d=3 / 225 & p(V P-P P-e n d)=0.01
\end{array}
$$

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

Strategy

(1) Pay attention to dependency structure.
(2) Break dependency structures into trigrams that you can track the frequency of.
(3) Calculate the trigram probability in a dependency.
(4) When you see a new dependency, break it down into its trigrams and then calculate its probability, based on the trigram probabilities.

What does Jack want __?
$=$ What does [ip Jack [vp want __]]?
$=I P-V P$
$=$ begin-IP-VP
IP-VP-end

$$
\begin{aligned}
\mathrm{p}(\mid \mathrm{P}-\mathrm{VP}) & =\mathrm{p}(\text { begin-IP-VP }) * \mathrm{p}(I \mathrm{P}-\mathrm{VP}-\text { end }) \\
& =0.38 * 0.37=0.14
\end{aligned}
$$

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

 \square
 What information is there to leverage exactly?

Strategy

(1) Pay attention to dependency structure.
(2) Break dependency structures into trigrams that you can track the frequency of.
(3) Calculate the trigram probability in a dependency.
(4) When you see a new dependency, break it down into its trigrams and then calculate its probability, based on the trigram probabilities.

What does Jack want to do that for \qquad ?
$=$ What does [ip Jack [vp want [ip to [vp do that [pp for __]]?
= IP-VP-IP-VP-PP
$=$ begin-IP-VP
IP-VP-IP
VP-IP-VP

$$
\begin{aligned}
& \text { p(IP-VP-IP-VP-PP) }=p(\text { begin-IP-VP }) * p(I P-V P-I P) * p(V P-I P- \\
& V P) * p(I P-V P-P P) * p(V P-P P-e n d) \\
& \quad=0.38 * 0.03 * 0.03 * 0.01 * 0.01=0.000000034
\end{aligned}
$$

IP-VP-PP
VP-PP-end

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

Strategy

(1) Pay attention to dependency structure.
(2) Break dependency structures into trigrams that you can track the frequency of.
(3) Calculate the trigram probability in a dependency.
(4) When you see a new dependency, break it down into its trigrams and then calculate its probability, based on the trigram probabilities.

Subject island dependency
What do you think that the joke about
_ offended Jack?
= What do [ip you [vp think [cp that [ip [np the joke [pp about
= IP-VP-CP-NP-PP
= begin-IP-VP
IP-VP-CP
VP-CP-IP

$$
\begin{aligned}
& \mathrm{p}(I P-V P-C P-I P-N P-P P)=p(\text { begin-IP-VP }) * p(I P-V P-C P)^{*} p(V P-C P- \\
& S)^{*} p(C P-I P-N P)^{*} p(I P-N P-P P) * p(N P-P P-e n d) \\
& \quad=0.86^{*} 0.01^{*} 0.001^{*} 0.00 * 0.00^{*} 0.02=0.00
\end{aligned}
$$

CP-IP-NP
IP-NP-PP

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

Wh $\ldots\left[_{C N 1} \cdots\left[_{C N 2} \cdots\left[_{C 13} \cdots\left[_{C N 4} \cdots\left[_{C N 5} \cdots\right.\right.\right.\right.\right.$

Strategy

(1) Pay attention to dependency structure.
(2) Break dependency structures into trigrams that you can track the frequency of.
(3) Calculate the trigram probability in a dependency.
(4) Break a new dependency into its trigrams and calculate its probability.
(5) Use calculated dependency probabilities as the basis for grammaticality judgments. Lower probability dependencies are dispreferred, compared to higher probability dependencies.

$$
\begin{aligned}
& p(I P-V P)=0.14 \\
& p(I P-V P-I P-V P-P P)=0.000000034 \\
& p(I P-V P-C P-I P-N P-P P)=0.00
\end{aligned}
$$

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

Wh ... $\quad\left[_{\text {CN1 } 1} \cdots\left[_{\text {CN2 } 2} \ldots\left[_{\text {CT1 }} \cdots\left[_{\text {CN } 4} \ldots I_{\text {CN5 }} \ldots\right.\right.\right.\right.$

Use calculated dependency probabilities as the basis for grammaticality judgments. Lower probability dependencies are dispreferred, compared to higher probability dependencies.

For each set of island stimuli from Sprouse et al. (2012), we generate grammaticality preferences for the modeled learner based on the dependency's perceived probability and use this as a stand-in for acceptability.

Looking for superadditivity as a sign of syntactic island knowledge

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

syntactic island

Use calculated dependency probabilities as the basis for grammaticality judgments. Lower probability dependencies are dispreferred, compared to higher probability dependencies.

Looking for superadditivity as a sign of syntactic island knowledge

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

Use calculated dependency probabilities as the basis for grammaticality judgments. Lower probability dependencies are dispreferred, compared to higher probability dependencies.

```
non-island
```

island

IP

IP

matrix

embedded

Each dependency is characterized by a container node sequence, whose probability can be calculated and then plotted.

Complex NP
Superadditivity observed for all four islands - the qualitative behavior suggests that this learner has knowledge of these syntactic islands.

The Subjacency-ish representation that relies on container node trigram probabilities can solve this learning problem using this learning strategy.

Whether

Subject

matrix
embedded

Adjunct

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

Complex NP
Note: We're careful to say "qualitative" behavior fit because there are lots of other factors that impact acceptability judgment behavior, and we've only modeled one (presumably) large part of them, which is the grammaticality of the dependency.

Whether

Subject

matrix embedded

Adjunct

matrix

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

Wh ... $\quad\left[_{\text {CN1 } 1} \cdots\left[_{\text {CN2 } 2} \cdots\left[_{\text {CT1 }} \cdots\left[_{\text {CN } 4} \cdots\left[_{\text {CN5 }} \ldots\right.\right.\right.\right.\right.$

Complex NP

But is this all we can say?

No! One useful aspect of models is that we can look inside the modeled child to see why it's behaving the way that it is. (This is something that's harder to do with real children that is, opening up their minds and seeing how they work.)

Whether

Subject

matrix embedded

Adjunct

What's going on?

Why are the island-spanning dependencies so
 much worse than the grammatical ones?

What's going on?

Why are the island-spanning dependencies so much worse than the grammatical ones?

Let's look inside them and see!

It turns out that each island－spanning dependency contains at least one very low probability container node trigram．So these are the relevant＂island＂representations．
a．Complex NP
（i）＊What did［IP the teacher［VP make $\left[{ }_{N P}\right.$ the claim ${ }_{C P_{\text {that }}}$ that $\left[{ }_{I P}\right.$ Lily ${ }_{V P}$ forgot＿＿$]$
（ii）start－IP－VP－NP－CP ${ }_{\text {that }}$－IP－VP－end
（iii）Low proba⿱一⿱㇒⿵冂⿰丨丨一心

$$
\text { VP-NP-CP }{ }_{\text {that }}
$$

$\mathrm{NP}-\mathrm{CP}_{\text {that }}-\mathrm{IP}$

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

It turns out that each island-spanning dependency contains at least one very low probability container node trigram. So these are the relevant "island" representations.
b. Subject
(i) $*$ Who does $\left[I P\right.$ Jack [$V P$ think $\left[{ }_{C P_{\text {null }}}\left[{ }_{I P}\left[_{N P}\right.\right.\right.$ the necklace $\left[_{P P}\right.$ for \qquad [] is expensive] $]$] 3 ?
(ii) start-IP-VP-CP mul-IP-NP-PP-end
(iii) Lq probability: $\mathrm{CP}_{\text {null }}-\mathrm{IP}-\mathrm{NP}$

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

It turns out that each island-spanning dependency contains at least one very low probability container node trigram. So these are the relevant "island" representations.
c. Whether
(i) * What does $\left[{ }_{I P}\right.$ the teacher $\left[V P\right.$ wonder $\left[{ }_{C P_{w h e t h e r}}\right.$ whether $\left[{ }_{I P}\right.$ Jack $\left[{ }_{V P}\right.$ stole __ $]$
(ii) start-IP-VP-CP whether-IP-VP-end
(iii) Low probability:

IP-VP-CP ${ }_{\text {whether }}$ VP-CP whether-IP $\mathrm{CP}_{\text {whether }}$-IP-VP

Subjacency-ish (Pearl \& Sprouse 2013, 2013b, 2015)

It turns out that each island-spanning dependency contains at least one very low probability container node trigram. So these are the relevant "island" representations.
d. Adjunct
(i) * What does ${ }_{[I P}$ the teacher $\left[{ }_{V P}\right.$ worry $\left[{ }_{C P_{i f}}\right.$ if ${ }_{[I P}$ Lily ${ }_{[V P}$ forgot _ $]$
(ii) start-IP-VP-CP CP_{f-}-IP-VP-end
(iii) Low probability:

IP-VP-CP ${ }_{i f}$
VP-CP ${ }_{i f}$-IP
$\mathrm{CP}_{i f}$-IP-VP

Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)
can't cross 2+ bounding nodes
from a fixed set (CP, IP, and/or NP)

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability sequence of container nodes

In common: Local structural anomaly is the problem

The way Subjacency-ish implements this local structural anomaly can allow the development of syntactic island knowledge without relying on prior knowledge about bounding nodes and how many a
 dependency is limited to crossing.

Learning strategies

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
syntactic island

Today's Plan:
 Computational models of syntactic acquisition

I. Some non-parametric examples

Pronoun interpretation syntax, semantics another one

"Oh look - a pretty kitty!"

"Look - there's another one!"

Pronoun interpretation syntax, semantics another one

???

Pronoun interpretation syntax, semantics another one

bigger than a plain Noun

Pronoun interpretation syntax, semantics another one

"Oh look - a pretty kitty!"

"Look - there's another one!"
Interpretation: another the pretty kitty
same
syntactic category
as antecedent
???
smaller than a full Noun Phrase
Noun

Pronoun interpretation syntax, semantics another one

"Oh look - a pretty kitty!"

"Look - there's another one!"
Interpretation: another
same
syntactic category
as antecedent
???
In-between category Noun’
that includes strings with nouns
and modifiers+nouns

Pronoun interpretation syntax, semantics another one

"Oh look - a pretty kitty!"

"Look - there's another one!"
Interpretation: another
same
syntactic category
as antecedent

This is why we can also interpret one as just kitty.

Noun Phrase

Pronoun interpretation syntax, semantics another one

"Oh look - a pretty kitty!"

"Do you see another one?"

Lidz, Waxman, \& Freedman 2003:
18-month-old interpretations

Pronoun interpretation syntax, semantics another one

"Oh look - a pretty kitty!"

"Do you see another one?"

Lidz, Waxman, \& Freedman 2003:
18-month-old interpretations

Pronoun interpretation syntax, semantics another one

"Oh look - a pretty kitty!"

J. Lidz et al. / Cognition 89 (2003) B65-B73
"Do you see another one?"
pretty kitty Noun'

Lidz, Waxman, \& Freedman 2003:
18-month-old interpretations

Pronoun interpretation syntax, semantics another one

"Oh look - a pretty kitty!"

"What do you see now?"

another one pretty kitty Noun'

Lidz, Waxman, \& Freedman 2003:
18-month-old interpretations

Pronoun interpretation syntax, semantics another one

"Oh look - a pretty kitty!"

"What do you see now?"

another one pretty kitty Noun'

Lidz, Waxman, \& Freedman 2003: 18-month-old interpretations

Pronoun interpretation syntax, semantics another one

"Oh look - a pretty kitty!"

Shows baseline looking preference
J. Lidz et al. / Cognition 89 (2003) B65-B73
"What do you see now?"

another one pretty kitty Noun'

Lidz, Waxman, \& Freedman 2003:
18-month-old interpretations

Pronoun interpretation

"Oh look — a pretty kitty!"

Shows baseline looking preference which is counteracted with "Do you see another one?"
J. Lidz et al. / Cognition 89 (2003) B65-B73

Lidz, Waxman, \& Freedman 2003:
18-month-old interpretations

Pronoun interpretation syntax, semantics another one

"Oh look - a pretty kitty!"

"Do you see another kitty?"

another one pretty kitty Noun'

Lidz, Waxman, \& Freedman 2003:
18-month-old interpretations

Pronoun interpretation syntax, semantics another one

"Oh look - a pretty kitty!"

"Do you see another kitty?"

another one pretty kitty Noun'

Lidz, Waxman, \& Freedman 2003:
18-month-old interpretations

Pronoun interpretation

"Oh look - a pretty kitty!"

Shows baseline looking preference
J. Lidz et al. / Cognition 89 (2003) B65-B73
"Do you see another kitty?"

another one pretty kitty

Noun'

Lidz, Waxman, \& Freedman 2003: 18-month-old interpretations

Pronoun interpretation syntax, semantics another one

"Oh look - a pretty kitty!"

"Do you see another pretty kitty?"

another one pretty kitty Noun'

Lidz, Waxman, \& Freedman 2003:
18-month-old interpretations

Pronoun interpretation syntax, semantics another one

"Oh look - a pretty kitty!"

"Do you see another pretty kitty?"
another one pretty kitty Noun'

Lidz, Waxman, \& Freedman 2003: 18-month-old interpretations

Pronoun interpretation

"Oh look - a pretty kitty!"

Same looking pattern as "another one"
"Do you see another pretty kitty?"

J. Lidz et al. / Cognition 89 (2003) B65-B73
another one pretty kitty

Noun'

Lidz, Waxman, \& Freedman 2003:
18-month-old interpretations

Pronoun interpretation

"Oh look - a pretty kitty!"

Several learning strategies implemented with algorithmic-level modeled learners, given realistic

> Noun' pretty kitty
"Do you see another one ?"
 samples of English child-directed speech.

Pearl \& Mis 2016

Pronoun interpretation

Noun'
pretty kitty
English child-directed speech
Problem: Most direct evidence children encounter is ambiguous.
Syntactically (SYN) ambiguous data
(92% according to corpus study by Pearl \& Mis 2011, 2016):
"Look - a kitty! Oh, look - another one."

Pronoun interpretation

Noun'
pretty kitty
English child-directed speech
Problem: Most direct evidence children encounter is ambiguous.
Syntactically (SYN) ambiguous data (92% according to corpus study by Pearl \& Mis 2011, 2016):
Antecedent = "kitty"
"Look - a kitty! Oh, look - another one."

Referent

Pronoun interpretation

Noun'
pretty kitty
English child-directed speech
Problem: Most direct evidence children encounter is ambiguous.
Syntactic category?
Syntactically (SYN) ambiguous data
Antecedent = "kitty"
(92% according to corpus study by Pearl \& Mis 2011, 2016) :
"Look - a kitty! Oh, look - another one."

Referent

Noun'

kitty

Pronoun interpretation

English child-directed speech
Problem: Most direct evidence children encounter is ambiguous.
Referentially and syntactically (REF-SYN) ambiguous
(8% according to corpus study by Pearl \& Mis 2011, 2016)
"Look - a pretty kitty! Oh, look - another one."

Pronoun interpretation

English child-directed speech
Problem: Most direct evidence children encounter is ambiguous.
Referentially and syntactically (REF-SYN) ambiguous
(8% according to corpus study by Pearl \& Mis 2011, 2016)
"Look - a pretty kitty! Oh, look - another one."

Referent

Pronoun interpretation

English child-directed speech
Problem: Most direct evidence children encounter is ambiguous.
Referentially and syntactically (REF-SYN) ambiguous (8% according to corpus study by Pearl \& Mis 2011, 2016)

$$
\begin{gathered}
\text { Antecedent = "pretty kitty" } \\
\text { OR }
\end{gathered}
$$

Antecedent = "kitty"
Referent

Pronoun interpretation

English child-directed speech
Problem: Most direct evidence children encounter is ambiguous.
Referentially and syntactically (REF-SYN) ambiguous (8% according to corpus study by Pearl \& Mis 2011, 2016)

$$
\begin{gathered}
\text { Antecedent = "pretty kitty" } \\
\text { ??? }
\end{gathered}
$$

"Look - a pretty kitty! Oh, look - another one."

Pronoun interpretation

English child-directed speech
Problem: Most direct evidence children encounter is ambiguous.

Referentially and syntactically (REF-SYN) ambiguous (8% according to corpus study by Pearl \& Mis 2011, 2016)
"Look - a pretty kitty! Oh, look - another one."

pretty kitty

Syntactic category?

Antecedent = "pretty kitty" ???

Antecedent = "kitty" Referent

Perceptual encoding

Pronoun interpretation

92\% SYN ambiguous
 8\% REF-SYN ambiguous

English child-directed speech

Problem: Most direct evidence children encounter is ambiguous.
Unambiguous (UNAMB) data
What we wish were there but isn't
(0% according to corpus study by Pearl \& Mis 2011, 2016)
"Look - a pretty kitty!
Hmmm - there doesn't seem to be another one here, though."

Perceptual encoding

Pronoun interpretation

92\% SYN ambiguous
8\% REF-SYN ambiguous

Noun'
pretty kitty

English child-directed speech

Problem: Most direct evidence children encounter is ambiguous.
Unambiguous (UNAMB) data
What we wish were there but isn't
(0% according to corpus study by Pearl \& Mis 2011, 2016)

"Look - a pretty kitty!

Can't have "kitty" as its antecedent, because there is another kitty here. This would be a false thing to say.

Hmmm - there doesn't seem to be another one here, though."

Pronoun interpretation

English child-directed speech

Problem: Most direct evidence children encounter is ambiguous.
Unambiguous (UNAMB) data

Referent

What we wish were there but isn't
(0% according to corpus study by Pearl \& Mis 2011, 2016)
"Look - a pretty kitty! Must have "pretty kitty" as its antecedent.

Hmmm - there doesn't seem to be another one here, though."

Pronoun interpretation

92\% SYN ambiguous

8\% REF-SYN ambiguous

English child-directed speech

Problem: Most direct evidence children encounter is ambiguous.
Unambiguous (UNAMB) data

Noun'
pretty kitty

Referent

What we wish were there but isn't
(0% according to corpus study by Pearl \& Mis 2011, 2016)
"Look - a pretty kitty!
Must have "pretty kitty" as its antecedent.
Hmmm - there doesn't seem to be another one here, though."

pretty kitty

Pronoun interpretation

English child-directed speech
Problem: Most direct evidence children encounter is ambiguous.
pretty kitty

How do children learn the right generalizations for interpreting one?
syntactic category
referent in context

Pronoun interpretation

English child-directed speech

Problem: Most direct evidence children encounter is ambiguous.

92\% SYN ambiguous 8\% REF-SYN ambiguous

How do children learn the right generalizations for interpreting one?

Regier \& Gahl (2004), Pearl \& Lidz (2009): Filtering the direct evidence (being more selective about what you learn from) \& learning from it in more sophisticated ways

Pearl \& Mis (2016): Leveraging a broader set of data to learn from \& learning from in it more sophisticated ways

Pronoun interpretation

English child-directed speech

Problem: Most direct evidence children encounter is ambiguous.

92\% SYN ambiguous 8\% REF-SYN ambiguous

How do children learn the right generalizations for interpreting one?

Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence

Pearl \& Mis (2016):
Leveraging a broader set of data

Learning from it in more sophisticated ways

Pronoun interpretation

English child-directed speech

Problem: Most direct evidence children encounter is ambiguous.

92\% SYN ambiguous 8\% REF-SYN ambiguous

Noun'
pretty kitty

How do children learn the right generalizations for interpreting one?
Regier \& Gahl (2004), Pearl \& Lidz (2009): Pearl \& Mis (2016):
Filtering the direct evidence
Leveraging a broader set of data
Learning from it in more sophisticated ways

Probabilistic reasoning about input:
Bayesian inference

Pronoun interpretation

syntax, semantics
another one

English child-directed speech

Problem: Most direct evidence children encounter is ambiguous.

92\% SYN ambiguous 8\% REF-SYN ambiguous

How do children learn the right generalizations for interpreting one?
Pearl \& Mis (2016):
Leveraging a broader set of data
Learning from it in more sophisticated ways
Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence

Pronoun interpretation

English child-directed speech

8\% REF-SYN ambiguous

Problem: Most direct evidence children encounter is ambiguous.

How do children learn the right generalizations for interpreting one?

> Pearl \& Mis (2016):
> Leveraging a broader set of data

Learning from it in more sophisticated ways
Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence
Ignore these data 92% SYN ambiguous
"Look - a kitty!
Oh, look - another one."

Pronoun interpretation

English child-directed speech
Problem: Most direct evidence children encounter is ambiguous.

How do children learn the right generalizations for interpreting one?
Pearl \& Mis (2016):
Leveraging a broader set of data
Learning from it in more sophisticated ways
Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence
Ignore these data 92% SYN ambiguous
and learn from these data
8\% REF-SYN ambiguous using Bayesian inference
"Look - a pretty kitty!
Oh, look - another one."

Pronoun interpretation

English child-directed speech

Problem: Most direct evidence children encounter is ambiguous.

92\% SYN ambiguous 8\% REF-SYN ambiguous

How do children learn the right generalizations for interpreting one?
Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence
Learning from it in more sophisticated ways
Pearl \& Mis (2016):
Leveraging a broader set of data

Pronoun interpretation

English child-directed speech

Problem: Most direct evidence children encounter is ambiguous.

92\% SYN ambiguous
8\% REF-SYN ambiguous

How do children learn the right generalizations for interpreting one?
Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence

Learning from it in more sophisticated ways

Pearl \& Mis (2016):
Leveraging a broader set of data

Learn from data like these that involve other pronouns
"Look - a pretty kitty!
I want to pet it."

Pronoun interpretation

English child-directed speech
Problem: Most direct evidence children encounter is ambiguous.

92\% SYN ambiguous
8\% REF-SYN ambiguous

How do children learn the right generalizations for interpreting one?
Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence
Learning from it in more sophisticated ways
Pearl \& Mis (2016):
Leveraging a broader set of data

Learn from data like these that involve other pronouns
"Look - a pretty kitty!
I want to pet it."

> Key: modifier is included in antecedent. Implication: May want to include the modifier whenever it's an option.
one

pretty kitty

Pronoun interpretation

Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence
Learning from it in more sophisticated ways

Noun'
pretty kitty

Pearl \& Mis (2016):
Leveraging a broader set of data

Algorithmic-levell implementation of these strategies
Evaluated on whether they matched 18-month-old looking preferences.

Pronoun interpretation

Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence
Learning from it in more sophisticated ways

Noun'
pretty kitty

Pearl \& Mis (2016):
Leveraging a broader set of data

Algorithmic-level

Both were successful at generating the 18-month-old behavior. We can then look inside the modeled learners and see what the underlying representations were.

Pronoun interpretation

Learning from it in more sophisticated ways
Pearl \& Mis (2016):
Leveraging a broader set of data

Regier \& Gahl (2004), Pearl \& Lidz (2009): Filtering the direct evidence

Adult representations

$\sqrt{\text { Noun' }}$| pretty kitty |
| ---: |

But...required additional situational context to be present to succeed.

Pronoun interpretation

Learning from it in more sophisticated ways

Pearl \& Mis (2016):
Leveraging a broader set of data

Regier \& Gahl (2004), Pearl \& Lidz (2009):

Algorithmic-level

gine

Developing grammar

Filtering the direct evidence

Adult representations Noun'
pretty kitty

But...required additional situational context to be present to succeed.
"Look - a pretty kitty!
Oh, look - another one." small

big-eared

Needed to have a lot of alternative options so it's a suspicious coincidence that the referent is pretty if "pretty" wasn't actually included in the antecedent.

Pronoun interpretation syntax, semantics another one

Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence $\sqrt{\text { Less robust }}$
Learning from it in more sophisticated ways

Pearl \& Mis (2016):
Leveraging a broader set of data Immature representations
\int Noun' only in certain linguistic contexts pretty kitty

"Look - a pretty kitty!
Oh, look - another one."

Pronoun interpretation

Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence $\sqrt{\text { Less robust }}$
Learning from it in more sophisticated ways

Pearl \& Mis (2016):

Noun'
pretty kitty

Leveraging a broader set of data

But...does this for pretty much any situational context.

More robust

Immature representations
Noun' only in certain linguistic contexts pretty kitty X otherwise Noun
"Look - a kitty!

Pronoun interpretation

Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence $\sqrt{\text { Less robust }}$
Learning from it in more sophisticated ways
Pearl \& Mis (2016):
More robust
Leveraging a broader set of data

Algorithmic-level

By modeling, we have two concrete proposals for how children learn the knowledge they do by 18 months.

This also motivates future experimental work to distinguish these two possibilities.

Pronoun interpretation

Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence $\sqrt{\text { Less robust }}$
Learning from it in more sophisticated ways
Pearl \& Mis (2016):
More robust
pretty kitty

Leveraging a broader set of data

Algorithmic-level

This also motivates future experimental work to distinguish these two possibilities.

"This kitty likes the cup of milk but not the one of water."

Adults generally don't like this because it forces one to be category Noun.

Pronoun interpretation syntax, semantics another one

Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence $\sqrt{ }$ Less robust
Learning from it in more sophisticated ways
Pearl \& Mis (2016):
More robust
pretty kitty

Leveraging a broader set of data

Algorithmic-level

This also motivates future experimental work to distinguish these two possibilities.

"This kitty likes the cup of milk but not the one of water."

When do children have this same judgment? Is it before $\mathbf{1 8}$ months?

Pronoun interpretation syntax, semantics another one

Learning from it in more sophisticated ways
Pearl \& Mis (2016):
More robust
Leveraging a broader set of data

Algorithmic-level

"This kitty likes the cup of milk but not the one of water."
By 18 months
Regier \& Gahl (2004), Pearl \& Lidz (2009):
Filtering the direct evidence

When do children have this same judgment? Is it before 18 months?

Pronoun interpretation syntax, semantics another one

Algorithmic-level

By 18 months

Regier \& Gahl (2004),
Pearl \& Lidz (2009):
Filtering the direct evidence

"This kitty likes the cup of milk
Not by 18 months
Pearl \& Mis (2016):
Leveraging a broader set of data
 but not the one of water."

When do children have this same judgment? Is it before 18 months?

Today's Plan:
 Computational models of syntactic acquisition

I. Some non-parametric examples

II. About linguistic parameters

III. Learning with parameters

Today's Plan:
 Computational models of syntactic acquisition

II. About linguistic parameters

About linguistic parameters

What are linguistic parameters?
How do they work?
What exactly are they supposed to do?

About linguistic parameters

A parameter is meant to be something that can account for multiple observations in some domain.

Parameter for a statistical model: determines what the model predicts will be observed in the world in a variety of situations

Parameter for our mental (and linguistic) model: determines what we predict will be observed in the world in a variety of situations

About linguistic parameters

Statistical parameter

The normal distribution is a statistical model that uses two parameters:

- μ for the mean
- σ for the standard deviation

If we know the values of these parameters, we can make predictions about the probability of data we rarely or never see.

$$
\varphi_{\mu, \sigma^{2}(X)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(X-\mu)^{2}}{2 \sigma^{2}}}
$$

About linguistic parameters

Statistical parameter
μ for the mean
σ for the standard deviation
Suppose this is a model of how many minutes late l'll be to class.

Let's use the model with $\mu=0$ and $\sigma^{2}=0.2$.

$$
\varphi_{\mu, \sigma^{2}(X)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(X-\mu)^{2}}{2 \sigma^{2}}}
$$

About linguistic parameters

Statistical parameter
μ for the mean
σ for the standard deviation
Let's use the model with $\mu=0$ and $\sigma^{2}=0.2$.

How probable is it that l'll be 5 minutes late, given these parameter values? X

$$
\varphi_{\mu, \sigma^{2}(X)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(X-\mu)^{2}}{2 \sigma^{2}}}
$$

Not very probable!

About linguistic parameters

Statistical parameter
μ for the mean
o for the standard deviation
Let's use the model with
$\mu=0$ and $\sigma^{2}=0.2$.
5 minutes late? χ

What about right on time?

$$
\varphi_{\mu, \sigma^{2}(X)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(X-\mu)^{2}}{2 \sigma^{2}}}
$$

Much more probable!

About linguistic parameters

Statistical parameter
μ for the mean
σ for the standard deviation
Let's use the model with
$\mu=0$ and $\sigma^{2}=0.2$.
5 minutes late? X
On time?

What about 2 minutes early?

$$
\varphi_{\mu, \sigma^{2}(X)}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(X-\mu)^{2}}{2 \sigma^{2}}}
$$

We can tell this just by knowing the values of the two
Not very probable! statistical parameters. These parameter values allow us to infer the probability of the observable behavior.

About linguistic parameters

Statistical parameter μ for the mean
σ for the standard deviation
Let's shift to the model with $\mu=-2$ and $\sigma^{2}=0.5$.

$$
\varphi_{\mu, \sigma^{2}}(X)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(X-\mu)^{2}}{2 \sigma^{2}}}
$$

About linguistic parameters

Statistical parameter
μ for the mean
σ for the standard deviation
Let's shift to the model with $\mu=-2$ and $\sigma^{2}=0.5$.

How probable is it that l'll be 5 minutes late, given these parameter values? X

$$
\varphi_{\mu, \sigma^{2}(X)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(X-\mu)^{2}}{2 \sigma^{2}}}
$$

Not very probable!

About linguistic parameters

Statistical parameter
μ for the mean
σ for the standard deviation
Let's shift to the model with $\mu=-2$ and $\sigma^{2}=0.5$. 5 minutes late? X

What about right on time? X

$$
\varphi_{\mu, \sigma^{2}(X)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(X-\mu)^{2}}{2 \sigma^{2}}}
$$

Not very probable!

About linguistic parameters

Statistical parameter
μ for the mean
σ for the standard deviation
Let's shift to the model with $\mu=-2$ and $\sigma^{2}=0.5$. 5 minutes late? X On time? X

What about 2 minutes early?

Changing the parameter values changes

Much more probable! the behavior we predict we'll observe.

About linguistic parameters

Statistical parameter
μ for the mean
σ for the standard deviation

Observing different quantities of data with particular values can tell us which values of μ and σ^{2} are most likely, if we know we're trying to determine the values of μ and σ^{2} in function $\phi(X)$

$$
\varphi_{\mu, \sigma^{2}(X)}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(X-\mu)^{2}}{2 \sigma^{2}}}
$$

Observing data points distributed like the green curve tells us that μ is likely to be around -2 and σ^{2} is likely to be around 0.5 .

About linguistic parameters

Statistical parameter

μ for the mean

σ for the standard deviation

Important similarity to linguistic parameters:
We don't see the process that generates the data, but only the data themselves. This means that in order to form our expectations about X, we are, in effect, reverse engineering the observable data.

$$
\varphi_{\mu, \sigma^{2}(X)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(X-\mu)^{2}}{2 \sigma^{2}}}
$$

About linguistic parameters

Statistical parameter

μ for the mean

σ for the standard deviation

Our knowledge of the underlying function/principle that generates these data - $\phi(\mathrm{X})$ - as well as the associated parameters $-\mu$, and σ^{2} allows us to represent an infinite number of expectations about the behavior of variable X.

$$
\varphi_{\mu, \sigma^{2}(X)}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(X-\mu)^{2}}{2 \sigma^{2}}}
$$

About linguistic parameters

Comparison: the equation's form

- it's the statistical "principle" that explains the observed data.

Both linguistic principles and linguistic parameters are often thought of as innate domain-specific abstractions that connect to many structural properties about language.

Linguistic principles correspond to the properties that are invariant across all human languages.

About linguistic parameters

Comparison: μ and σ^{2} determine the exact form of the curve that represents the probability of observing certain data. While

$$
q u, \sigma^{2}(X)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left.(x-\mu)^{2}\right)}{\left(\sigma^{2}\right)}}
$$ different values for these parameters can produce many different curves, these curves share their underlying form due to the common invariant function.

Both linguistic principles and linguistic parameters are often thought of as innate domain-specific abstractions that connect to many structural properties about language.

Linguistic parameters correspond to the properties that vary across human languages

About linguistic parameters for language acquisition

Parameters connecting to multiple structural properties is a very good thing from the perspective of someone trying to acquire language (like a child). This is because a child can learn about a parameter's value by observing many different kinds of examples in the language.

About linguistic parameters for language acquisition

"The richer the deductive structure associated with a particular parameter, the greater the range of potential 'triggering' data which will be available to the child for the 'fixing' of the particular parameter" - Hyams (1987)

About linguistic parameters for language acquisition

Parameters can be especially useful when a child is trying to learn the things about language structure that are otherwise hard to learn, perhaps because they are very complex properties themselves or because they appear very infrequently in the available data.

About linguistic parameters

 for language acquisitionAn issue: The observable data are often the result of a combination of interacting parameters.

This can make it hard to figure out what parameter values might have produced the observable data - even if the child already knows what the parameters are.

Observable data can be ambiguous for which parameter values they signal.

Subject Verb Object

About linguistic parameters for language acquisition

An issue: The observable data are often the result of a combination of interacting parameters.

Observable data can be ambiguous for which parameter values they signal.

Subject Verb Object

Kannada
Subject object Verb Object

English
Subject Verb Object

Interacting parameters

Example Parameter 1: Head-directionality

Edo/English: Head-first

Basic word order:
 Subject Verb Object [SVO]

Prepositions:
Preposition Noun Phrase

Interacting parameters

Example Parameter 1: Head-directionality Edo/English: Head-first

Japanese/Navajo: Head-final

Basic word order:
Subject Object Verb [SOV]

Postpositions:
Noun Phrase Postposition

Interacting parameters

Example Parameter 1: Head-directionality Edo/English: Head-first Japanese/Navajo: Head-final

Example Parameter 2: Verb Second (V2)
German: +V2
Verb moves to second phrasal position, some other phrase moves to the first position

Sarah das Buch liest
Sarah the book reads

Underlying form of the sentence

Interacting parameters

Example Parameter 1: Head-directionality Edo/English: Head-first Japanese/Navajo: Head-final

Example Parameter 2: Verb Second (V2)
German: +V2
Verb moves to second phrasal position, some other phrase moves to the first position

Interacting parameters

Example Parameter 1: Head-directionality Edo/English: Head-first Japanese/Navajo: Head-final

Example Parameter 2: Verb Second (V2)
German: +V2
Verb moves to second phrasal position, some other phrase moves to the first position

Sarah das Buch liest
Sarah the book reads

Underlying form of the sentence

Interacting parameters

Example Parameter 1: Head-directionality Edo/English: Head-first Japanese/Navajo: Head-final

Example Parameter 2: Verb Second (V2)
German: +V2
Verb moves to second phrasal position, some other phrase moves to the first position

Das Buch liest Sarah das Buch liest The book reads Sarah

```
Observable form of the sentence
```


Interacting parameters

Example Parameter 1: Head-directionality Edo/English: Head-first Japanese/Navajo: Head-final

Example Parameter 2: Verb Second (V2) German: +V2

English: -V2
Verb doesn't move.

Sarah reads the book

Underlying form of the sentence
Observable form of the sentence

Interacting parameters
Head-directionality Verb Second (V2)

Grammars available

Interacting parameters

Head-directionality Verb Second (V2) "I love kitties."

Data point

Subject Verb Object

Subject Verb Object

Which grammars can analyze this data point?

Subject Verb Verb Object

\checkmark +head-first predicts SVO
$\checkmark+\mathrm{V} 2$ predicts Verb moved to second position

Subject Verb Subject Object verb

\checkmark head-final predicts sov
Head-final
G2 + V2
$\checkmark+\mathrm{V} 2$ predicts Verb moved to second position

Head-first
G3
-V2

Interacting parameters

Head-directionality Verb Second (V2)

Subject Verb Object

\checkmark head-first predicts SVO
\checkmark-V2 predicts Verb doesn't move

Interacting parameters

Head-directionality Verb Second (V2)

Subject Verb Object

X head-final predicts SOV
\checkmark-V2 predicts Verb doesn't move

Interacting parameters

Head-directionality Verb Second (V2)

Subject Verb Object

Head-first
Head-fir
$+V 2$
G1

What do the grammars that can analyze this data point have in common?

Subject Verb Object

Head-first +V2

Head-first
-V2

We don't know whether the true grammar is head-first or head-final since there's a grammar of each kind.

Head-final
G4
-V2

Subject Verb Object

We don't know whether the true grammar is head-first or head-final since there's a grammar of each kind.
(though there are more head-first)
Head-final
G4
-V2

Interacting parameters

Head-directionality Verb Second (V2)

Subject Verb Object

Head-first +V2

G1
Head-first
-V2

We don't know whether the true grammar is +V 2 or -V 2 since there's a grammar of each kind.

Head-final
G4
-V2

Interacting parameters

Head-directionality Verb Second (V2)

"I love kitties."
Subject Verb Object

Head-first +V2

We don't know whether the true grammar is +V 2 or -V2 since there's a grammar of each kind.
(though there are more + V2)

Interacting parameters

Head-directionality Verb Second (V2)

Subject Verb Object

This data point isn't unambiguous for any of the parameters we're interested in because the parameters interact...even though we feel like it might be somewhat informative for head-first and +V 2 because these occur in more grammars that are compatible.

Head-final
G4
-V2

Interacting parameters

> Head-directionality Edo/English: Head-first Japanese/Navajo: Head-final

Example Parameter 3: Subject drop

Spanish: +subj-drop
Allows Subject to be overt or dropped
"They drink"
Beben
drink-3rd-pl

Interacting parameters

Head-directionality Edo/English: Head-first
Japanese/Navajo: Head-final

Example Parameter 3: Subject drop
Spanish: +subj-drop
English: -subj-drop
Subject must be overt
They drink

X Drink

Interacting parameters

Head-directionality Subject drop (subj-drop)

Grammars available

Interacting parameters
Head-directionality Subject drop (subj-drop)

Which grammars can analyze this data point?

Interacting parameters

Head-directionality Subject drop (subj-drop)

Kätzchen liebe."

Subject Object Verb

X head-first predicts SVO
$\boldsymbol{V}+$ subj-drop allows subject to be overt

Head-first
G1
+subj-drop

G2 Head-final +subj-drop

Head-final
G4 -subj-drop

Interacting parameters

Head-directionality Subject drop (subj-drop)

Subject Object Verb

\checkmark head-final predicts SOV
\checkmark +subj-drop allows subject to be overt

Head-final +subj-drop

Interacting parameters

Head-directionality Subject drop (subj-drop)

Subject Object Verb

X head-first predicts SVO
\checkmark-subj-drop requires subject to be overt

Head-first G3

Kätzchen liebe."
-subj-drop

$$
\begin{aligned}
& \text { Head-final } \\
& \text { +subj-drop }
\end{aligned}
$$

G4

Head-final
-subj-drop

Interacting parameters

Head-directionality Subject drop (subj-drop)

Subject Object Verb

\checkmark head-final predicts SOV
$\boldsymbol{\mathcal { V }}$-subj-drop requires subject to be overt

Head-final
G4
-subj-drop

> Head-first
> -subj-drop

Interacting parameters

Subject Object Verb

Head-final
G2 Head-directionality Subject drop (subj-drop)

+subj-drop
G4

Head-final
-subj-drop

There's more than one grammar compatible with this data point...even though we feel like it should definitely be informative for head-final (since that's the only value in the compatible grammars).

Interacting parameters

Head-directionality Subject drop (subj-drop)

Subject Object Verb

Head-final $\vdots \vdots$

Head-final -subj-drop

But technically, this is still an ambiguous data point because more than one grammar will work....

Interacting parameters

Head-directionality Subject drop (subj-drop)

Subject Object Verb

So what can we do?

 +subj-drop -subj-drop

Today's Plan:
 Computational models of syntactic acquisition

I. Some non-parametric examples

II. About linguistic parameters

III. Learning with parameters

Today's Plan:
 Computational models of syntactic acquisition

III. Learning with parameters

Learning with parameters

A language's grammar = combination of parameter values

Head-final
G4 -subj-drop

Learning with parameters

A language's grammar = combination of parameter values

Learning with parameters

Variational learning (Yang 2002, 2004, 2012): use reinforcement learning to learn which value (for each parameter) that the native language uses for its grammar. This is a combination of using linguistic
 knowledge \& statistical learning.

Learning with parameters

Variational learning

Idea taken from evolutionary biology:
In a population, individuals compete against each other. The fittest individuals survive while the others die out.

How do we translate this to learning with parameters?

Learning with parameters

The fittest individuals survive while the others die out.
Individual = grammar (combination of parameter values that represents the structural properties of a language)

Learning with parameters

Variational learning

The fittest individuals survive while the others die out.
Fitness = how well a grammar can analyze the data the child encounters

Learning with parameters

Variational learning

A child's mind consists of a population of grammars that are competing to analyze the data in the child's native language.

Learning with parameters

Variational learning

Intuition: The most successful (fittest) grammar will be the native language grammar because it can analyze all the data the child encounters. This grammar will "win", once the child encounters enough native language data. This is because none of the other competing grammars can analyze all the data.

Learning with parameters

Variational learning

$\square \square$

If this is the native language grammar, this grammar can analyze all the intake while the others can't.

Learning with parameters

Variational learning

At any point in time, a grammar in the population will have a probability associated with it. This represents the child's belief that this grammar is the correct grammar for the native language.

Learning with parameters

Variational learning

Before the child has encountered any native language data, all grammars are equally likely. So, initially all grammars have the same probability, which is 1 divided the number of grammars available.

Learning with parameters

Variational learning

Since there are 11 grammars here, each begins with probability $1 / 11$.

Learning with parameters

As the child encounters data from the native language, some of the grammars will be more fit because they are better able to account for the syntactic properties of the intake.

Other grammars will be less fit because they cannot account for some of the data encountered.

Learning with parameters

Grammars that are more compatible with the native language data intake will have their probabilities increased while grammars that are less compatible will have their probabilities decreased over time.

Learning with parameters

After the child has encountered enough data from the native language, the native language grammar should have a probability near 1.0 while the other grammars have a probability near 0.0.

Learning with parameters

Variational learning

The power of unambiguous data:
Unambiguous data from the native language can only be analyzed by grammars that use the native language's parameter value.

Learning with parameters

Variational learning

This makes unambiguous data very influential data for the child to encounter, since these data are only compatible with the parameter value that is correct for the native language.

Learning with parameters

Variational learning

Problem: Do unambiguous data exist for entire grammars? This requires data that are incompatible with every other possible parameter value of every other possible grammar....

Learning with parameters

Variational learning

$\begin{array}{llll}0.8 & 0.7 & 0.2 & 0.3\end{array} 0.9$

This seems unlikely for real language data because linguistic parameters connect with different types of patterns, which may have nothing to do with each other, or parameters
 may interact with each other.

Learning with parameters

Variational learning

$$
\begin{array}{lllll}
0.8 & 0.7 & 0.2 & 0.3 & 0.9
\end{array}
$$

Key: Parameters are separable components of grammars

Learning with parameters

0

Variational learning

$$
\begin{array}{lllll}
0.8 & 0.7 & 0.2 & 0.3 & 0.9
\end{array}
$$

A variational learner can take advantage of the fact that grammars are really sets of parameter values.

Learning with parameters

Variational learning

Parameter values can be probabilistically accessed, depending on the level of belief (probability) the learner currently has in each one.

Learning with parameters

Variational learning

Parameter values can be probabilistically accessed, depending on the level of belief (probability) the learner currently has in each one.

Learning with parameters

Variational learning

Parameter values can be probabilistically accessed, depending on the level of belief (probability) the learner currently has in each one.

Learning with parameters

Variational learning

$$
p=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

Parameter values can be probabilistically accessed, depending on the level of belief (probability) the learner currently has in each one.

Learning with parameters

Variational learning

Parameter values can be probabilistically accessed, depending on the level of belief (probability) the learner currently has in each one.

Learning with parameters

Variational learning

$$
p=.2^{*} .7^{*} .2^{*} .7 * .1
$$

Parameter values can be probabilistically accessed, depending on the level of belief (probability) the learner currently has in each one.

Learning with parameters

 The learning algorithm
Variational learning

Learning with parameters

The learning algorithm

(1) Choose a grammar to test out on a particular data point. Select a grammar by choosing a set of parameter values, based on the probabilities associated with each parameter value.

$$
\mathrm{p}=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

Denison, Bonawitz, Gopnik, \& Griffiths 2013: Experimental evidence from 4 and 5 -year-olds suggests that children are sensitive to the probabilities of complex representations (which parameters are), and so this kind of sampling is not unrealistic.

Learning with parameters

The learning algorithm

Variational learning

For each data point encountered in the input...
(1) Choose a grammar.

(2) Try to analyze the data point with this grammar.

If this grammar can analyze the data point, increase the probability of all participating parameter values slightly (reward each value).

$$
p=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

For each data point encountered in the input...
(1) Choose a grammar.

(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.

Actual update equation for reward:

$=.8$
$p_{v}=$ previous value of successful parameter value $p_{o}=$ previous value of opposing parameter value

$$
p=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

For each data point encountered in the input...
(1) Choose a grammar.

(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.

Actual update equation for reward:

$$
\begin{aligned}
& p_{v}=0.8 \\
& p_{o}=0.2
\end{aligned}
$$

$$
p=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

For each data point encountered in the input...
(1) Choose a grammar.

(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.

Actual update equation for reward:

$$
\begin{aligned}
& p_{v}=0.8 \\
& p_{o}=0.2 \\
& p_{v_{-} \text {updated }}=p_{v}+\gamma\left(1-p_{v}\right) \\
& p_{o_{-} \text {updated }}=(1-\gamma) p_{o} \\
& \gamma=\text { learning rate }(e x: \gamma=.125)
\end{aligned}
$$

For each data point encountered in the input...
(1) Choose a grammar.

(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.

Actual update equation for reward:

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{v}}=0.8 \\
& \mathrm{p}_{\mathrm{o}}=0.2 \\
& \mathrm{p}_{\mathrm{v} _ \text {updated }}=0.8+0.125(1-0.8) \\
& \mathrm{p}_{\mathrm{o} \text { _updated }}=(1-0.125) 0.2 \\
& \gamma=\text { learning rate }(\mathrm{ex}: \gamma=.125)
\end{aligned}
$$

Learning with parameters

The learning algorithm

For each data point encountered in the input...
(1) Choose a grammar.

(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.

Actual update equation for reward:

$$
\begin{aligned}
& p_{v}=0.8 \\
& p_{o}=0.2 \\
& p_{v_{-} \text {updated }}=0.825 \\
& p_{\text {o_updated }}=0.175
\end{aligned}
$$

$$
=.8
$$

$$
p=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

Learning with parameters

The learning algorithm

For each data point encountered in the input...
(1) Choose a grammar.

(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.

Actual update equation for reward:

$$
\begin{aligned}
& p_{v}=0.8 \\
& p_{o}=0.2
\end{aligned}
$$

$=.8$

$$
p=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

$p_{\mathrm{v}_{\text {_updated }}}=0.825$
$p_{\text {o_updated }}=0.175$
Do this for all the other parameters, too.

Variational learning

(1) Choose a grammar.
(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.

$$
\mathrm{p}=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

Learning with parameters

The learning algorithm

For each data point encountered in the input...
(1) Choose a grammar.

(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.

But what happens if the selected grammar can't account for the data point?

$$
\mathrm{p}=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

Then all the participating parameter values are punished.

Learning with parameters

The learning algorithm

For each data point encountered in the input...
(1) Choose a grammar.

(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.

Actual update equation for punishment:

$=.8$

$$
p=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

$p_{\mathrm{v}}=$ previous value of unsuccessful parameter value $p_{o}=$ previous value of opposing parameter value

Learning with parameters

The learning algorithm

Variational learning

For each data point encountered in the input...
(1) Choose a grammar.

(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.
1st parameter

Actual update equation for punishment:

$$
\begin{aligned}
& p_{v}=0.8 \\
& p_{o}=0.2
\end{aligned}
$$

$$
p=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

Learning with parameters

The learning algorithm

For each data point encountered in the input...
(1) Choose a grammar.

(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.
1st parameter

Actual update equation for punishment:

$$
0=.2
$$

$$
p_{v}=0.8
$$

$$
p_{\mathrm{o}}=0.2
$$

$$
p=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

$$
p_{\mathrm{v} \text { _updated }}=(1-\gamma) p_{\mathrm{v}}
$$

$$
p_{o _ \text {_updated }}=\gamma+(1-\gamma) p_{o}
$$

$$
\gamma=\text { learning rate (ex: } \gamma=.125 \text {) }
$$

Learning with parameters

The learning algorithm

For each data point encountered in the input...
(1) Choose a grammar.

(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.
1st parameter

Actual update equation for punishment:

$$
\begin{aligned}
& p_{v}=0.8 \\
& p_{o}=0.2 \\
& p_{v^{\prime} \text { updated }}=(1-0.125) 0.8 \\
& p_{\text {o_updated }}=0.125+(1-0.125) 0.2
\end{aligned}
$$

$$
p=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

Learning with parameters

The learning algorithm

Variational learning

For each data point encountered in the input...
(1) Choose a grammar.

(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.
1st parameter

Actual update equation for punishment:

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{v}}=0.8 \\
& \mathrm{p}_{\mathrm{o}}=0.2 \\
& \mathrm{p}_{\mathrm{v} \text { _updated }}=0.70 \\
& \mathrm{p}_{\mathrm{o} \text { _updated }}=0.30
\end{aligned}
$$

$$
p=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

Learning with parameters

The learning algorithm

For each data point encountered in the input...
(1) Choose a grammar.

(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.
1 1st parameter

Actual update equation for punishment:

$=.2$

= . 8

$$
p=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

$$
\begin{aligned}
& p_{v}=0.8 \\
& p_{o}=0.2
\end{aligned}
$$

$$
\mathrm{p}_{\mathrm{v} _ \text {updated }}=0.70
$$

Do this for all the other parameters, too.

$$
\mathrm{p}_{\text {o_updated }}=0.30
$$

Variational learning

(1) Choose a grammar.
(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.

$$
p=.8^{*} .3^{*} .8^{*} .3^{*} .9
$$

Variational learning
(1) Choose a grammar.
(2) Try to analyze the data point with this grammar.
(3) Update parameter value probabilities.

For each data point encountered in the input...

Problem ameliorated!
Unambiguous data are much more likely to exist for individual parameter values instead of entire grammars.

Learning with parameters
The learning algorithm
Variational learning

Unambiguous data are much more likely to exist for individual parameter values instead of entire grammars.

Learning with parameters
The learning algorithm
Variational learning

In this case, if either G2 or G4 were selected, headfinal would be rewarded (in addition to whichever subj-drop value was used).

Head-directionality Subject drop (subj-drop)

Subject Object Verb
$\begin{array}{cc}\text { G1 } & \begin{array}{l}\text { Head-first } \\ \text { +subj-drop }\end{array}\end{array}$

Head-final
G4
-subj-drop

Head-first
G3
-subj-drop

Learning with parameters
The learning algorithm
Variational learning

In this case, if either G1 or G3 were selected, headfirst would be punished (in addition to whichever subj-drop value was used).

Head-directionality Subject drop (subj-drop)
"...dass ich
Kätzchen liebe."
Subject Object Verb

X
Head-first +subj-drop

G3
Head-first
-subj-drop

Head-final
G4
-subj-drop

Learning with parameters

The learning algorithm

Variational learning

Because this data point is unambiguous for head-final, grammars using that value would be rewarded and its probability as a parameter value would become 1.0 over time.
Head-directionality Subject drop (subj-drop)

Kätzchen liebe."

$\begin{array}{ll}\text { G1 } & \begin{array}{l}\text { Head-first } \\ \text { +subj-drop }\end{array}\end{array}$

Learning with parameters
The learning algorithm
Variational learning

Meanwhile, grammars using head-first would be punished every time, and its probability as a parameter value would approach 0.0 over time.

Head-directionality Subject drop (subj-drop)

"...dass ich
Kätzchen liebe."

Subject Object Verb

X
Head-first +subj-drop

Head-final +subj-drop

Head-first
-subj-drop

Head-final
G4

Learning with parameters The learning algorithm Variational learning

Implication: The more unambiguous data there are, the faster the native language's parameter value will "win" (reach a probability near 1.0). This means that the child will learn the associated structural pattern faster.

Learning with parameters The learning algorithm

Variational learning

Head-directionality
Example: the more unambiguous headfinal data the child encounters, the faster a child should learn that the native language prefers objects before verbs as the basic order.

Subject Object Verb

Learning with parameters
The learning algorithm
Variational learning

Is it true that the amount of unambiguous data the child encounters for a particular parameter strongly impacts when the child learns that structural property of the language?

Learning with parameters The learning algorithm
 Variational learning

Striking evidence that this is true

Table 1: The qualitative fit Yang discovered between the unambiguous data advantage (Adv) perceived by a VarLearner in its acquisitional intake and the observed age of acquisition (AoA) in children for six parameter values across different languages.

Param Value	Language	Unambiguous Form	Unambiguous Ex	Adv	AoA
+wh-fronting	English	wh-fronting in questions	Who did you see ?		

Learning with parameters The learning algorithm
 Variational learning

Striking evidence that this is true

Table 1: The qualitative fit Yang discovered between the unambiguous data advantage (Adv) perceived by a VarLearner in its acquisitional intake and the observed age of acquistion (AoA) in children for six parameter values across different languages.

Param Value	Language	Unambiguous Form	Unambiguous Ex	Adv	AoA
+wh-fronting	English	$w h$-fronting in questions	Who did you see?	25\%	<1;8
+topic-drop	Chinese	null objects	Wǒ méi kànjiàn I not see "I didn't see (him)"	12\%	<1;8
+pro-drop	Italian	null subjects in questions	Chi hai visto who have seen "Who have you seen?"	10\%	<1;8
+verb-raising	French	Verb Adverb	Jean voit souvent Marie Jean sees often Marie "Jean often sees Marie"	7\%	1;8
-pro-drop	English	expletive subjects	There's a penguin on the ice.	1.2\%	3;0
+verb-second	German Dutch	Object Verb Subject	Pinguine liebe ich. penguins like I "I like penguins"	1.2\%	3;0-3;2
-scope-marking	English	long-distance wh questions without medial-wh	Who do you think is on the ice?	0.2%	>4.0

The more unambiguous data there are for one value over another (its advantage)...

Learning with parameters The learning algorithm

 Variational learning

 Variational learning}

Striking evidence that this is true

Table 1: The qualitative fit Yang discovered between the unambiguous data advantage (Adv) perceived by a VarLearner in its acquisitional intake and the observed age of acquisition (A A) in children for six parameter values across different languages.

Param Value	Language	Unambiguous Form	Unambiguous Ex	Adv	AoA
+wh-fronting	English	wh-fronting in questions	Who did you see?	25\%	<1;8
+topic-drop	Chinese	null objects	```Wǒ méi kànjiàn I not see "I didn't see (him)"```	12\%	<1;8
+pro-drop	Italian	null subjects in questions	Chi hai visto who have seen "Who have you seen?"	10\%	<1;8
+verb-raising	French	Verb Adverb	Jean voit souvent Marie Jean sees often Marie "Jean often sees Marie"	7\%	1;8
-pro-drop	English	expletive subjects	There's a penguin on the ice.	1.2\%	3;0
+verb-second	German Dutch	Object Verb Subject	Pinguine liebe ich. penguins like I "I like penguins"	1.2\%	3;0-3;2
-scope-marking	English	long-distance $w h$ questions without medial-wh	Who do you think is on the ice?	0.2\%	>4

The more unambiguous data there are for one value over another (its advantage), the earlier it seems to be learned.

Thank you!

This work was supported in part by NSF grants BCS-0843896 and BCS-1347028.

