When domain general Ieslmmg fails
and when it suc ‘
|dentifying the contribution

of domain specificity

Lisa Pearl & Jeff Lidz
CNL Lunch Talk
November 30, 2006

Road Map

Learning

Learning Theories, Domain-Specificity, and Domain-
Generality

Domain-Gen ate P

 Probabilistic reasoning: good for problems with
noisy data or incomplete information &
generally applicable to any problem space

» Key: only works over a defined hypothesis
space (doesn'’t replace having one)
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Case Studies & Models
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Previous Proposals & Equal-Opportunity Bayesian
Learners

Spectacular Failures & Necessary Bias

irning Theories, Dormain
Specificity, and Domain-Generality

» Learning theory: not just one indivisible piece

» Three parts:
— Definition of the hypott
— Definition of the data used as intake

— Procedure used to update learner’s beliefs about
opposing hypotheses

In principle, any of these components could be
domain-specific or domain-general
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Bayesian Updating




Hypothesis % Updating

+ Layout of the hypoth space and
relationships between hypotheses affect how
updating works

+ Updating = shifting probability between
opposing hypotheses

‘Non-Overlapping, Initial Bias

Hypothesis A \ [ Hypothesis B

Prob(A) = 0.5 , \ Prob(B) = 0.5

Two Non-Overlapping Hypotheses,
Equally Probable Initially

Hypothesis A \\‘ Hypothesis B

Prob(A) = 0.0 )i Prob(B) = 1.0

Two Non-Overlapping Hypotheses (Equal Initial Probability),
after seeing input (d, data points) that consists
only of examples of B

1 )
s

Hypothesis Spaces & Updating

Look at four different hypothesis spaces:
— Non-overlapping, no initial bias

— Non-overlapping, initial bias
— Overlapping (simple), no initial bias

— Overlapping (subset-superset), no initial bias

Non-Overlapping, Initial Bias

Hypothesis A \ Hypothesis B

Prob(A) = 1.0 Prob(B) = 0.0

Two Non-Overlapping Hypotheses (Equal Initial Probab|l|ty)
after seeing input (d oints) that consists
only of examples of A

'Non-Overlapping, No Initial Bias

Hypothesis A / Hypothesis B

Prob(A) = 0.3 / Prob(B) = 0.7

Two Non-Overlapping Hypotheses (Equal Initial Probability),
after seeing input (d, data points) that consists of
30% A examples and 70% B examples




Non-Overlapping, Initial Bias ~ Non-Overlapping, Initig

Hypothesis A \ Hypothesis B \ Hypothesis A \ Hypothesis B

Prob(A) = 0.7 , Prob(B) = 0.3 Prob(A) = 1.0 Prob(B) = 0.0

Two Non-Overlapping Hypotheses (Initial Bias for A),
after seeing input (<d, data points) that consists
only of examples of A

Two Non-Overlapping Hypotheses,
With Initial Bias for Hypothesis A

Trajectory for Different Initi

Probability of Hypothesis A over time,
Data Intake = Unambiguous A data
points,

Hypothesis A \ Hypothesis B

Prob(A) = 0.0 | Prob(B) = 1.0 : / J—

——Biased Towards A

_ e Time (# of data points perceived)
Two Non-Overlapping Hypotheses (Initial Bias for A),
after seeing input (>d, data points) that consists
only of examples of B

Overlapping (Simple), No Initial Bias

Hypothesis A “ / Hypothesis B : Hypothesis A Hypothesis B

Prob(A) = 0.3 f Prob(B) = 0.7 ,} Prob(A) = 0.5 Prob(B) = 0.5
A

~ Two Non- -Overlapping Hypotheses (Initial Bias for A), ] Two Overlapping Hypotheses,
after seeing input (>d, data points) that consists of Equally Probable Initially

30% A examples and 70% B examples . . .
Unambiguous data point update: same as non-overlapping case




Overlapping (Subset-Supers

Probability of Hypothesis A over time, 4 HypotheS|s B
Data Intake = Unambiguous A data
points,

//

Prob(B) = 0.5

—— Unbiased Start
——Biased Towards B

—— blased Towards A Hypothesis A

Prob(A) = 0.5
Time (# of unambiguous data points
perceived)

Two Overlapping Hypotheses in a Subset Relation,
Equally Probable Initially

Hypothesis B

Prob(B) = 1.0

Hypothesis A

| Prob(A) = 0.0

Two Overlapping Hypotheses in a Subset Relation, But what if the target state is A?
after seeing input (d, data points) that consists There are no unambiguou ) points for Al
only of examples of B

Size Principle (Indirect N
How To Converge on the Subse! (Tenenbaum & Griffi

« Initially bias the hypothesis space so the subset - Size principle: uses the layout of the hypothesis
has the majority of the probability (ex: Berwick space to favor the subset hypothesis A when
(1985) - default/marked values) encountering an ambiguous data point

* Use properties of the Bayesian updating « Two ways to describe size principle logic:

procedure: indirect negative evidence — Likelihood of given ambiguous data point d

— Learner expectation of set of data points d,, d,, ...d,




Size Principle: Logic via Size Principle: Logic via
Likelihood of d Likelihood of d
» Suppose the learner _— — * The likelihood that d was —

encounters an produced from A is 1/a
ambiguous data point d

The likelihood that d was
Let the number of ‘ e ‘ produced from B is
examples covered by 1/(a+b) \
subset A be a. \ / | ( Hypothesis A

So, A has a higher zl
Let the number of 2 probability of having N
examples covered by . - s produced d. Thus, Ais
superset B be a + b. S e favored when

encountering ambiguous

data.

e: Logic via

' a Points
If only subset data points
are encountered, a

« |If B were correct, ' restriction to the subset
learner should becomes more and more

likely.
encounter some \
Hypothesis A

unamblguous data The more subset data | d

points for B ‘ L, d. ¢/ points encountered, the
more the learner is
biased towards A.

/"4, d

Overlapping (Subset-Superset), No Initial Bias

Hypothesis B
Probability of Hypothesis A over time,

Prob(B) = 0.0 \ Different Data Intake,

Same Initial Biases for Hypothesis A

Hypothesis A

——Subset A Data Points
(Ambiguous)
——Superset B Data Points

Prob(A) = 1.0 e or

Time (# of data points perceived)

Two Overlapping Hypotheses in a Subset Relation,
after seeing input (> d, data points) that consists
only of examples of A




), No Initial Bias

Hypothesis B

Prob(B) = 0.7
RN

Hypothesis A
Prob(A) = 0.3
Two Overlapping Hypotheses in a Subset Relation,

after seeing input (> d, data points) that consists
of 30% A examples and 70% B examples

Anaphoric One: Adult Knowledge

One refers to strings of words that can be
categorized as N’

“Jack likes this red ball and Lily likes that one.”

“Jack likes this ball and Lily likes that one.”

Anaphoric One:
Logical Possibility

 Alternative Hypothesis:
One refers to strings
categorized as N°.

» But this is not the adult
hypothesis:

* | met the member of
Congress and you met
the one of the Ballroom at
Maryland club.

Road Map

Case Studies & Models
Anaphoric One

NOone=N'/ N

det N

this | adj N’

red NO©

ball)

Syntactic Hypothesis S

Hypothesis 1 (N°): one is anaphoric to N°

Hypothesis 2 (N’): one is anaphoric to N’




Camantic Hunathacie Cnace
Semantic Hypothesis Space
Hypothesis 1 (N’-prop): the referent of one must have the

same relevant property (ex: red) as the referent of the
antecedent, indicated by the modifier in the N’

Hypothesis 2 (any-prop): the referent of one can have any
property and does not necessarily need to have the relevant
property of the antecedent

/ any-prop
behind his back

. “..redball...one...”

_ little

N’-prop

Anaphoric One: Children

» Scenario 1: Children think one = N°

Prediction: Antecedent of one is not phrasal, and children
indifferent to properties mentioned in the modifier (any-prop).

“Look a red(bottle!) Do you see another{one r

» Scenario 2: Children think one = N’

Prediction: Antecedent of one is phrasal, and children sen
to prop entioned in the mo r (N’-prop).

“Look a(ﬁired bottle! Do you see another one?)

Anaphoric One: LWF (2003)

camera

“Look! A red bottle.”

<«— 18-month old baby

Linked Hypothesis Spaces

Correct hypoth superset in syntax,
subset in semantics

Semantics

rple
bottle
ball

behind
ball N° his N’-prop

bottle back red

any-prop
behind_his back

Anaphoric One: LWF (2003)

-« camera

“Look! A red bottle.”

<«— 18-month old baby

Anaphoric One: LWF (2003)

@ -« camera

‘Doyousee

another one?” <«<— 18-month old baby




Anaphoric One: LWF (2003)

* Scenario 2 wins: Children think one = I\’

— 18-month old infants have looking preference for
red bottle

~—

“Look a (;fé/a/tﬁﬂe Do you see another(gne?

Unambiguous Data

Unambiguous data points indicate that the
linguistic antecedent of one must be N’

wlred ball]

Example utterance & world pairing:
“l have a red ball, but Jack doesn’t have one.”
Jack has a ball, but it does not have the property red.

- one must refer to red ball, and not to ball

* Type |l Ambiguous data points do not
distinguish between one anaphoric to N’ and

one anaphoric to N°. The only string available

is ball, however.

« Ex: “I have a ball, but Jack doesn’t have one.”

« Ex: “| have a ball, and Jack has one, too.”

Anaphoric One:

Estimated Available Input

» ~278,000 utterances, 4017 with anaphoric one

Utterance Type Example
- “I have a red ball, but Jack doesn’t have
Unambiguous one.” (Jack has a ball, but not a red ball.)

. P “I have a red ball, and Jack has one, too.”
Type | AmMbIiguous | (jack has a red ball at all.)

“I have a ball, and Jack has one, too.”
Type Il Ambiguous | (Jack has a ball with some number of
properties.)

. “you must be need one”
Ungrammatical

Type | Ambiguous Date

» Type | Ambiguous data points do not distinguish
between one anaphoric to N’ and one anaphoric to N°-

Also, they have two choices for N’ - red ball or ball.
Ex: “I have a red ball, but Jack doesn’t have one.”
Situation: Jack has no ball at all.

— He doesn’t have a ball, or he doesn’t have a red ball?
Ex: “I have a red ball, and Jack has one, too.”

Situation: Jack has a red ball.
— He has a ball, or he has a red ball?

Ungrammatical Da

* Is uninformative about what one refers to

* Ex: “He must be needs one.”




Anaphoric One: Data Recaj Road Map

» ~278,000 utterances, 4017 with an

Utterance Type Example
‘ - “I have a red ball, but Jack doesn’t have
Unambiguous one.” (Jack has a ball, but not a red ball.)
- R ~ “l have a red ball, and Jack has one, too.”
Type | AmMbIiguous | (jack has a red ball at all.)
“I have a ball, and Jack has one, too.” Case StUdleS & Models

Type Il Ambiguous | (Jack has a ball with some number of
properties.) . . .
_ “you must be need one” Previous Proposals & Equal-Opportunity Bayesian
Ungrammatical Learners

10 unambiguous data points is still pitifully few...

1, )

hl (2004 . — .

Use indirect ( ) Size Principle Logic

¢ Use IndirecC
ev@gnce: the t, If only subset data points
ampbiguous dat all balls are encountered, a

(“I have a red ball, and restriction to the subset
Jack has one, t00.”) - N becomes more and more

likely.

d, d, d,

» Adult preference for The more subset data ‘ Hypothesns/:«/

larger N’ (red ball) will o / : points encountered, the
lead one to refer to a ~ ' more the learner is

red ball every single biased towards A.

time

Reaqgier & Gahl (2004):

F:]JJJ & Ganl (2004) egier & Gahl (2004) Claim

* If one always refers
to a red ball (and so
to red ball), learner
uses size principle
to converge on the \
subset as the \ —— ’ Learner simply uses Bayesian updating logic
correct hypothesis

one = red ball;
red ball ==> red ball “...red ball...one...”

Size principle logic lets learner converge on
correct hypothesis without recourse to implicit

biases or knowledge




Implicit Biases Revealed Equal-Opportunity Bayesian Learner

» Bias 1: Only some data used as intake (not all) ) ) .
R ~ . R - » A Bayesian learner truly without biases:
— Unambiguous and Type | Ambiguous . .
. . Equal-Opportunity Bayesian Learner
— Type Il Ambiguous ignored .
(EOB 1 learner)

* Bias 2: Only semantic hypothesis space « Uses all available data (Unarnbiguous, Type |,
considered (and thus only semantic data and Type Il Ambiguous) '
points)

— Syntactic hypothesis space ignored « Uses both syntactic and semantic data points
(recognizing that there are two linked
hypothesis spaces)

Hypott

« Syntax (antecedent of one): N° vs. N’
Syntax ngfntics

. . . purple any-pro
« Semantics (referent of one in the world): red N pottle o y-prop
N'-prop vs. any-prop ball _— pall “ behind his back Jitte
[ ball N0\ behind
[ | his
bottle back red

N’-prop

Linked Hypothesis Spac Linked Hypothesis Spac

» The problem for the size principle: no » Correct hypothesis: superset in syntax,
hypothesis is the subset across domains subset in semantics

Semantics Semantics

poing any-prop i any-prop

pall behind_his back Jitte pall behind_his back

behind behind

ball N P N'-prop ball N° his N'-prop

bottle back red bottle back red




n Learner: Updating

* Initial State: both hypotheses are
equiprobable in both syntax & semantics

» Update probabilities within each domain,
based on data type observed

» Update across domains, because
hypothesis spaces are linked

EOB /eylam Learner:
Syntax Unambiguous Update

> Unambiguous data (10 of 4017 data points)

t = # of data points expected

(amount of change allowed)
=4017

Utterance: “...red ball...one...”
World: referent of one has property red

EO Bayesian Learner:
Syntax Unambiguous Data Update

=7

> Unambiguous data (10 of 4017 data points)

Intuition: 1 added to denominator

*
Dy = Dy t+1
PN _EN'old © since 1 data point seen

t+1

Utterance: “...red ball...one...”
World: referent of one has property red

* 2 hypotheses: N' and N°
» Track py, (Pno=1-Pw)

* Initial state: p,, = 0.5

EO Bayesian Learner:
Syntax Unambiguous Data Update

Lo

> Unambiguous data (10 of 4017 data points)

Intuition: 1 added to numerator
Py = Py OM*t +1 since learner is fully confident
T+ 1 that unambiguous data point
signals N’ hypothesis

Utterance: “...red ball...one...”
World: referent of one has property red




EO Bayesian Learner:

Syntax Type || Ambiguous Data Update

* Type Il Ambiguous data (3805 of 4017 data points)

Intuition: number added should be

Pn = Py *t+ ??77?7? lessthan 1, since learner is not
FiN'od - G . .
certain that type Il ambiguous data

t+1 point signals N’ hypothesis

Utterance: “...ball...one...”

World: referent of one may have property red
(and other properties)

EO Bayesian Learner:

Syntax Type |l Ambiguous Data Update
* Type Il Ambiguous data (3805 of 4017 data points)

PN = Py g i Pnig | Value added is partial confidence

t+ 1 value, PNjas which will be < 1.

Utterance: “...ball...one...”

World: referent of one may have property red
(and other properties)

EO Bayesian Learner:

Syntax Type || Ambiguous Data Updat

* Type Il Ambiguous data (3805 of 4017 data points)

The smaller the ratio of Noun-only
" o=n 4 strings to total N’ strings, the
PN T PN old pN’Ia smaller this value is and the more
t+1 the learner is biased towards
the N° hypothesis for a type Il
ambiguous data point.

Utterance: “...ball...one...”

World: referent of one may have property red
(and other properties)

EO Bayesian L

Syntax Type || Ambiguous D

EO Bayesian Learner:
Partial Confidence Value
* Partial confidence value py, is based on the fact that

the utterance has only a noun as the possible
antecedent.

...ball...one...

* Noun is compatib ith N’ hypott Means Noun-
only string chosen from all possible N’ strings. So,
depends on likelihood of choosing a Noun-only string
from all possible N’ strings: p,, from n'.

EO Bayesian Learner:

Syntax Type || Ambiguous D
Example Update for Type || Ambiguous

py = 0.5, t=4017, p, fromn = 0.25
py =0.5*4017 + 0.2 = .499925 (slight bias for N°)
4017 +1

Note: majority of data is type Il ambiguous (modifier-less
antecedent). Every time learner sees one, learner is biased
towards wrong answer. Small biases can add up over time.

12



EO Bayesian Learner:
Syntax Type | Ambiguous Data Update

Type | Ambiguous data (183 of 4017 data points)

Intuition: number added should be
*t+ ??7?7 | less than 1, since learner is not
+ 1 certain that type | ambiguous data
point signals N’ hypothesis

= P old

Utterance: “...red ball...one...”

World: referent of one has property red (and
other properties)

EO Bayesian Learner:
Syntax Type | Ambiguous Data Update

A=

Type | Ambiguous data (183 of 4017 data points)

We will be generous and
. p pretend learner is fully confident
Paoat*+ 1 in N’ hypothesis. This will
t+ 1 overestimate learner’s
confidence in N’ hypothesis.

Dy =
“N

Utterance: “...red ball...one...”

World: referent of one has property red (and
other properties

Sarme-property data points: referent of one
has same salient property as N’ antecedent
referent

(...red ball...) --> referent of one has property red

Unambiguous data points (10) + Type |
Ambiguous data points (183) + some of the
Type Il Ambiguous data points (??7?)

Type | Ambiguous:
Properties of both Unambiguous
d Type |l Ambiguous

2 hypotheses: N’-prop and any-prop

Track py 1-

= (o]
-prop (pany—pmp PN —prop)

=05

-prop

Initial state: p,,

Data types: Same-Property, Different-Property

EO Bayesian Learner: Semantics
Same-Property Type Il Ambiguous

» Type Il Ambiguous data point

‘...ball...one...” --> referent of one has some number

of properties . .

* number of properties learner is aware of = ¢

+ Likelihood that referent of one coincidentally has

salient property that referent of antecedent has is
1/c.

13



ne-Property

> Same-property data points: referent of one has
same salient property as N’ antecedent referent

(...red ball...) --> referent of one has property red

Unambiguous data points (10) + Type |
Ambiguous data points (183) + some of the
Type Il Ambiguous data points (3805*1/c)

* Type Il Ambiguous data point

“...ball...one...” --> referent of one has some number of

properties ‘ .

* number of properties learner is aware of = ¢

+ Likelihood that referent of one has different salient
property that referent of antecedent has is (c-1)/c.

» Same-Property data
(193+3805*1/c of 4017 data points) ,
N’-prop

—_ *
= b I'-prop old t+ pN’—propls

T+

D
“N'-prop

Value added is partial confidence value, py_propja:
which will be < 1. Same-property data point is
consistent with any-property hypothesis. Partial
confidence value depends on the likelihood of
choosing same-property from all properties (1/c).

> Different-property data points: referent of one
has different salient property than N’
antecedent referent

some of the Type |l Ambiguous data points (??7?)

Bayes]an earner: Updating

Semantics

> Different-property data points: referent of one
has different salient property than N’
antecedent referent

some of the Type |l Ambiguous data points
(3805*(c-1)/c)

Semant

* Different-Property data
(3805*(c-1)/c of 4017 data points)

*
Dy = Dy +
PN-prop ~ MN'-prop old t+0

t+1

Value added to numerator is 0, since different-
property data point is not compatible with N’-prop
hypothesis. Learner has no confidence that this
data point indicates N’-prop hypothesis.

14



| Learner:

l_‘Q l‘)r/e . l
Linked Domains

sia
Updating Link

» Hypothesis spaces are linked

» Any data point impacting one

hypothesis should also have an effect
on the other

Get Data Point

semantics

~ any-property
Prob = 0.5

N’-property ‘
Prob = 0.5

Data point
syntax: “...red ball...one...”

semantics: same-property

Update That Hypothesis Space
syniax semantics

X any-property
N’
Prob = 0.5
Prob = 0.6 /

N’-property
Prob = 0.5

Data point

syntax: “...red ball...one...” (N’)

semantics: same-property

EO Bayesian Learner:
Updating L

syntax

inked Domains

mantics

any-property

Prob = 0.5

: N‘-property‘
\ Prob=0.5 ,

Analyze in One Hypothesis Space
syntax semantics
X any-property
N’ p
Prob = 0.5
Prob = 0.5

//l

N N’-property
< \ Prob = 0.5

Data point T

syntax: “...red ball...one...” (N’)

semantics: same-property

Update Linked Hypotheses
syntax semantics
X any-property
N’
Prob = 0.4
Prob = 0.6 /

N’-property
Prob = 0.6

Data point

syntax: “...red ball...one...” (N’)

semantics: same-property

15



Analyze in Other Hypothesis Space
syntax semantics
X any-property

N’
Prob = 0.4
Prob = 0.6

N’-property
Prob = 0.6

Data point
syntax: “...red ball...one...”

semantics: same-property (N’-Property)

Update Linked Hypothesis Space
syntax semantics
X any-property
Prob = 0.67

N’-property
Prob = 0.67

Data point
syntax: “...red ball...one...”

semantics: same-property (N’-Property)

Simulating an EO Bayesian |

Syntax:
— Need value for p, 4om

— Note: the higher this value, the more b

towards N
the learner is for type Il ambiguous data

— We'll be generous and define strings in N’ categorically,

instead of by individual vocabulary items

— N’ strings = {Noun, Adjective Noun, Noun PP, Adjective
Noun PP}

Ex: “ball”, “red ball”, “ball behind his back”, “red ball
behind his back”

Pnfrom N = 1/4

Learner

Update That Hypothesis Space

syntax

X any-property
N’

Prob = 0.33
Prob = 0.6
N’-property
Prob = 0.67

Data point
syntax: “...red ball...one...”

semantics: same-property (N’-Property)

What Good Learning Look

+ Initial probability of correct grammar =
prob(N’)*prob(N’-prop) = .5*.5 = .25
» Expect to see steady increase towards 1

Idealized trajectory of
probability of correct grammar of anaphoric one
for different quantities of data encountered

countered by the learner
ta pol =1

Simulating an EO Bayesian L

» Semantics:
— Need value for ¢

— ¢ is number of categories in the world learner is
aware of

— Note: the smaller c is, the more the learner is

d towards the N'-prop hypothesis for a same-
property data point. We'll be generous and make c
small.

— Let ¢ =5 ({red, purple, nice, little, behind his back})

16



Road Mz

Case Studies & Models

Spectacular Failures & Necessary Bias

esian Learner in LWF experiment

-« camera

“Look! A red bottle.”

sian Learner

esian Learner in LWF experiment

camera

“Do you see
another one?” <«— EO Bayesian Learner

EO Bayesian L

+ EO Bayesian learner ends up with
probability of the correct grammar = .0361

Probability of correct grammar of anaphoric one for
different quantities of data encountered

y of

final probal
correct grammar

data points encountered by learer

sian Learner in

O Bayesian Learner

Idealized Learner
Trajectory

LWEF experiment

.

“Look! A red bottle.”

EO Bayesian Learner in

(a) Antecedent is N’ or N°? (Use py)

camera

sian Learner

LWEF exp

eriment

17



(b) If N°, then antecedent is “bottle” and learner is at chance for
which bottle to look at.

1-pn - b

10.5%(1-py)
non-red
bottle 0.5%(1-py)

red bottle

(d) If same-property restriction, then look at red bottle (same
property, N’-property).

‘0-5*(1’pN') (1'pN'-prop) (pn) same

property

non-red 0.5%(1-py) restriction

bottl not same
otle red bottle property
restriction

red bottle

(f) To determine chance of looking at the red bottle, sum the
probabilities of all decisions that lead to looking at the red bottle.

1-pn - N

1-Dr *
‘ 0.5*(1-py) (1-pn -prop) (pn) same
non-red *(1-00 property
bottle 0-5"(1-py) not same restriction
red bottle property

restriction

0'5'(1'pN'-prop)x(p ) ) red bottle

non-red 0.5(1-p,
bottle red bottle

(c) If N, then antecedent is “bottle” or “red bottle” - consult p,
to determine if one referent must have same property as
antecedent referent (N'-property)

1- p

‘ 0.5*(1-py) (1-pn -prop) (pn) same
non-red *(1-D, property
bottle 0-5°(1-px) not same restriction
red bottle property

restriction

(e) If not same-property restriction, then at chance for looking at
red bottle.

0-5*(1’pN') (1'pN'-prop)*(,0 )

nt:)n-lred 0.5%(1-py) not same-
ote  red bottle property
restriction

same-
property
restriction

0'5'(1'pN'-pmp)x(P ) \ red bottle

non-red 0.5*(1-Pr-prop)™(Pr)  \
bottle red bottle

(f) To determine chance of looking at the red bottle, sum the
probabilities of all decisions that lead to looking at the red bottle.

1-pn — b

1-Prr-prop) (P
‘ 0.5*(1-py) (1-pn -prop) (pn) same
non-red 0.5*(.81) property

not same icti
restriction
bottle red bottle property

restriction

05" (1P (Pr) red bottle

non-red 0.5%(.81)*(-19)
bottle red bottle

18



n Learner in LWF experiment

» Baseline probability for looking at red bottle,
when given 2 bottles: .5

 Probability after learning: 0.518

That’s barely a 2% change above baseline (1/25
of baseline).

ner summary

* EO Bayesian Learner doesn’t converge
on the correct grammar

» EO Bayesian Learner doesn’t behave
as real learners do

Therefore, EO Bayesian Learner is not a
good model of how children learn.

— Strings defined categorically (Noun, Adjective Noun,

Noun PP, etc.). Previously 1/4 (0.25).

— Let strings be defined over vocabulary items (ball,
red ball).

— MacArthur CDI suggests 18-months olds know at
least 49 adjectives and 247 Nouns, so conservative
estimate of N’ strings is 49*247 (Noun Adjective
combinations).

= Pn from n NOW = .02041

LWEF experiment

DOfamiliar
W novel

red bomni

Control Anaphoric

1 baseline: 15%, or 1/3 of b

» Several places where we made generous
estimates of the parameters involved in the
model. (EX: P, fromn ©)

« This gives an overestimation of the
probability an EO Bayesian learner would
converge on the correct grammar.

Less Generous Est

EO Bayesian

* ¢: number of properties learners are aware

of

— Previously 5

— MacArthur CDI suggests 18-month olds know at
least 49 adjectives, which means they ought to
know at least 49 properties.
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The Effects of Filtering
Bayesian Learner
» Probability of converging on the correct

— Defined hypothesis spaces, probabilistic updating
syntactic and semantic hypothesis = .0139. _ No filters on data intake

— Failed badly

» EO Bayesian Learner:

+ Probability of looking at red bottle in LWF
experiment = .507 (change from baseline of - Putting the Regier & Gahl filters back:
.7%, compared to real learners 15%) A ’

Not like real learners... (ignor
modifi

Filtering Summary
Probability of correct grammar of anaphoric one for
different ities of data

ed

-

0.8

Filters

* The learner does best when using both
syntactic & semantic de |
ic data only

fiter and when the learner ign

m—type I amblg data i
iter ambiguous

mmmmmmsemantic only & type 11
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Ignoring Type || Ambiguous D

* Principle: learning happens when there is uncertainty
In order to ignore it, learner must have some (Shannon, 1948; Gallistel, 2001; Gallistel,

. J . forthcoming)
way to identify type Il ambiguous data

» Suppose learner comes equipped with constraint on
Filter to ignore type Il ambiguous data available representation: no anaphora to X° categories

o Hornstein & Lightfoot, 1981
should be the result of some other principled ( 9 )

learning strategy » Current problem solved: one = N’

» Different problem: which N’ --> ball or red ball?




Proposal to Derive the Filter

* Ball and red ball have different consequences in the
semantic domain (any-prop vs. N'-prop)

> Relevant utterances where there is a choice

between two (or more) N’ antecedents (Unambiguous
and Type | Ambiguous) - learner has uncertainty about

which N’ is antecedent
“Look, a red ball! There’'s another one.”

Irrelevant data: everything else (Type |l Ambiguous) -

learner has no uncertainty about which N’ is
antecedent

“Here’s a ball. Give me another one, please.”

Conclusions: Learning Theory Recap

» Learning theory: not just one indivisible piece

» Three parts:
— Definition of the hypothesis sp
— Definition of the data u as ce (filtering)

— Procedure used to update learner’s beliefs about
opposing hypotheses

In principle, any of these components could be
domain-specific or domain-general

THE END

Proposal to Derive the Filter

Note: proposal is syntactocentric.

Syntactic uncertainty (which N’ antecedent)
drives learner

If semantic uncertainty mattered, learner could
not ignore Type Il Ambiguous data - each one
has uncertainty between any-property and N'’-
property hypothesis.

Conclusions

Bayesian Learner fails on anaphoric one without
filtering (& principled way to derive filter involves
having constraints on the hypothesis space)

Linked hypothesis spaces intensifies effect of learning
(really good or really bad)

Linked hypothesis spaces may mean there’s no
subset hypothesis across domains, which nullifies big
advantage of Bayesian updating
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