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ML, Al, & Cognitive Modeling

Machine Learning: development of
algorithms and techniques that
allow machines to learn, motivated
by capabilities of computers

Artificial Intelligence & Learning:
development of algorithms and
techniques that allow machines to learn
like humans, motivated by human
behavior

Cognitive Modeling: development of
models that allow understanding of how
humans learn, attempting to simulate
human behavior by using techniques
humans use
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Cognitive Modeling of Language

Different problems: more and less easily discernible from data

Categorization/Clustering
Ex: What are the contrastive sounds of a language?

Vowel categories in English & Japanese

Hypothesis space: 3 dimensions of variation

English
relevant dimensions: 1 and 2

Japanese
relevant dimensions: 2 and 3

Vallabha et al. 2007

Cognitive Modeling of Language

Different problems: more and less easily discernible from data

Categorization/Clustering
Ex: What are the contrastive sounds of a language?

Extraction
Ex: Where are words in fluent speech?

Mapping
What are the word affixes that signal meaning (e.g. past tense in English)?

regularity
ping~pinged confide~confided

blink~blinked
blink bligkt piy  pid konfajd konfajdod
irregularity
hide-hid

sing-sang

drink~drank
siy  sejy

dr1 rejpk hajd hid

think~thought
Oipk 0ot

Cognitive Modeling of Language

Different problems: more and less easily discernible from data

Categorization/Clustering
Ex: What are the contrastive sounds of a language?

Extraction
Ex: Where are words in fluent speech?

Mapping
What are the word affixes that signal meaning (e.g. past tense in English)?

Complex systems: What is the generative system that creates the observed
(structured) data of language (ex: syntax, metrical phonology)?
Subject Verb Object

Observable data: word order
Generative system: syntax
English
Kannada P German Subject Verb Object
X g

I3
+ Verb Object Subject Verb ts e

Subject 1,

Cognitive Modeling of Language

Different problems: more and less easily discernible from data

Categorization/Clustering
Ex: What are the contrastive sounds of a language?

Extraction
. ; o
Ex: Where are words mjuein speech? Assumption from experimental work:
s Relevant unit of word segmentation

for infants is the syllable

Who’s afraid of the big bad wolf?

dov 00 big bad walf

who ‘sa frai dof the big bad wolf
00 big woalf

Swingley 2005

huw zo frejd ov

who ‘sa fraid of the bigbadwolf

Gambell &

blg ba'd wa'lf
Yang 2006

hawza fr
who'sa fraidofthe big bad wolf

hawz ofréjd av 0o blg ba'd w
who's afraid of the big bad

Cognitive Modeling of Language

Different problems: more and less easily discernible from data

Categorization/Clustering
Ex: What are the contrastive sounds of a language?

Extraction
Ex: Where are words in fluent speech?

Mapping
What are the word affixes that signal meaning (e.g. past tense in English)?

Complex systems: What is the generative system that creates the observed
(structured) data of language (ex: syntax, metrical phonology)?

Observable data: word order ~ Subject Verb Object
Generative system: syntax

Cognitive Modeling of Language

Different problems: more and less easily discernible from data

Categorization/Clustering
Ex: What are the contrastive sounds of a language?

Extraction
Ex: Where are words in fluent speech?

Mapping
What are the word affixes that signal meaning (e.g. past tense in English)?

Complex systems: What is the generative system that creates the observed
(structured) data of language (ex: syntax, metrical phonology)?

Observable data: stress contour ~ EMphasis
Generative system: metrical phonology



Cognitive Modeling of Language
Different problems: more and less easily discernible from data

Categorization/Clustering
Ex: What are the contrastive sounds of a language?
Extraction
Ex: Where are words in fluent speech?
Mapping
What are the word affixes that signal meaning (e.g. past tense in English)?

Complex systems: What is the generative system that creates the observed
(structured) data of language (ex: syntax, metrical phonology)?

Observable data: stress contour ~ EMphasis
Generative system: metrical phonology
(H L L)

(s S)s EM pha sis

(H L) H EM pha sis (s s S)
EM pha sis EM pha sis

Road Map

Introduction to complex linguistic systems
General problems
Parametric systems
Parametric metrical phonology

Learnability of complex linguistic systems
General learnability framework
Case study: English metrical phonology
Available data & associated woes
Unconstrained probabil learning
Constrained probabilistic learning

Where next? Implications & Extensions

General Problems
with Learning Complex Linguistic Systems

What children encounter: the output of N
the generative linguistic system EMphasis

Cognitive Modeling of Language
Different problems: more and less easily discernible from data

Categorization/Clustering
Ex: What are the contrastive sounds of a language?

Extraction
Ex: Where are words in fluent speech?
Mapping
What are the word affixes that signal meaning (e.g. past tense in English)?

Complex systems: What is the generative system that creates the observed
(structured) data of language (ex: syntax, metrical phonology)?

Today’s focus

Road Map

Introduction to complex linguistic systems -
General problems . )
Parametric systems l

Parametric metrical phonology
-

General learnability fram

Case study: English me!
Available data & a
Unconstrained probabilistic I
Constrained probabilistic learning

General Problems
with Learning Complex Linguistic Systems

What children encounter: the output of N
the generative linguistic system EMphasis

Which syllable Are all syllables
What children must learn: the of a larger unit included?
components of the system that is stressed? Are syllables
combine to generate this differentiated?
observable output EM pha sis




General Problems
with Learning Complex Linguistic Systems

What children encounter: the output of

the generative linguistic system EMphasis

Which syllable Are all syllables
What children must learn: the of a larger unit included?
components of the system that is stressed?
combine to generate this
observable output EM pha sis

Are syllables
differentiated?

Why this is tricky:
There is often a non-transparent relationship

between the observable form of the data and the H L) H
underlying system that produced it. Hard to EM pha sis
know what parameters of variation to consider.

Levels of
Moreover, data are often ambiguous, evenif (8 S  §) a:’é”?“
parameters of variation are known. EM pha sis structure

General Problems
with Learning Complex Linguistic Systems

Hypothesis for a language consists of a Which syllab_le of alarger unit is stressed?
combination of generalizations about {Leftmost, Rightmost, Second from Left,...}
that language (grammar). But this
leads to a theoretically infinite
hypothesis space.

Avre all syllables included?
{Yes, No-not leftmost, No-not rightmost, .

Avre syllables differentiated?
{No, Yes-2 distinctions, Yes-3 distinctions, ...}

Rhyming matters?
{No, Yes-every other, ...}

General Problems
with Learning Complex Linguistic Systems

Hypothesis for a language consists of a Which syllab_le of alarger unit is stressed?
combination of generalizations about {Leftmost, Rightmost}
that language (grammar). But this
leads to a theoretically infinite
hypothesis space.

Avre all syllables included?
{Yes, No-not leftmost, No-not rightmost}

Are syllables differentiated?
. {No, Yes-2 distinctions, Yes-3 distinctions}
Observation:

Languages only differ in constrained
ways from each other. Not all
generalizations are possible.

Idea: Children’s hypotheses are
constrained so they only consider
generalizations that are possible in
the world’s languages.

Linguistic parameters = finite (if large)

Chomsky (1981), Halle & Vergnaud (1987)  hypothesis space of possible grammars

General Problems
with Learning Complex Linguistic Systems

Hypothesis for a language consists of a
combination of generalizations about
that language (grammar). But this
leads to a theoretically infinite
hypothesis space.

General Problems
with Learning Complex Linguistic Systems

Hypothesis for a language consists of a Which syllab_le of alarger unit is stressed?
combination of generalizations about {Leftmost, Rightmost,
that language (grammar). But this
leads to a theoretically infinite
hypothesis space.

Avre all syllables included?
{Yes, No-not leftmost, No-not rightmost,

Avre syllables differentiated?
Observation: {No, Yes-2 distinctions, Yes-3 distinctions, ™=

Languages only differ in constrained
ways from each other. Not all
generalizations are possible.

30 89 @

Learning Parametric Linguistic Systems

(PE—ETE—

Linguistic parameters gives the benefit of a finite hypothesis space. Still,
the hypothesis space can be quite large.

For example, assuming there are n binary

parameters, there are 2" core grammars to
choose from.




Parametric Metrical Phonology

Metrical phonology:
What tells you to put the EMphasis on a particular SYLlable

Process speakers use: )
Basic input unit: syllables em pha sis

Larger units formed: metrical feet &

The way these are formed varies from i
i em pha) sis S
lang to language. Only syllables in ( pha) system

metrical feet can be stressed paranjelers of
variation - to be

determined by
(EM pha) sis | learner from

) T available data

Observable Data: stress contour of word EMphasis

Stress assigned within metrical feet
The way this is done also varies from
language to language

A Brief Tour of Parametric Metrical Phonology

Are syllables differentiated? .

No: system is quantity-insensitive (Ql) CVWV Cv ccve
lu di  crous

A Brief Tour of Parametric Metrical Phonology

[ ]
Are syllables differentiated? .

No: system is quantity-insensitive (Ql) CVWV Cv ccve
lu di  crous

Yes: system is quantity-sensitive (QS)

Only allowed method: differ by rime weight «—
Only allowed number of divisions: 2

H . Light
cavy vs. Lig VV always Heavy

V always Light
Option 1: VC Heavy (QS-VC-H) Option 2: VC Light (QS-VC-L)
H L /H H L /L
CVV CV [cove | CVV CV [cecve |
lu di \crous lu di \crous

Parametric Metrical Phonology

Metrical phonology system here: 5 main parameters, 4 sub-parameters
(adapted from Dresher 1999 and Hayes 1995)

Sub-parameters: options
that become available if
main parameter value is a
certain one

Most parameters involve
metrical foot formation

All combine to generate stress contour output

A Brief Tour of Parametric Metrical Phonology

Are syllables differentiated? .

No: system is quantity-insensitive (Ql) CVWV Cv ccve
lu di  crous

Yes: system is quantity-sensitive (QS)
Only allowed method: differ by rime weight

onset
kr
(

CVV CV ccve

lu di  crous

nucleus coda

A Brief Tour of Parametric Metrical Phonology
i i . - )
Are all syllables included in | o
metrical feet? - -k '
vVC VvC W

Yes: system has no extrametricality (Em-None) af ter noon




A Brief Tour of Parametric Metrical Phonology

) ) [ )

Are all syllables included in | o
metrical feet? .. - L '

Yes: system has no extrametricality (Em-None) Va(f: \t/ecr n\o/z\':/n

No: system has extrametricality (Em-Some)

Only allowed # of exclusions: 1
Only allowed exclusions:
Leftmost or Rightmost syllable

__ narrowing of
hypothesis space

A Brief Tour of Parametric Metrical Phonology

What direction are metrical feet constructed? ‘

Two logical options
From the left:

Metrical feet are constructed from the
left edge of the word (Ft Dir Left)

From the right:
Metrical feet are constructed from the
right edge of the word (Ft Dir Right)

A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size? ’
[ _J

Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if
there are any (Unbounded).

Ft Dir Left —»

LLL H

A Brief Tour of Parametric Metrical Phonology

Are all syllables included in . C - )

metrical feet? L ) L L )

VvVC VvC W
Yes: system has no extrametricality (Em-None) af ter noon

No: system has extrametricality (Em-Some)

Only allowed # of exclusions: 1
Only allowed exclusions:
Leftmost or Rightmost syllable

__ narrowing of
hypothesis space

Leftmost syllable

Rightmost syllable
excluded: Em-Left

excluded: Em-Right
()
L H
vV VC
di  crous

A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size? ’
[_J

Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if
there are any (Unbounded). T

narrowing of
hypothesis space

A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size? ’
[ _J

Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if
there are any (Unbounded).

Ft Dir Left —» <«— FtDir Right
(L L L b LLL HL

i
LLL HWL

¥
LLL H(L
(LLLHQ




A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size? ’
[_J

Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if
there are any (Unbounded).
Ft Dir Left —» <«— FtDir Right Ft Dir LeftRight

(LLL)E L (LLLHW

A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size? ’
& (L LL)H Y

Yes: Metrical feet are unrestricted, (L LL H(L
delimited only by Heavy syllables if v

LL L L
there are any (Unbounded). s s s ,,)

No: Metrical feet are restricted (Bounded).

The size is restricted to 2 options: 2 or 3. «—— narrowing of
hypothesis space

FtDir Left 2 units per foot (Bounded-2) 3 units per foot (Bounded-3)
—

A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size? ’
& (L L L)H

Yes: Metrical feet are unrestricted, (L LL H(L
delimited only by Heavy syllables if L

there are any (Unbounded). (1

L L

No: Metrical feet are restricted (Bounded).

The size is restricted to 2 options: 2 or 3. «—— narrowing of
The counting units are restricted to 2 options: ~ "YPothesis space
syllables or moras. ) ( ) B2
Ft Dir Left )(x) B3
Bounded-2
—> (H L)L H)
i Count by syllables
(L L) (L H) <« (Bounded-Syllabic)

(s 8)(s 9)

A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size? ’
® (L L L)H

Yes: Metrical feet are unrestricted, (L LL H(L
delimited only by Heavy syllables if L
there are any (Unbounded).

No: Metrical feet are restricted (Bounded).

The size is restricted to 2 options: 2 or 3. «—— narrowing of
hypothesis space

A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size? ’
& (L L)H Y

Yes: Metrical feet are unrestricted, (L LL H(L
delimited only by Heavy syllables if L
there are any (Unbounded).

No: Metrical feet are restricted (Bounded).

The size is restricted to 2 options: 2 or 3.« narrowing of
The counting units are restricted to 2 options: ~ "YPothesis space
syllables or moras. ) ) B2

)(x) B3

A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size? ’
& (L L L)H

Yes: Metrical feet are unrestricted, (L LL H(L
delimited only by Heavy syllables if L
there are any (Unbounded).

No: Metrical feet are restricted (Bounded).

The size is restricted to 2 options: 2 or 3. «—— narrowing of
The counting units are restricted to 2 options: ~ "YPothesis space
syllables or moras. ) ) B2

Ft Dir Left )(x) B3
Count by syllables Bou;:dei-Z Count by moras

(Bounded-Syllabic) — (Bounded-Moraic) =

(H L)L H) ,_‘l‘\{loras(uni(ofweig
H L L H 2 moras

=1 mora

v
(H)(L L)(H)




A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size? ’
& (L LL)H Y

Yes: Metrical feet are unrestricted, (L LL H(L
delimited only by Heavy syllables if LLL
there are any (Unbounded). (1 )

No: Metrical feet are restricted (Bounded).

The size is restricted to 2 options: 2 or 3. <« narrowing of
The counting units are restricted to 2 options:
syllables or moras.

Ft Dir Left
Count by syllables Bou:deia Count by moras

(Bounded-Syllabic) (Bounded-Moraic)
(H L)L H) «— (H)(L L)(H)
compare

Generating a Stress Contour

Process speaker uses

*’ to generate stress
* contour
[_J
- @

Are syllables
differentiated?

Yes.

VC syllables are
Heavy.

Generating a Stress Contour

Process speaker uses
- to generate stress
. Y contour

Which direction are
feet constructed from?

From the right.

A Brief Tour of Parametric Metrical Phonology

Within a metrical foot, which syllable is stressed? -

Two options, hypothesis space restriction
Leftmost: —
Stress the leftmost syllable (Ft Hd Left) L L)(H)

(H)(L L)(H)

Rightmost: . —
Stress the rightmost syllable (Ft Hd Right) (H)(L L){H)

Generating a Stress Contour

Process speaker uses
- to generate stress
. Y contour

Are any syllables
extrametrical?

Yes.

Rightmost syllable is X )
not included in metrical H L H

foot. VC CV CVC
em pha sis

Generating a Stress Contour

Process speaker uses
- to generate stress
. - contour

Are feet unrestricted?
No.

2 syllables per foot.




Generating a Stress Contour

Process speaker uses
- to generate stress
. Y contour

Which syllable of the
foot is stressed?

Leftmost.

Road Map

Introduction to complex linguistic
General problems
Parametric systems
Parametric metrical phonology

Learnability of complex linguistic systems
General learnability framework
Case study: English metrical phonology
Available data & associated woes
Unconstrained probal learning
Constrained probabilistic learning

A caveat about learning parameters separately

Parameters are system components that combine
together to generate output.

Choice of one parameter may influence choice of
subsequent parameters.

Generating a Stress Contour

Process speaker uses

- to generate stress
. contour
[_J
- @

Learner’s task: Figure
out which parameter
values were used to
generate this conto

Choosing among grammars

Human learning seems to be gradual
and somewhat robust to noise - need
some probabilistic learning component

Since grammars are parameterized, child can
make use of this information to constrain
hypothesis space. Learn over parameters, not
entire parameter value sets.

or ?
probabilistic learning

over parameter

-
‘ or 2 values

A caveat about learning parameters separately

Parameters are system components that combine
together to generate output.

Choice of one parameter may influence choice of
subsequent parameters.




A caveat about learning parameters separately

Parameters are system components that combine
together to generate output.

Choice of one parameter may influence choice of
subsequent parameters.

The learning framework: 3 components

(1) Hypothesis space

T g d

("dd dgdd N

input dd d dd
~ =

(2) Data ™

(3) Update procedure

Two psychologically plausible
probabilistic update procedures

Naive Parameter Learner (NParLearner)

[a/ Probabilistic generation & testing of parameter value

combinations. (incremental)
Yang (2002) Hypothesis update: Linear reward-penalty
(Bush & Mosteller 1951)

A caveat about learning parameters separately

Parameters are system components that combine
together to generate output.

Choice of one parameter may influence choice of
subsequent parameters.

Point: The order in which parameters
are set may determine if they are set
correctly from the data.

Dresher 1999

Key point for cognitive modeling:
psychological plausibility

Any probabilistic update procedure must, at the very least, be
incremental/online.

Why? Humans (especially human children) don’t have infinite memory.

Unlikely: human children can hold a
whole corpus worth of data in their
minds for analysis later on

Models that do this are Al (not
cognitive modeling) - they can
simulate human behavior, but not
necessarily the way humans produce
it

(ex: Foraker et al. 2007, Goldwater et
al. 2007)

Two psychologically plausible
probabilistic update procedures

Naive Parameter Learner (NParLearner)

[a/ Probabilistic generation & testing of parameter value

combinations. (incremental)
Yang (2002) Hypothesis update: Linear reward-penalty
(Bush & Mosteller 1951)

Bayesian Learner (BayesLearner)

Probabilistic generation & testing of parameter value
combinations. (incremental)

Hypothesis update: Bayesian updating
(Chew 1971: binomial distribution)

10



Case study: English metrical phonology

Adult English system values:
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded,
Bounded-2, Bounded-Syllabic, Ft Hd Left

Estimate of child input: caretaker speech to children
between the ages of 6 months and 2 years (CHILDES
[Brent & Bernstein-Ratner corpora]: MacWhinney 2000)

Total Words: 540505 Mean Length of Utterance: 3.5

Words parsed into syllables using the MRC
Psycholinguistic database (Wilson, 1988) and assigned
likely stress contours using the American English
CALLHOME database of telephone conversation
(Canavan et al., 1997)

English Data

Probabilistic learning for English

Probabilistic generation and testing of parameter values (Yang 2002)

For each parameter, the learner associates a probability with each of
the competing parameter values.

Ft Dir Rt =
Unbounde:
Bounded-3 = 0.5

FtHd Left=0.5

f

Initially all are equiprobable

English Data

[Feia Leﬁ] irFt Dir Rt

Case study: English metrical phonology

Adult English system values:
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded,
Bounded-2, Bounded-Syllabic, Ft Hd Left

Non-trivial language: English (full o
Noisy data: 27% incompatible with correct English grammar on at least
one parameter value
Hard - therefore interesting!
Exceptions:
> Em-None, Ft Dir L Unbounded

Bound a id R

Probabilistic learning for English

Probabilistic generation and testing of parameter values (Yang 2002)

For each data point encountered, the learner probabilistically generates a set
of parameter values (grammar).

Ft Dir Left = 0. Ft Dir Rt =
Bounded Unbounded
Bounded-2 Bounded-3 = 0.5
Bounded-S Bounded-Mor = 0.5
Ft Hd Left = 0. FtHdRt=

S, QSVCL, Em-None, Ft Dir Right,
Bounded, Bounded-2, Bounded-Syl, Ft Hd Right

11



Probabilistic learning for English Probabilistic learning for English

Probabilistic generation and testing of parameter values (Yang 2002) Probabilistic generation and testing of parameter values (Yang 2002)

The learner then uses this grammar to generate a stress contour for the The learner then uses this grammar to generate a stress contour for the
observed data point. observed data point.

™\ [fthe generated stress contour matches the observed stress ) » Em-None, —_ o H

( AFterNOON ) contour, the grammar successfully “parses” the data point. All ( AFterNOON Bounded, VC CVC CVVC

A participating parameter values are rewarded h Bounded-2, Bounded-Syl,

- Ft Hd Right AF  ter NOON
(L) (L H) reward all

, Em-None, Ft Dir Ri

ey, o i VC CVC CWWC
Bounded, Bounded-2, Bounded-Syl, Ft Hd Rig - - If the generated stress contour does not match the observed stress contour, the
AF ter NOON grammar does not successfully “parse” the data point. All participating

reward all parameter values are punished.

_ - (L L (H
S, QSVCL, Em-None-Ft Dir Left)
Bounded, Bounded-2, Bounded-Syl, FtHd Right V€ CVC  CwC

punish all af  TER NOON

Probabilistic learning for English Probabilistic learning for English

Probabilistic generation and testing of parameter values (Yang 2002) Probabilistic generation and testing of parameter values (Yang 2002)

The learner then uses this grammar to generate a stress contour for the i
observed data point. Update parameter value probabilities

S, QSVCL, Em-None, (L (L H
Ft Dir Right, Bounded, =%
Bounded-Syl, V€ CVC cvwve Parameter values v1 vs. v2
AF  ter NOON Learning rat pvi=pu + (I-pw) pvi= (1-y)pw
reward all small nall cha _q. a1
Jarge q pe= 1-pu pe= 1-pu
reward v1 punish v1

NParLearner (Yang 2002): Linear Reward-Penalty

S, QSVCL, Em-None,

FtDir Leff,Bounded, _, (L) (H)
Bounded-2, Bounded

Syl, Ft Hd Right V€ CvC Cwe

. af TER NOON
punish all

Probabilistic learning for English Probabilistic learning for English

Probabilistic generation and testing of parameter values (Yang 2002) Probabilistic generation and testing of parameter values (Yang 2002)

Update parameter value probabilities Update parameter value probabilities

NParLearner (Yang 2002): Linear Reward-Penalty

Parameter values v1 vs. v2 After learning: expect probabilities of parameter values to converge
Learning rate y: pei=pu + y(1-pv) pui - (- Y)pvi near endpoints (above/below some threshold).
small mall chan
large = large ch: pa=l-pu pe=1-pu
reward v1 punish v1

BayesLearner: Bayesian update of binomial distribution (Chew 1971)
Parameters c. Parameter value v
o at i+ successes

P a+ f+2+ total data seen

endpoints (p = 0.0, 1.0) reward: success + 1 punish: success + 0

here: o




Probabilistic learning for English

Probabilistic generation and testing of parameter values (Yang 2002)

Update parameter value probabilities

After learning: expect probabilities of parameter values to converge
near endpoints (above/below some threshold).

Once set, a parameter value is always used during generation,
since its probability is 1.0. Em-None = 1.0

1S?...i ) L or
Em-None

\

VCL, Em-None, Ft Dir Right,
Bounded Bounded-z Bounded-Syl, Ft Hd Right

Probabilistic learning for English

Goal: Converge on English
values after learning period is
over

Learning Period Length: 1,160,000 words
(based on estimates of words heard in a 6
month period, using Akhtar et al. (2004)).

"H, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2,
Bounded Syllabic, Ft Hd Left

Examples of incorrect target grammars
NParLearner:
Em-None, Ft Hd Left, Unb, Ft Dir Left, QI
QS, Em-None, QSVCH, Ft Dir Rt, Ft Hd Left, B-Mor, Bounded, Bounded-2
BayesLearner:
QS, Em-Some, Em-Right, QSVCH, Ft Hd Left, Ft Dir Rt,
Bounded, B-Syl, Ql, Ft Hd Left, Em-None, Ft Dir Left, B-2

Probabilistic learning for English: Modifications
Probabilistic generation and testing of parameter values (Yang 2002)
Update parameter value probabilities + Batch Learning
NParLearner (Yang 2002): Linear Reward-Penalty
Parameter values v1 vs. v2
Invoke when the batch pvi=pvi + y(1-pv) pui= (1-y)pu
counter for p,; or p,,

equals b. p2= 1-pu pe= 1-pu

reward v1 punish v1

BayesLearner: Bayesian update of binomial distribution (Chew 1971)

Invoke when the batch
counter for p,; or p,, equals b.

Parameter value v
a + 1+ successes

p=—
a+ f+2+ total data seen

Note: total data seen + 1

reward: success + 1 punish: success + 0

Probabilistic learning for English

Goal: Converge on English
values after learning period is
over

Learning Period Length: 1,160,000 words
(based on estimates of words heard in a 6
month period, using Akhtar et al. (2004)).

H, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2,
Bounded Syllabic, Ft Hd Left

Probabilistic learning for English: Modifications
Probabilistic generation and testing of parameter values (Yang 2002)
Update parameter value probabilities

Batch-learning (for very small batch sizes): smootl

irregularities in the data

Implementation (Yang 2002):

Success = increase parameter value’s batch counter by 1
Failure = decrease parameter value’s batch counter by 1

Invoke update procedure (Linear Reward-Penalty or Bayesian

Updating) when batch limit b is reached. Then, reset parameter’s
batch counters.

Probabilistic learning for English

Goal: Converge on English
values after learning period is
over

Learning Period Length: 1,160,000 words
(based on estimates of words heard in a 6
month period, using Akhtar et al. (2004)).

H, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2,
Bounded Syllabic, Ft Hd Left
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Probabilistic learning for English

Goal: Converge on English

Learning Period Length: 1,160,000 words
values after learning period is

(based on estimates of words heard in a 6
month period, using Akhtar et al. (2004)).

H, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2,
Bounded Syllabic, Ft Hd Left

—
T S—
NParLearner + Batch,

0.01=<y=<0.05,2<b=<10

BayeslLearner + Batch,

2=<b=<10

Probabilistic learning for English
Goal: Converge on English

values after learning period is
over

Learning Period Length: 1,160,000 words
(based on estimates of words heard in a 6
month period, using Akhtar et al. (2004)).

[ H, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2,
Bounded Syllabic, Ft Hd Left

Probabilistic learning for English
Goal: Converge on English

values after learning period is
over

Learning Period Length: 1,160,000 words
(based on estimates of words heard in a 6
month period, using Akhtar et al. (2004)).

H, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2,
Bounded Syllabic, Ft Hd Left

NParLearner + Batch,

0.01=<y<0.052=<b<10 %
BayeslLearner + Batch,

2=<b<10

[NParLearner + Batch + Bias,

The best
0.01<y<0.052=<b<10

isn't so
o |

BayeslLearner ¥ Ba Bias; great
2=<b<10

Probabilistic learning for English: Modifications

Probabilistic generation and testing of parameter values (Yang 2002)

Learner bias: metrical phonology relies in part on knowledge of rhythmical
properties of the language

Human infants may already have knowledge of Ft Hd Left (Jusczyk,
Cutler, & Redanz (1993) and QS (Turk, Jusczyk, & Gerken (1995).

Build this bias into a model: set probability of QS = Ft Hd Left = 1.0.
These will always be chosen during generation.

FtHd Left -

VCL, Em-None, Ft Dir Right,
Bounded Bounded-z Bounded-Syl, Ft Hd Left

Update parameter value probabilities + Batch Learning

Probabilistic learning for English
Goal: Converge on English
values after learning period is
over

Learning Period Length: 1,160,000 words
(based on estimates of words heard in a 6
month period, using Akhtar et al. (2004)).

[ "H, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2,
Bounded Syllabic, Ft Hd Left

BayesLearner + Bat
2=<b<10

Where else can we modify?

(1) Hypothesis space

T g 4
(" gd d p dd O\
N input d dd )

(2) Data ~__ dd
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Where else can we modify?

(1) Hypothesis space

(3) Update procedure

Linear Reward-Penalty.
Bayesian, Batch...

Where else can we modify?

(1) Hypothesis space

Prior knowledge, biases:
QS, Ft Hd Left known...

What about the date{ the
learner uses?
(3) Update procedure

Linear Reward-Penalt
Bayesian, Batch...

Where else can we modify?

(1) Hypothesis space

Prior knowledge, biases:
QS, Ft Hd Left known...

What about the date{ the
learner uses?
(3) Update procedure

Linear Reward-Penalty.
Bayesian, Batch...

Where else can we modify?

(1) Hypothesis space

Prior knowledge, biases:
QS, Ft Hd Left known...

Linear Reward-Penalty,
Bayesian, Batch...

Data Intake Filtering
“Selective Learning”

“Equal Opportunity” Intuition: Use all
available data to uncover a full range of
systematicity, and allow probabilistic
model enough data to converge.

“Selective” Intuition: Use the really good data only.
One instantiation of “really good” = highly informative.

One instantiation of “highly informative” = data viewed by
the learner as unambiguous (Fodor, 1998; Dresher,
1999; Lightfoot, 1999; Pearl & Weinberg, 2007)

Where else can we modify?

(1) Hypothesis space

Prior knowledge, biases:
QS, Ft Hd Left known...

(/d ddd
N it d
(2) Data 2 Caatt

Data intake filter

v 0.3‘ 07

(3) Update procedure )°<
Linear Reward-Penalty, - a 0_6‘ 0.4
Bayesian, Batch... \

4
0.5
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Practical matters:
Feasibility of unambiguous data

I Existence?

unlikely that any example ... would
show the effect of only a single parameter
value; rather, each example is the result of
the interaction of several different principles
A nd parameters”
Clark 1994 —
AFterNOON What's the same here,

[' s s) () ‘ other than the output? [ L (L ) )

L af ter noon [W‘ L af ter noon |

| af ter noon

Identification?

Even if unambiguous data existed, how could a
child identify them?

Practical matters:
Feasibility of unambiguous data

Existence? Depends on data set (empirically determined).

Identification?

Identifying unambiguous data:

Cues (Dresher 1999; Lightfoot 1999): heuristic pattern-matching to observable
form of the data. Cues are available for each parameter value, known already by
the learner. .

‘T} af ter noon —> Em-None

Practical matters:
Feasibility of unambiguous data

Existence? Depends on data set (empirically determined).

Identification? Both operate over a single data point at a time:

compatible with incremental learning
Identifying unambiguous data:
Cues (Dresher 1999; Lightfoot 1999): heuristic pattern-matching to observable
form of the data. Cues are available for each parameter value, known already by
the learner T

‘T} af ter noon —> Em-None

Parsing (Fodor 1998; Sakas & Fodor 2001): extract necessary parameter values
from all successful parses of data point
———— — Em-None, Ft Dir
-~ Ei ne, Ft Dir Left, Ft Hd Left, B, B-2, VN » Left, FtHd Left,
L,~Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syly Bounded, Bounded-
* - 2, Bounded-Syl

Practical matters:
Feasibility of unambiguous data

Existence? Depends on data set (empirically determined).

Practical matters:
Feasibility of unambiguous data

Existence? Depends on data set (empirically determined).

Identification?

Identifying unambiguous data:

Cues (Dresher 1999; Lightfoot 1999): heuristic pattern-matching to observable
form of the data. Cues are available for each parameter value, known already by
the learner. —

} af ter noon —— Em-None

4

| s..s

Parsing (Fodor 1998; Sakas & Fodor 2001): extract necessary parameter values
from all successful parses of data point
—— Em-None, Ft Dir
"Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syh)\_, Left, Ft Hd Left,
one, Ft Dir Left, Ft Hd Left, B, B: Syt Bounded, Bounded-
I — 2, Bounded-Syl

Probabilistic learning from unambiguous data

(Pearl 2008)
Each parameter has 2 values. ‘
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Probabilistic learning from unambiguous data

(Pearl 2008)
Each parameter has 2 values. ‘

Advantage in data: How much more unambiguous
data there is for one value over the other in the data
distribution. -

‘ has advantage

Assumption (Yang 2002):

The value with the greater advantage will be the
one a probabilistic learner will converge on over
time. *

Allows us to be fairly agnostic about the exact nature
of the probabilistic learning, provided it has this
behavior.

Probabilistic learning from unambiguous data
— (Pearl 2008)
The order in which parameters are set may determine if

—‘ they are set correctly from the data.

Dresher 1999

Success guaranteed as long as parameter-setting order constraints are followed.

Cues Parsing
Group 1:
before Em-Right , Ft Hd Left, Bounded
Em-Right Group 2:
before Bounded-Syl (F_?,tr(?l:;)r\;gh
(c) Bounded-2

Em-Some, Em-Right, Bounded-2,
before Bounded-Syl Bounded-Syl

The rest of the parameters are freely The parameters are freely ordered
ordered w.r.t. each other. w.r.t. each other within each group.

Where we are now

Cognitive modeling: aimed at understanding how
humans solve problems, generating human behavior
by using psychologically plausible methods

Language: learning complex systems is
difficult. Success comes from integrating
biases into probabilistic learning models. Bias on hypothesis space
linguistic parameters already
known, some values already known
Bias on data:
interpretive bias to use

highly informative data 07 03

Probabilistic learning from unambiguous data

e — (Pearl 2008)
The order in which parameters are set may determine if
‘ —‘ they are set correctly from the data.

Dresher 1999

Road Map

Introduction to complex linguistic
General problems
Parametric systems
Parametric metrical phonology

General learnability framework

Case study: English metrical phonology
Available data & associa /
Unconstrained probabilistic learning
Constrained probabilistic learning

Where next? Implications & Extensions

Where we can go

(1) Interpretive bias:
How successful on other difficult learning cases (noisy data

sets, other complex systems)?
Are there other methods of implementing interpretative biases

that lead to successful learning? + biases?
How necessary is an interpretive bias? Are there cleverer

probabilistic learning methods than can succeed?
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Where we can go

(1) Interpretive bias:
How successful on other difficult learning cases (noisy data rr"' -

sets, other complex systems)? -
Are there other methods of implementing interpretative biases

that lead to successful learning? + biases?
How necessary is an interpretive bias? Are there cleverer

probabilistic learning methods than can succeed?

(2) Hypothesis space bias:

Is it possible to infer the correct parameters of variation given
less structured information a priori (e.g. larger units than
syllables are required)? [Model Selection]

+ fewer biases?

The big idea

Complex linguistic systems may well
require something beyond probabilistic
methods in order to be learned, and
learned as well as humans learn them.

What this likely is: learner biases in
hypothesis space and data intake

(how to deploy probabilistic learning)

What we can do: take insights from
cognitive modeling and apply them to
problems in artificial intelligence and
machine learning, & vice versa

Where we can go

(1) Interpretive bias:

How successful on other difficult learning cases (noisy data
sets, other complex systems)?

Are there other methods of implementing interpretative biases
that lead to successful learning? + biases?

How necessary is an interpretive bias? Are there cleverer
probabilistic learning methods than can succeed?

P -

(2) Hypothesis space bias: ' L3

Is it possible to infer the correct parameters of variation given

less structured information a priori (e.g. larger units than
syllables are required)? [Model Selection]

+ fewer biases?

necessary biases

(3) Informing Al/ML:

Can we import the necessary biases for learning complex
systems into language applications (ex: speech generation)?
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