

Human Language Learning

The Nature of Linguistic Knowledge
Different aspects: more and less transparent from data

Categorization/Clustering
Ex: What are the contrastive sounds
of a language?

The Nature of Linguistic Knowledge
Different aspects: more and less transparent from data

Categorization/Clustering
Ex: What are the contrastive sounds
of a language?

The Nature of Linguistic Knowledge
Different aspects: more and less transparent from data

Categorization/Clustering
Ex: What are the contrastive sounds
of a language?

Extraction
Ex: Where are words in fluent
speech?

The Nature of Linguistic Knowledge
Different aspects: more and less transparent from data

Categorization/Clustering
Ex: What are the contrastive sounds
of a language?

Extraction
Ex: Where are words in fluent
speech?

húwz əfréjd əv ðə bíg bæ'd wə'lf who's afraid of the big bad wolf

The Nature of Linguistic Knowledge
Different aspects: more and less transparent from data

Categorization/Clustering
Ex: What are the contrastive sounds
of a language?

Extraction
Ex: Where are words in fluent speech?

Mapping
What are the word affixes
that signal meaning (e.g. past tense in English)?

húwz əfréjd əv ððə bíg bæ'd wə'lf who's afraid of the big bad wolf blink~blinked confide~confided

The Nature of Linguistic Knowledge
Different aspects: more and less transparent from data

Categorization/Clustering
Ex: What are the contrastive sounds of a language?

Extraction
Ex: Where are words in fluent
speech?
Mapping
What are the word affixes
that signal meaning (e.g. past tense in English)?

húwz əfréjd əv ðə bĺg bæ'd wə'lf who's afraid of the big bad wolf blink~blinked confide~confided blınk blınkt kənfajd kənfajdəd drıjk drejık

The Nature of Linguistic Knowledge

Different aspects: more and less transparent from data

Complex systems: What is the generative system that creates the observed (structured) data of language (ex: syntax, metrical phonology)?

Observable data: word order Subject Verb Object

The Nature of Linguistic Knowledge

Different aspects: more and less transparent from data

Complex systems: What is the generative system that creates the observed (structured) data of language (ex: syntax, metrical phonology)?

Observable data: word order Subject Verb Object

Kannada
English

Subject Verb Objec
Subject $t_{\text {obec }}$ Verb Object

The Nature of Linguistic Knowledge
Different aspects: more and less transparent from data

Complex systems: What is the generative system that creates the observed (structured) data of language (ex: syntax, metrical phonology)?
Observable data: stress contour
EMphasis

The Nature of Linguistic Knowledge
Different aspects: more and less transparent from data

Complex systems: What is the generative system that creates the observed (structured) data of language (ex: syntax, metrical phonology)?

Observable data: stress contour
EMphasis
(S S) S
EM pha sis
(H L) H
EM pha sis
S S S EM pha sis

General Problems

with Learning Complex Linguistic Systems

General Problems

with Learning Complex Linguistic Systems

What children encounter: the output of
the generative linguistic system

What children encounter: the output o the generative linguistic system

What children must learn: the components of the system that
components of the system observable output

EMphasis

Which syllable is stressed?

EM pha sis

General Problems

with Learning Complex Linguistic Systems

What children encounter: the output of the generative linguistic system

EMphasis

What children must learn: the
components of the system that
combine to generate this
observable output

Which syllable
of a larger unit
is stressed?

EM pha sis | Are all syllables |
| :---: |
| included? |

Are syllables
differentiated?

Why this is tricky:
There is often a non-transparent relationship
between the observable form of the data and the
underlying system that produced it. Hard to
know what parameters of variation to consider.

Moreover, data are often ambiguous, even if parameters of variation are known.

General Problems

with Learning Complex Linguistic Systems

Hypothesis for a language consists of a
combination of generalizations about that language (grammar). But this leads to a theoretically infinite hypothesis space.

General Problems

with Learning Complex Linguistic Systems

Hypothesis for a language consists of a combination of generalizations abou that language (grammar). But this leads to a theoretically infinite hypothesis space.

Which syllable of a larger unit is stressed? \{Leftmost, Rightmost, Second from Left,...

Are all syllables included?
\{Yes, No-not leftmost, No-not rightmost, .
Are syllables differentiated? \{No, Yes-2 distinctions, Yes-3 distinctions, ...\}

Rhyming matters? \{No, Yes-every other, ...\}

Languages only aiffer in constrain
ways from each other. Not all
Hypothesis for a language consists of a combination of generalizations about that language (grammar). But this leads to a theoretically infinite hypothesis space.

Observation:
Languages only differ in constrained generalizations are possib

General Problems

with Learning Complex Linguistic Systems

Hypothesis for a language consists of a combination of generalizations about that language (grammar). But this leads to a theoretically infinite hypothesis space.

Observation:

Languages only differ in constrained ways from each other. Not al generalizations are possible.

Idea: Children's hypotheses are
constrained so they only conside generalizations that are possible in the world's languages.
Chomsky (1981), Halle \& Vergnaud (1987) Tesar \& Smolensky (2000)

Which syllable of a larger unit is stressed \{Leftmost, Rightmost\}

Are all syllables included?

 \{Yes, No-not leftmost, No-not rightmost\}Are syllables differentiated?
\{No, Yes-2 distinctions, Yes-3 distinctions\}

Learning Parametric Linguistic Systems

Linguistic parameters gives the benefit of a finite hypothesis space. Still, the hypothesis space can be quite large.

For example, assuming there are n binary parameters, there are 2^{n} core grammars to choose from \qquad

Exponentially growing hypothesis space

Which syllable of a larger unit is stressed? \{Leftmost, Rightmost, ©evoridinulitit,...\}
Are all syllables included? \{Yes, No-not leftmost, No-not rightmost, , Are syllables differentiated? \{No, Yes-2 distinctions, Yes-3 distinctions, m_{m} \}

General Problems

with Learning Complex Linguistic Systems

Parametric Metrical Phonology

Metrical phonology:
What tells you to put the EMphasis on a particular SYLlable
Process speakers use:
Basic input unit: sylables

Larger units formed: metrical feet The way these are formed varies fromlanguage to language. Only syllables in metrical feet can be stressed.

Stress assigned within metrical feet The way this is done also varies from language to language.

Observable Data: stress contour of word

Parametric Metrical Phonology

Metrical phonology system here: 5 main parameters, 4 sub-parameters (adapted from Dresher 1999 and Hayes 1995)

Sub-parameters: options
that become available if main parameter value is a certain one

All combine to generate stress contour output

Are syllables differentiated?

$$
\begin{array}{lccc}
\text { No: system is quantity-insensitive (Ql) } & \text { SVV } & \text { SV } & \text { S } \\
& \text { lu } & \text { di } & \text { crous }
\end{array}
$$

Yes: system is quantity-sensitive (QS)
Only allowed method: differ by rime weight ___ narrowing of Only allowed number of divisions: 2

Heavy vs. Light
VV always Heavy
V always Light

Option 1: VC Heavy (QS-VC-H)	Option 2: VC Light (QS-VC-L)
H L H	H L L
$\left.\begin{array}{cc\|c}\text { CVV } & \text { CV } & \text { CCVC } \\ \text { lu } & \text { di } & \text { crous }\end{array}\right)$	$\left.\begin{array}{cc\|c}\text { CVV } & \text { CV } & \text { CCVC } \\ \text { lu } & \text { di } & \text { crous }\end{array}\right)$

A Brief Tour of Parametric Metrical Phonology

Are all syllables included in

 metrical feet?Yes: system has no extrametricality (Em-None)
No: system has extrametricality (Em-Some)
Only allowed \# of exclusions: 1
Only allowed exclusions: Leftmost or Rightmost syllable
$\begin{array}{lll}(& \ldots & \\ \mathrm{L} & \mathrm{L} & \mathrm{H}\end{array}$
VC VC VV
af ter noon hypothesis space

H L L
CVV CV CCVC
lu di crous

A Brief Tour of Parametric Metrical Phonology

```
Are all syllables included in
metrical feet?
Yes: system has no extrametricality (Em-None)
No: system has extrametricality (Em-Some)
```

Only allowed \# of exclusions: 1
Only allowed exclusions:
Leftmost or Rightmost syllable

Leftmost syllable excluded: Em-Left
(...)
L H L
V VC V
a gen da

gen	da	VV	V
	lu	di	crous

A Brief Tour of Parametric Metrical Phonology

What direction are metrical feet constructed? Two logical options

From the left:
Metrical feet are constructed from the left edge of the word (Ft Dir Left)

From the right:
Metrical feet are constructed from the right edge of the word (Ft Dir Right)

$(\longrightarrow$
$\begin{array}{llr}\text { H } & \text { L } & \text { H } \\ \text { VV } & \text { V } & \text { VC }\end{array}$
lu di crous

A Brief Tour of Parametric Metrical Phonology Are metrical feet unrestricted in size?

Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if
there are any (Unbounded).

> narrowing of
> hypothesis space

A Brief Tour of Parametric Metrical Phonology

Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if
there are any (Unbounded).
Ft Dir Left \longrightarrow
L L L L
(L L L H L
(L L L) (H L
(L L L) (H L)

A Brief Tour of Parametric Metrical Phonology

Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if
there are any (Unbounded).

Ft Dir Left \longrightarrow
(L L L) (H L)
\longleftarrow Ft Dir Right
L L L L
L L L H L)
$L \quad L \begin{array}{ll}\mathrm{L} & \mathrm{H})(\mathrm{L})\end{array}$
(L L L H) (L)

A Brief Tour of Parametric Metrical Phonology
 Are metrical feet unrestricted in size?

Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if there are any (Unbounded).

```
Ft Dir Left }
\longleftarrow Ft Dir Right
(L L L)(H L)
(L L L H) (L)
```

Ft Dir Left/Right
(L L L L
($\mathrm{L} \mathrm{L}^{\downarrow} \mathrm{L} \mathrm{L} \mathrm{L}$)

S S S S S)
(S S S S S)

A Brief Tour of Parametric Metrical Phonology

(L L L) (H L)
Yes: Metrical feet are unrestricted, delimited only by Heavy syllables if there are any (Unbounded).

$$
\begin{aligned}
& \left(\begin{array}{llll}
\mathrm{L} & \mathrm{~L} & \mathrm{~L} & \mathrm{H}) \\
(\mathrm{L} & (\mathrm{L}) \\
(\mathrm{L} & \mathrm{L} & \mathrm{~L} & \mathrm{~L}
\end{array} \mathrm{~L}\right) \\
& (\mathrm{S}
\end{aligned} \mathrm{S}
$$

No: Metrical feet are restricted (Bounded).

$$
\text { The size is restricted to } 2 \text { options: } 2 \text { or } 3 .
$$ hypothesis space

$\left(\begin{array}{lll}x & x\end{array}\right)(x)$

A Brief Tour of Parametric Metrical Phonology
Are metrical feet unrestricted in size?
 (L L L)(H L)

Yes: Metrical feet are unrestricted, delimited only by Heavy syllables if there are any (Unbounded).
(L L L H) (L) (L L L L) (S S S S S)

No: Metrical feet are restricted (Bounded).
 hypothesis space

A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size?

Yes: Metrical feet are unrestricted, delimited only by Heavy syllables if (L L L H) (L) there are any (Unbounded).

No: Metrical feet are restricted (Bounded)

he size is restricted to 2 options: 2 or 3 .	narrowing of hypothesis space
The counting units are restricted to 2 options:	
syllables or moras.	$(\mathrm{x} x)(\mathrm{x} \quad \mathrm{x})$
	$(\mathrm{x} x \mathrm{x})(\mathrm{x})$ B-3

2 units per foot (Bounded-2)	3 units per foot (Bounded-3)
$\mathrm{x} \times \times \mathrm{x} \times \mathrm{x}$	$\mathrm{x} \times \mathrm{x} \times \mathrm{x}$
$(\mathrm{x} \times \mathrm{x})(\mathrm{x} \times \mathrm{x}$	$(\mathrm{x} \times \mathrm{x})(\mathrm{x}$
$(\mathrm{x} \times \mathrm{x})(\mathrm{x} \times \mathrm{x})$	$(\mathrm{x} \times \mathrm{x})(\mathrm{x})$

A Brief Tour of Parametric Metrical Phonology

No: Metrical feet are restricted (Bounded).
The size is restricted to 2 options: 2 or 3 . \longleftarrow narrowing of The counting units are restricted to 2 options: hypothesis space syllables or moras.
$\left(\begin{array}{ll}\mathrm{x} & \mathrm{x}\end{array}\right)(\mathrm{x} \quad \mathrm{x}) \quad \mathrm{B}-2$

```
Ft Dir Left
```

Bounded-2
$\underset{\mathrm{xx}}{ }\left(\begin{array}{ll}\mathrm{H} & L\end{array}\right)(\mathrm{L} H)$
$(\mathrm{L}, \mathrm{L})(\mathrm{L}, \mathrm{H}) \longleftarrow$ Count by syllables
(S S) (S S)

A Brief Tour of Parametric Metrical Phonology

(L L L) (H L)
Yes: Metrical feet are unrestricted,
(L L L H) (L)
there are any (Unbounded).
(L L L L)
(S S S S S)
No: Metrical feet are restricted (Bounded)
The size is restricted to 2 options: 2 or 3 . \longleftarrow narrowing of The counting units are restricted to 2 options: hypothesis space syllables or moras.
$\begin{aligned} & \text { Count by syllables } \\ & \text { (Bounded-Syllabic) }\end{aligned}$
$\left(\begin{array}{ll}\text { Ft Dir Left } \\ \text { Bounded-2 }\end{array}\right.$
$\begin{array}{ll}\text { Count by moras } \\ \text { (Bounded-Moraic) }\end{array}$
$(\mathrm{H})(\mathrm{L} \quad \mathrm{L})(\mathrm{H})$
$(x \quad x)(x \quad x) \quad B-2$
$\left.\begin{array}{lll}\left(\begin{array}{lll}x & x\end{array}\right)(x & x\end{array}\right) \quad$ B-2
compare

A Brief Tour of Parametric Metrical Phonology

Within a metrical foot, which syllable is stressed? \square
Two options, hypothesis space restriction

Leftmost:

Stress the leftmost syllable (Ft Hd Left)

$(H)(L \quad L)(H)$

$$
(H)(L \quad L)(H)
$$

Rightmost:
Stress the rightmost syllable (Ft Hd Right) (H)(L L) (H)

Key point for cognitive modeling:

 psychological plausibilityAny probabilistic update procedure must, at the very least, be incremental/online.

Why? Humans (especially human children) don't have infinite memory.
Unlikely: human children can hold a whole
corpus worth of data in their minds for
analysis later on

Learning algorithms that operate over an entire data set do not have this property. (ex: Foraker et al. 2007, Goldwater et al.
2007)

Desired: Learn from a single data point, or

perhaps a small number of data points at
perhap
most.

Two psychologically plausible probabilistic update procedures

Naïve Parameter Learner (NParLearner)
Probabilistic generation \& testing of parameter value combinations. (incremental)
Yang (2002) Hypothesis update: Linear reward-penalty (Bush \& Mosteller 1951)

Two psychologically plausible probabilistic update procedures

Naïve Parameter Learner (NParLearner)
Probabilistic generation \& testing of parameter value combinations. (incremental)
Hypothesis update: Linear reward-penalty
(Bush \& Mosteller 1951)

Bayesian Learner (BayesLearner)

Probabilistic generation \& testing of parameter value combinations (incremental)
Hypothesis update: Bayesian updating
(Chew 1971: binomial distribution)

Case study: English metrical phonology
Adult English system values:
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2, Bounded-Syllabic, Ft Hd Left

Estimate of child input: caretaker speech to children
between the ages of 6 months and 2 years (CHILDES
[Brent \& Bernstein-Ratner corpora]: MacWhinney 2000)
Total Words: 540505 Mean Length of Utterance: 3.5

Words parsed into syllables using the MRC
Psycholinguistic database (Wilson, 1988) and assigned likely stress contours using the American English CALLHOME database of telephone conversation (Canavan et al., 1997)

English Data

Case study: English metrical phonology

Adult English system values:
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded,
Bounded-2, Bounded-Syllabic, Ft Hd Left

Non-trivial language: English (full of exceptions)
Noisy data: 27% incompatible with correct English grammar on at least one parameter value

Exceptions:
QI, QSVCL, Em-None, Ft Dir Left, Unbounded
Bounded-3, Bounded-Moraic, Ft Hd Right

Probabilistic learning for English

Probabilistic generation and testing of parameter values (Yang 2002)
For each parameter, the learner associates a probability with each of the competing parameter values

$\mathrm{Q} \mid=0.5$ QSVCL $=0.5$ Em-Some $=0.5$ Em-Left $=0.5$ Ft Dir Left $=0.5$ Bounded $=0.5$ Bounded-2 $=0.5$ Bounded-Syl $=0.5$ Ft Hd Left = 0.5
QS $=0.5$ QSVCH $=0.5$ Em-None $=0.5$ Em-Right $=0.5$ Ft Dir Rt $=0.5$
Unbounded $=0.5$
Bounded-3 = 0.5 Bounded-Mor $=0.5$ Ft Hd Rt $=0.5$
nitialiy all are equiprobable

Probabilistic learning for English

Probabilistic generation and testing of parameter values (Yang 2002)
For each data point encountered, the learner probabilistically generates a set of parameter values (grammar).

	Ql $=0.5$ QSVCL $=0.5$	QS $=0.5$ QSVCH $=0.5$
Em-Some $=0.5$	Em-None $=0.5$	
Em-Left $=0.5$	Em-Right $=0.5$	
	Ft Dir Left $=0.5$	Ft Dir Rt $=0.5$
	Bounded $=0.5$	Unbounded =0.5
Bounded-2 $=0.5$	Bounded-3 $=0.5$	
	Bounded-Syl $=0.5$	Bounded-Mor $=0.5$
	Ft Hd Left $=0.5$	Ft Hd Rt $=0.5$

QI/QS?...if QS, QSVCL or QSVCH?
Em-None/Em-Some?

QS, QSVCL, Em-None, Ft Dir Right, Bounded, Bounded-2, Bounded-Syl, Ft Hd Right

Probabilistic learning for English

Probabilistic generation and testing of parameter values (Yang 2002)
The learner then uses this grammar to generate a stress contour for the observed data point.

If the generated stress contour matches the observed stress contour, the grammar successfully "parses" the data point. Al contour, the grammar successfuliy "parses"
participating parameter values are rewarded.

QS, QSVCL, Em-None, Ft Dir Right, VC CVC CVV reward all AF ter NOON

Probabilistic learning for English

Probabilistic generation and testing of parameter values (Yang 2002)
The learner then uses this grammar to generate a stress contour for the observed data point.

AFterNOON \begin{tabular}{l}

QS, QSVCL, Em-None,
Ft Dir Right, Bounded,
Bounded-2, Bounded-Syl,
Ft Hd Right

(L) \& (L \quad H)

reward all

\quad AF

ter CVC NOON
\end{tabular}

If the generated stress contour does not match the observed stress contour, the grammar does not successfully "parse" the data point. All participating parameter values are punished.

Bounded, Bounded-2, Bounded-Syl, Ft Hd Right VC CVC CVVC punish all

Probabilistic learning for English

Probabilistic generation and testing of parameter values (Yang 2002)
The learner then uses this grammar to generate a stress contour for the observed data point.

Probabilistic learning for English

Probabilistic generation and testing of parameter values (Yang 2002)
 Update parameter value probabilities NParLearner (Yang 2002): Linear Reward-Penalty

Learning rate γ : small $=$ small changes large $=$ large changes	
BayesLearner: Bayesian update of binomial distribution (Chew 1971)	
Parameters α, β : $\alpha=\beta$: initial bias at $p=0.5$ $\alpha, \beta<1$: initial bias toward endpoints ($p=0.0,1.0$)	$\begin{gathered} \text { Parameter value } \mathrm{v} 1 \\ \mathrm{p}=\frac{\alpha+1+\text { successes }}{\alpha+\beta+2+\text { total data seen }} \\ \text { reward: success }+1 \quad \text { punish: success }+0 \end{gathered}$
here: $\alpha=\beta=0.5$	

Probabilistic learning for English

Probabilistic generation and testing of parameter values (Yang 2002)
Update parameter value probabilities

After learning: expect probabilities of parameter values to converge near endpoints (above/below some threshold).
$\mathrm{Q} \mid=0.3$
QSVCL $=0.6$
Em-Some $=0.1$
QS $=0.7$
QSVCH $=0.4$
Em-None $=0.9$

Probabilistic generation and testing of parameter values (Yang 2002)
Update parameter value probabilities
NParLearner (Yang 2002): Linear Reward-Penalty

Probabilistic learning for English

$$
\begin{aligned}
& \text { Q, Dir } \\
& \text { Bounded-2, Bounded- } \rightarrow \\
& \text { Syl, Ft Hd Right } \\
& \text { punish all }
\end{aligned}
$$

Probabilistic learning for English

Probabilistic generation and testing of parameter values (Yang 2002)
Update parameter value probabilities

After learning: expect probabilities of parameter values to converge near endpoints (above/below some threshold).

$$
\begin{aligned}
& \text { QI = } 0.3 \\
& \text { QSVCL = } 0.6 \\
& \text { Em-Some }=0.1
\end{aligned}
$$

$$
\text { QS }=0.7
$$

$$
\text { QSVCH }=0.4
$$

$$
\text { Em-None }=0.9
$$

Once set, a parameter value is always used during generation, \quad Em-None = 1.0 since its probability is 1.0
QI/QS?...if QS, QSVCL or QSVCH?
Em-None

QS, QSVCL, Em-None, Ft Dir Right Bounded, Bounded-2, Bounded-Syl, Ft Hd Right

Probabilistic learning for English

Goal: Converge on English values after learning period is over Learning Period Length: 1,666,667 words (based on estimates of words heard in a 6 month period, using Akhtar et al. (2004)).

QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2, Bounded-Syllabic, Ft Hd Left

Probabilistic learning for English

Goal: Converge on English

values after learning period is
over
Learning Period Length: 1,666,667 words (based on estimates of words heard in a 6 month period, using Akhtar et al. (2004)).
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2 Bounded-Syllabic, Ft Hd Left

Model	Success rate (1000 runs)
NParLearner, $0.01 \leq \gamma \leq 0.05$	1.2%
BayesLearner	0.0%

Examples of incorrect target grammars

NParLearner:
Em-None, Ft Hd Left, Unb, Ft Dir Left, Q।
QS, Em-None, QSVCH, Ft Dir Rt, Ft Hd Left, B-Mor, Bounded, Bounded-2
BayesLearner:
QS, Em-Some, Em-Right, QSVCH, Ft Hd Left, Ft Dir Rt, Unb
Bounded, B-Syl, Ql, Ft Hd Left, Em-None, Ft Dir Left, B-2

Probabilistic learning for English: Modifications
Probabilistic generation and testing of parameter values (Yang 2002)
Update parameter value probabilities
Batch-learning (for very small batch sizes): smooth out some of the irregularities in the data

Implementation (Yang 2002):
Success = increase parameter value's batch counter by 1
Failure = decrease parameter value's batch counter by 1

Invoke update procedure (Linear Reward-Penalty or Bayesian
Updating) when batch limit b is reached. Then, reset parameter's
batch counters.

Probabilistic learning for English: Modifications

Probabilistic generation and testing of parameter values (Yang 2002)
Update parameter value probabilities + Batch Learning
NParLearner (Yang 2002): Linear Reward-Penalty

Invoke when the batch
counter for $p_{v 1}$ or $p_{v 2}$ equals b.
Note: total data seen +1

Probabilistic learning for English

Goal: Converge on English
values after learning period is
over
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2,
Bounded-Syllabic, Ft Hd Left
(based on estimates of words heard in a 6
month

BayesLearner: Bayesian update of binomial distribution (Chew 1971)

Probabilistic learning for English

Goal: Converge on English values after learning period is over \qquad
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2, Bounded-Syllabic, Ft Hd Left

Model	Success rate (1000 runs)
NParLearner, $0.01 \leq \gamma \leq 0.05$	1.2%
BayesLearner	0.0%

Probabilistic learning for English: Modifications

Probabilistic generation and testing of parameter values (Yang 2002)
Learner bias: metrical phonology relies in part on knowledge of rhythmical properties of the language

Human infants may already have knowledge of Ft Hd Left and QS.
Jusczyk, Cutler, \& Redanz (1993): English 9-month olds prefer strong-weak stress bisyllables (trochaic) to weak-strong ones (iambic).

$$
\begin{gathered}
\text { Ft Hd Left } \\
S S
\end{gathered} \begin{gathered}
\text { FtHd Rt } \\
S S
\end{gathered}
$$

Turk, Jusczyk, \& Gerken (1995): English infants are sensitive to the difference between long vowels and short vowels in syllables

Probabilistic learning for English: Modifications

Probabilistic generation and testing of parameter values (Yang 2002)
Learner bias: metrical phonology relies in part on knowledge of rhythmical properties of the language

Human infants may already have knowledge of Ft Hd Left and QS.

Build this bias into a model: set probability of QS = Ft Hd Left = 1.0.
These will always be chosen during generation.
QS...QSVCL or QSVCH?
Ft Hd Left
QS, QSVCL, Em-None, Ft Dir Right,
Bounded, Bounded-2, Bounded-Syl, Ft Hd Left
Update parameter value probabilities + Batch Learning

Probabilistic learning for English

Goal: Converge on English

values after learning period is over

Learning Period Length: 1,666,667 words (based on estimates of words heard in a 6 month period, using Akhtar et al. (2004)):
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2 Bounded-Syllabic, Ft Hd Left

Model	Success rate (1000 runs)
NParLearner, $0.01 \leq \gamma \leq 0.05$	1.2%
BayesLearner	0.0%
NParLearner + Batch, $0.01 \leq \gamma \leq 0.05,2 \leq b \leq 10$	0.8%
BayesLearner + Batch, $2 \leq \mathrm{b} \leq 10$	1.0%

Probabilistic learning for English
Goal: Converge on English
values after learning period is over

Learning Period Length: 1,666,667 words (based on estimates of words heard in a 6 month period, using Akhtar et al. (2004)).
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2 Bounded-Syllabic, Ft Hd Left

Model	Success rate $(1000$ runs $)$
NParLearner, $0.01 \leq \gamma \leq 0.05$	1.2%
BayesLearner	0.0%
NParLearner + Batch, $0.01 \leq \gamma \leq 0.05,2 \leq \mathrm{b} \leq 10$	0.8%
BayesLearner + Batch, $2 \leq \mathrm{b} \leq 10$	1.0%
NParLearner + Batch + Bias, $0.01 \leq \gamma \leq 0.05,2 \leq \mathrm{b} \leq 10$	5.0%
BayesLearner + Batch + Bias, $2 \leq \mathrm{b} \leq 10$	1.0%

Probabilistic learning for English

Goal: Converge on English values after learning period is over

Learning Period Length: 1,666,667 words (based on estimates of words heard in a 6 month period, using Akhtar et al. (2004)).
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, Bounded-2, Bounded-Syllabic, Ft Hd Left

Model	Success rate (1000 runs)
NParLearner, $0.01 \leq \gamma \leq 0.05$	1.2%
BayesLearner	0.0%
NParLearner + Batch,	
$0.01 \leq \gamma \leq 0.05,2 \leq \mathrm{b} \leq 10$	0.8%
BayesLearner + Batch, $2 \leq \mathrm{b} \leq 10$	1.0%
NParLearner + Batch + Bias, $0.01 \leq \gamma \leq 0.05,2 \leq \mathrm{b} \leq 10$	5.0%
BayesLearner + Batch + Bias, $2 \leq \mathrm{b} \leq 10$	1.0%

The best isn't
so great

Data Intake Filtering

"Selective Learning"
"Equal Opportunity" Intuition: Use all
available data to uncover a full range of
systematicity, and allow probabilistic
model enough data to converge.

"Selective" Intuition: Use the really good data only.

One instantiation of "really good" = highly informative.
One instantiation of "highly informative" = data viewed by the learner as unambiguous (Fodor, 1998; Dresher 1999; Lightfoot, 1999; Pearl \& Weinberg, 2007)

Practical matters:
Feasibility of unambiguous data

Clark 1994 AFterNOON

$(\mathrm{S}$	$\mathrm{S})$	(S)
af	ter	noon

ON | What's the same here |
| :--- |
| other than the output? |

| L $\mathrm{L})$ (H)
 af ter noon |
| :--- | :--- | :--- |

(L)	(L	$\mathrm{H})$
af	ter	noon

Identification?
Even if unambiguous data points existed, how could a child identify them?

Practical matters:

 Feasibility of unambiguous dataExistence? Depends on data set (empirically determined).

Practical matters:

 Feasibility of unambiguous dataExistence? Depends on data set (empirically determined).
Identification?
Identifying unambiguous data:
Cues (Dresher, 1999; Lightfoot, 1999)

Parsing (Fodor, 1998; Sakas \& Fodor, 2001)

Both operate over a single data point at a time: compatible with incremental learning

Practical matters:

Feasibility of unambiguous data
Existence?
Depends on data set (empirically determined).
Identification?
Identifying unambiguous data:
Cues (Dresher 1999; Lightfoot 1999): heuristic pattern-matching to observable form of the data. Cues are available for each parameter value, known already by the learner.
 af ter noon \longrightarrow Em-None

Practical matters:

Feasibility of unambiguous data
Existence? Depends on data set (empirically determined).
Identification?
Identifying unambiguous data:
Cues (Dresher 1999; Lightfoot 1999): heuristic pattern-matching to observable form of the data. Cues are available for each parameter value, known already by the learner.

QS: 2 syllable word with 2 stresses	VV WV
Em-Right: Rightmost syllable is Heavy and unstressed	\ldots H
Unb: 3+ unstressed S/L syllables in a row	\ldots...S S S...
	\ldots L L L L
Ft Hd Left: Leftmost foot has stress on leftmost sylable	S S S... H L L

Practical matters:

Feasibility of unambiguous data
Existence? Depends on data set (empirically determined).
Identification?

Identifying unambiguous data:
Parsing (Fodor 1998; Sakas \& Fodor 2001): extract necessary parameter values from all successful parses of data point (strongest form of parsing)

Probabilistic learning from unambiguous data

Probabilistic learning from unambiguous data
Each parameter has 2 values.

Advantage in data: How much more unambiguous data there is for one value over the other in the dat distribution.

Assumption (Yang 2002):
The value with the greater advantage will be the
one a probabilistic learner will converge on over time.

Practical matters:

Feasibility of unambiguous data
Existence? Depends on data set (empirically determined).
Identification?
Identifying unambiguous data:
Parsing (Fodor 1998; Sakas \& Fodor 2001): extract necessary parameter values from all successful parses of data point (strongest form of parsing)

Initial State of English Child-Directed Speech: Probability of Encountering Unambiguous Data

QS more proba		Em-None more prob	
Quantity Sensitivity		Extrametricality	
$\begin{gathered} \text { QI: } \\ .00398 \end{gathered}$	$\begin{gathered} \hline \text { QS: } \\ 0.0205 \end{gathered}$	None: 0.0294	1Some: .0000259
Feet Directionality		Boundedness	
$\begin{aligned} & \text { Left: } \\ & 0 \text { 0non } \end{aligned}$	$\begin{aligned} & \text { Right: } \\ & 0.00000925 \end{aligned}$	Unbounded: 0.00000370	$\begin{aligned} & \text { Bounded: } \\ & 0.00435 \end{aligned}$
Feet Headedness			
$\begin{aligned} & \text { Left: } \\ & 0.00148 \end{aligned}$	$\begin{aligned} & \text { Right: } \\ & 0.000 \end{aligned}$		

Moving Targets \& Unambiguous Data: What Happens After Parameter-Setting

Em-None more prob			
Quantity Sensitivity		Extrametricality	
$\begin{gathered} \text { Q1: } \\ .00398 \end{gathered}$	$\begin{gathered} \text { QS: } \\ 0.0205 \end{gathered}$	None: 0.0294	1Some: .0000259
Feet Directionality		Boundedness	
$\begin{aligned} & \text { Left: } \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Right: } \\ & 0.00000925 \end{aligned}$	Unbounded: 0.00000370	$\begin{aligned} & \text { Bounded: } \\ & 0.00435 \end{aligned}$
Feet Headedness			
$\begin{gathered} \text { Left: } \\ 0.00148 \end{gathered}$	Right:		

Moving Targets \& Unambiguous Data:
What Happens After Parameter-Setting
Em-Some more probable

QS		Extrametricality	
		None: 0.0240	Some: $.0485$
Feet Directionality		Boundedness	
$\begin{aligned} & \text { Left: } \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { Right: } \\ & 0.00000555 \end{aligned}$	Unbounded: 0.00000370	$\begin{aligned} & \text { Bounded: } \\ & 0.00125 \end{aligned}$
Feet Headedness			
Left: 0.000588	$\begin{gathered} \text { Right: } \\ 0.0000204 \end{gathered}$		

Getting to English

The child must set all the parameter values in order to converge on a language system.

Current knowledge of the system (parameters set) influences the perception of unambiguous data (subsequent parameters set).

Probabilistic learning from unambiguous data
The order in which parameters are set may determine if
they are set correctly from the data.

Probabilistic learning from unambiguous data
The order in which parameters are set may determine if
they are set correctly from the data.
Success guaranteed as long as parameter-setting order constraints are followed.

Cues
(a) QS-VC-Heavy
before Em-Right
(b) Em-Right
(c) Bounded-2
before Bounded-Syl

The rest of the parameters are freely
ordered w.r.t. each other.

Parsing
Group 1:
QS, Ft Hd Left, Bounded Group 2:
Ft Dir Right, QS-VC-Heavy
Group 3:
Em-Some, Em-Right, Bounded-2, Bounded-Syl

The parameters are freely ordered w.r.t. each other within each group.

Feasibility \& Sufficiency
of the Unambiguous Data Filter
Either method of identifying unambiguous data (cues or parsing) is successful. Given the non-trivial parametric system (9 interactive parameters) and the nontrivial data set (English is full of exceptions), this is no small feat.

Feasibility \& Sufficiency
 of the Unambiguous Data Filter

Either method of identifying unambiguous data (cues or parsing) is successful. Given the non-trivial parametric system (9 interactive parameters) and the nontrivial data set (English is full of exceptions), this is no small feat.
$\sqrt{ }$ Existence
$\sqrt{\text { Identification }}$
(1) Unambiguous data exist and can be identified in sufficient relative quantities to learn a complex parametric system.
(2) The selective learning strategy is robust across a realistic (highly ambiguous, exception-filled) data set. It's feasible to identify such data, and the strategy yields sufficient learning behavior.

Where we are now

Modeling: aimed at understanding how children learn language, generating child behavior by using psychologically plausible methods

Learning complex systems: difficult.
Success comes from integrating biases
into probabilistic learning models.
Bias on hypothesis space: linguistic parameters already known, some values already known

Bias on data:
interpretive bias to use
highly informative data

Where we can go

(1) Interpretive bias:

How successful on other difficult learning cases (noisy data
sets, other complex systems)?
How reasonable are cues/parsing for identifying unambiguous data? (Ask me!)
Are there other methods of implementing interpretative biases that lead to successful learning (productive data: Yang 2005)?
How necessary is an interpretive bias? Are there cleverer probabilistic learning methods than can succeed (Fodor \& Sakas 2004, Bayesian strategies)?

Are predicted parameter setting orders observed in real-time learning?
E.g. whether cues or parsing is used, Quantity Sensitivity (QS, QSVCH) is predicted to be set before Extrametricality (Em-Some, Em-Right).

And in fact, there is evidence that quantity sensitivity may be known quite early (Turk, Jusczyk, \& Gerken, 1995)

Parsing
Group 1:
QS, Ft Hd Left, Bounded
Group 2:
Ft Dir Right, QS-VS-Heavy
Group 3:
Em-Some, Em-Right, Bounded-2, Bounded-Syl

Where we can go

(1) Interpretive bias:

How successful on other difficult learning cases (noisy data
sets, other complex systems)?
How reasonable are cues/parsing for identifying unambiguous data? (Ask me!)
Are there other methods of implementing interpretative biases
that lead to successful learning (productive data: Yang 2005)?
How necessary is an interpretive bias? Are there cleverer
probabilistic learning methods than can succeed (Fodor \& Sakas 2004, Bayesian strategies)?
(2) Hypothesis space bias:

Is it possible to infer the correct parameters of variation given less structured information a priori (e.g. larger units than syllables are required)? [Model Selection]
Are other instantiations of hypothesis space restrictions learnable from realistic data (constraints (Tesar \& Smolensky 2000))?

Complex linguistic systems may well require something beyond probabilistic methods in order to be learned as well as children learn them.

What this likely is: learner biases in hypothesis space and data intake (how to deploy probabilistic learning)

What we can do with computational modeling:
(a) empirically test learning strategies that would be difficult to investigate with standard techniques
(b) generate experimentally testable predictions about learning

Why Parameters?

Why posit parameters instead of just associating stress contours with words?
Arguments from stress change over time (Dresher \& Lahiri, 2003)
(1) If word-by-word association, expect piece-meal change over time at the individual word level. Instead, historical linguists posit changes to underlying systems to best explain the observed data that change altogether.
(2) If stress contours are not composed of pieces (parameters), expect start and end states of change to be near each other. However, examples exist where start \& end states are not closely linked from perspective of observable stress contours.

Cues vs. Parsing: Comparison
Cues vs. Parsing: Comparison

Cues:

Cues vs. Parsing: Comparison

Parsing:
Resource-intensive
identification of unambiguous data

Cues vs. Parsing: Comparison

Needs complete parse of data
point to get any information:
Cannot find information in sub-part of data point
Cannot tolerate exceptions
$\underset{\text { lu di crous }}{(x)\left(\begin{array}{c}x\end{array}\right)\left(\begin{array}{l}x\end{array}\right)}$

Cues vs. Parsing: Comparison

	Cues	Parsing
Easy identification of unambiguous data	+	
Can find information in datum sub-part	+	
Can tolerate exceptions	+	
Is not heuristic		+
Does not require additional knowledge		+
Does not use default values		+

Practical matters:

Feasibility of unambiguous data
Existence? Depends on data set (empirically determined).
Identification?

Identifying unambiguous data:
Parsing (Fodor 1998; Sakas \& Fodor 2001): extract necessary parameter values from all successful parses of data point (strongest form of parsing)

The effect of learning parameters
\longrightarrow Em-None
Combinations leading to successful parses of afternoon:
Ql, Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syl
Ql, Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl
QS, QSVCL, Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syl
OS, QSVCL, Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl
QS, QSVCL, Em-None, Ft Dir Left, Ft Hd Left, UnB
1

Practical matters:

Feasibility of unambiguous data
Existence? Depends on data set (empirically determined).
Identification?
Identifying unambiguous data:
Parsing (Fodor 1998; Sakas \& Fodor 2001): extract necessary parameter values from all successful parses of data point (strongest form of parsing)

The effect of learning parameters

$$
\rightarrow \text { Em-None, B, B-2, B-Syl }
$$

Combinations leading to successful parses of afternoon: Ql, Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syl | Ql, | Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl |
| :--- | :--- |
| QS, QSVCL, | Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syl | QS, QSVCL, Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl

 an-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Sy
1

Getting to English: Exhaustive Search of All Parameter-Setting Orders

Try one parameter-setting order..
(a) For all currently unset parameters, determine the unambiguous data distribution in the corpus.
(b) Choose a currently unset parameter to set. The value chosen for this parameter is the value that has a higher probability in the data the learner perceives as unambiguous.
(c) Repeat steps (a-b) until all parameters are set.

Getting to English: Exhaustive Search of All Parameter-Setting Orders

Is it English?

(d) Compare final set of values to English set of values. If they match, this is a viable parameter-setting order. If they don't, it isn't.

Getting to English: Exhaustive Search of All Parameter-Setting Orders
Repeat for all possible orders...24,943,680 total

Try one parameter-setting order...

Is it English?

Results: Set of viable orders that lead to English (we hope)

Viable Parameter-Setting Orders

Worst Case: learning with unambiguous data produces insufficient behavior No orders lead to English

Better Case: learning with unambiguous data produces sufficient behavior
Viable orders exist, even if some orders don't lead to English

Best Case: learning with unambiguous data is a brilliant plan! All orders lead to English

Unambiguous Data with

 Cues: Parameter-Setting Orders
Cues: Sample viable orders (500 total)

(a) QS, QS-VC-Heavy, Bounded, Bounded-2, Feet Hd Left, Feet Dir Right, Em-Some, Em QS, QS-VC-Heavy,
Right, Bounded-Syl
(b) Bounded, Bounded-2, Feet Hd Left, Feet Dir Right, QS, QS-vC-Heavy, Em-Some, EmRight, Bounded-Syl
(c) Feet Hd Left, Feet Dir Right, QS, QS-VC-Heavy, Bounded, Em-Some, Em-Right, Bounded-2, Bounded-Syl

Cues: Sample failed orders
(a) QS, QS-vC-Heavy, Bounded, Bounded-2, Bounded-Mor,
(a) QS, QS-VC-Heavy, Bounded, Bounded-2, Bounded
(b) Bounded, Bounded-2, Feet Hd Left, Bounded-Mor,
(c) Em-None,
(d) Feet Hd Left, Em-None, ...

Unambiguous Data with
 Parsing: Parameter-Setting Orders

Parsing: Sample viable orders (66 total)
Bounded, QS, Feet Hd Left, Feet Dir Right, QS-VC-Heavy, Bounded-Syl, Em-Some, Em-
Right, Bounded-2
Feet Hd Left, QS, QS-VC-Heavy, Bounded, Feet Dir Right, Em-Some, Em-Right, Bounded-Syl, Bounded-2
QS, Bounded, Feet Hd Left, QS-VC-Heavy, Feet Dir Right, Bounded-Syl, Em-Some, EmRight, Bounded-2

Parsing: Sample failed orders
(a) QS, QS-VC-Heavy, Bounded, Bounded-Syl, Bounded-2, Em-Some, Em-Right, Feet Hd
(b) Bounded, Bounded-Syl, Bounded-2, Em-None,
(c) Em-None,
(d) Feet Hd Left, Feet Dir Left, ..

Parameter-Setting Orders:
Knowledge Necessary for Acquisition Success
"Viable parameter-setting order" means.
If the probabilistic learner manages to set the parameters in this order, the learner is guaranteed converge on English.

But wouldn't it be better if the viable orders could be captured more compactly, instead of being explicitly listed in the learner's mind?

Order \#23 looks good!
人

Order Constraints

Good: Order constraints exist that will allow the learner to converge on the adult system, provided the learner knows these constraints.

Better: These order constraints can be derived from properties of the learning system, rather than being stipulated, or they're already known through other means.

Knowing Through Other Means

 to some of the rhythmic properties of their languageJusczyk, Cutler, \& Redanz (1993): English 9-month olds prefer strongweak stress bisyllables (trochaic) to weak-strong ones (iambic).
Ft Hd Left

$\mathrm{S} S$ | FtHdRt |
| :---: |
| S S |

Turk, Juszcyk, \& Gerken (1995): English infants are sensitive to the difference between long vowels and short vowels in syllables

The learner may already have knowledge of Ft Hd Left and QS, so these are set early.

Deriving Constraints from Properties of the Learning System

Data saliency: presence of stress is more easily noticed than absence of stress, and indicates a likely parametric cause

Data quantity: more unambiguous data available

Default values (cues only): if a value is set by default, order constraints involving it may disappear

Note: data quantity and default values would be applicable to any system. Data saliency is more system-dependent.

Deriving Constraints: Cues

(a) QS-VC-Heavy
before Em-Right
(b) Em-Right
before Bounded-Syl
(c) Bounded-2
before Bounded-Syl

Deriving Constraints: Cues

(a) QS-VC-Heavy before Em-Right

Em-Right: absence of stress is less salient (data saliency); prior knowledge
(b) Em-Right
before Bounded-Syl
(c) Bounded-2
before Bounded-Syl

Deriving Constraints: Cues

(a) QS-VC-Heavy
before Em-Right

Em-Right: absence of stress is less salient (data saliency); prior knowledge

Bounded-Syl as default (default values)
(b) Em-Right
before Bounded-Syl \qquad
(c) Bounded-2
before Bounded-Syl

Deriving Constraints: Cues

(c) Bounded-2
before Bounded-Syl

Deriving Constraints: Cues

Deriving Constraints: Cues

(a) QS-VC-Heavy before Em-Right

Em-Right: absence of stress is less salient (data saliency); prior knowledge

Bounded-Syl as default (default values)
 Em-Right: more unambiguous data than Bounded-Syl (data quantity)

Bounded-Syl as default (default values)
Bounded-2 has more unambiguous data once Em-Right is set; Em-Right has much more than Bounded-2 or Bounded-Syl (data quantity)

Deriving Constraints: Parsing

Group 1:
 QS, Ft Hd Left, Bounded

Group 2:
Ft Dir Right, QS-VS-Heavy

Group 3
Em-Some, Em-Right, Bounded-2, Bounded-Syl

Deriving Constraints: Parsing

Group 1:

QS, Ft Hd Left, Bounded

Group 2:
Ft Dir Right, QS-VS-Heavy

Group 3
Em-Some, Em-Right, Bounded-2, Bounded-Syl

Em-Some, Em-Right: absence of stress is less salient (data saliency)

Non-derivable Constraints: Predictions Across Languages?

Parsing Constraints

Group 1:
QS, Ft Hd Left, Bounded

Do we find these same groupings if we look at other languages?

Group 2: \qquad
Ft Dir Right, QS-VS-Heavy
Group 3:
Em-Some, Em-Right, Bounded-2, Bounded-Syl

Combining Cues and Parsing

Cues and parsing have a complementary array of strengths and weaknesses

Problem with cues: require prior knowledge
Problem with parsing: requires parse of entire data point

Viable combination of cues \& parsing:
parsing of data point subpart = derivation of cues?

Viable combination of cues \& parsing:
parsing of data point subpart = derivation of cues?
Would partial parsing
(a) derive cues that lead to successful acquisition?
(b) retain the strengths that cues \& parsing have separately?
(c) be a more psychologically plausible implementation of the
unambiguous data filter?

