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One way to think about the connection of
computation with acquisition

 Computation = information processing done by human
minds during language acquisition
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One way to think about the connection of
computation with acquisition

 Computation = information processing done by human
minds during language acquisition

 Theoretical research: what is it that’s being computed
 Ex: knowledge of phonological/syntactic/semantic structure, where

words are in fluent speech

One way to think about the connection of
computation with acquisition

 Computation = information processing done by human
minds during language acquisition

 Theoretical research: what is it that’s being computed

 Experimental research: when it’s being computed & constraints on
how it’s computed

 Ex: known/achieved by a certain age, with cognitive limitations on
memory and processing



  

  

One way to think about the connection of
computation with acquisition

 Computation = information processing done by human
minds during language acquisition

 Theoretical research: what is it that’s being computed

 Corpus research: what it’s being computed from
 Ex: which data appear in the input and with what frequency

 Experimental research: when it’s being computed & constraints on
how it’s computed

One way to think about the connection of
computation with acquisition

 Computation = information processing done by human
minds during language acquisition

 Poverty of the stimulus claim depends directly on what, when,
how, and what from

 Poverty of the stimulus is one motivation for Universal Grammar:
what children need to accomplish these computations

 domain-specific or domain-general
 innate/maturing or derived from prior experience
 (NSF) “Testing the Universal Grammar Hypothesis” with Jon Sprouse:

syntactic islands
 Pearl & Lidz (2009): English anaphoric one

Another way to think about the connection of
computation with acquisition

 Computation = information processing done by computers
to help understand the information processing done by
human minds during language acquisition

Input

abstraction/
generalization

Output

Modeling learnability vs. modeling acquirability

 Modeling learnability
 “Can it be learned at all by a simulated learner?”
 “ideal”, “rational”, or “computational-level” learners
 what is possible to learn

 Modeling acquirability (Johnson 2004)
 “Can it be learned by a simulated learner that is constrained in the

ways humans are constrained?”
 more “realistic” or “cognitively inspired” learners
 what is possible to learn if you’re human



  

  

Today’s Plan: Both are useful

 Adapting a learnability model to be an acquirability model:

Word segmentation (Pearl, Goldwater, & Steyvers forthcoming, submitted)

 Do ideal learner solutions transfer to constrained learners?
 Surprise finding: constrained learners can do as well or better

Today’s Plan: Both are useful

 Adapting a learnability model to be an acquirability model:

Word segmentation (Pearl, Goldwater, & Steyvers forthcoming, submitted)

 Do ideal learner solutions transfer to constrained learners?
 Surprise finding: constrained learners can do as well or better

 Considering acquirability and learnability:

Metrical phonology (Pearl 2008, 2009, submitted)

 Framework for testing theories of knowledge representation: using
an argument from acquisition

 Benefits: informing theory and informing acquisition

Language acquisition computation as induction

Input

(specific linguistic
observations)

Abstract internal
representation/generalization

Output

(specific linguistic
productions)

Probabilistic models for induction

 Typically an ideal observer approach asks what the
optimal solution to the induction problem is, given
particular assumptions about knowledge representation
and available information.

 Constrained learners implement ideal learners in more
cognitively plausible ways.
 How might limitations on memory and processing affect learning?



  

  

Word segmentation

 A big deal: basis for more complex linguistic knowledge

SEE the DOGgie

see      the       doggie

phonology

see
the doggie

syntax

see’(the doggie)(xlistener)

semantics

Word segmentation

 Cognitive modeling: Given a corpus of fluent speech or text
(no utterance-internal word boundaries), we want to identify
the words.

whatsthat
thedoggie
yeah
wheresthedoggie

whats that
the doggie
yeah
wheres the doggie

see      the       doggie

Word segmentation

 One of the first problems infants must solve when
learning language.

 Infants make use of many different cues.
 Phonotactics, allophonic variation, metrical (stress) patterns,

effects of coarticulation, and statistical regularities in syllable
sequences.

 Statistics may provide initial bootstrapping.
 Used very early (Thiessen & Saffran, 2003)
 Language-independent, so doesn’t require children to know

some words already

language-dependent

Bayesian inference

 Useful tool for linguistic research: a more sophisticated form of
statistical learning that does not require us to trivialize the
complexity of linguistic knowledge

 Allows us to combine probabilistic methods with structured linguistic
representations and predict the likelihood of things we rarely or never
see (allowing generalizations from a data subset)

θTransitive θMorphology

1 ≤ i ≤ C
causativei



  

  

Bayesian inference: model goals

 The Bayesian learner seeks to identify an explanatory
linguistic hypothesis that
 accounts for the observed data.
 conforms to prior expectations.

   Ideal learner: Focus is on the goal of computation, not the
procedure (algorithm) used to achieve the goal.
   Constrained learner: Use same probabilistic model, but
algorithm reflects how humans might implement the computation.

Bayesian segmentation

 In the domain of segmentation, we have:
 Data: unsegmented corpus (transcriptions)
 Hypotheses: sequences of word tokens

= 1 if concatenating words forms corpus,
= 0 otherwise.

Corpus: “lookatthedoggie” P(d|h) =1 P(d|h) = 0
loo k atth ed oggie i like penguins
lookat thedoggie look at thekitty
look at the doggie a b c

Bayesian segmentation

 In the domain of segmentation, we have:
 Data: unsegmented corpus (transcriptions)
 Hypotheses: sequences of word tokens

 Optimal solution is the segmentation with highest
probability.

= 1 if concatenating words forms corpus,
= 0 otherwise.

Encodes assumptions or
biases in the learner.

An ideal Bayesian learner for word segmentation

 Model considers hypothesis space of segmentations,
preferring those where
 The lexicon is relatively small.
 Words are relatively short.

 The learner has a perfect memory for the data
 The entire corpus is available in memory.

Goldwater, Griffiths, and Johnson (2007, 2009)

 Note:
 only counts of lexicon items are required to compute highest

probability segmentation.
 Assumption: phonemes are relevant unit of representation



  

  

Investigating learner assumptions

 If a learner assumes that words are independent units, what
is learned from realistic data? [unigram model]

 What if the learner assumes that words are units that help
predict other units? [bigram model]

Approach of Goldwater, Griffiths, & Johnson (2007, 2009): use
a Bayesian ideal observer to examine the consequences of
making these different assumptions.

Corpus: child-directed speech samples

 Bernstein-Ratner corpus:
 9790 utterances of phonemically transcribed child-directed

speech (19-23 months), 33399 tokens and 1321 unique types.
 Average utterance length: 3.4 words
 Average word length: 2.9 phonemes

 Example input:

youwanttoseethebook
looktheresaboywithhishat
andadoggie
youwanttolookatthis
...

yuwanttusiD6bUk
lUkD*z6b7wIThIzh&t
&nd6dOgi
yuwanttulUk&tDIs
...

≈

Results: Ideal learner (Standard MCMC)

Correct segmentation: “look at the doggie. look at the kitty.”
Best guess of learner: “lookat the doggie. lookat thekitty.”

Precision:  #correct / #found, “How many of what I found are right?”

Recall: #found / #true, “How many did I find that I should have found?”

90.4

92.7

Boundaries
Prec     Rec

79.8

61.6

Word Tokens
Prec     Rec

Lexicon
Prec     Rec

Ideal (unigram) 61.7 47.1 55.1 66.0

Ideal (bigram) 74.6 68.4 63.3 62.6

Word Token Prec = 2/5 (0.4), Word Token Rec = 2/8 (0.25)
Boundary Prec = 3/3 (1.0), Boundary Rec = 3/6 (0.5)

Lexicon Prec = 2/4 (0.5), Lexicon Rec = 2/5 (0.4)

Results: Ideal learner (Standard MCMC)

 The assumption that words predict other words is good: bigram model
generally has superior performance

 Note: Training set was used as test set
 Both models tend to undersegment, though the bigram model does so

less (boundary precision > boundary recall)

Precision:  #correct / #found, “How many of what I found are right?”

Recall: #found / #true, “How many did I find that I should have found?”

90.4

92.7

Boundaries
Prec     Rec

79.8

61.6

Word Tokens
Prec     Rec

Lexicon
Prec     Rec

Ideal (unigram) 61.7 47.1 55.1 66.0

Ideal (bigram) 74.6 68.4 63.3 62.6



  

  

Results: Ideal learner sample segmentations

Unigram model Bigram model

youwant to see thebook
look theres aboy with his hat
and adoggie
you wantto lookatthis
lookatthis
havea drink
okay now
whatsthis
whatsthat
whatisit
look canyou take itout
...

you want to see the book
look theres a boy with his hat
and a doggie
you want to lookat this
lookat this
have a drink
okay now
whats this
whats that
whatis it
look canyou take it out
...

How about constrained learners?

 The constrained learners use the same probabilistic
model, but process the data incrementally (one utterance
at a time), rather than all at once.

 Dynamic Programming with Maximization (DPM)
 Dynamic Programming with Sampling (DPS)
 Decayed Markov Chain Monte Carlo (DMCMC)

Pearl, Goldwater, & Steyvers forthcoming, submitted

Considering human limitations

What if the only limitation is that the learner must
process utterances one at a time?

Dynamic Programming: Maximization

you want to see the book

0.33 yu want tusi D6bUk

0.21 yu wanttusi D6bUk

0.15 yuwant tusi D6 bUk

…  …

 Algorithm used by Brent (1999), with different model.

For each utterance:
• Use dynamic programming to compute probabilites of

all segmentations, given the current lexicon.
• Choose the best segmentation.
• Add counts of segmented words to lexicon.



  

  

Considering human limitations

What if humans don’t always choose the most
probable hypothesis, but instead sample among the
different hypotheses available?

Dynamic Programming: Sampling

For each utterance:
• Use dynamic programming to compute probabilites of

all segmentations, given the current lexicon.
• Sample a segmentation.
• Add counts of segmented words to lexicon.

you want to see the book

0.33 yu want tusi D6bUk

0.21 yu wanttusi D6bUk

0.15 yuwant tusi D6 bUk

…  …

Considering human limitations

What if humans are more likely to pay attention to
potential word boundaries that they have heard more
recently (decaying memory = recency effect)?

Decayed Markov Chain Monte Carlo

For each utterance:
• Probabilistically sample s boundaries from all utterances

encountered so far.
• Prob(sample b) ∝ ba

-d where ba is the number of potential
boundary locations between b and the end of the current
utterance and d is the decay rate (Marthi et al. 2002).

• Update lexicon after the s samples are completed.

yuwant tusi D6 bUk
Boundaries

Probability of 
sampling boundary

Utterance 1

s samples

you want to see the book



  

  

Decayed Markov Chain Monte Carlo

yuwant tu si D6 bUk
Boundaries

Probability of 
sampling boundary

Utterance 2

wAtsDIs

Utterance 1

s samples

For each utterance:
• Probabilistically sample s boundaries from all utterances

encountered so far.
• Prob(sample b) ∝ ba

-d where ba is the number of potential
boundary locations between b and the end of the current
utterance and d is the decay rate (Marthi et al. 2002).

• Update lexicon after the s samples are completed.

you want to see the book what’s this

Decayed Markov Chain Monte Carlo

Decay rates tested: 2, 1.5, 1, 0.75, 0.5, 0.25, 0.125

.004d = 0.125

.772d = 1.5

.323d = 1

.125d = 0.75

.036d = 0.5

Probability of
sampling within
current utterance

d = 2 .942

d = 0.25 .009

Results: unigrams vs. bigrams

DMCMC Unigram: d=1, s=20000
DMCMC Bigram: d=0.25, s=20000

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Results averaged over 5 randomly generated test
sets (~900 utterances) that were separate from
the training sets (~8800 utterances), all
generated from the Bernstein Ratner corpus Note: s=20000 means DMCMC

learner samples 89% less
often than the Ideal learner.

Results: unigrams vs. bigrams

Like the Ideal learner, the DPM & DMCMC bigram learners perform
better than the unigram learner, though improvement is not as great
as in the Ideal learner. The bigram assumption is helpful.

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true



  

  

Results: unigrams vs. bigrams

However, the DPS bigram learner performs worse than the unigram
learner.  The bigram assumption is not helpful.

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Results: unigrams vs. bigrams

Unigram comparison: DPM, DMCMC > Ideal, DPS performance
Interesting: Constrained learners outperforming unconstrained learner

when words are believed to be independent units.

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Results: unigrams vs. bigrams

Bigram comparison: Ideal, DMCMC > DPM > DPS performance
Interesting: Constrained learner performing equivalently to unconstrained

learner when words are believed to be predictive units.

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Results: unigrams vs. bigrams for the lexicon

F = 2 * Prec * Rec

        Prec + Rec

Lexicon = a seed pool of words for children to use to figure out
language-dependent word segmentation strategies.

Precision:

#correct / #found

Recall:

#found / #true



  

  

Results: unigrams vs. bigrams for the lexicon

F = 2 * Prec * Rec

        Prec + Rec

Like the Ideal learner, the DPM bigram learner yields a more reliable
lexicon than the unigram learner.

Precision:

#correct / #found

Recall:

#found / #true

Results: unigrams vs. bigrams for the lexicon

F = 2 * Prec * Rec

        Prec + Rec

However, the DPS and DMCMC bigram learners yield less reliable
lexicons than the unigram learners.

Precision:

#correct / #found

Recall:

#found / #true

Results: unigrams vs. bigrams for the lexicon

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Unigram comparison: DMCMC > Ideal > DPM > DPS performance
Interesting: Constrained learner outperforming unconstrained learner

when words are believed to be independent units.

Results: unigrams vs. bigrams for the lexicon

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Bigram comparison: Ideal > DPM > DMCMC > DPS performance
More expected: Unconstrained learner outperforming constrained learners

when words are believed to be predictive units (though not by a lot).



  

  

Results: under vs. oversegmentation

Precision:

#correct / #found

Recall:

#found / #true

Undersegmentation: boundary precision > boundary recall
Oversegmentation: boundary precision < boundary recall

Results: under vs. oversegmentation

Precision:

#correct / #found

Recall:

#found / #true

The DMCMC unigram learner, like the Ideal learner, tends to
undersegment.

Results: under vs. oversegmentation

Precision:

#correct / #found

Recall:

#found / #true

All other learners, however, tend to oversegment.

Results: main points

 A better set of cognitively inspired statistical learners
 While no constrained learners outperform the best ideal learner on

all measures, all perform better on realistic child-directed speech
data than a transitional probability learner (Gambell & Yang 2006, over
syllables: word token F-score = 29.9; Brent 1999, over phonemes: word token
precision and recall scores=~ 40, lexicon precision scores =~ 15).

 Ideal learner behavior doesn’t always transfer
 While assuming words are predictive units (bigram model)

significantly helped the ideal learner, this assumption may not be
as useful to a constrained learner (depending on how cognitive
limitations are implemented).

 Undersegmentation doesn’t always occur (though it may match
children’s behavior better (Peters 1983)).



  

  

 Constraints on processing are not always harmful
 Decayed MCMC learner can perform well even with more than 99.9%

less processing than the unconstrained ideal learner (ask for details!)
 Constrained unigram learners can sometimes outperform the

unconstrained unigram learner (“Less is More” Hypothesis: Newport
1990).

 More sophisticated statistical learning can be a way to solve the
initial chicken-and-egg problem for word segmentation
 Constrained statistical learning, as a language-independent strategy,

may provide a lexicon reliable enough for children to learn language-
dependent strategies from.

Results: main points Where to go from here: exploring acquirability

 Explore robustness of constrained learner performance across different
corpora and different languages

 Is it just for this data set of English that we see these effects?
 English to children aged 9 months or younger (portion of Brent corpus

(Brent & Siskind 2001) containing ~28K utterances)
 (Pearl et al.,  in prep) results show same performance trends:

constrained learners performing equivalently or better than the
unconstrained ideal learner

 Is it just for this language that we see these effects?
 In progress: Spanish to children a year or younger (portion of

JacksonThal corpus (Jackson-Thal 1994) containing ~3600 utterances)

 Simple intuitions about human cognition (e.g., memory and processing
limitations) can be translated in multiple ways
 Here: processing utterances incrementally, keeping a single lexicon

hypothesis in memory, implementing recency effects

Where to go from here: exploring acquirability

 Investigate other implementations of constrained learners
 Imperfect memory: Assume lexicon precision decays over time, assume

calculation of probabilities is noisy
 Knowledge representation: assume syllables are a relevant unit of

representation (Jusczyk et al. 1999), assume stressed and unstressed
syllables are tracked separately (Curtin et al. 2005, Pelucchi et al. 2009)

Today’s Plan: Both are useful

 Adapting a learnability model to be an acquirability model:

Word segmentation (Pearl, Goldwater, & Steyvers forthcoming, submitted)

 Do ideal learner solutions transfer to constrained learners?
 Surprise finding: constrained learners can do as well or better

 Considering acquirability and learnability:

Metrical phonology (Pearl 2008, 2009, submitted)

 Framework for testing theories of knowledge representation: using
an argument from acquisition

 Benefits: informing theory and informing acquisition





  

  

Knowledge Representation Motivations

 One traditional motivation for proposals of knowledge representation
(such as parameters or constraints): The knowledge representation
helps explain the constrained variation observed in adult linguistic
knowledge across the languages of the world

Argument from constrained cross-linguistic variation

Knowledge Representation Motivations

 Another (sometimes implicit) motivation for proposals of knowledge
representation: Having this knowledge representation pre-specified
allows children to acquire the right generalizations from the data as
quickly as they seem to do

Input

abstraction/
generalization

Output

Easier if knowledge
structure available a priori

Argument from acquisition

Knowledge Representation Motivations

 Another (sometimes implicit) motivation for proposals of knowledge
representation: Having this knowledge representation pre-specified
allows children to acquire the right generalizations from the data
quickly

Argument from acquisition

 Using computational methods and available empirical data, we can
quantify this argument and explicitly test different proposals for
knowledge representation

 At the same time, we can explore how acquisition could proceed if
children were using these different knowledge representations

Pearl 2008, 2009, submitted

A generative system of metrical phonology

Observable data: stress contour OCtopus

OC    to    pus
( H      L  )   H

( S      S  )  S

( S      S     S )

( H      L     L )
OC    to    pus

OC    to    pus

OC    to    pus

?
?

?

?

Underlying representation/analysis?



  

  

Two Knowledge Representations

 Tractable explorations

  Optimality theoretic system: 10 constraints
(Hammond 1999, Prince & Smolensky 1993,
Tesar & Smolensky 2000)

 Hypothesis space: 10! grammars (3,628,800)

 Parametric system: 5 parameters & 4 sub-
parameters (Halle & Vergnaud 1987, Dresher
& Kaye 1990, Dresher 1999)

 Hypothesis space: 156 legal grammars

Comparing Knowledge Representations

Quantity Sensitivity

Weight-To-Stress Principle

Extrametricality

Parse, Non-Final

Feet Directionality

Align-Left, Align-Right

Boundedness

FootBin

Trochaic, Iambic

Feet Headedness

OCtopus

Correct grammar
produces compatible
contour

Best candidate for the
correct grammar has
a compatible contour

Non-trivial case study: English

 Non-trivial because there are many data that are ambiguous
for which parameter value or constraint ranking they implicate

 Non-trivial because there are many irregularities
 Analysis of child-directed speech (8 -15 months) from Brent corpus (Brent &

Siskind 2001) from CHILDES (MacWhinney 2000): 504084 tokens, 7390
types

 For words with 2 or more syllables:
 174 unique syllable-rime type combinations (ex: closed-closed (VC VC))
 85 of these 174 have more than one stress contour associated with

them (unresolvable): no one grammar can cover all the data
 Ex for VC VC type: her SELF

AN swer
SOME WHERE

Cognitively inspired learners using parameters

 Learner’s hypothesis space:
Set of 156 legal grammars

 Target state = grammar for English (Halle & Vergnaud 1987, Dresher & Kaye
1990, Dresher 1999) derived from cross-linguistic variation and adult
linguistic knowledge: quantity sensitive, VC syllables are heavy,
rightmost syllable is extrametrical, feet are constructed from the right,
feet are 2 syllables, feet are headed on the left

Premise: This is the grammar that best describes the systematic data
of English, even if there are exceptions.

Pearl 2009, submitted



  

  

 Learner’s input based on the number of words likely to be heard on
average in a 6 month period: 1,666,667. (Akhtar et al. (2004), citing
Hart & Risley (1995)).

 Input distributions derived from child-directed speech distributions.
 Brent corpus (Brent & Siskind 2001): 8 - 15 months
 Child’s syllabification of words: MRC Psycholinguistics Database

(Wilson 1988)
 Associated stress contour: CALLHOME American English Lexicon

(Canavan et al. 1997)

Cognitively inspired learners using parameters

Empirical grounding  Learner’s algorithm:
 Incremental update: words are processed one at a time, as they are

encountered. (Assumes word segmentation is operational. Jusczyk,
Houston, & Newsome (1999) suggests that 7-month-olds can segment
some words successfully.)

 Words are divided into syllables, with syllable rime identified as closed
(VC), short (V), long (VV), or superlong (VVC). Jusczyk, Goodman, &
Baumann (1999) and Turk, Jusczyk, & Gerken (1995) suggest young
infants are sensitive to syllables and properties of syllable structure.

 Sub-parameters are not set until the main parameter is set. This is based
on the idea that children only consider information about a sub-parameter if
they have to.

Cognitively inspired learners using parameters

 Learner’s algorithm:
 Probabilistic generation and testing of parameter value combinations

[grammars] (Yang 2002)

 For each parameter, the learner associates a probability with each of the
competing parameter values. Initially all values are equiprobable.
 Ex: Quantity Sensitivity

Value 1: Quantity Sensitive (0.5) Value 2: Quantity Insensitive (0.5)

 For each data point, a grammar is probabilistically generated, based on the
probabilities associated with each parameter’s values.

OCtopus

Cognitively inspired learners using parameters

 The selected grammar is then used to generate a stress contour, based on
the syllable structure of the word.

OCtopus

VC    V    VC
oc     to   pus

 If the generated contour matches the observed contour, all participating
parameter values are rewarded.  If it mismatches, all values are punished.

OC    to   pus oc    TO   pus

 Over time (as measured in data points encountered), the probability
associated with a parameter value will approach either 1.0 or 0.0, based on
rewards and/or punishments. Once the probability is close enough, the
learner sets the appropriate parameter value.

Cognitively inspired learners using parameters



  

  

Acquirability results: parameters

 Four different implementations of reward/punishment tried (two Naïve
Parameter Learner variants that use Linear reward-penalty schemes
(Yang 2002) and two incremental Bayesian variants)

 Only one variant (one of the linear reward-penalty ones)
was ever successful at converging on the adult English
grammar, and then only once every 3000 runs!  This
seems like very poor performance from these cognitively
inspired learners.

Problem with constrained learners?

 Maybe the problem is with the constrained learning algorithms: Are they
identifying sub-optimal grammars for the data they encounter?
 If so, ideal learners should find the optimal grammars that are most

compatible with the English child-directed speech data

 English grammar compatibility with data:
 Generates contours matching 73.0% observable data tokens, where every

instance of a word is counted (62.1% types, where frequency is factored
out and a word is counted only once no matter how often it occurs)

 Note: not expected to be at 100% because of irregularities in English data

Premise: The adult English grammar is the grammar that best describes
the systematic data of English, even if there are exceptions.

Implication: The adult English grammar is the grammar that is best able to
generate the stress contours for the English data (most compatible).

Problem for any parametric learner

 Average compatibility of grammars selected by constrained learners:
 73.6% by tokens (63.3% by types)
(Highest compatibility in hypothesis space: 76.5% by tokens, 70.3% by types)

 The cognitively inspired learners are identifying the more optimal
grammars for this data set - it’s just that these grammars don’t happen to
be the adult English grammar!
 Learnability Implication: The problem isn’t because these learners are

constrained.  Unconstrained learners would have the same problem.

 English grammar compared to other 155 grammars
 Ranked 52nd by tokens, 56th by types
 English grammar is barely in the top third - unsurprising that probabilistic

learners rarely select this grammar, given the child-directed speech data!

Problem for any parametric learner

 Parametric child learner has a learnability problem:
can’t get to adult target state given the data
available to children

But what about a child learner using the OT knowledge representation?

Pearl in prep.



  

  

OT system test

 10 constraints (Hammond 1999, Prince & Smolensky 1993, Tesar & Smolensky
2000)
 Hypothesis space: 10! grammars (3,628,800)

Weight-To-Stress Principle: VV, VC

Parse, Non-Final

Align-Left, Align-Right
FootBin: syllables, moras

Trochaic, Iambic

OT system test

 Adult English grammar (Hammond 1999, Pater 2000):
 Combination of constraint orderings

 FootBin, Trochaic, WSP(VV) > Non-Final > Align-Right > Parse > Align-Left
 Trochaic > Iambic
 Non-Final > WSP(VC)

 720 grammars of 3,628,800 follow these orderings (720 ways to be English)

 Compatibility of English OT grammars with child-directed speech data
 Compatible grammar’s best candidate has a stress contour that matches

the observed stress contour for any given data point

(OC to) pus
oc (TO pus)
(oc TO) pus

C4C3C2C1

**

**

**

OT system test

 Maximum compatibility score for any English grammar:
24.2% of data tokens (26.6% of types)
(32 grammars with this score)

 Maximum compatibility score for any non-English grammar:
74.6% of data tokens (67.5% of types)
(1600 grammars with this score)

 The English OT grammars are clearly sub-optimal for this data set - but
how do they compare overall to the other grammars in the hypothesis
space?

Maybe we simply can’t find grammars that are much better,
given these constraints?

OT system test

 Grammars with higher compatibility than best English grammar:
1,157,538 (token compatibility)
1,263,130 (type compatibility)

Upshot: The OT system representation doesn’t look
much better for learners trying to acquire an adult
English grammar from child-directed speech.



  

  

Parameters vs. OT comparison

31.9% (tokens)
34.8% (types)

28.3% (tokens)
31.1% (types)

% of hypothesis space
(best) English grammar
scores lower than

74.6% (tokens)
67.5% (types)

76.5% (tokens)
70.3% (types)

Best grammar
compatibility

24.2% (tokens)
26.6% (types)

73.0% (tokens)
62.1% (types)

(Best) English grammar
compatibility

3,628,800156Grammars in
hypothesis space

OTParameters

 Either knowledge representation contains grammars that are compatible
with a reasonable majority of the English child-directed speech data.

Parameters vs. OT comparison

31.9% (tokens)
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73.0% (tokens)
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compatibility

3,628,800156Grammars in
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OTParameters

 The ranking in the hypothesis space for the (best) English grammar for
either knowledge representation is fairly similar (around the top third of
the hypothesis space).

Parameters vs. OT comparison

31.9% (tokens)
34.8% (types)

28.3% (tokens)
31.1% (types)

% of hypothesis space
(best) English grammar
scores lower than

74.6% (tokens)
67.5% (types)
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70.3% (types)

Best grammar
compatibility

24.2% (tokens)
26.6% (types)

73.0% (tokens)
62.1% (types)

(Best) English grammar
compatibility

3,628,800156Grammars in
hypothesis space

OTParameters

 However, the best English grammar compatibility is very low for OT,
compared to the English grammar in the parametric system.

Problem for both learners

 OT child learner has a learnability problem, too (possible an even
greater one): can’t get to adult target state given the data available to
children, and adult grammar accounts for a much smaller portion of
the available data

 Parametric child learner has a learnability problem: can’t get to
adult target state given the data available to children



  

  

Getting out of the learnability problem: 2 options

Initial knowledge
state of learner

Adult knowledge
(target state)

Child-directed
speech

Option 1: change the target state

Initial knowledge
state of learner Other target state

Child-directed
speech

Adult knowledge
(target state)

Other data

A different target state

 Maybe young children don’t acquire the adult English grammar until
later, after they are exposed to more word types and realize the
connection between stress contour and the English morphological
system (connection to English morphological system: Chomsky & Halle 1968, Kiparsky
1979, Hayes 1982)

Prediction: Children initially select non-English
grammars, given these data.  If so, we should be
able to use experimental methods to observe
them using non-English grammars for an
extended period of time.

 Kehoe 1998: elicitation task with English 34-month-olds used items that 
were compatible with the grammars modeled learners often chose here

 Brown 1973: morphological inflections not used regularly till 36 months

Initial knowledge
state of learner

Adult knowledge
(target state)

Child-directed
speech

Option 2: change the initial state

Initial knowledge
state of learner

Child-directed
speech

Adult knowledge
(target state)

Getting out of the learnability problem: 2 options A different (enriched) initial state

 Maybe young children have additional boosts

 Pearl (2008) explores the effects of a bias to only learn from data
perceived as unambiguous for a parametric learner, and finds that
the learners with this knowledge are successful if parameters are
set in certain orders.

 Required knowledge at the initial state:
 importance of unambiguous data (and a method for identifying

these data for each parameter value)
 parameter-setting order constraints (and potentially a method

for deriving these constraints)



  

  

Bigger picture:
Testing proposals of knowledge representation

 Began by exploring cognitively plausible learners to test theories
about knowledge representation (argument from acquisition)

 When they failed at the acquisition task, we asked what the cause
of the failure was - due to learners being constrained or due to
something about the language acquisition computation?

 Led us to examine learnability considerations, given the data
 Highlighted learnability issues for probabilistic learners seeking

optimal solutions given child-directed speech data

A useful framework: what comes next

 Change knowledge representation
 Theoretical + computational investigations: perhaps different

parameters or constraints make the adult English grammar more
acquirable from child-directed speech

 Different theoretical proposals can be motivated and tested via
computational methods

A useful framework: what comes next

 Change premise about trajectory of children’s acquisition
 Experimental investigations: exploring English children’s initial

knowledge states before they have knowledge of morphology and
adult lexicon items

 This then informs future computational investigations and thus any
arguments from acquisition for a given theoretical proposal of
knowledge representation

A useful framework: what comes next

 Change learner’s initial knowledge state
 Computational investigations: strategies learners can use to solve

acquisition problem as currently defined
 Describe the required initial knowledge state to make acquisition

possible for learners using specific knowledge representations,
thereby creating a way to explicitly compare different knowledge
representations

 Knowledge representations requiring a less enriched initial state
may be more desirable



  

  

Computation in Acquisition: Revisited

 Many places where the concept of computation connects
with the information-processing task of acquisition
 Understanding the computation in human minds (what, when, how,

what from)
 Using computational methods to understand that computation

     Computational investigations,
based on theoretical and
experimental investigation

     Theoretical and experimental
investigations, based on
computational investigation

The End & Thank You!
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Results: Exploring different performance measures

 Some positions in the utterance are more easily segmented
by infants, such as the first and last word of the utterance
(Seidl & Johnson 2006).

look theres a boy with his hat
and a doggie
you want to look at this
Look at this

 The first and last word are less ambiguous (one boundary known)
(first, last > whole utterance)

 Memory effects & prosodic prominence make the last word easier
(last > first, whole utterance)

 The first/last word are more regular, due to syntactic properties
(first, last > whole utterance)



  

  

Results: Exploring different performance measures

Unigrams vs. Bigrams,
Token F-scores

whole utterance
first word
last word

Results averaged over 5 randomly generated test
sets (~900 utterances) that were separate from
the training sets (~8800 utterances), all
generated from the Bernstein Ratner corpus

DMCMC Unigram: d=1, s=20000
DMCMC Bigram: d=0.25, s=20000

Results: Exploring different performance measures

Unigrams vs. Bigrams,
Token F-scores

whole utterance
first word
last word

Unigram Ideal, Unigram DMCMC, bigram DPS, both DPM learners:
improvement on first and last words

Results: Exploring different performance measures

Unigrams vs. Bigrams,
Token F-scores

whole utterance
first word
last word

Bigram Ideal, Unigram DPS, Bigram DMCMC learners:
improvement only on first words.

Results: Exploring different performance measures

Unigrams vs. Bigrams,
Token F-scores

whole utterance
first word
last word

Interesting:
Constrained unigram learners outperform the Ideal learner for first and
last words.
Some constrained bigram learners are equivalent to the unconstrained
learner for first and last words.



  

  

Results: Exploring different performance measures

Unigrams vs. Bigrams,
Token F-scores

whole utterance
first word
last word

Interesting:
Constrained unigram learners outperform the Ideal learner for first and
last words.
Some constrained bigram learners are equivalent to the unconstrained
learner for first and last words.

Search algorithm comparison

Model defines a distribution over hypotheses.  We use
Gibbs sampling to find a good hypothesis.

 Iterative procedure produces samples from the posterior
distribution of hypotheses.

 Ideal (Standard): A batch algorithm
vs. DMCMC: incremental algorithm that uses the same

    sampling equation

P(h|d)

h

Gibbs sampler

 Compares pairs of hypotheses differing by a single word
boundary:

 Calculate the probabilities of the words that differ, given
current analysis of all other words in the corpus.

 Sample a hypothesis according to the ratio of
probabilities.

whats.that
the.doggie
yeah
wheres.the.doggie
…

whats.that
the.dog.gie
yeah
wheres.the.doggie
…



  

  

The unigram model

Assumes word wi is generated as follows:
1.  Is wi a novel lexical item?
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Fewer word types =
Higher probability

The unigram model

Assume word wi is generated as follows:
2.  If novel, generate phonemic form x1…xm :

If not, choose lexical identity of wi from previously occurring
words:
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Shorter words =
Higher probability

Power law =
Higher probability

Notes

 Distribution over words is a Dirichlet Process (DP) with
concentration parameter α and base distribution P0:

 Also (nearly) equivalent to Anderson’s (1990) Rational
Model of Categorization.
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Bigram model

Assume word wi is generated as follows:
1. Is (wi-1,wi) a novel bigram?

2. If novel, generate wi using unigram model (almost).

If not, choose lexical identity of wi from words previously
occurring after wi-1.
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Notes

 Bigram model is a hierarchical Dirichlet process (Teh et
al., 2005):
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Results: The effect of number of samples

Unigram learners, on training and test set 1

 Even down to 500 samples per utterance, token F score is still above 60. Can
still get reasonably high score with fairly few samples.

 Scores somewhat stable after about 4000 utterances trained on.
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Results: The effect of number of samples

Bigram learners, on training and test set 1

 Even down to 100 samples per utterance, token F score is still above 60. (Less
samples required to get high score.)

 Jump in score occurs quickly, after only 500 utterances trained on.

.22

.00057

.0014

.0028

.0057

.014

.028

.057

.11

% Ideal 
Samples

Results: Standard vs. Decayed MCMC

 Ideal (Standard MCMC) learner continually outperforms DMCMC for lexicon.
 Unigram DMCMC only does well after about 4000 utterances have been

trained on.

DMCMC vaues: Unigram d=1; Bigram d = .25; s = 20000



  

  

Unbiased acquirability model update functions

Naïve Parameter Learner (Yang 2002) [NParLearner]: Linear reward-
penalty (Bush & Mosteller 1951)

Learning rate γ:
small = small changes
large = large changes

! 

pv1 = pv1 +  "(1- pv1)

pv2 =  1- pv1

! 

pv1 =  (1- ")pv1

pv2 =  1- pv1

Parameter values v1 vs. v2

reward v1 punish v1

Bayesian Learner [BayesLearner]: Bayesian update of binomial
distribution (Chew 1971)

Parameter value v1

reward: success + 1 punish: success + 0

Parameters α, β:

α = β: initial bias at p = 0.5
α, β < 1: initial bias toward
endpoints (p = 0.0, 1.0)

here: α = β = 0.5

Unambiguous data bias

Pearl (2008): A general class of probabilistic models learning from
unambiguous data is guaranteed to succeed at acquiring the English
grammar from English child-directed speech, provided the parameters are
learned in certain orders.

Why learning from unambiguous data works: The unambiguous data
favor the English grammar, so English becomes the optimal grammar.

However, they make up a small percentage of the available data (never
more than 5%) so their effect can be washed away in the wake of
ambiguous data if the ambiguous data are learned from as well and the
parameters are not learned in an appropriate order.



  

  

Is it just that children need more lexicon items?

Analysis of adult-directed conversational speech
CALLFRIEND corpus (Canavan & Zipperlen 1996), North American English
portion: recorded telephone conversations between adults

 82,487 word tokens, 4,417 word types

Parametric English grammar (somewhat better but not the best):
 63.7% token compatibility, 52.1% type compatibility
 ranked 34th by tokens, 36th by types
 Interesting: Best grammar in hypothesis space differs only by one paramater
value (QI instead of English’s QS):  66.6% token compatibility, 56.3% type
compatibility

Parametric English grammar is not the best for
adult conversational speech either

Potential explanation: linguists use items that appear infrequently in
conversations when making their theories, under the assumption that
these items are part of the adult knowledge state

Worth testing experimentally: the English adult knowledge state (do
adults make the generalizations that linguists think they do, or are
some of the crucial items exceptions that adults do not include in their
generative system?)


