

The Learning Problem

There is often a non-transparent relationship between the observable form of the data and the underlying system that produced it. Moreover, data are often ambiguous.

Syntactic System
Observable form: word order
Difficulty: interactive structural pieces

One Solution: Constraints on Hypothesis Space

Premise: learner considers finite range of hypotheses (parameters) (Halle \& Vergnaud, 1987; Chomsky, 1981)

The Learning Problem

There is often a non-transparent relationship between the observable form of the data and the underlying system that produced it. Moreover, data are often ambiguous.

Metrical Phonology System
Observable form: stress contour
Difficulty: interactive structural pieces
af ter noon

$$
\begin{array}{ccc}
(x) & \left(\begin{array}{ll}
x & x \\
L & L
\end{array}\right. & H
\end{array}
$$

af ter noon

One Solution: Constraints on Hypothesis Space

Premise: learner considers finite range of hypotheses parameters (Halle \& Vergnaud, 1987; Chomsky, 1981)

But this doesn't solve the learning problem...

"Assuming that there are n binary parameters, there will be 2^{n} possible core grammars." - Clark (1994)

Probabilistic Learning with Parameters

"Language acquisition as grammar competition" - Yang (2002)

The Naïve Parameter (NPar) Learner

Probabilistic learning strategy explicitly compatible with parameterized grammars: learning is gradual \& variable
"grammars that succeed in analyzing [a data point] are rewarded and those that fail are punished"

Complex System Woes

But this may not always work when we have complex systems with multiple parameters.

Are there other strategies
a learner might adopt as well?

Learning Framework: 3 Components

(1) Hypothesis space

(2) Data
(3) Update procedure

Investigating Data Intake Filtering

Intuition 1: Use all available data to uncover a full range of systematicity, and allow probabilistic mode
enough data to converge.

Intuition 2: Use more "informative" data or more "accessible" data only.

Unambiguous data: Fodor, 1998; Dresher, 1999; Lightfoot, 1999; Pearl \& Weinberg, 2007

Ambiguous Data Woes:

Feasibility of an Unambiguous Data Filter
"It is unlikely that any example ... would show the effect of only a single parameter value; rather, each example is the result of the interaction of several different principles and parameters" Clark (1994)

af ter noon

Today's Plan

Given a realistic complex system to learn and realistic data to learn from, we ask..

(1) Is something beyond probabilistic learning necessary? (Necessity)
(2) Is there a data sparseness problem for an unambiguous data filter? (Feasibility)
(3) Does learning from unambiguous data yield correct behavior? (Sufficiency)

Road Map

I. The System

Parameterized Metrical Phonology
II. The Input
III. Learning Without Filters
IV. The Filter
V. Learning With Filters
VI. Good Ideas

Metrical Phonology

What tells you to put the EMphasis on a particular SYLlable
sample metrical phonology structure from parametric system

Metrical Phonology Parameters

Quantity Sensitivity: QI

Quantity-Insensitive (Ql): All syllables are treated the same (S)

S	S	S
VV	V	VC
CVV	CV	CCVC
Iu	di	crous

Quantity Sensitivity: QS
Quantity-Sensitive (QS):
Syllables are separated into Light and Heavy
V are always L, VV are always H
VC-Light $($ QSVCL $)=$ VC syllable is L
VC-Heavy (QSVCH) = VC syllable is H

H	L	L/H
VV	V	VC
CVV	CV	CCVC
Iu	di	crous

Metrical Phonology Parameters
Extrametricality, Metrical Feet, and Stress

Rule of Stress: If a syllable is extrametrical, it is not included in a metrical foot. If a syllable is not in a metrical foot, it cannot have stress.

Extrametricality: None

Extrametricality-None (Em-None):
All syllables are in metrical feet

Feet Directionality

Feet Direction: What edge of the word metrical foot construction begins at

Feet Directionality

Feet Direction: What edge of the word metrical foot construction begins at

Feet Direction Left: start from left edge

$$
\left(\begin{array}{ll}
\mathrm{H} & \mathrm{~L}
\end{array}\right) \mathrm{H}
$$

Feet Direction Right: start from right edge

```
H L
```

H L H

Feet Directionality

Feet Direction: What edge of the word metrical foot construction begins at

Feet Direction Left: start from left edge

$$
(H \quad L)(H)
$$

Feet Direction Right: start from right edge

H L H

Feet Directionality

Feet Direction: What edge of the word metrical foot construction begins at

Feet Direction Left: start from left edge

$$
(H \quad L)(H)
$$

Feet Direction Right: start from right edge

$$
(H) \quad\left(\begin{array}{ll}
\mathrm{L} & \mathrm{H})
\end{array}\right.
$$

Boundedness: Unbounded Feet

Unbounded: a metrical foot extends until a heavy syllable is encountered

Feet Directionality

Feet Direction: What edge of the word metrical foot construction begins at

Feet Direction Left: start from left edge

$$
(H \quad L)(H)
$$

Feet Direction Right: start from right edge

$$
H \quad\left(\begin{array}{ll}
\mathrm{L} & \mathrm{H}
\end{array}\right)
$$

Boundedness: Unbounded Feet

Boundedness: Unbounded Feet

Unbounded: a metrical foot extends until a heavy syllable is encountered
start from left $\left._{\downarrow}\right\rangle(L \quad L \quad L) H L$

Boundedness: Unbounded Feet

Unbounded: a metrical foot extends until a heavy syllable is encountered
start from left $_{\curvearrowright}>(\mathrm{L} \quad \mathrm{L})\left(\begin{array}{ll}\mathrm{H} & \mathrm{L})\end{array}\right.$

Boundedness: Unbounded Feet

Unbounded: a metrical foot extends until a heavy syllable is encountered
start from left $\Rightarrow\binom{L}{\nabla}\left(\begin{array}{ll}H & L\end{array}\right)$
$L \quad L \quad H(L)<$ start from right

Boundedness: Unbounded Feet

Unbounded: a metrical foot extends until a heavy syllable is encountered

```
start from left >}>>(L\quadL\quadL)(H\quadL
\((L \quad L \quad L \quad H)(L)<\) start from right
start from left 
```

Boundedness: Unbounded Feet

Unbounded: a metrical foot extends until a heavy syllable is encountered
start from left $_{P}(\mathrm{~L} \quad \mathrm{~L} \quad \mathrm{~L})\left(\begin{array}{l}\mathrm{H} \quad \mathrm{L})\end{array}\right.$
$(\mathrm{L} L \mathrm{~L} H)(\mathrm{L})<\stackrel{\text { start from right }}{\substack{\text { a }}}$
start from left $\left._{\Gamma}\right\rangle(\mathrm{L} \quad \mathrm{L}, ~ \mathrm{~L})$

Boundedness: Unbounded Feet

Unbounded: a metrical foot extends until a heavy syllable is encountered
start from left $_{\square}>(\mathrm{L} \quad \mathrm{L})\left(\begin{array}{ll}\mathrm{H} & \mathrm{L})\end{array}\right.$
$(L \quad L \quad \mathrm{~L})(\mathrm{L})<$ start from right
start from left $_{\Gamma}>(\mathrm{L} \quad\llcorner\quad\llcorner\quad\llcorner)$
(L L L L L) < start from right

Boundedness: Bounded Feet

Bounded: a metrical foot only extends a certain amount (cannot be longer)

Bounded-2: a metrical foot only extends 2 units

```
start from left 
```

Bounded-3: a metrical foot only extends 3 units

Boundedness: Bounded Feet

Bounded: a metrical foot only extends a certain amount (cannot be longer)

Bounded-2: a metrical foot only extends 2 units

$$
\text { start from left } \quad\left(\begin{array}{ll}
x & x
\end{array}\right)\left(\begin{array}{ll}
x & x
\end{array}\right)(x)
$$

Bounded-3: a metrical foot only extends 3 units

```
start from left 
```


Boundedness: Bounded Feet

Bounded: a metrical foot only extends a certain amount (cannot be longer)

Bounded-2: a metrical foot only extends 2 units

$$
\text { start from left } \Rightarrow\left(\begin{array}{ll}
x & x
\end{array}\right)\left(\begin{array}{ll}
X & x
\end{array}\right)(X)
$$

Bounded-3: a metrical foot only extends 3 units

```
start from left }H(\begin{array}{lll}{x}&{x}&{x}\end{array})(\begin{array}{ll}{x}&{x}\end{array}
```

Boundedness: Bounded Feet
Bounded-Syllabic: counting unit is syllable

Bounded-Moraic: counting unit is mora $\mathrm{H}=\mathbf{2}$ moras, $\mathrm{L}=1$ mora

Boundedness: Bounded Feet

Bounded-Syllabic: counting unit is syllable

Bounded-Moraic: counting unit is mora

$$
\mathrm{H}=2 \text { moras, } \mathrm{L}=1 \text { mora }
$$

Boundedness: Bounded Feet
Bounded-Syllabic: counting unit is syllable

Bounded-Moraic: counting unit is mora H = 2 moras, L = 1 mora

Boundedness: Bounded Feet

Bounded-Syllabic: counting unit is syllable

Bounded-Moraic: counting unit is mora $\mathrm{H}=2$ moras, $\mathrm{L}=1 \mathrm{mora}$

Boundedness: Bounded Feet
Bounded-Syllabic: counting unit is syllable

Bounded-Moraic: counting unit is mora $\mathrm{H}=\mathbf{2}$ moras, $\mathrm{L}=1$ mora

Boundedness: Bounded Feet

Bounded-Syllabic: counting unit is syllable
$\left.\begin{array}{rl}\begin{array}{ll}\text { start from left } \\ \text { bounded-2 }\end{array} & \left(\begin{array}{lll}\mathrm{L} & \mathrm{H}\end{array}\right)\left(\begin{array}{ll}\mathrm{L} & \mathrm{L}\end{array}\right)(\mathrm{H}) \\ \hline \hline \mathrm{H} & \mathrm{H}\end{array}\right)\left(\begin{array}{ll}\mathrm{L} & \mathrm{L}\end{array}\right)(\mathrm{H})$
Bounded-Moraic: counting unit is mora
$\mathrm{H}=\mathbf{2}$ moras, $\mathrm{L}=1$ mora

Boundedness: Bounded Feet
Bounded-Syllabic: counting unit is syllable

Bounded-Moraic: counting unit is mora
$\mathrm{H}=2$ moras, $\mathrm{L}=1$ mora

Boundedness: Bounded Feet

Bounded-Syllabic: counting unit is syllable

Bounded-Moraic: counting unit is mora

Metrical Feet and Stress

Rule of Stress: Exactly one syllable per metrical foot must have stress.

Feet Headedness

Feet Headedness: which syllable of metrical foot gets stress

Feet Head Left: leftmost syllable in foot gets stress
(H) (L H)

Feet Head Right: rightmost syllable in foot gets stress
(H) (L H)

Feet Headedness

Feet Headedness: which syllable of metrical foot gets stress

Feet Head Left: leftmost syllable in foot gets stress

$$
\text { (H) }\left(\begin{array}{ll}
\mathrm{L} & \mathrm{H})
\end{array}\right.
$$

Feet Head Right: rightmost syllable in foot gets stress

$$
(H)\left(\begin{array}{ll}
L & H
\end{array}\right)
$$

Road Map

I. The System
II. The Input

English child-directed speech
III. Learning Without Filters
IV. The Filter
V. Learning With Filters
VI. Good Ideas

Feet Headedness

Feet Headedness: which syllable of metrical foot gets stress

Feet Head Left: leftmost syllable in foot gets stress
(H) (L H)

Feet Head Right: rightmost syllable in foot gets stress
(H) (L H)

English Metrical Phonology

Non-trivial language: English (full of exceptions)
Input: data unambiguous for the incorrect value in the adult systern

Adult English system values:
QS, QSVCH, Em-Some, Em-Right, Ft Dir Right, Bounded, B-2, B-Syllabic, Ft Hd Left

Exceptions:
QI, QSVCL, Em-None, Ft Dir Left, Unbounded,
B-3, B-Moraic, Ft Hd Right

Empirical Grounding in Realistic Data: Estimating English Data Distributions

Caretaker speech to children between the ages of 6 months and 2 years (CHILDES: MacWhinney, 2000)

Total Words: 540505
Mean Length of Utterance: 3.5
Words parsed into syllables and assigned stress using the American English CALLHOME database of telephone conversation (Canavan et al., 1997) \& the MRC Psycholinguistic database (Wilson, 1988)

Road Map

I. The System
II. The Input
III. Learning Without Filters

The Naïve Parameter Learner

IV. The Filter

V. Learning With Filters
VI. Good Ideas

Probabilistic Learning with Parameters

Naïve Parameter (NPar) Learner
Incremental learning: Learn from a single data point at a time (psychological plausibility)

For each parameter, the learner associates a probability with each of the competing parameter values

$$
\begin{array}{ll}
\text { QI }=0.7 & \text { QS }=0.3 \\
\text { Em-Some }=0.4 & \text { Em-None }=0.6 \\
\text { Ft Dir Left }=0.8 & \text { Ft Dir Rt }=0.2 \\
\text { Bounded }=0.6 & \text { Unbounded }=0.4 \\
\text { Ft Hd Left }=0.5 & \text { Ft Hd Rt }=0.5
\end{array}
$$

Probabilistic Learning with Parameters

Naïve Parameter (NPar) Learner
For any data point encountered, a parameter value combination (grammar) is generated using the current probabilities. The learner attempts to parse the current data point with

Probabilistic Learning with Parameters

Naïve Parameter (NPar) Learner
If the data point can be parsed, then all participating parameter values are rewarded (and opposing values are punished).

Probabilistic Learning with Parameters

Naïve Parameter (NPar) Learner
If the data point cannot be parsed, then all participating parameter values are punished (and opposing values are rewarded).

Probabilistic Learning with Parameters

Naïve Parameter (NPar) Learner
If the data point cannot be parsed, then all participating parameter values are punished (and opposing values are rewarded).

The NPar Learner on English Metrical Phonology

Learning Period Length: 1,160,000 words (based on estimates of words heard in a 6 month period, using Akhtar et al. (2004)).

Learning rate: $(0.01 \leq \gamma \leq 0.05)$

The NPar Learner on English Metrical Phonology

Learning Period Length: $1,160,000$ words (based on estimates of words heard in a 6 month period, using Akhtar et al. (2004)).

Learning rate: $(0.01 \leq \gamma \leq 0.05)$
Results using distributions in English child-directed speech: Learners never converge on English.

If learners ignore monosyllabic words (since such words don't have a stress contour per se), less than 1.2\% converge on English.

Examples of incorrect target languages NPar learners converged on: Em-None, Ft Hd Left, Unb, Ft Dir Left, QI
Em-None, Ft Hd Left, Unb, Ft Dir Left, Ql
Em-None, Ft Dir Rt, Unb, QSVCH, QS, Ft Hd Left
Em-None, QI, Ft Dir Left, Unb, Ft Hd Left
Em-None, Ft Hd Left, B-2, QI, Unb, Ft Dir Left

A More Conservative Learner: NPar Learner + Batch

Naïve Parameter Learner with Batch Learning (NPar + B Learner): More conservative about rewarding and punishing parameters. Meant for more complex systems with interactive parameters.

Instead of rewarding/punishing the participating parameter values for each data point, this learner waits until a
parameter value has succeeded/failed a certain number of tirnes (the size b of the batch) before rewarding/punishing it.
"...it slows down the learning rate when [the parameter] is bad and speeds it up when [the parameter] gets better" - Yang (2002)

A More Conservative Learner:

 NPar Learner + Batch

Naïve Parameter Learner with Batch Learning (NPar + B Learner): More conservative about rewarding and punishing parameters. Meant for more complex systems with interactive parameters.

For each parameter, the learner
associates a probability with each of the
competing parameter values

$$
\mathrm{Ql}=0.7
$$

$$
\mathrm{QS}=0.3
$$

Em-Some $=0.4 \quad$ Em-None $=0.6$
Ft Dir Left $=0.8 \quad$ Ft Dir Rt $=0.2$
Bounded $=0.6 \quad$ Unbounded $=0.4$
Ft Hd Left $=0.5 \quad$ Ft Hd Rt $=0.5$

The NPar + B Learner on
 English Metrical Phonology

Learning Period Length: 1,160,000 words (based on estimates of words heard in a 6 month period, using Akhtar et al. (2004)).
$0.01 \leq$ learning rate $\gamma \leq 0.05 \quad 2 \leq$ batch size $b \leq 10$

The NPar + B Learner on English Metrical Phonology

Learning Period Length: 1,160,000 words (based on estimates of words heard in a 6 month period, using Akhtar et al. (2004)).
$0.01 \leq$ learning rate $\gamma \leq 0.05 \quad 2 \leq$ batch size $b \leq 10$
Results using distributions in English child-directed speech:
Learners never converge on English.
If learners ignore monosyllabic words (since such words don't have a stress contour per se), less than 0.8% converge on English. (Always when $b=2$)

Examples of incorrect target languages NPar + B learners converged on: Em-Right, Em-Some, Unbounded, Ft Dir Right, QSVCH, QS, Fi Hd Rt Em-Right, Unbounded, Em-Some, Ft Dir Left, Ft Hd Left, QSVCL, QS Em-Right, Ft Hd Left, Em-Some, Unbounder, Ft Dir Left, QS, QSVC Em-Right, Em-Em-Right, Em-Some, Unbounded, Ft Hd Left, Ft Dir Rt, Qi

Other Constraints: Prior Knowledge

Infant research has shown that infants are sensitive to some of the rhythmic properties of their language

Jusczyk, Cutler, \& Redanz (1993): English 9-month olds prefer strong weak stress bisyllables (trochaic) to weak-strong ones (iambic).

Turk, Jusczyk, \& Gerken (1995): English infants are sensitive to the difference between long vowels and short vowels in syllables

$$
V V^{Q S} \quad S^{Q 1} S
$$

The learner may already have knowledge of Ft Hd Left and QS. Perhaps this knowledge of the system will allow the NPar + B learner to converge on the rest of the English values more reliably.

The NPar + B Learner with Prior Knowledge on English Metrical Phonology

Learning Period Length: 1,160,000 words (based on estimates of words heard in a 6 month period, using Akhtar et al. (2004)).
$0.01 \leq$ learning rate $\gamma \leq 0.05$
$2 \leq$ batch size $b \leq 10$

The NPar + B Learner with Prior Knowledge on English Metrical Phonology

Learning Period Length: 1,160,000 words (based on estimates of words heard in a 6 month period, using Akhtar et al. (2004)).
$0.01 \leq$ learning rate $\gamma \leq 0.05$
Results using distributions in English child-directed speech:
Learners never converge on English.
If learners ignore monosyllabic words (since such words don't have a stress contour per se), 5\% or less learners converge on English.

Examples of incorrect target languages NPar + B learners with prior
knowledge converged on:
Ft Hd Left, QS, Em-Right, Em-Some, QSVCH, Ft Dir Left, Bounded, B-Mor, B-2
Ft Hd Left, QS, Em-Right, QSVCH, Em-Some, Unbounded, Ft Dir Left
Ft Hd Left, QS, Em-Right, Em-Some, QSVCH, Ft Dir Left, B-3, Bounded, B-Mor Ft Hd Left, QS, Em-Right, Em-Some, QSVCH, Ft Dir Rt, Unbounded

Big picture

For the complex linguistic system under consideration, knowledge of the parameters and a probabilistic learning strategy doesn't seem to yield the correct behavior. These are insufficient for learning

Something else seems necessary for successful acquisition.
Can data filtering help?

Road Map

I. The System
II. The Input
III. Learning Without Filters
IV. The Filter

Unambiguous Data
V. Learning With Filters
VI. Good Ideas

Filter Feasibility

How feasible is an unambiguous data filter for a complex system?

Data sparseness: are there unambiguous data? (Clark 1992)

How could a learner identify such data?

Cues: Overview

A cue is a local "specific configuration in the input" that corresponds to a specific parameter value. A cue matches an unambiguous data point. (Dresher, 1999)

Parsing: Overview

Parsing tries to analyze a data point with "all possible parameter value combinations", conducting an "exhaustive search of all parametric possibilities", and then discovering what is common to them. (Fodor, 1998)

Parsing with Metrical Phonology Parameters
Sample Datum: VC VC VV ('afternoon')
(QS, QSVCL, Em-None, Ft Dir Right,
B, B-2, B-Syl, Ft Hd Right)

(x)	$(x$	$x)$
L	L	$H)$
VC	VC	$V V$

Cues for Metrical Phonology Parameters

Recall: Cues match local surface structure (sample cues below)

QS: 2 syllable word with 2 stresses	VV VV
Em-Right: Rightmost syllable is Heavy and unstressed	... H
Unb: 3+ unstressed S/L syllables in a row	$\begin{aligned} & \ldots \text {..S S S... } \\ & \ldots \text { L L L } \end{aligned}$
Ft Hd Left: Leftmost foot has stress on leftmost syllable	S S S...

Parsing with Metrical Phonology Parameters
Sample Datum: VC VC VV ('afternoon')
Parsing with Metrical Phonology Parameters
Sample Datum: VC VC VV ('afternoon')
(QS, QSVCL, Em-None, Ft Dir Right,
B, B-2, B-Syl, Ft Hd Right)
QS, QSVCL, Em-None, Ft Dir Left

(x)	$(x$	$x)$
L	L	$H)$
$V C$	$V C$	$V V$

$(x$	$x)$	(x)
$(L$	L	H
VC	VC	$V V$

Parsing with Metrical Phonology Parameters

Values leading to successful parses of data point:
(Ql, Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syl)
(QI, Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl)
(QS, QSVCL, Em-None, Ft Dir Left, Ft Hd Left, UnB)
(QS, QSVCL, Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syl)
(QS, QSVCL, Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl)
Data point is unambiguous for Em-None.

Parsing with Metrical Phonology Parameters

Values leading to successful parses of data point:
(Ql, Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syl)
(Ql, Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl)
$\begin{array}{ll}\text { (QS, QSVCL, } & \text { Em-None, Ft Dir Left, Ft Hd Left, UnB) } \\ \text { (QS, QSVCL, } & \text { Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syl) }\end{array}$
(QS, QSVCL, Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl

Data point is unambiguous for Em-None.

Perception of unambiguous data changes over time:
If Ql already set, data point is unambiguous for Em-None, B, B2, and B-Syl.

Cues vs. Parsing: Comparison

Cues:
Easy identification of
unambiguous data

Can find information
in sub-part of data point

Can tolerate exceptions \square
S S...
Ft Hd Lef

Cues vs. Parsing: Comparison

Cues vs. Parsing: Comparison

Cues vs. Parsing: Comparison

Parsing:
Resource-intensive identification of unambiguous data
(Q1, Em-None, Ft Dir Left. Ft Hd Left, B, B-2, B-Sy1) (Q1, Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syl)
(QII, Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl)
(QS, QSVLL, Em-None, Ft Dir Left, Ft Hd Left, H B) QS, QSVC, Em-None, Ft Dir Left, Ft Hd Left, B, B-2, B-Syl)
(QS, QSVCL, Em-Non (QS, QSVCL, Em-None, Ft Dir Right, Ft Hd Right, B, B-2, B-Syl) \rightarrow Ern-None

Needs complete parse of data point to get any information:

$$
(x)(x)(x
$$

lu di crous

Cannot find information in sub-part of data point Cannot tolerate exceptions

Cues vs. Parsing: Comparison

	Cues	Parsing
Easy identification of unambiguous data	+	
Can find information in datum sub-part	+	
Can tolerate exceptions	+	
Is not heuristic		+
Does not require additional knowledge		+
Does not use default values	+	

Cues vs. Parsing: Comparison

	Cues	Parsing
Easy identification of unambiguous data	+	
Can find information in datum sub-part	+	
Can tolerate exceptions	+	
Is not heuristic		+
Does not require additional knowledge	+	
Does not use default values	+	+
Psychological plausibility: does not require entire data set at once to learn from	+	+

Road Map

I. The System
II. The Input
III. Learning Without Filters
IV. The Filter
V. Learning With Filters

Simulating What Children Do
VI. Good Ideas
The Learning Process
Data Filtering: The learner encounters a data point and decides if it's unambiguous for any parameter values

Updating Hypotheses: If so, the learner shifts probability to those parameter values
\qquad \rightarrow

Initial State of English Child-Directed Speech: Probability of Encountering Unambiguous Data

Moving Targets \& Unambiguous Data; What Happens After Parameter Setting

Moving Targets \& Unambiguous Data

Initial State of English Child-Directed Speech: Probability of Encountering Unambiguous Data

Getting to English

The learner must set all the parameter values in
order to converge on a language system.

Current knowledge of the system influences the perception of unambiguous data. So, the order in which parameters are set influences the probability of encountering unambiguous data for unset parameters.

To get to English, the learner must converge on QS, QSVCH, Em-Some Em-Right, Ft Dir Rt, Bounded, Bounded-2, Bounded-Syl, Ft Hd Left

Will any parameter setting orders lead the learner to English?

Viable Parameter Setting Orders

Worst Case: learning with unambiguous data produces insufficient behavior No orders lead to English

Better Case: learning with unambiguous data produces sufficient behavior Viable orders exist, even if some orders don't lead to English

Best Case: learning with unambiguous data is a brilliant plan! All orders lead to English

Getting to English: Exhaustive Search of All Parameter Setting Orders

Try one parameter-setting order. .
(a) For all currently unset parameters, determine the unambiguous data distribution in the corpus.
(b) Choose a currently unset parameter to set. The value chosen for this parameter is the value that has a higher probability in the data the learner perceives as unambiguous.
(c) Repeat steps (a-b) until all parameters are set.

Getting to English: Exhaustive Search of All Parameter Setting Orders
Repeat for all possible orders...

Try one parameter-setting order...
Is it English?

Results: Set of viable orders that lead to English (we hope)

Cues: Parameter Setting Orders

Cues: Sample viable orders

(a) QS, QS-VC-Heavy, Bounded, Bounded-2, Feet Hd Left, Feet Dir Right, EmSome, Em-Right, Bounded-Syl
(b) Bounded, Bounded-2, Feet Hd Left, Feet Dir Right, QS, QS-VC-Heavy, EmSome, Em-Right, Bounded-Syl
(c) Feet Hd Left, Feet Dir Right, QS, QS-VC-Heavy, Bounded, Em-Some, EmRight, Bounded-2, Bounded-Sy

Cues: Sample failed orders
(a) QS, QS-VC-Heavy, Bounded, Bounded-2, Bounded-Mor, .
(b) Bounded, Bounded-2, Feet Hd Left, Bounded-Mor, ...
(c) Em-None, .
(d) Feet Hd Left, Em-None,

Parameter Setting Orders:

Knowledge Necessary for Acquisition Success

Viable parameter setting order" means. .
If the learner manages to set the parameters in this order, the learner will converge on English.

But wouldn't it be better if the viable orders could be captured more compactly, instead of being explicitly listed in the learner's mind?

Order \#23 looks good!

Parsing: Parameter Setting Orders

Parsing: Sample viable orders

(a) Bounded, QS, Feet Hd Left, Feet Dir Right, QS-VC-Heavy, Bounded-Syl, EmSome, Em-Right, Bounded-2
(b) Feet Hd Left, QS, QS-VC-Heavy, Bounded, Feet Dir Right, Em-Some, Em-
c) QS, Bounded, Feet Hd Left, QS-VC-Heavy, Feet Dir Right, Bounded-Syl, EmSome, Em-Right, Bounded-2

Parsing: Sample failed orders
a) QS, QS-VC-Heavy, Bounded, Bounded-Syl, Bounded-2, Em-Some, Em-Right. Feet Hd Right,
(b) Bounded, Bounded-Syl, Bounded-2, Em-None, ..
(c) Em-None
(d) Feet Hd Left, Feet Dir Left, ..

Feasibility \& Sufficiency of the Unambiguous Data Filter

Either method of identifying unambiguous data (cues or parsing) is successful. Given the non-trivial parametric system (9 interactive parameters) and the non-trivial data set (English is full of exceptions), this is no small feat.

```
"It is unlikely that any example.would show the effect ofonly a single
    neter value" - Clark (1994)
```

(1) Unambiguous data exist and can be identified in sufficient relative quantities to extract the correct systematicity for a complex parametric system.
(2) The data intake filtering strategy is robust across a realistic (highly ambiguous, exception-filled) data set. It's feasible to identify such data, and the strategy yields sufficient learning behavior.

Predictions: Links to the Experimental Side

| Cues
 (a) QS-VC-Heavy
 before Em-Right
 (b) Em-Right
 before Bounded-Syl
 (c) Bounded-2
 before Bounded-Syl\quadParsing
 Group 1:
 QS, Ft Hd Left, Bounded
 Group 2:
 Ft Dir Right, QS-VS-Heavy
 Group 3:
 Em-Some, Em-Right, Bounded-2,
 Bounded-Syl |
| :---: | :--- |

Are predicted parameter setting orders observed in real-time learning? E.g. whether cues or parsing is used, Quantity Sensitivity (QS, QSVCH) is predicted to be set before Extrametricality (Em-Some, Em-Right).

Future Directions in Modeling

(1) Is the unambiguous data filter successful for other languages besides English? Other instantiations of metrical phonology? Other complex linguistic domains like syntax?
(2a) Are these order constraints reasonable/feasible as knowledge the learner needs for acquisition success? (Ask me!)
(2b) Can we combine the strengths of cues and parsing? (Ask me how!

Future Directions in Modeling

(1) Is the unambiguous data filter successful for other languages besides English? Other instantiations of metrical phonology? Other complex linguistic domains like syntax?

Future Directions in Modeling

(1) Is the unambiguous data filter successful for other languages besides English? Other instantiations of metrical phonology? Other complex linguistic domains like syntax?
(2a) Are these order constraints reasonable/feasible as knowledge the learner needs for acquisition success? (Ask me!)
(2b) Can we combine the strengths of cues and parsing? (Ask me how!)
(3) Are there other methods of data filtering that might be successful for learning English metrical phonology? (e.g. Yang, 2005)

Future Directions in Modeling

(1) Is the unambiguous data filter successful for other languages besides English? Other instantiations of metrical phonology? Other complex linguistic domains like syntax?
(2a) Are these order constraints reasonable/feasible as knowledge the learner needs for acquisition success? (Ask me!)
(2b) Can we combine the strengths of cues and parsing? (Ask me how!)
(3) Are there other methods of data filtering that might be successful for learning English metrical phonology? (e.g. Yang, 2005)
(4) How necessary is a data filtering strategy for successful learning? Would othe probabilistic learning strategies that are not as selective about the data intake succeed? (e.g. Fodor \& Sakas, 2004; Bayesian learning strategies)

Future Directions in Modeling

(1) Is the unambiguous data filter successful for other languages besides English? Other instantiations of metrical phonology? Other complex linguistic domains like syntax?
(2a) Are these order constraints reasonable/feasible as knowledge the learner needs for acquisition success? (Ask me!)
(2b) Can we combine the strengths of cues and parsing? (Ask me how!)
(3) Are there other methods of data filtering that might be successful for learning English metrical phonology? (e.g. Yang, 2005)
(4) How necessary is a data filtering strategy for successful learning? Would other probabilistic learning strategies that are not as selective about the data intake succeed? (e.g. Fodor \& Sakas, 2004; Bayesian learning strategies)
(5) Can other knowledge implementations, such as constraint satisfaction systems (Tesar \& Smolensky, 2000; Boersma \& Hayes, 2001), be successfully learned from noisy data sets like English? (theoretical implications based on learnability of the system)

Take Home Message
(1) Modeling results for a realistic system and realistic data set suggest the necessity of something beyond a simple probabilistic learning strategy, even if the hypothesis space of learners is already constrained.
(2) They also demonstrate the viability of the unambiguous data filter as a learning strategy.
(3) Computational modeling is a very useful tool:
(a) empirically test learning strategies that would be difficult
to investigate with standard techniques
(b) generate experimentally testable predictions about learning

Why Parameters?

Why posit parameters instead of just associating stress contours with words?
Arguments from stress change over time (Dresher \& Lahiri, 2003):
(1) If word-by-word association, expect piece-meal change over time at the
individual word level. Instead, historical linguists posit changes to underlying systems to best explain the observed data that change altogether.

Thank You

Amy Weinberg

 Bill IdsardiThe audiences at
BUCLD 32
UC Irvine Language Learning Group
UC Irvine Department of Cognitive Sciences CUNY Psycholinguistics Supper Club
UDelaware Linguistics Department
Yale Linguistics Department
UMaryland Cognitive Neuroscience of Language Lab

Why Parameters?

Why posit parameters instead of just associating stress contours with words?

Arguments from stress change over time (Dresher \& Lahiri, 2003):

[^0]

Calculating Unambiguous Data Probability:

 Relativizing ProbabilitiesRelativize-against-all:

- probability conditioned against entire input set - relativizing set is constant across methods

Cues or Parsing

	Q।	QS
Unambiguous Data Points	2140	11213
Relativizing Set	540505	540505
Relativized Probability	0.00396	0.0207

Calculating Unambiguous Data Probability: Relativizing Probabilities

Relativize-against-potential:

- probability conditioned against set of data points that meet preconditions of being an unambiguous data point
- relativizing set is not constant across methods

Cues: have correct syllable structure (e.g. 2 syllables if cue is 2 syllable word with both syllables stressed)

	QI	QS
Unambiguous Data Points	2140	11213
Relativizing Set	2755	85268
Relativized Probability	0.777	0.132

Cues vs. Parsing:
Success Across Relativization Methods (Getting to English)

	Cues	Parsing
Relative-Against-All	Successful	Successful
Relative-Against-Potential	Unsuccessful	Successful

..so parsing seems more robust across relativization methods.

Calculating Unambiguous Data Probability: Relativizing Probabilities

Relativize-against-potential:

- probability conditioned against set of data points that meet preconditions of being an unambiguous data point
- relativizing set is not constant across methods

Parsing: able to be parsed

	QI	QS
Unambiguous Data Points	2140	11213
Relativizing Set	p	p
Relativized Probability	$2140 / p$	$11213 / p$

Order Constraints

Good: Order constraints exist that will allow the learner to converge on the adult system, provided the learner knows these constraints.

Better: These order constraints can be derived from properties of the learning system, rather than being stipulated, or they're already known through other means.

Deriving Constraints from Properties of the Learning System

Data saliency: presence of stress is more easily noticed than absence of stress, and indicates a likely parametric cause

Data quantity: more unambiguous data available

Default values (cues only): if a value is set by default, order constraints involving it may disappear

Note: data quantity and default values would be applicable to any system. Data saliency is more system-dependent.

Knowing Through Other Means

\square Infant research has shown that infants are sensitive to some of the rhythmic properties of their language

Jusczyk, Cutler, \& Redanz (1993): English 9-month olds prefer strongweak stress bisyllables (trochaic) to weak-strong ones (iambic)


```
Ft Hd R
    S S
```

Turk, Juszcyk, \& Gerken (1995): English infants are sensitive to the difference between long vowels and short vowels in syllables

The learner may already have knowledge of Ft Hd Left and QS, so these are set early.
(b) Em-Right
before Bounded-Syl
(c) Bounded-2
before Bounded-Syl

Deriving Constraints: Cues

(a) QS-VC-Heavy
before Em-Right

Deriving Constraints: Cues

> (a) QS-VC-Heavy before Em-Right
> (b) Em-Right
> before Bounded-Syl

Bounded-Syl as default (default values)
\square
(c) Bounded-2
before Bounded-Syl

Deriving Constraints: Cues

(a) QS-VC-Heavy before Em-Right

Em-Right: absence of stress is less salient (data saliency); prior knowledge

> Bounded-Syl as default (default values)
> Em-Right: more unambiguous data than Bounded-Syl (data quantity)
(c) Bounded-2
before Bounded-Syl

Deriving Constraints: Cues

(a) QS-VC-Heavy
before Em-Right $\quad \begin{aligned} & \text { Em-Right: absence of stress is less } \\ & \text { salient (data saliency); prior knowledge }\end{aligned}$

Bounded-Syl as default (default values)
Em-Right: more unambiguous data than Bounded-Syl (data quantity)

Bounded-Syl as default (default values)
(c) Bounded-2
before Bounded-Syl

Deriving Constraints: Cues

(a) QS-VC-Heavy
before Em-Right
Em-Right: absence of stress is less salient (data saliency); prior knowledge

Bounded-Syl as default (default values)
Em-Right: more unambiguous data than Bounded-Syl (data quantity)

Bounded-Syl as default (default values)
Bounded-2 has more unambiguous data once Em-Right is set; Em-Right has much more than Bounded-2 or Bounded-Syl (data quantity)

Deriving Constraints: Parsing
Group 1:
QS, Ft Hd Left, Bounded

Group 2:
Ft Dir Right, QS-VS-Heavy

Group 3:
Em-Some, Em-Right, Bounded-2, Bounded-Syl

Deriving Constraints: Parsing
Group 1:
QS, Ft Hd Left, Bounded
Group 2:
Ft Dir Right, QS-VS-Heavy

Group 3:
Em-Some, Em-Right, Bounded-2, Bounded-Syl

Em-Some, Em-Right: absence of stress is less salient (data saliency)

Non-derivable Constraints: Predictions Across Languages?

Parsing Constraints

Group 1:
QS, Ft Hd Left, Bounded
Do we find these same groupings if we look at other languages?
Group 2:
Ft Dir Right, QS-VS-Heavy
Group 3:
Em-Some, Em-Right, Bounded-2, Bounded-Sy

Combining Cues and Parsing

Cues and parsing have a complementary array of strengths and weaknesses

Problem with cues: require prior knowledge
Problem with parsing: requires parse of entire data point

Viable combination of cues \& parsing:
parsing of data point subpart = derivation of cues?

Combining Cues and Parsing

Viable combination of cues \& parsing:
parsing of data point subpart = derivation of cues?
Would partial parsing
(a) derive cues that lead to successful acquisition?
(b) retain the strengths that cues \& parsing have separately? (c) be a more psychologically plausible implementation of the unambiguous data filter?

[^0]: ## Why Parameters?

 Why posit parameters instead of just associating stress contours with words?

 Arguments from stress change over time (Dresher \& Lahiri, 2003):
 (1) If word-by-word association, expect piece-meal change over time at the individual word level. Instead, historical linguists posit changes to underlying systems to best explain the observed data that change altogether.
 (2) If stress contours are not composed of pieces (parameters), expect start and end states of change to be near each other. However, examples exist where start \& end states are not closely linked from perspective of observable stress contours.

