Taking the child's view:

Syllable-based Bayesian inference as a (more) plausible word segmentation strategy

Lawrence Phillips
Lisa Pearl
UC Irvine

Word Segmentation: Outline

- Infant representation: syllables vs. phonemes
- Incorporate cognitive constraints
- Discover evidence for "Less is More" (Newport 1990)
 - Less-optimal learners perform better
- The unit of representation is extremely crucial to our interpretation of results

Word Segmentation

- Infants begin segmenting words out of fluent speech by 7.5 months (Jusczyk et al. 1999)
 - Stress Patterns: 9 months (Echols et al. 1997)
 - Phonotactics: 9 months (Jusczyk et al. 1993)
 - Phonemes: 10-12 months (Werker & Tees 1984)
- Word Segmentation is a foundation of later linguistic knowledge

Word Segmentation

- One popular explanation for how infants learn to segment words is from distributional information
- One basic form of distributional information which we know children have access to is Transitional Probabitities (TPs: Saffran et al. 1996; Pelucchi et al. 2009)

Modeling Word Segmentation

Transitional Probabilities (TPs)

$$ha \rightarrow ppy \rightarrow ki \rightarrow tty$$
 $H \qquad L \qquad H$

Find word boundaries as TP-minima

But fails for monosyllabic sequences (Yang 2004; Gambell & Yang 2006)

$$look \rightarrow at \rightarrow the \rightarrow dog$$
 $L \quad L \quad L$

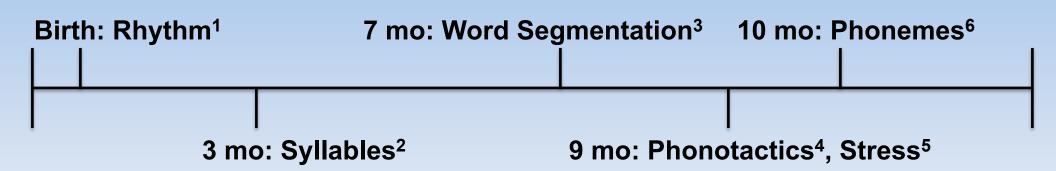
Assumptions in Word Segmentation

- Bayesian Modeling using TPs
 - - Builds a lexicon
 - Pearl, Goldwater, Steyvers (PGS; 2010,2011)
 - Update GGJ to include cognitive constraints
 - Find a limited "Less is More" effect

Bayesian Word Segmentation

- Bayesian models of Word Segmentation (GGJ succeed by tracking TPs while building a lexicon
 - Implicit bias for small lexicon (group together commonly occuring units)
 - Implicit bias for shorter words (don't group too much!)
- - Assume knowledge of phonemes

Speech Perception: 1st Year



- Begin with *global* perception
 - Rhythm, # of syllables
- Gain more *specific* representations
 - Syllables, phonemes, stress
 ■

- ¹Nazzi et al. 1998
- ²Eimas 1999
- ³Jusczyk et al. 1999
- ⁴Echols et al. 1997
- ⁵Jusczyk et al. 1993
- ⁶Werker & Tees 1984

Phoneme Acquisition

- Phoneme Acquisition (~10 months) comes after Word Segmentation (~ 7 months)
- What other units do children use to represent language?
 - Syllables (~ 3 months (Eimas 1999))

 happykitty = ha / ppy / ki / tty
- How does word segmentation occur before phonemes are known?
- What role does this assumption play?

Syllabic Bayesian Modeling

- Adapt previously successful Bayesian models (PGS, GGJ) to treat syllables as basic unit
 - Simplifies task: Fewer possible boundaries
 - But: ~40 phonemes, ~4000 syllables
- Syllabify Pearl-Brent corpus (MacWhinney 2000)
- Based on human judgments and Maximum-Onset Principle

Analysis

- We investigated both *Unigram* and *Bigram* models
 - Unigram: Words appear independently
 - Bigram: Any word depends on the word before it
- We measure performance on Word Tokens as opposed to boundaries or lexical items
- We have 3 measures

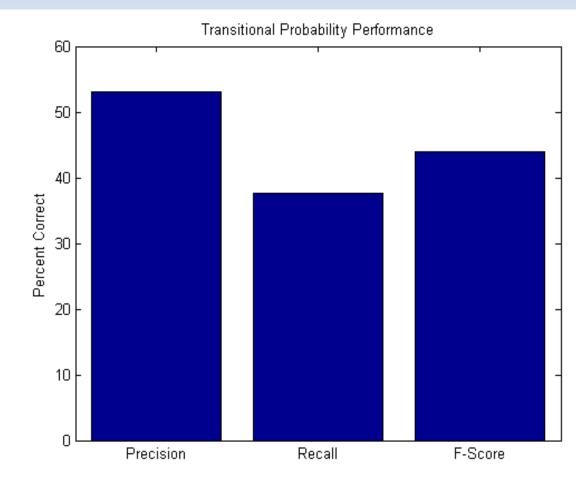
 - Recall: # correct / # true
 - F-Score: Harmonic mean = (2 * P * R) / (P + R)

Other Syllable Models

Transitional Probability model

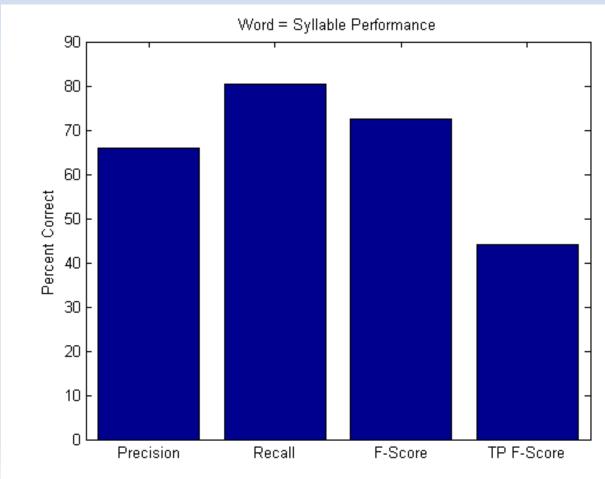
Saffran et al. (1996) that children track TPs over

syllables



Other Syllable Models

- Syllable = Word
 - Doesn't match human performance (oversegmentation)



Other Syllable Models

- Gambell & Yang (2006), Yang & Lignos (2010)
 - Heuristic Models of Word Segmentation
 - Models require Unique Stress Constraint (USC)
 - 1 word = max. 1 primary stress
- Bayesian modeling
 - Doesn't require USC
 - More powerful than previously applied purely distributional models

	TP	Syl = Word	Batch Ideal
Token F-	43.98	72.41	76.65
score			

Batch Ideal learner

(GGJ 2009: Markov Chain Monte Carlo)

- Sees all data at once
- Remembers every decision, has unlimited computational resources
- Uses Gibbs sampling, hierarchical Dirichlet Process

	TP	Syl = Word	Batch Ideal	DPM
Token F-	43.98	72.41	76.65	74.46
score				

Online Ideal learner

(**DPM**: Dynamic Programming with Maximization)

- Processes each utterance in sequence
- Chooses most optimal segmentation, remembers all decisions
- Uses Viterbi algorithm to compute highest probability segmentation, given previous utterances

	TP	Syl = Word		DPM	DPS
Token F- score	43.98	72.41	76.65	74.46	76.70

Online Sub-optimal learner

(DPS: Dynamic Programming with Sampling)

- Chooses segmentation probabilistically
- Remembers all decisions
- Uses Forward algorithm to compute probabilities and chooses based on each segmentation's likelihood

	TP	•	Batch Ideal	DPM	DPS	DMCMC
Token F- score	43.98	72.41	76.65	74.46	76.70	86.19

Online Memory-constrained learner

(DMCMC: Decayed Markov Chain Monte Carlo)

- Tends to "remember" only recent decisions
- Implemented with Decayed Markov Chain Monte Carlo (Marthi et al. 2002), choosing word boundaries to sample based on a decaying function

Results

- Memory-constrained learners outperform an "optimal" Bayesian learner.
- Online algorithms have many benefits over batch processes (Liang & Klein 2009)
 - M Avoid local minima, quick convergence
- ...BUT we see *decreased* performance for our online optimal model!
- Sub-"optimal" segmentation, particularly memory constraints aid in learning to segment words

Less is More

- These findings support a view of language learning: The "Less is More" hypothesis
 - Limited memory and cognitive resources help in learning language
 - "Less is More" applies to adult language learners (Chin & Kersten 2010; Kersten & Earles 2001; Cochran et al. 1999)
 - Here: computational support for this phenomenon in word segmentation

Less is More

- PGS also found results for "Less is More" but mostly for Unigram DPM & DMCMC models
 - Potentially based on "online" advantage (Liang & Klein 2009)
- By changing the underlying unit of representation we can see this pattern of results much more clearly
- Unit of representation clearly matters for how we interpret our results

Open Questions

- What role does syllable type or syllabification method play in our results?
 - Run model over infant-directed speech in German (many syllable types) and Spanish (fewer syllable types)
- Incorporate knowledge of predominant stress patterns
 - Infants segment words at 7.5 months easier if they follow the predominant stress pattern of the language (Jusczyk et al. 1999)

Thanks

- Mark Johnson and Sharon Goldwater
- Iain Murray, Alex Ihler
- Everyone at IPAM Summer Institute 2011
- Our Reviewers

Results

Unigram Models	TP	TR	TF	BP	BR	BF	LP	LR	LF
Ideal	65.34	45.85	53.89	92.20	56.38	71.63	45.59	71.78	55.75
DPM	71.97	48.58	57.96	98.07	52.50	68.32	37.35	53.14	43.86
DPS	74.33	53.27	62.03	97.20	57.90	72.51	41.17	57.21	47.87
DMCMC	67.31	49.67	57.16	96.82	60.55	74.48	48.74	72.79	58.38
Bigram Models									
Ideal	81.84	72.08	76.65	96.05	79.67	87.09	65.27	79.06	71.50
DPM	81.49	68.57	74.46	96.67	74.84	84.35	56.96	70.46	62.99

96.48

94.01

90.00

76.26

77.20

91.05

53.14

100

85.75

92.49

66.82

86.53

57.83

74.18

11.72

59.79

71.23

77.28

63.08

43.25

63.83

75.70

19.77

50.19

DPS

DMCMC

TransProb

Syl = Word

Comparison Models

82.96

86.19

53.03

65.89

71.34

85.23

37.57

80.37

76.70

86.19

43.98

72.41

Eimas 1999

- Investigated 3- to 4-month olds ability to form categorical representations of consonants and syllables
- Tested infants on CV and CVC utterances
 - No categorical representation of initial consonant
- Tested infants on bisyllabic utterances
 - Strong categorical representation of initial syllables
 - Weak representation of final syllables

GGJ 2009

P(utterance) =
$$\prod$$
(P(word_i)[1-P(end of utt)]) * P(final word)P(end of utt)

- 1) Decide if w_i is a novel lexical item
- 2) a. If so, generate a phonemic form
 - b. If not, choose an existing lexical item

$$P(w_i \text{ is novel}) = \alpha / (n + \alpha)$$

$$P(w_i = x_i ... x_M \mid novel) = P_\# (1-P_\#)^{M-1} \prod P(x_j)$$

$$P(w_i = I \mid not novel) = # of l's / # of words$$