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The probability of ‘replication’,prep, has been proposed as a means of identifying replica-
ble and reliable effects in the psychological sciences. We conduct a basic test ofprep that
reveals it misestimates the true probability of replication, especially for small effects. We
show how these general problems withprep play out in practice, when it is applied to predict
the replicability of observed effects over a series of experiments. Our results show that, over
any plausible series of experiments, the true probabilities of replication will be very different
from those predicted byprep. We discuss some basic problems in the formulation ofprep that
are responsible for its poor performance, and conclude thatprep is not a useful statistic for
psychological science.

The prep Measure of Replication

Searching for significant effects in psychological experi-
ments is a risky business, because data are often sparse and
noisy. Killeen (2005a) rightly points out that searching for
small effects is especially perilous using the contorted logic
of null hypothesis significance testing (see Wagenmakers,
2007, for a review). So, in his influential paper, Killeen
(2005a; see also Killeen, 2005b, 2005c, 2006; Sanabria &
Killeen, 2007) proposes a measure—the probability of ‘repli-
cation’, prep, where replication means “agreeing in sign”—
that is claimed to offer hope.

The simplest way to understandprep is to consider the
standard situation in which data are Normally distributed
with a common known varianceσ2, and with an experimen-
tal group meanµE and control group meanµC . If both the
experimental and control groups haven subjects, then the
observed effect sized is a draw from a Normal distribution
with meanδ= (µE −µC)/σ, whereδ is the ‘true’ underlying
effect size, and variance 2/n.

Under these assumptions,prep is derived as the probabil-
ity that bothd, and an imagined replicate observed effect size
drep, have the same sign. A standard Bayesian posterior pre-
dictive calculation then givesprep= Φ

(
|d|
√

n/4
)
, as long as

a uniform prior is placed onδ (e.g., Doros & Geier, 2005).
We give formal details of this derivation in the appendix, but
immediately make three clarifying observations.

First, note that it is important to take the absolute value
of the effect size in calculatingprep. Otherwise, for exam-
ple, an observed effectd = −2 with n = 25 would give a
prep < 0.00001, corresponding to an extremely strong belief
that the replicate effect would have a positive sign, which is
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ridiculous. We mention this point because it is not very clear
in the existingprep literature, where sometimes the absolute
value notation has been omitted from key equations.

Secondly, note that our notation differs from Killeen’s,
who usesn to denote the combined sample size from both
the control and experimental groups, whereas we usen for
each group separately. We prefer our notation, because it
will generalize more naturally to cases where the number of
subjects in each group is not the same.

Thirdly, we note that for small sample sizes, Killeen
(2005a) promotes the use of anad hoc correction in which
n is replaced byn−2 (in our notation). This makes a small
quantitative difference that disappears quickly asn increases,
but does not change the qualitative pattern of our results nor
the substantive conclusions at all.

The General Pattern of
Misestimation forprep

In this section we present a general pattern of results that
make it clearprep is a poor estimator. We do this by com-
paring the true probability of replication for a fixed effect
size (i.e., aδ value), to the estimates of the probability of
replication provided byprep.

Each panel of Figure 1 shows, for a different sample size
n, a thick dotted line corresponding to the true probability
of replication for underlying effect sizes from 0 to 2. This
true probability of replication, averaged across all possible
sampled observed effectsd, is given1 by Φ2

(
|δ|
√

n/2
)
+

Φ2
(
−|δ|

√
n/2
)
. Each panel in Figure 1 also shows the

mean estimates of replication probability provided byprep
for theseδ and n values, based on 1,000,000 sampled ob-
served effect sizes. The error bars represent one standard

1 The first term is the probability an observed effect and its repli-
cate will agree by both having the same sign asδ. The second term
is the probability they will both agree by having the opposite sign
to δ. See Iverson, Lee, Zhang, and Wagenmakers (submitted) for
details.
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Figure 1. The misestimation ofprep. Each panel shows the true probability of replication (thick broken line) for effect sizes ranging from 0
to 2, the mean performance ofprep (circular markers), and one standard deviation in both directions around the mean (error bars). The four
panels correspond to sample sizes of 10, 20, 50 and 100.

deviation above and one standard deviation below the mean
values ofprep.

In the language of statistical estimation, the difference be-
tween the mean value ofprep and the truth provides an in-
dication of bias, while the size of the error bars provide an
indication of variance. For bias, Figure 1 shows that, for
small underlying effect sizes,prep always on average overes-
timates the probability of replication. For larger effects,prep
then underestimates the true probability of replication, and
only becomes well-calibrated for very large effect sizes. The
quantitative details of when overestimation becomes under-
estimation depend on the sample size across the four panels
in Figure 1, but the qualitative pattern does not. In fact, every
choice of sample size has a curve like those shown, simply
shifting further left as sample size increases.

In terms of variability, the error bars in Figure 1 show that
prep is highly variable, except when effect sizes or sample
sizes are very large. For example, whenn = 10 and the un-
derlying true effect size isδ = 1, the actual probability of
replication is about 0.95,prep on average gives a value of
about 0.90, but the variability is large, with one standard de-
viation around the mean extending from about 0.80 to 1.00.

The results in Figure 1 have serious consequences for the
performance ofprep. For small effect sizes, where much of
the psychological interest lies, and where new experimental
findings can make the biggest contribution to the psychologi-
cal sciences,prep is highly variable and exaggerates the prob-

ability of replication. Only for very large effect sizes does
prep work (approximately) as advertised. Figure 1 suggests
that, unless we are willing to believe most experiments have
very large effects,prepwill on average lead us to overestimate
the probability of replication, and will do so with undesirably
high variability. Figure 1 also shows that we cannot safely
useprep to identify replicable or reliable small effects.

The Practical Consequences of
Misestimation forprep

Killeen (2005a, p. 351), in his closing statements, con-
ceives ofprep allowing the management of risk in a research
setting:

“But editors may lower the hurdle for poten-
tially important research that comes with so pre-
cise a warning label asprep. When replicabil-
ity becomes the criterion, researchers can gauge
the risks they face in pursuing a line of study:
An assistant professor may choose paradigms in
which prep is typically greater than .8, whereas a
tenured risk taker may [pursue] a line of research
havingpreps around .6”.

Of course, only clairvoyants can identify those experi-
ments that will give themprep values of exactly 0.6 or 0.8.
This means we cannot simply use the analysis in Figure 1
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to look up howprep will misestimate in practice. While our
analysis showsprep has general problems, it does not make
explicit how those problems will play out in practice when
prep is used to make predictions about replicability for ob-
served effect sizes as Killeen (2005a) proposed. In this sec-
tion we address the problem of misestimation in practice di-
rectly.

Research Strategies

Under Killeen’s (2005a) risk-management conception, re-
searchers do series of experiments, hunting for replicable and
reliable effects, according to some risk management strategy.
The more aggressive tenured researchers might choose ex-
periments they believe might have small effects, and avoid
doing less interesting experiments where the effect is obvi-
ous from the outset. The more conservative untenured re-
searchers might spread their net wider, being happy to do ex-
periments with large underlying effect sizes, but inevitably
also doing experiments with small underlying effect sizes.

A sensible way to think about these different risk-seeking
profiles is to imagine each attempted experiment having a
true but unknown effect size that is drawn from a distribu-
tion of possible experiments. The distribution that is used
corresponds to the risk management strategy. Four possible
strategies are shown in Figure 2. The top panel shows riskier
strategies for tenured researchers, focused on small effect
sizes. Strategy A assumes the distribution has its mode at
zero, while Strategy B makes the more optimistic assump-
tion that researchers are astute enough to be able to place
modes on small but genuine effects, and then try to con-
trol the variance of their distribution to focus on these effect
sizes. Strategies C and D in the bottom panel, for the un-
tenured researcher, follow the same pattern, except now the
distributions have greater variance, so that experiments with
larger underlying effects are also included in the mix.

All of the strategy distributions are symmetric about zero,
because of the nature of effect size measures (i.e., the mag-
nitude of an effect size carries information, but the sign is
arbitrary). This symmetry requires, for example, that ob-
served effects ofd = +2 andd =−2 be equally likely for any
given strategy. For this reason, it is possible to formulate any
strategy more succinctly as a distribution over absolute effect
size, in which case the strategies in Figure 2 would become
truncated Normal distributions. In these terms, the means for
Strategies A and C are zero, and the means for Strategies B
and D are 0.2. The standard deviations for Strategies A and
B are 0.3, and the standard deviations for Strategies C and D
are 0.8.

The Performance of p rep

Whatever strategy researchers use,prep is supposed to give
them the probability that effects they observe for each exper-
iment will be replicated in sign. Aprep value of 0.85 claims
there is an 85% probability the next effect will have the same
sign, and a 15% chance it will not. It is easy to test the useful-
ness ofprep as an estimator of these probabilities by simula-
tion. We examined the four strategies shown in Figure 2, and
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Figure 2. Choosing experiments according to a risk strategy. The
top panel shows two possible strategies for focusing on effects with
small effect sizes. The bottom panel shows two possible risk strate-
gies that are willing to tackle both small and large effects.

focused on a standard root mean square error (RMSE) mea-
sure of the difference between the true probability of replica-
tion and the estimate provided byprep.

Our simulation test used the following seven steps.

• Step 1: Choose an experiment by sampling from the
distribution defined by the risk strategy. Call the true under-
lying effect size for the particular experiment sampledδ.

• Step 2: Generate the observed effect size from
an experiment—which involves experimental and control
groups both withn subjects—from the Normal distribution
with meanδ and variance 2/n. Call thisd.

• Step 3: Calculate the true probability of replication,
which is given byp∗rep = Φ

(
sgn(d)δ/

√
2/n
)
.2

• Step 4: Calculateprep = Φ
(
|d|
√

n/4
)
.

• Step 5: Calculate the Mean Squared Error (MSE) be-
tween the true probability of replication,p∗rep, and the esti-

mateprep. For thetth trial, this is MSEt =
(

p∗rep− prep
)2.

• Step 6: Go back to Step 1 to conduct the next experi-
ment, until a total ofT have been completed.

• Step 7: When allT experiments are completed, aver-
age the MSEs over all the experiments, and take the square
root of this average, to get the final RMSE. That is, calculate
RMSE=

√
1/T ∑t MSEt .

To make the process of the simulation test concrete, the
first two example trials from our simulations, using Strat-
egy A with n = 10, proceeded as follows. On the first

2 To calculate this true probability of replication,p∗rep, given a
known true effect sizeδ, sample sizen, and an observed effect size
d, we are simply finding the area under the Normal distribution with
meanδ and variance 2/n that has the same sign (i.e., lies on the
same side of zero) asd.
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Table 1
The RMSE, and the average p rep values (in brackets), for experimental strategies A–D and various sample sizes.

Sample Size Strategy A Strategy B Strategy C Strategy D
n=10 0.22 (0.74) 0.22 (0.72) 0.19 (0.82) 0.20 (0.78)
n=20 0.21 (0.79) 0.22 (0.75) 0.16 (0.87) 0.18 (0.83)
n=50 0.18 (0.84) 0.20 (0.81) 0.13 (0.91) 0.15 (0.89)
n=100 0.16 (0.88) 0.17 (0.85) 0.11 (0.94) 0.13 (0.92)

trial δ was sampled to be 0.28, andd was then sampled
as 0.90. The true probability of replication is 0.73, and
prep is 0.90, so the mean square error for this experiment is
(0.73−0.90)2 ≈ 0.03. On the second trialδ was sampled to
be -0.51, andd was then sampled as -0.31. The true probabil-
ity of replication is 0.87, andprep is 0.67, so the mean square
error for this experiment is(0.87−0.67)2 ≈ 0.04. The final
RMSE measure is the square root of the average of all of the
mean square errors calculated in this way.

Table 1 shows the RMSE measures, and the average val-
ues of prep, for Strategies A–D with sample sizes of 10,
20, 50 and 100. These results are based onT = 1,000,000
simulated experiments.3 The RMSE measures can be inter-
preted as the average ‘distance’ between the true probability
of replication, and the estimate provided byprep.

It is clear that Table 1 showsprep is a poor estimator.
When risky strategies are in play, or when sample sizes are
small, the RMSEs are often over 0.2, which is a very large
discrepancy on a probability scale. The situation improves
for less risky strategies and larger sample sizes, but even for
Strategy C, which regularly does experiments with true effect
sizes greater than one, using a sample sizes of 100, so that
prep is giving an average value of 0.94, the RMSE remains
above 0.1.

The Underlying Problems

It is well known in statistics that the RMSE measure can
be understood as the sum of a bias term and a variance term
(e.g., Mood, Graybill, & Boes, 1974). Both need to be low—
so that an estimator consistently produces values near the
truth—for the RMSE measure to show good performance.
So, given the general problems with bias and variance in our
first (fixed-effect) analysis in Figure 1, it is not surprising
to find the poor RMSE values in our second (random-effect)
analysis in Table 1.

Why doesprep have these basic problems? We tackle bias
first. Although authors have tried to derive and interpretprep
from a number of statistical perspectives, the most useful one
(as usual) is the Bayesian perspective, alluded to in our intro-
duction, and detailed in the appendix. There it is shown that
prep can be derived from the posterior predictive distribution
drep | d when an improper flat prior is placed on the true effect
sizeδ (e.g., Doros & Geier, 2005).

The problem is that the assumption of a flat prior on
the true underlying effect size is not a good one. Nobody

believes Nature makes effect sizes of 500, 50, 5, and 0.5
all equally likely experimental outcomes, yet this is exactly
what prep assumes. It is true that Bayesian statisticians often
use flat priors to express ignorance about the value of loca-
tion parameters that lie on arbitrary scales. But effect sizes,
by design, come normalized on an invariant and readily in-
terpreted scale, for which there is strong and important prior
information. For this reason, no Bayesian would argue for a
flat prior on effect sizes. Indeed, in Bayesian statistics, it is
standard practice to use prior distributions that put more mass
on small effect sizes than on large effect sizes (e.g., Gönen,
Johnson, Lu, & Westfall, 2005; Lee, 2008; Zellner & Siow,
1980).

Discussing the Bayesian interpretation ofprep, Sanabria
and Killeen (2007) defend the choice of the improper flat
prior, arguing that it has the advantage of not “including in-
formation not specifically contained within the experiment
itself” (p. 481). This does not seem to us to be a very con-
vincing argument, because the scale of an effect size is part
of understanding an experiment. If we tell you we have just
collected a response time, you do not know whether we are
going to say 0.3, 3, 30, or any other number, because you do
not know whether our measurements are in seconds, tenths
of a second, hundredths of a second, or any other scale. Here
a flat uniform prior appropriately captures what you know,
which is almost nothing, and lets the data speak for them-
selves. But if we tell you we have just collected an effect
size, you know we are much more likely to say 0.3 than 3,
and that we are not going to say 30. The experiment, by
virtue of the normalized effect size scale, contains specific
prior information that must be part of our inferences. The
flat uniform prior assumed byprep is a strange distortion of
what is known, and forces the data to say things they do not
mean, and are not true.

Intuitively, becauseprep assumes a flat prior, it does not
give sufficient prior probability to small effect sizes around
zero. This means it is overly optimistic about the magnitude
of the effect sizes it expects to exist in Nature, and so over-
estimates the probability of replication based on the single
observed effect size it receives as a datum. It follows that
it is possible to improve the biasprep by making more real-
istic prior assumptions. The generalization ofprep given by
pθ

rep in Equation 5 of the appendix allows for non-uniform

3 Using thead hoc correction in whichn is replaced byn−2 (in
our notation), some of the entries in Table 1 change in the second
decimal place by 0.01, but most do not change at all.
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priors, taking the form of zero-mean Normal distributions
over effect sizes. Setting this prior to Strategy A or C, which
are also zero-mean Normal distributions over effect sizes, re-
moves the bias fromprep. It also, however, results in smaller
prep values.

Removing the variability ofprep is more challenging. One
basic problem is the conception—which is fundamental to
the definition ofprep—that agreeing in sign is a good way
to measure replication. This conception forcesprep to at-
tempt the estimation of a binary quantity, which makes high
variability almost inevitable. Removing the bias inprep, us-
ing the approach outlined above, will not address the prob-
lem of variability. Note that in Table 1, even for Strategy
C with n = 100, where the effect sizes and sample size are
large enough that bias is not severe,prep continues to perform
poorly in terms of its RMSE, because it remains variable.

Conclusion

We have presented direct tests ofprep as an estimate of the
probability replication for different underlying effect sizes,
and as a predictor of replication for different experimental
strategies. prep performs poorly on both because it is bi-
ased and highly variable. It overestimates the probability of
replication for small observed effect sizes, which are exactly
those it was developed to help diagnose, and are the most
important ones for helping develop models and theories in
psychology. The nature of the bias that leadsprep to exag-
gerate evidence is general, and is based, at least in part, on
a basic mis-assumption about the information conveyed by
effect sizes. In additionprep suffers from having to estimate
the binary quantity of agreement in sign, which makes it a
highly variable measure.

In short, our results show thatprep is a poor estimator and
predictor. Thus, while we agree with several of the motiva-
tions behindprep—including the focus on prediction to eval-
uate models and data, and the need to change current statisti-
cal practices in psychology—we do not viewprep itself as a
suitable alternative.
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Appendix: Formal Details

This appendix gives formal details of the derivation ofprep
in a Bayesian context, and closely follows the original work
of Doros and Geier (2005). The prior on the true effect size
δ we assume to be Normal (we will later let its variance go
to infinity so that the Normal becomes the uniform assumed
by prep), with varianceτ2

δ∼ Normal
(
0, τ2). (1)

For experimental and control groups with equal numbers of
subjects,n, the observed effect size is then

d ∼ Normal
(
δ,

2
n

)
. (2)

The posterior of the true effect size conditional on this obser-
vation is now

δ | d ∼ Normal
(
dθ,

2
n

θ
)
, (3)

where

θ =
n
2τ2

1+ n
2τ2 .

This makes the posterior predictive density ofdrep, the next
effect

drep | d ∼ Normal
(
dθ,

2
n

+
2
n

θ
)
. (4)

Sinceprep is the probability thatd anddrep agree in sign, it is
given by

pθ
rep = Pr

(
ddrep≥ 0 | d

)
= Φ

(
|d|θ

√n
2√

1+θ

)
. (5)
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Now we let the Normal become uniform, by lettingτ → ∞,
so thatθ→ 1, and we get

prep = Φ
(
|d|
√

n
4

)
, (6)

where Φ(·) is the cumulative distribution function of the
standard Normal random variable.
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