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a b s t r a c t

Hierarchical Bayesian modeling provides a flexible and interpretable way of extending simple models
of cognitive processes. To introduce this special issue, we discuss four of the most important potential
hierarchical Bayesian contributions. The first involves the development of more complete theories,
including accounting for variation coming from sources like individual differences in cognition. The
second involves the capability to account for observed behavior in terms of the combination of multiple
different cognitive processes. The third involves using a few key psychological variables to explain
behavior on awide range of cognitive tasks. The fourth involves the conceptual unification and integration
of disparate cognitive models. For all of these potential contributions, we outline an appropriate
general hierarchical Bayesian modeling structure. We also highlight current models that already use the
hierarchical Bayesian approach, as well as identifying research areas that could benefit from its adoption.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Bayesian statistics provides a compelling and influential
framework for representing and processing information. Over the
last few decades, it has become the major approach in the field
of statistics, and has come to be accepted in many or most of
the physical, biological and human sciences. This paper, and this
special issue, are about what one particular niche within Bayesian
statistics, in the form of hierarchical models, can contribute to
cognitive modeling.

1.1. The nature of Bayesian statistics

It would be wrong to claim that there is complete agreement
on exactly how Bayesian analyses should be conducted and
interpreted. Like any powerful and fundamental idea, it can be
conceived and formulated in a variety of ways. At the basic
theoretical level, the ‘objective Bayesian’ approach expounded
by Jaynes (2003) encourages a different style of thinking about
Bayesian analysis than the ‘subjective Bayesian’ approach of
de Finetti (1974). At the practical level of conducting Bayesian
analyses, there is also a spectrum, ranging from work that closely
follows the objective viewpoint (e.g., Gregory, 2005; Sivia, 1996),
to work that is more agnostic or adopts a naturally subjective
position (e.g., Congdon, 2006; Gelman, Carlin, Stern, & Rubin, 2004;
Gelman & Hill, 2007). There are many additional subtleties and
perspectives in the excellent accounts provided by Bernado and
Smith (2000), Lindley (1972) and MacKay (2003) and others.
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But Bayesian statistics is in agreement on the very basic is-
sues. Knowledge and uncertainty about variables is represented
by probability distributions, and this knowledge can be pro-
cessed, updated, summarized, and otherwise manipulated using
the laws of probability theory. These commitments distinguish
Bayesian statistics from other competing frameworks, especially
those based on frequentist views of probability, and sampling
distribution approaches to handling uncertainty. What Bayesian
statistics offers is a remarkably complete, coherent and intuitive
method for understanding what is known, based on the assump-
tions being made, and the information that is available.

1.2. Three uses for Bayesian statistics in the cognitive sciences

Because Bayesian statistics provides a formal framework for
making inferences, there are different ways it can be applied in
cognitive modeling. One way is to use Bayesian methods as a
statisticianwould, as amethod for conducting standard analyses of
data. Traditionally, the framework for statistical inference based on
sampling distributions and null hypothesis significance testing has
been used. Calls for change, noting the clear superiority of Bayesian
methods, date back at least to the seminal paper of Edwards,
Lindman, and Savage (1963), and have grown more frequent and
assertive in the past few years (e.g., Gallistel, 2009; Kruschke,
2010a; Lee & Wagenmakers, 2005; Wagenmakers, 2007). It seems
certain Bayesian statistics will play a progressively more central
role in the way cognitive science analyzes its data.

A second possibility is to apply Bayesian methods to cognitive
modeling as a theoretician would, as a working assumption about
how the mind makes inferences. This has been an influential
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theoretical position for the last decade or so in the cognitive
sciences (e.g., Chater, Tenenbaum, & Yuille, 2006; Griffiths, Kemp,
& Tenenbaum, 2008). Most existing work has focused on providing
‘rational’ accounts of psychological phenomena, pitched at the
computational level within the three-level hierarchy described
by Marr (1982). These models generally use Bayesian inference
as an account of why people behave as they do, without trying
to account for the mechanisms, processes or algorithms that
produce the behavior, nor how those processes are implemented
in neural hardware. More recently, however, there have also
been attempts to apply computational sampling approaches from
Bayesian statistics as a theoretical metaphors at the algorithmic
and implementation levels. In this work, models are developed in
whichpeoplementally sample information (e.g., Sanborn, Griffiths,
& Shiffrin, 2010). These uses of Bayesian statistics as theoretical
analogies have led to impressive new models, and raised and
addressed a range of important theoretical questions. As with all
theoretical metaphors – including previous ones like information
processing and connectionist metaphors – ‘‘Bayes in the head’’
constitutes a powerful theoretical perspective, but leaves room for
other complementary approaches.

A third way to use Bayesian statistics in cognitive science
is to use them to relate models of psychological processes to
data (e.g., Lee, 2008; Rouder, Lu, Speckman, Sun, & Jiang, 2005;
Wetzels, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2010).
This is different from the data analysis approach, because the
focus is not generic statistical models like the generalized linear
model. Instead the goal is relate a detailedmodel of some aspect of
cognition to behavioral or other observed data. One way to think
of the distinction is that data analysis typically does inference on
the measured dependent variables from an experimental design
– measures of recall, learning, response times, and so on –
whereas modeling applications typically do inference on latent
psychological parameters – memory capacities, learning rates,
decision criteria, and so on– that control the behavioral predictions
of the model. It is also different from the use of Bayesian inference
as a metaphor for the mind (Kruschke, 2010b). There is no
requirement that the cognitive models being related to data make
Bayesian assumptions. Instead, they are free to make any sort of
processing claims about how cognition works. The goal is simply
to use Bayesian statisticalmethods to evaluate the proposedmodel
against available data.

This third approach is the focus of the current special issue.
We think it is an especially interesting, important, and promising
approach, precisely because it deals with fully developed models
of cognition, without constraints on the theoretical assumptions
used to develop the models. The idea is to begin with existing
theoretically grounded and empirically successful models of
cognition, and embed them within a hierarchical Bayesian
framework. This embedding opens a vista of potential extensions
and improvements to current modeling, because it provides a
capability to model the rich structure of cognition in complicated
settings.

In the remainder of this paper, we identify four major new
capabilities offered by the hierarchical Bayesian extensions of
cognitive models. We discuss each capability, focusing on how it
can help theory and model development, and identifying places
where they have already been applied, or could and should be
applied soon.

2. Benefits of using hierarchical Bayes in cognitive modeling

Before discussing the potential contribution hierarchical
Bayesian methods canmake to cognitive modeling, we need to say
what we mean by ‘hierarchical Bayes’. We do that in the next sec-
tion – by characterizing its complement, in the form of the cur-
rently dominant non-hierarchical modeling approach – and then
discuss the advantages of the hierarchical approach.
Fig. 1. A general structure for non-hierarchical models of cognition.

2.1. Non-hierarchical modeling

While there is consistent conceptual overlap, there does not
seem to be a single formal agreed-upon definition of what
makes a model ‘‘hierarchical’’. Some authors give a fairly formal
definition in terms of the fundamental concept of exchangeability
(e.g., Bernado & Smith, 2000; Schervish, 1995), while others
emphasize particularly common and useful hierarchical structures
like random-effects and latent mixture models, giving a sort of
definition-by-example (e.g., Congdon, 2006; Koop, Poirer, & Tobias,
2007). But, there is at least some literature that seem to regard
some random-effects models as non-hierarchical (e.g., Rashbash
& Browne, 2008), contradicting what other literature advocates.
More generally, it is probably possible to get caught up in
an unhelpful semantic argument about whether some models
are hierarchical, depending on how they are parameterized and
interpreted.

To cut through these difficulties, we construe hierarchical
models broadly, and with reference to their meaning as models of
cognition. In particular, we treat as hierarchical any model that is
more complicated than the simplest possible type ofmodel shown1

in Fig. 1. In this model, a set of parameters θ generate a set of
data d through a likelihood function f (·). While this simple non-
hierarchical structure seems very limiting, it could be argued to
encompass the vastmajority of successful andwidely-usedmodels
in the current study of cognition.

As one concrete example, Fig. 1 naturally accommodates
Signal Detection Theory (SDT: Green & Swets, 1966; Macmillan
& Creelman, 1991), which is widely used in the modeling of
memory, decision-making and reasoning (e.g., Heit & Rotello,
2005; Snodgrass & Corwin, 1988). The SDT model provides a
mapping from two parameters, measuring discriminability and
a response criterion or bias, to observed data in the form of hit
and false-alarm counts. Formally, for model parameters giving a
measure of discriminability d and a measure of bias c , Fig. 1 has
θ = (d, c). For observed data counts of h hits and f false alarms
out of s and n noise trials, Fig. 1 has d = (h, f , s, n). Then for the
likelihood function that formalizes SDT, we can write d ∼ f (θ).

As another example, a similarly simple mapping from pa-
rameters to data characterizes the Generalized Context Model
(e.g., Nosofsky, 1986) of category learning, which uses psycho-
logical parameters like strength of generalization, focus of atten-
tion and response bias to model the choices made in a category
learning task. As a third example, multidimensional scaling mod-
els (e.g., Borg & Lingoes, 1987) provide a mapping between la-
tent coordinate locations representing stimuli and their observed
judged pairwise similarities. As a final example, the Ratcliff diffu-
sionmodel (e.g., Ratcliff &McKoon, 2008) provides amapping from

1 Throughout, we use a graphical model formalism to characterize different
hierarchical modeling structures. This is a popular formalism in machine learning
and, increasingly, in the cognitive sciences (e.g., Jordan, 2004; Koller, Friedman,
Getoor, & Taskar, 2007; Shiffrin, Lee, Kim, &Wagenmakers, 2008). It uses a directed
graph to show the relationships between unobserved (unshaded) parameters and
observed (shaded) data.
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Fig. 2. A general structure for the hierarchical dependence of basic data-generating
process f parameterized by θ upon a more abstract process g parameterized by ψ.

a range of parameters controlling bias, caution, evidence and a
baroquemenagerie of other psychological variables to the joint dis-
tribution of accuracy and response times for simple decisions. This
list of cognitivemodels consistentwith non-hierarchicalmappings
fromparameters to data could bemade quite large, andwould cap-
ture many of the important contemporary models of cognition.

All of these models provide worthwhile starting points for
hierarchical Bayesian development. By introducing additional
structure to the simple parameter-to-data relationship shown in
Fig. 1, it is possible to extend existing successfulmodels ofmemory,
learning, decision-making and other basic cognitive phenomena.
We now discuss a range of generic possible extensions, trying to
highlight how they might contribute to an improved account of
cognition.

2.2. Developing deeper theories

The most obvious hierarchical structure – and the one that
intuitively warrants the label ‘hierarchical’ – is shown in Fig. 2.
In models with this form, the basic model parameters θ are
themselves generated by some other process g(·), parameterized
by ψ, which are sometimes called hyper-parameters. The impact
of this extension is that it is no longer satisfactory or complete to
describe how data are generated in terms of the basic parameters.
In the hierarchical version, it is also theoretically important to
say how these basic parameters are generated. That is, instead of
just needing a theory of task performance, given by the mapping
d ∼ f (θ), a theory is also needed about the parameters that
control task performance, given by the mapping θ ∼ g(ψ). In this
way, the hierarchical extension of basic non-hierarchical cognitive
models has the potential to drive theorizing about the parameters
– representing key psychological variables – to deeper and more
fundamental levels of abstraction.

Perhaps the best example of the need for this sort of struc-
ture is the need to accommodate individual differences. These are
ubiquitous throughout cognition, but poorly handled by the non-
hierarchical approach shown in Fig. 1. The non-hierarchical ap-
proach has to rely on first doing separate inference for parameters
and data for each person, and then trying to say something about
individual differences through post-hoc analyses. In the hierarchi-
cal approach in Fig. 2, the structure in individual differences is di-
rectly captured by the process g and its parameters ψ.

Shiffrin et al. (2008) provide a worked tutorial example for the
case of memory retention. Here the data d are counts of how often
memory items are recalled at different time periods, the function
f is a memory retention function like the exponential or power
function (e.g., Rubin & Wenzel, 1996), and the parameters θ are
the starting points, decay rates, and other standard properties of
those retention functions. In the hierarchical extension, g might
be a Normal distribution, parameterized by a mean and variance
Fig. 3. A hierarchical modeling approach allowing the same underlying psycholog-
ical variables to generate behavior in multiple related behavioral tasks.

in ψ that then describes the distribution over starting points and
decay rates across individuals. This sort of model constitutes a
deeper level of psychological theorizing, because it not only allows
for individual differences, but imposes a model structure on those
differences, and allows inference about parameters – like the group
mean and variance – that characterize the individual differences.

Almost all of the articles in this special issue use this approach,
and its generality is clear just from these applications to models of
memory (Averell & Heathcote, 2011; Morey, 2011; Pooley, Lee, &
Shankle, 2011; Pratte & Rouder, 2011), decision-making (Nilsson
et al., 2011; van Ravenzwaaij, Dutilh, & Wagenmakers, 2011),
confidence (Merkle, Smithson, & Verkuilen, 2011), and emotional
states (Lodewyckx, Tuerlinckx, Kuppens, Allen, & Sheeber, 2011).
Some these papers usemodels that go beyond simple independent
characterizations of differences in individual parameters, and
begin to model the co-varying structured relationships between
parameters, or their relationship to other relevant psychological
variables.

While individual differences provide an intuitive example,
there are many other applications of the simple hierarchical struc-
ture in Fig. 2. Kemp, Perfors, and Tenenbaum (2007) use this
approach in modeling of basic inductive processes in cognitive de-
velopment that require learning what they term ‘overhypotheses’.
Essentially, their overhypotheses are themappings g that constrain
the variety seen in the basic model parameters θ. Rather than the
deeper level of abstraction accommodating individual differences,
it now formalizes the constrained relationship between the differ-
ent problems encountered by people. As Kemp et al. (2007) argue,
the ability to acquire this mapping constraint is extremely pow-
erful developmentally, because it means what is learned in one
specific situation can help improve and hasten learning in related
situations. Statisticians sometimes call this basic property of hier-
archical models ‘‘sharing statistical strength’’, and it is one of the
most powerful motivations for moving beyond simple mappings
of parameters to data (e.g., Gelman et al., 2004).

2.3. Linking psychological variables to multiple phenomena

A different sort of hierarchical model is shown in Fig. 3. In this
model, there is only one level of abstraction, but the parameters θ
are responsible for generatingmany sorts of data d1, . . . dn through
a range of different models with likelihood functions f1, . . . , fn. In
effect, this hierarchical structure allows the same psychological
variables to influence behavior onmultiple tasks, throughmultiple
cognitive processes. This sort of unification should be a basic goal
for the cognitive sciences, as it is for other empirical sciences. Being
able to explain a range of observed phenomena in terms of a few
key variables is the hallmark of good theorizing and modeling.

It is surprisingly hard, however, to find compelling examples
of this approach in modeling cognition. In the study of human
memory, it has long been a goal to develop a single model of
multiple tasks – recognition, free recall, serial recall, and so on
– by assuming different processes operate on the same basic
memory system (e.g., Gillund & Shiffrin, 1984; Nilsson et al., 2008).
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In terms of Fig. 3, these unifying models would have common
memory parameters represented by θ, and have f1 formalizing
the recognition process, f2 the free recall process, and so on,
with d1 being recognition data, d2 free recall data, and so on. In
this special issue, Pooley et al. (2011) make some steps towards
using hierarchical methods to model recall and recognition data
simultaneously.

Other areas in cognitive modeling striving for similar unifi-
cation of related tasks through common psychological variables
are harder to identify. Indeed, sometimes the accepted practice
runs counter to the aim of unification. A good example is pro-
vided by the similarity-scaling and category learning literature
(e.g., Kruschke, 1992; Lee & Navarro, 2002; Nosofsky, 1992). In this
work, similarity-scalingmethods likemultidimensional scaling are
used to derive representations of stimuli from similarity data. Once
these representations are inferred, they become part of category
learning models that then attempt to account for the choices peo-
plemake classifying the stimuli into categories. Conceptually, then,
the causal process of the scientific inference is from similarity data,
to representational parameters, and then to category learning data.

This is not at all what is depicted in Fig. 3, which shows
the same parameters generating multiple data. The hierarchical
structure in Fig. 3 would argue that the same underlying mental
representation of the stimuli contributes to the generation of
both the observed similarity data and the observed category
learning behavior. Theoretically, this causal account seems more
intuitively satisfying, and the nature of the modeling it suggests
is more complete, coherent, and parsimonious. Instead of two
separate inference stages – for similarity-scaling parameters and
then category learning parameters – a hierarchical model would
do the following: It would have the similarity data as d1, the
category learning data as d2, all of the representation and category
learning parameters (e.g., the coordinate location parameters from
multidimensional scaling and the attention, generalization, bias
and other parameters from the Generalized Context Model) in
θ. Then the model f1 would implement multidimensional scaling
(i.e., not depend on category learning parameters), and f2 would
implement theGCM, using all of the parameters. Both f1 and f2 were
given Bayesian implementations by Lee (2008), but were never
combined in this hierarchical way. Recently, however, Zeigenfuse
and Lee (2010a) have developed hierarchical Bayesian models
of feature representations and similarity data that adopt the
approach in Fig. 3, and showed that is very effective.

2.4. Linking psychological phenomena to multiple processes

Fig. 4 shows a hierarchical model that allows for multiple
cognitive processes to contribute to a single set of observed data.
The different processes are represented by f1, . . . , fn and have
different associated parameters θ1, . . . , θn. How these processes
combine to produce the observed data d is determined by amixing
process h parameterized by z . One possibility for combination
is that h chooses exactly one of the processes f , according to
probabilities given by z . Another possibility is that hmixes together
all of the processes f according to proportions given by z . Of course,
there are many other possibilities.

The key point, in terms of modeling cognition, is that Fig. 4 does
not demand a monolithic account of all of the variation seen in
observed behavior in terms of a single cognitive process, or a single
set of controlling psychological variables. Instead, observations
are seen naturally as a mixture of potentially different processes.
This sort of assumption is needed in many domains, and is
perhaps best developed in the study of accuracy and response time
distributions for simple decision-making. Ratcliff and Tuerlinckx
(2002) pioneered a mixture approach in which a monolithic
account of responding, based on the Ratcliff Diffusion model,
Fig. 4. A hierarchical modeling approach allowing a set of different psychological
processes to combine to produce observed data.

was supplemented with the possibility of contaminant trials.
These contaminant trials assumed very different distributions for
accuracy and response times, to help explain the variation seen in
real data.

More recently, this approach has been extended by Vandek-
erckhove, Tuerlinckx, and Lee (2008), using hierarchical Bayesian
methods, to model a decision-making experiment as a mixture of
standard trials, delayed start trials, and fast guesses. The first of
these types remains modeled by the Ratcliff Diffusion model, but
the remaining two have detailed process accounts of their own,
characterizing the accuracy and response time properties expected
for various aberrant ways participants might approach some trials.
As these alternative models become progressively more sophisti-
cated, they no longer deserve the label ‘contaminant’, but become
part of a collection of cognitive processes, potentially controlled by
different psychological variables, all ofwhich are needed to explain
the observed data. In these sorts of applications, the process f1 for-
malizes the Ratcliff Diffusionmodel, f2 the delayed startmodel, and
f3 the fast guess model, with the parameters θ1 belonging to the
diffusion model, θ2 the delayed start model, and θ3 the fast guess
model. The mixing process h identifies the accuracy and response
time data in d as belonging to only one of these processes at the
level of a trial, as given by the index in z for each trial.

As amodeling strategy, the use ofmixtures, and the assumption
of qualitatively different components, makes a lot of sense. There
are some trials in any psychological experiment that just do not
adhere to the interesting cognitive process that motivated the
study. It should not be necessary for a cognitive model to be
able account for data from these trials in order to be regarded
as successful. Nor, in most cases, is it even a good idea to try
and extend the model to do so. Retaining a non-hierarchical
modeling approach, but complicating the basic model (through
a more elaborate likelihood function f , or additional parameters
in θ, or both) does not seem like the best theoretical reaction
to data that do not have much to say about core aspects of
intelligent human cognition. Instead, the additional complexity
can come from the sort of hierarchical extension shown in Fig. 4,
preserving the basic model, but explaining the additional observed
data through other processes. Zeigenfuse and Lee (2010b) provide
a number of example of this general approach, demonstrating,
among other things, how estimates of key parameters in the
substantive cognitive model of interest can be affected by the
assumptions made about contaminant task behavior.

Besides modeling simple decision-making, there are some
other important example of multiple processes being assumed
to underly data. The Topics model (e.g., Griffiths, Steyvers, &
Tenenbaum, 2007) explains the generation of text documents as
coming from simple word selection processes based on a mixture
of different semantic topics. The mixture assumption is crucial
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Fig. 5. A hierarchical approach for treating data as being generated by a set of
different models, but unifying the variation in the models themselves in terms of
a common generation process.

to explain basic aspects of language like homonymy, where the
same observed word can have two or more different meanings,
depending upon the latent topic from which it was generated.
Another recent example of mixture modeling is provided by Lee
and Sarnecka (2010), in a developmental context. These authors
showed that children’s performance on a simple task assessing
knowledge of number concepts could be described as a mixture of
systematically different sorts of behavior that was dependent on
underlying developmental stages.

2.5. Unifying different models

Fig. 5 shows an ambitious hierarchical modeling structure that
combines some of the approaches already discussed. Multiple dif-
ferentmodels, with data generating processes f1, . . . , fn contribute
to the data d, according to some combination rule h governed by z .
This follows our discussion of Fig. 3. But, in addition, the hierar-
chical approach in Fig. 5 combines the various models, assuming
they are generated by some processes g controlled by psychologi-
cal variablesψ. This combination ismuch like Fig. 4, except that the
unification is at the level of models rather than tasks. This means
that the hierarchical approach in Fig. 5 not only allows multiple
models to account for observed behavior, but also provides a for-
mal account of how those models are generated.

An excellent example of this approach in cognitive modeling
is provided by Kemp and Tenenbaum (2008). These authors
considered data involving inductive inferences about how binary
features belong to a set of stimuli. There are many candidate
structured models for explaining these sort of exemplar-by-
feature inferences, including clustering models, tree models,
spatial models, and a variety of others (e.g., Shepard, 1980). Each
of these models potentially involves different sorts of parameters,
θ1, . . . , θn, involving psychological constructs like cluster weights,
tree edge lengths, spatial coordinate locations, and so on. In
addition, each model requires different processes to translate
its representational formalism into observed inductive behavior,
necessitating the f1, . . . , fn for each model.

The key contribution of the modeling presented by Kemp and
Tenenbaum (2008) is to show how the different representation
models can be unified by appealing to a data generating process
based on graph grammars. Using some basic building blocks for
assembling a graph, formalized by the process g , different choices
of values for a controlling set of parameters ψ can produce
cluster structures, trees, spatial grids, or a range of other rich
representational possibilities. The observed inductive inferences
made by people can then be given a very complete and satisfying
psychological explanation, which acknowledges that different
domains of knowledge are represented differently, but is able to
say how people could learn those domain-specific representations
from basic mental building blocks.

Two other examples of cognitive models following basically
the same hierarchical structure as Fig. 5 are provided by Lee
(2006) and Lee and Vanpaemel (2008). Lee (2006) considered
human performance on a type of sequential decision-making task,
where different models corresponded to various decision bounds
that guided the observed behavior. These different decision-bound
models were then unified by proposing a simple generating
process for establishing a sequential set of thresholds. This over-
arching generative process was based on a finite state automaton,
and controlled by parameters that described the probabilities of
the thresholds shifting or staying fixed over the sequence. Lee
and Vanpaemel (2008) developed an account of category learning
behavior, relying on different models of category representation
spanning the range from prototype to exemplar models. They
again unified these disparate models with a simple generative
mechanism based on psychological variables controlling the level
of mental abstraction, and the reliance on stimulus similarity,
in forming category representations. It is probably reasonable to
argue that these two models – unlike the Kemp and Tenenbaum
(2008) modeling – had a common data generating process linking
different representational models to the observed data, and so
need only a single f in Fig. 5. But they do capture the key idea
of needing very different models combining to account for the
richness of human behavior, while also needing a theoretical
unification of those models to provide a complete and coherent
account of cognitive complexity.

One current debate in cognitive modeling that can naturally
understood in terms of the need for explaining how models are
generated comes from the decision-making literature. Here, there
is a lively debate surrounding the ‘fast and frugal’ heuristic ap-
proach advocated by Gigerenzer and others (e.g., Gigerenzer &
Todd, 1999). This is a theoretically interesting and empirically
successful approach to understanding human decision-making in
terms of simple heuristic processes that are tuned to environ-
mental regularities. But, authors like Dougherty, Franco-Watkins,
and Thomas (2008) and Newell (2005) have argued that relying
on a repository of different simple heuristics to explain decision-
making begs the question as to how those heuristics are generated
in the first place. This challenge is essentially one of unifying the
heuristics, by appealing tomore abstract cognitive abilities that are
capable of tuningmental capabilities to environments. A successful
theoretical resolution would likely fit within the sort of hierarchi-
cal Bayesian modeling framework presented in Fig. 5.

Perhaps most fundamentally, Vanpaemel (2011) argues in this
special issue that linking models hierarchically is one way to
address the basic Bayesianneed to specify theoreticallymeaningful
priors. The key idea is that the prior predictive distribution of
the hierarchical part of the model, which indexes different basic
models, naturally constitutes a psychologically interpretable prior
over those models. This is a powerful idea, running counter to a
current prejudice for making priors as uninformative as possible,
and deserves to be an active area of research in using hierarchical
Bayesian methods to model cognition.

3. Conclusion

Non-hierarchical approaches to understanding cognitive pro-
cesses dominate the current landscape. The basic approach can
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probably fairly be caricatured as one of identifying a psy-
chological phenomenon (e.g., generalization, memory, decision-
making), finding an interesting task relating to some aspect of the
phenomenon (e.g., similarity judgments, recall, two-alternative
forced-choice decisions) and building a model that can fit empir-
ical data from the task using a few psychologically meaningful
parameters. This is a very reasonable way to begin building a sys-
tematic understanding of human cognition, but has serious limi-
tations if attempts are to made to account for its full richness and
complexity.

Hierarchical Bayesian methods offer one way – although cer-
tainly not the only way (cf. Cassimatis, Bello, & Langley, 2008)
– to broaden the scope of current cognitive models. This intro-
duction has tried to identify at least four possible broadening uses
of hierarchical Bayesian methods. First, they allow model devel-
opment to take place at multiple levels of theoretical abstraction.
Second, they allow the same psychological variables to account for
behavior over sets of related tasks. Third, they permit the possibil-
ity that data from a single task are best understood as coming from
amixture of qualitatively and quantitatively different sources. And,
fourth they promise to unify disparate models, and as a conse-
quence allow the theoretically-grounded specification of priors.

The papers in this special issue try to demonstrate concretely
how hierarchical Bayesian structures can naturally extend current
modeling. These extensions can be as theoretically straightforward
as allowing for individual differences, or stimulus differences, or
the interaction between different sorts of people and stimuli in
modeling task behavior (e.g., Rouder et al., 2007; Vandekerckhove,
Verheyen, & Tuerlinckx, 2010). They can allow for the more
complete theoretical explanation of data from a single task, letting
different people use different cognitive processes, or letting the
same people use different processes at different times. They can
force the development of better theories, by demanding that key
psychological parameters and processes be identified to explain
behavior on a wide range of tasks. They can force the development
of new theories, answering new questions about not only what
processes and parameters are involved in cognition, but also how
those parameters and processes can themselves be modeled.

In short, hierarchical Bayesian approaches demand our ac-
counts of cognition become deeper and better integrated. The aim
of this special issue is to provide some concrete examples of the
potential of hierarchical Bayes in practice, for models ranging from
memory, to category learning, to decision-making. We hope that
they are useful early exemplars of what should become an impor-
tant and widespread way of building and analyzing models of cog-
nition.
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