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Two-choice response times are a common type of data, and much research has been devoted to the
development of process models for such data. However, the practical application of these models is
notoriously complicated, and flexible methods are largely nonexistent. We combine a popular model for
choice response times—the Wiener diffusion process—with techniques from psychometrics in order to
construct a hierarchical diffusion model. Chief among these techniques is the application of random
effects, with which we allow for unexplained variability among participants, items, or other experimental
units. These techniques lead to a modeling framework that is highly flexible and easy to work with.
Among the many novel models this statistical framework provides are a multilevel diffusion model,
regression diffusion models, and a large family of explanatory diffusion models. We provide examples
and the necessary computer code.

Keywords: response time, psychometrics, hierarchical, random effects, diffusion model

Supplemental materials: http://dx.doi.org/10.1037/a0021765.supp

In his 1957 presidential address at the 65th annual business meet-
ing of the American Psychological Association, Lee Cronbach drew
a captivating sketch of the state of psychology at the time. He focused
on the two distinct disciplines that then existed in the field of scientific
psychology. On the one side, there was the experimental discipline,
which concerned itself with the systematic manipulation of conditions
in order to observe the consequences. On the other side, there was the
correlational discipline, which focused on the study of preexisting
differences between individuals or groups. Cronbach saw many po-
tential contributions of these disciplines to one another and argued
that the time and opportunity had come for the two dissociated fields
to crossbreed: “We are free at last to look up from our own bedazzling
treasure, to cast properly covetous glances upon the scientific wealth
of our neighbor discipline. Trading has already been resumed, with
benefit to both parties” (Cronbach, 1957, p. 675). Two decades

onward, Cronbach (1975) saw the hybrid discipline flourishing across
several domains.

In the area of measurement of psychological processes, there
exists a schism similar to the one Cronbach pointed out in his
presidential address. Psychological measurement and individual
differences are studied in the domain of psychometrics, whereas
cognitive processes are the stuff of the more nomothetic mathe-
matical psychology. In both areas, statistical models are used
extensively. There are common models based on the (general)
linear model, such as analysis of variance (ANOVA) and regres-
sion, but we focus on more advanced, nonlinear techniques.

Experimental psychology has, for a long time, made use of
process models to describe interesting psychological phenomena
in various fields. Some famous examples are Sternberg’s (1966)
sequential exhaustive search model for visual search and memory
scanning, Atkinson and Shiffrin’s (1968) multistore model for
memory, multinomial processing tree models for categorical re-
sponses (Batchelder & Riefer, 1999; Riefer & Batchelder, 1988),
and the general family of sequential sampling models for choice
response times (Laming, 1968; Link & Heath, 1975; Ratcliff &
Smith, 2004). One property shared by these process models is that
they give detailed accounts of underlying response processes. Such
models are typically applied to data from single participants, and
they are very successful in fitting empirical data.

In the correlational area, however, measurement models are
dominant. Most well known among these is the factor analysis
(FA) model, but models from item response theory (IRT) belong to
this class as well. In the past decade, a lot of work has appeared
showing the relationships between FA, IRT, and multilevel mod-
els. Rijmen, Tuerlinckx, De Boeck, and Kuppens (2003) showed
that many IRT models are generalized linear mixed models and
that the rest are nonlinear mixed models (NLMM; see also De
Boeck & Wilson, 2004). Skrondal and Rabe-Hasketh (2004) of-
fered an encompassing framework for FA models, IRT models,
and multilevel models (called generalized linear latent and mixed
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models). The models that originated in correlational research are
used to model individual differences. Often such models are less
detailed and more general than the models discussed in the previ-
ous paragraph, but they are able to locate the main sources of
individual differences.

Recently, some convergence between the experimental and the
correlational areas has emerged. Batchelder and Riefer (1999; see
also Batchelder, 1998; Riefer, Knapp, Batchelder, Bamber, &
Manifold, 2002) introduced the concept of cognitive psychomet-
rics. In cognitive psychometrics, models from cognitive psychol-
ogy are used to capture specific interesting aspects of the data.
These models typically assume that the data have been gathered
with a specific paradigm (e.g., that they are binary choice response
times). Although this necessarily makes the models less general
than multipurpose statistical models, it provides the advantage of
offering substantive insight into the data. Furthermore, ideas of
hierarchical modeling have recently been introduced into the area
of cognitive modeling, most notably by Rouder and colleagues
(see e.g., Rouder & Lu, 2005; Rouder, Lu, Speckman, Sun, &
Jiang, 2005; Rouder et al., 2007), who used hierarchical models as
a statistical framework for inference, and also by Tenenbaum and
colleagues (see e.g., Chater, Tenenbaum, & Yuille, 2006; Griffiths,
Kemp, & Tenenbaum, 2008; see also Navarro, Griffiths, Steyvers,
& Lee, 2006), who used hierarchical models as an account of the
organization of human cognition.

Extending cognitive models to hierarchical models (or vice versa)
is an important part of the trading between disciplines that Cronbach
(1957) advocated. The benefits of the trade do go both ways: By
extending process models hierarchically, experimental psychologists
who use these models can take between-subjects variability into
account and are in a better position to explain such interindividual
differences. Correlational psychologists, on the other hand, could
apply measurement models that are built upon firmly validated pro-
cess models, often grounded in substantive theory.

In the present article, we aim to integrate both traditions further by
extending hierarchically an important and popular process model: the
diffusion model for two-choice response times. Even though choosing
the diffusion model as our measurement level bears with it a number
of implementation difficulties, we choose this model because of the
interesting psychological interpretation of its parameters, which we
explain in the next section. Additionally, choice response times—the
combination of reaction time (RT) and accuracy data—are ubiquitous
in experimental psychology, and we believe that a hierarchical exten-
sion of the diffusion model could be of considerable value to the field.
In addition, a Bayesian approach is taken to fit the hierarchical
extension of the diffusion model. Details on the practical implemen-
tation are provided as well.

In the sections that follow, we introduce the diffusion model for
two-choice response times and then provide a detailed account of
the hierarchical extension to the diffusion model. Then we describe
two sample applications. We conclude with a discussion of our
approach and of further possible applications.

The Diffusion Model

The diffusion model as a process for speeded decisions starts
from the basic principle of accumulation of information (Laming,
1968; Link & Heath, 1975). When an individual is asked to make
a binary choice on the basis of an available stimulus, the assump-

tion is that evidence from the stimulus is accumulated over (con-
tinuous) time and that a decision is made as soon as an upper or
lower boundary is reached. Which boundary is reached determines
which response is given. The basic form of this model is often
referred to as the Wiener diffusion model with absorbing bound-
aries.

Figure 1 depicts the Wiener diffusion process and shows the
main parameters of the process. On the vertical axis there are the
boundary separation �1 indicating the evidence required to make a
response (i.e., speed–accuracy trade-off) and the initial bias �,
indicating the a priori status of the evidence counter as a propor-
tion of �. If � is less than 0.5, this indicates bias for the response
represented by the lower boundary. The absolute value of the
starting position is �� � �init, but we will generally not use this
parameter. The arrow represents the average rate of information
uptake, or drift rate �, which indicates the average amount of
evidence that the observer receives from the stimulus at each
sampling. (The amount of variability in these samples, which
makes the process stochastic, is a scaling constant that is typically
set to 0.1 in the literature.) Finally, the short dashed line indicates
the nondecision time �, the time used for everything except making
a decision (i.e., encoding the stimulus and physically executing the
response). Table 1 gives a summary of the parameters and their
classical interpretations.

The diffusion model owes much of its current popularity to the
work of Ratcliff and colleagues (see e.g., Ratcliff, 1978; Ratcliff &
Rouder, 1998; Ratcliff & Smith, 2004; Ratcliff, Van Zandt, &
McKoon, 1999). An important contribution Ratcliff made was to
incorporate trial-to-trial variance into the Wiener diffusion model,
so that the parameters �, �, and � are not constant but vary from
trial to trial. This conceptually significant extension has performed
so remarkably well in the analysis of two-choice response time
data that it is now sometimes referred to as the Ratcliff diffusion
model (Vandekerckhove & Tuerlinckx, 2007; Wagenmakers,
2009). It has successfully been applied to data from experiments in
many different fields, such as memory (Ratcliff, 1978; Ratcliff &
McKoon, 1988), letter matching (Ratcliff, 1981), lexical decision
(Ratcliff, Gomez, & McKoon, 2004; Wagenmakers, Ratcliff, Go-
mez, & McKoon, 2007), signal detection (Ratcliff & Rouder,
1998; Ratcliff, Thapar, & McKoon, 2001; Ratcliff et al., 1999),
visual search (Strayer & Kramer, 1994), and perceptual judgment
(Eastman, Stankiewicz, & Huk, 2007; Ratcliff, 2002; Ratcliff &
Rouder, 2000; Thapar, Ratcliff, & McKoon, 2003; Voss, Rother-
mund, & Voss, 2004). The Ratcliff diffusion model is also one of
few models that succeed in explaining all of the “benchmark”
characteristic aspects of two-choice response time data—such as
different response time distributions for correct and error re-
sponses, both of them positively skewed and the relation between
their means dependent on parameters, with some minimum value
below which there is no mass. In addition, the model has passed
selective influence tests for its main parameters (see e.g., Voss et
al., 2004), in which experimental manipulations are shown to
affect only the relevant model parameters (e.g., changing from
speed to accuracy instructions affects only the boundary separation
parameter). Fitting the model to empirical data has become a topic

1 Throughout, we use Greek letters to indicate unobserved parameters
and Latin letters for running indices or observed variables.
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of research in its own right (Donkin, Brown, Heathcote, & Wagen-
makers, in press; Vandekerckhove & Tuerlinckx, 2008; Van
Ravenzwaaij & Oberauer, 2009; Voss & Voss, 2007).

For our purposes, however, an important aspect of the diffusion
model is that there is a mathematically tractable solution for the
bivariate probability density function (PDF) of the response time
and accuracy. In other words, it is possible to define explicitly a
four-parameter density function, the “Wiener PDF,” that describes
the predictions of the model, given only the four parameters
described in Table 1. The mathematical form of this PDF is given
in the Supplementary Materials.

Finally, it should be kept in mind that, as with all statistical
models, application of the diffusion model requires the user to
assume that the process described here is the real process that
brings about each individual response by a participant to a stim-
ulus. If, for example, the experimental paradigm allows for self-
correcting processes (e.g., a participant second-guessing a re-
sponse), then one of the process assumptions of the diffusion
model is violated and the model should not be applied.

A Hierarchical Framework for the Diffusion Model

Motivation

There are several motivations for making a hierarchical ex-
tension of a substantively generated model such as the diffusion

model. The first and most important motivation is the fact that
traditional applications of the diffusion model have been re-
stricted to single participants (see e.g., Ratcliff & Rouder,
1998), and there has generally been no motivation to model
interindividual differences in the decision process. The dearth
of investigation into individual differences when applying pro-
cess models is reminiscent of the schism between the experi-
mental and correlational subdisciplines that Cronbach (1957, cf.
supra) pointed out.

More recently, however, the diffusion model has been ap-
plied to study individual differences (see e.g., Klauer, Voss,
Schmitz, & Teige-Mocigemba, 2007; Ratcliff et al., 2004;
Wagenmakers et al., 2007). The typical approach in such cases
is to run multistep analyses: In a first step a specific model is
fitted to data from each individual, and then inferences regard-
ing individual differences are made on the basis of summary
measures of the parameter estimates. An example of this ap-
proach can be found in Klauer et al. (2007), in which individual
participants’ parameter estimates are subjected to second-stage
analysis using ANOVA.

However, data do not always allow for separate analyses per
individual: Estimating the diffusion model’s parameters typically re-
quires a large number of data points (Wagenmakers, 2009), and in
many experimental contexts it may be impractical or even impossible
to obtain many data points within each participant. In particular, when
studying higher level cognitive processes or emotions the stimulus
material may simply not allow for the generation of hundreds of trials
or for presenting stimuli more than once (see e.g., Brysbaert, Van
Wijnendaele, & De Deyne, 2000; Klauer et al., 2007). Often, how-
ever, there are many participants in the sample. In cases such as these,
it is natural to be interested in individual differences, but it is impos-
sible to analyze the data separately for each participant, and the
multistep procedure cannot be applied.

Another problem with the multistep procedures is that one may
want to constrain parameters to be equal across participants. In this
case, an analysis needs to involve all participants simultaneously,
allowing some of the parameters to differ and others to be equal.
However, such an approach may lead to a prohibitively large
number of parameters. As will be argued in the following sections,
a hierarchical approach may offer a solution by formalizing indi-
vidual differences in a specific process model framework.

Response A

Response B
0

α

ζ
init

=αβ

τ

Sample Path

δ

Figure 1. A graphical illustration of the Wiener diffusion model. � � boundary separation indicating the
evidence required to make a response; � � initial bias indicating the a priori status of the evidence counter as
a proportion of �; �init � absolute value of the starting position; � � average rate of information uptake; � �
time used for everything except making a decision.

Table 1
Four Main Parameters of the Wiener Diffusion Model, With
Their Substantive Interpretations

Symbol Parameter Interpretation

� Boundary separation Speed–accuracy trade-off (high �
means high accuracy)

� Initial bias Bias for either response (� means
bias toward Response A)

� Drift rate Speed of information processing
(close to 0 means ambiguous
information)

� Nondecision time Motor response time, encoding time
(high means slow encoding,
execution)
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Uses of the Hierarchical Diffusion Model

In a hierarchical model (Gelman & Hill, 2007), it is assumed
that participants are a randomly drawn sample from some partly
specified population. Individual participants each have their own
set of parameters, and because these participants are typically
randomly selected from some larger population, the differences in
parameter values between participants can be seen as a random
effect in the statistical sense. A random effect occurs when exper-
imental units are randomly drawn, interchangeable samples from a
larger population. This may apply not only to participants but also
to items, trials, blocks, and other units, as long as they are inter-
changeable samples. If the selected units comprise the entirety of
the relevant population (about which one wants to make infer-
ences), then a fixed effect is appropriate. In this way, individual
differences can be explicitly permitted in a hierarchical model.

However, not only the person-specific parameters are important
but the unknown characteristics of their population distributions
are as well, characteristics such as the means, variances, and
covariances, the latter two of which are indications of the magni-
tude (i.e., importance) of individual differences.2 In a hierarchical
framework, it is relatively easy to construct models in which some
parameters are constrained to be equal across participants, whereas
others may vary from individual to individual. Hierarchical models
are ideally suited to handle data sets with few trials per participant
(discussed earlier), even in the case in which single individuals do
not provide enough information to estimate all model parameters
and in which the number of data points per participant (or per cell
of the design) seems absurdly small. Hierarchically extending the
diffusion model leads to what we call the hierarchical diffusion
model (HDM).3

Hierarchical models have proven useful in many areas of re-
search. Some selected domains include psychological measure-
ment when item response models have been used (see e.g., De
Boeck & Wilson, 2004), educational measurement and school
effectiveness studies (Raudenbush & Bryk, 2002), and longitudi-
nal data analysis in psychology (Singer & Willett, 2003) and
biostatistics (Molenberghs & Verbeke, 2006; Verbeke & Molen-
berghs, 2000).

In this article, we rely particularly on the framework proposed
by De Boeck and Wilson (2004) for item response models. In their
book, De Boeck and Wilson sharply distinguish between describ-
ing and explaining individual differences. Describing individual
differences refers to the possibility of assuming population distri-
butions for certain parameters and estimating some characteristics
of these distributions. In such an approach, one merely acknowl-
edges that differences between persons exist, and one quantifies
the variability in the population (through the variances of the
population distributions). However, in any scientific enterprise, the
ultimate goal is not to simply observe differences but to attempt to
explain why they occur. Individual differences can be explained by
relating the person-specific parameters to predictors (see later). In
doing so, we consider the variability in the population as to-be-
explained, and by including a predictor in the model, we explicitly
intend to decrease this unexplained variability.

It is important to emphasize that, although the previous discus-
sion was centered on differences between persons, an HDM can
equally well be applied to populations of items, trials, or indeed

any experimental unit (e.g., subgroups within populations, items
nested in conditions). Variability across these other experimental
units can be captured in exactly the same way as is variability
across persons. The sample applications make extensive use of this
ability of HDMs.

The main difference between the approach of De Boeck and
Wilson (2004) and our framework is that De Boeck and Wilson
worked within a context of item response models: The data they
considered are binary (or polytomous) responses of persons to a set of
items. These item response models are logistic regression models or
extensions and generalizations thereof that relate the responses (or
more correctly: the probability of a certain response) to an underlying
latent trait (i.e., the individual difference variable). There, the logistic
regression model can be considered as the measurement model. In our
case, the data are bivariate (choice response and RT) and the mea-
surement level is the Wiener diffusion model, which is considerably
more complex (both computationally, because the probability density
function is mathematically somewhat intricate, and conceptually, be-
cause of having a process interpretation).

In the remainder of this section, we further elaborate on and
apply the framework of De Boeck and Wilson (2004) to the
diffusion model. This will be done by defining several basic
building blocks that may be combined with the diffusion model in
order to arrive at an HDM capable of describing and explaining
interindividual differences. As it turns out, not only interindividual
differences but other sources of variation may be tackled in such a
way. Before doing so, however, we define some notation.

Notation

Suppose a person p (with p � 1, . . ., P) is observed in condition
i (with i � 1, . . ., I) on trial j (with j � 1, . . ., J) and the person’s
choice responses (corresponding to the absorbing boundaries) and
response times are recorded, denoted by the random variables X(pij)

and T(pij), respectively (realizations of these random variables are
x(pij) and t(pij)). Also, Y(pij) and y(pij) refer to the random vector
(X(pij),T(pij)) and the vector of realizations (x(pij), t(pij)), respec-
tively. Then Y(pij) would be distributed according to a Wiener
distribution as follows:

Y�pij	 � Wiener���pij	,��pij	,��pij	,��pij		.

We use Wiener distribution as shorthand for the joint density
function of hitting the boundary X(pij) at time T(pij). The distribu-

2 Although it may seem that such an approach leads to even more
parameters than when no population assumptions are made, invoking the
population assumption actually reduces the number of effective parameters
because it acts as a constraint on the person-specific parameters (this effect
is in some cases also called shrinkage to the mean). A limiting case is when
the variance of the population distribution is zero such that there are no
individual differences and all person-specific parameters are exactly equal
to the mean. Moreover, shrinkage is stronger for parameters of individuals
who provide less information. For more information on hierarchical mod-
eling and shrinkage we refer to Gelman and Hill (2007).

3 There is some ambiguity here about the word model. In one sense, the
diffusion model is a process model and the hierarchical extension is a
statistical modeling tool. It is the combination of these two aspects,
however, that makes the HDM a powerful framework.
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tion is characterized by four basic parameters (explained earlier in
The Diffusion Model section) that here carry a triple index, which
means that, in principle, they can differ across persons, conditions,
and trials. In some of the examples, we add additional indices to
allow more nuanced differences. To avoid confusion with other
subscripts, running indices will always be put between parenthe-
ses; for example, �(i) indicates the parameter � that belongs to
condition i, but 
ε, 
(5), and 
descriptor are distinct, singular para-
meters.

Finally, it should be noted that we often recycle symbols for new
models or new examples, so that a symbol used in one model may
be redefined in another model to refer to something else.

Model Building Blocks

On the basis of the framework of De Boeck and Wilson (2004),
we discern three types of useful model building blocks: levels of
random variation, manifest predictors, and latent predictors. In
order to render the discussion of these three aspects more concrete,
we illustrate the theoretical concepts with the drift rate parameter
of the diffusion model. We choose to limit the illustrations to a
single parameter for reasons of clarity, but a similar story can be
told for the other parameters, as will become obvious when we
move to the applications later in the article.

Levels of random variation. The data may contain different
levels of hierarchy. We have already implicitly referred to the most
basic case when talking about individual differences: Imagine a
situation in which a sample of individuals is measured repeatedly.
In such a case, the data consist of two levels: At the higher level
are the individuals, and at the lower level are the measurements
within the persons.

As an example, consider drift rate �(pij). Assume that a set of
persons p are presented with a series of stimuli j in a single
condition (such that the index i for condition may be dropped). The
drift rate �(pj) can then be written as follows:

��pj	 � 
�p	 � ε�pj	, (1)

where ε(pj) � N(0, �ε
2) and 
(p) � N(
, �


2), with ε(pj) and 
(p)

independent. Here, the variance �ε
2 represents trial-to-trial variabil-

ity in drift rate within a person. This example is akin to the
assumption of trial-to-trial variability made by Ratcliff (1978). The
parameter 
 is the population average of individual drift rates,
and �


2 is the variance of individual drift rates in the population.
The importance of individual differences can be judged by com-
paring �


2 with �ε
2: If �


2 is much larger than �ε
2, this means that

there are sizable individual differences, which is not the case if �

2

is much smaller than �ε
2. Other methods of comparing the amounts

of variability at different levels of hierarchy are intraclass corre-
lation coefficients (see Shrout & Fleiss, 1979, for an overview).

There exist several alternative ways of writing the model in
Equation 1. For instance, one could include the population average

 directly into the linear decomposition (i.e., �(pj) � 
 �
�

(p) � �εε(pj)) and assume a mean of zero and unit variance for
all random effects distributions.

Equation 1 can be extended readily to include fixed condition
effects as follows:

��pij	 � ��i	 � 
�p	 � �εε�pij	, (2)

where �(i) is a fixed condition effect. Hence, the mean drift rate in
condition i for a person p depends on a fixed condition effect �(i)

and a random person effect 
(p). A related model has been pro-
posed earlier by Ratcliff (1985) and Tuerlinckx and De Boeck
(2005).

Because individual differences are the main motivation for
developing an HDM, we have thus far restricted the hierarchical
structure to trials nested within persons (conditions are viewed as
fixed effects). However, there is no reason to stop there if there is
a sound reason for more complex forms of levels of random
variation. For example, persons may be nested in groups and those
groups nested in larger groups. In such a case, there are more than
the traditional two levels in the data.

In addition, there is no reason to allow random effects only on
the person side. On the condition or item side, it can make sense
to allow for condition or random effects (see e.g., Baayen, David-
son, & Bates, 2008). In the types of applications we envision for
the HDM, the stimulus material often consists of words or pictures
(for such an application, see Dutilh, Vandekerckhove, Tuerlinckx,
& Wagenmakers, 2009). In psycholinguistics, for example, there
has been some controversy over the modeling of word effects. In
a seminal article, Clark (1973) strongly argued that stimulus words
should be considered as randomly sampled from a population
distribution as well. In such cases, the parameter �(i) in Equation 2
can also be assumed to follow a normal distribution with mean �

and variance ��
2. This would yield a crossed random effects design

(see e.g., Gonzalez, De Boeck, & Tuerlinckx, 2008; Janssen,
Tuerlinckx, Meulders, & De Boeck, 2000; Rouder et al., 2007; see
Vandekerckhove, Verheyen, & Tuerlinckx, 2010, for an HDM
application). Similarly, conditions or items could be nested in
categories that are in turn nested in larger categories.

Manifest predictors. By identifying and including levels of
variation in the analyses, we describe individual differences or, if
there are random item effects, differences between stimuli. We call
this type of analysis descriptive because we are merely observing
how the variability in the data is distributed among several sources.
However, in a next step we want to explain the variability in
parameters by using predictors (continuous or discrete or both).
More broadly, interindividual, interstimulus, or less intuitively,
intertrial variability (represented in random effects and their pop-
ulation variances) might be explained by regressing basic param-
eters on known predictors or covariates.

As an example of explaining interindividual variability, assume
that the drift rate is person-specific and that there is a person
covariate such as age available (with A(p) being the age of person
p). We could then adopt the following model for the drift rate:

��pij	 � ��i	 � �0 � �1A�p	 � 
�p	 � ε�pij	, (3)

where �0 and �1 are the regression coefficients of the univariate
linear regression of �(pij) on A(p) and 
(p) is a person-specific error
term with distribution 
(p) � N(0, �


2). The other parameters are
defined as in Equation 2.

Alternatively, we may try to use covariates in order to explain
some of the variability between items. For example, differences in
recognizability between words may be related to their frequency of
use (Vandekerckhove et al., 2010).

In sum, working with manifest predictors in the HDM means
building a regression model for a random effect with known
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predictors but unknown regression coefficients. Explaining vari-
ability in parameters through covariates will be an important theme
in the examples in this article.

Latent predictors. De Boeck and Wilson (2004) showed that
predictors do not necessarily need to be manifest; they may also be
latent. That is, they may be unobserved but inferred from the data.
For example, one might suspect that there exist two subgroups in
the participant population, each with its own particular qualities
(e.g., different people might use different strategies to respond to
the stimuli). A mixture model for the diffusion model parameters
may then be used to detect hidden groups or subpopulations in the
data.

Latent predictors may even be continuous. Suppose that in a
given experiment two (or more) dimensions of information pro-
cessing are required and some conditions rely more on one dimen-
sion and other conditions more on the other dimension. Such a
model for drift rate can be expressed as �(pij) � �(i) � �(i)1
(p)1 �
�(i)2
(p)2 � ε(pij), where �(i)1 and �(i)2 are the loadings of the
underlying dimensions in condition i and 
(p)1 and 
(p)2 are the
positions of person p on the two dimensions. Such a model can be
called a factor analysis diffusion model.

We do not discuss latent predictor models further because they
rapidly become complex and suffer from model identification
issues and estimating their parameters is computationally intensive
(at least, using current standard computational approaches for
Bayesian inference).

Statistical Inference for HDMs

In the practical application of the HDM framework, statistical
inference is performed using Bayesian statistical methods (see e.g.,
Box & Tiao, 1973; Gelman, Carlin, Stern, & Rubin, 2004; Gill,
2002). In this section, we provide some background on Bayesian
methods that is required for interpreting the results of our analyses,
as well as for the application of our software. We believe this
background to be important because, although the philosophy
behind Bayesian statistics is fairly straightforward and easy to
explain, the computational techniques involved are not (further
details about the computational challenges involved are given in
the Appendix and Supplementary Materials).

Several reasons motivate our choice to use Bayesian inference.
The Bayesian framework has many inherent advantages, such as
the principled, consistent, and intuitive treatment of uncertainty
concerning the parameters of the model. However, there are sev-
eral advantages specific to the topic of the present article. Bayesian
methods are most suited for flexible implementation of hierarchi-
cal models in particular (see also Gelman & Hill, 2007).

The diffusion model in itself, without any hierarchical exten-
sion, is already a computationally difficult model (see e.g., Na-
varro & Fuss, 2009; Tuerlinckx, 2004). These difficulties are
exacerbated by even small increases in the hierarchical structure of
the model (e.g., random drift; Ratcliff & Tuerlinckx, 2002; Tuer-
linckx, 2004; Vandekerckhove & Tuerlinckx, 2007, 2008). Models
with more extensive hierarchical structures (as discussed here) are
often more interesting, but they rapidly become computationally
intractable in the classical statistical framework where parameters
have to be estimated using maximum likelihood methods. Take for
example a crossed random effects model for drift rate (a random

effect of person and of item), and assume for simplicity that the
other parameters are kept constant across persons and items.

When applying such a relatively unembellished model to a data
set of P persons and I items, one is confronted with a likelihood
function that contains an integral of dimension P � I. Having P
and I values both around 100 results in a 200-dimensional integral,
the approximation of which is computationally prohibitive with
standard numerical integration techniques (e.g., if one were to
approximate each integral with a sum of 10 terms, then the total
number of sums in each evaluation of the likelihood would be a
disheartening 10200). However, integrating over many distribu-
tions simultaneously is a basic modus operandi in Bayesian sta-
tistics, so that the addition of hierarchical structures such as ran-
dom effects poses little additional burden.

Bayesian Basics

Bayesian methods depend on the computation of the posterior
distribution of model parameters. That is, the probability distribu-
tion of the parameters, given the data. The posterior quantifies
one’s uncertainty about the model’s parameters posterior to having
observed the data. It is computed by updating one’s prior knowl-
edge about a parameter through observing the data (represented by
the likelihood function). The posterior distribution can be obtained
through Bayes’ rule

p�� � D	 �
p�D � � 	 p�� 	

p�D	
,

where D and � are generic notations referring to all the data and all
the parameters, respectively; p(D � �) is the likelihood; p(�) is the
prior distribution of the parameters; and p(D) is the marginal
probability of the data.

The posterior distribution p(D � �) is a very intuitive measure,
because it represents the uncertainty regarding the parameters after
having observed the data. Its mean, the expected a posteriori
(EAP) measure, is typically used as a point estimate of the param-
eter �, with the standard deviation as a measure of uncertainty.

Often, a hypothesis can be tested by mere examination of the
(marginal) posterior of one well-chosen parameter, such as a
regression weight, a difference between two means, or a more
complex function of one or more parameters. “Examining” a
posterior distribution in this sense implies computing or estimating
the probability mass of the parameter relative to some critical
value. One might, for example, investigate the (signed) difference
between two parameters, which should be, say, larger than zero.
We then examine p(D � �) by estimating p(� � 0 � D).

Another popular method is to compute a parameter’s .90 or .95
highest posterior density region (the smallest region of the poste-
rior that contains the specified proportion of its mass) or its .90 or
.95 central credibility interval (the central, contiguous region of
the posterior that contains the specified proportion of posterior
mass) and then evaluate whether 0 is contained within this region
or not (see Box & Tiao, 1973; Gelman et al., 2004).

As straightforward as the main principle behind Bayesian sta-
tistics is, the practical task of estimating these probabilities can be
somewhat daunting. For the case of the HDM, we have produced
flexible software to facilitate putting it into practice. This software,
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along with further information regarding the computational meth-
ods, is described in the Supplementary Materials.

Graphical Models

Advanced algorithms for sampling from a high-dimensional
posterior distribution are implemented in the freely available sta-
tistical software package WinBUGS (Lunn, Thomas, Best, &
Spiegelhalter, 2000). WinBUGS can also be used easily to apply
an HDM (for details, see the Supplementary Materials). In order to
use WinBUGS, however, it is necessary to translate the hierarchi-
cal model into a directed acyclical graph, or graphical model.
Graphical models (see Griffiths et al., 2008, and Lee, 2008, for
accessible introductions) are a convenient formalism for describ-
ing the probabilistic relationships between parameters and data. In
a graphical model, variables of interest are represented by nodes in
a directed graph, with children depending on their parents. Circular
nodes represent continuous variables, square nodes discrete vari-
ables, shaded nodes observed variables, and unshaded nodes un-
observed variables. In addition, plates enclose parts of a graph to
denote independent replications. An example of a basic graphical
model is given in Figure 2. In this Figure, the data y(ij) are
generated by a process that has parameters �, �, �, and �(ij). �(ij) in
turn is generated from a distribution with parameters 
(i) and �.
The graphical model is equivalent to the following set of assump-
tions (omitting for conciseness the prior assumptions):

y�ij	 � Wiener��, �, �, ��ij		

��ij	 � N�
�i	, �	.

As soon as a model has been translated into a graphical model,
it can be implemented in WinBUGS. In fact, WinBUGS code is
only marginally more complex (because it includes prior informa-
tion as well) than the enumeration of assumptions given earlier. In
WinBUGS, it is straightforward to perform full Bayesian inference
computationally, using standard Markov chain Monte Carlo meth-
ods to sample from the posterior distribution.

Evaluating Model Performance in the
Bayesian Framework

After the posterior distributions of all parameters have been
found, two aspects of model performance can be ascertained. To
determine relative model fit across a series of models, the deviance
information criterion (DIC) measure (Gelman et al., 2004) can be
computed. This statistic can be considered as a Bayesian alterna-
tive to Akaike’s information criterion (AIC; Akaike, 1973). Like
the AIC, the DIC also expresses a balance between the model fit
and its complexity. Smaller DICs indicate better fitting models.

Depending on context, we may choose the AIC over the DIC
(Spiegelhalter, 2006). In general, if the objective of the analysis is
to generalize to other populations (and hence the person- or item-
specific parameters cannot be considered as given), then the AIC
is more appropriate. In contrast, typically the concern is to quantify
model fit for the particular data set at hand (and hence not to
generalize to a larger population of persons or items), so the DIC
is preferred.

In order to determine absolute model fit, however, we might
apply posterior predictive checks (PPC; Gelman et al., 2004). The
most basic type of PPC involves defining an interesting test sta-
tistic G(�) on the data and computing those statistics for the
observed data (i.e., G(yobs)). Then the same statistic G(�) can be
computed on a large number of data sets (say, 1,000) that are gener-
ated from the model, leading to a set G(yrep 1), . . ., G(yrep 1000).
Finally, the position of G(yobs) in the distribution of G(yrep 1), . . .,
G(yrep 1000) then indicates the viability of the model with regard to the
data.4

In general, PPCs can be applied to identify (graphically or
numerically) misfit of a model to data. It can also be used to find
specific loci of misfit of the model (Gelman, Goegebeur, Tuer-
linckx, & Van Mechelen, 2000).5 The method is somewhat con-
troversial (see e.g., Bayarri & Berger, 2000; Evans & Jang, 2010),
but it is very practical, easy to carry out, and highly flexible.

Application Examples

To illustrate the usefulness of the HDM framework, we now
apply it to two data sets with very different designs, both of which
seem usefully dealt with using HDMs. In the first application, we
apply a series of HDMs to a benchmark data set concerning

4 A more complex type of PPC can be defined as well (such that the test
statistic is not pivotal but also depends on the parameters). However, this
type of test statistic requires a (very time-consuming) reestimation of the
model parameters for each replicated data set, which is why we do not
apply it.

5 Philip Smith (acting as reviewer) captured the importance of this
practice particularly well, and we quote him here: “Conventional statistics
treats the fits to the individual distributions as ‘error’ and then tends to
ignore them—a practice that seems to carry over into the Bayesian setting.
However, in the cognitive model the quality of these fits is absolutely
central to the adequacy of the model, and any evidence of misfit wholly
vitiates the enterprise. It follows that ‘cognitive psychometrics’ will require
us to adopt different habits of data analysis and that the practice of what,
in conventional statistics, is known as the ‘analysis of residuals’ will have
to become the primary focus of modeling. This is why graphical contact
between model and data is so important.”

Figure 2. A sample graphical model. The shaded node y(ij) indicates the
(bivariate) data. Nodes �, �, �, and �(ij) are parameters of the distribution
of y(ij). In turn, 
(i) and � are parameters of the distribution of �(ij).
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contrast perception and apply mainly regression-type analyses, as
well as trial-to-trial variability in drift rate, initial bias, and non-
decision time. We also include a basic hierarchical structure,
namely, the addition of random variability over conditions. Note
that in this example, we do not consider individual differences or
complex hierarchical structures. We use the first application
mainly to demonstrate the basic features of the diffusion model,
the Bayesian modeling approach, the principles of Bayesian model
selection, and the relative ease with which these otherwise in-
volved analyses can be performed.

In the second application, the data set is different because it has
more participants (P � 9), and we construct an HDM that permits
the simultaneous analysis of data from different individuals.
Thanks in part to the Bayesian framework, we are able to define a
statistic that directly quantifies the effect under consideration and
estimate the distribution of its size in the population.

In both of the examples, we make a large number of assump-
tions regarding the structure in the data. We, sometimes somewhat
arbitrarily, select whether certain parameters are allowed to change
between experimental units, whether effects are fixed or random,
and which parametric forms are taken by population distributions
or regression functions. These assumptions are often debatable, but
the central point to be made here is that a wide variety of assump-
tions can be made explicit in the HDM framework with relative
ease. For the purposes of illustrating this, it is not of crucial
importance exactly which assumptions are made. In real-world
applications the tools that are developed allow for the checking of
assumptions.

Example 1: Fixed Effects and Nonlinear Regression

Introduction. The first application example involves a data
set in a contrast discrimination task that has become something of
a benchmark for RT model fitting (Ratcliff & Rouder, 1998). An
important reason for this is that these data clearly show the
standard RT phenomena for which any model of choice RT should
be able to account (see the earlier section entitled The Diffusion
Model). In the experiment, three participants saw 10 blocks of
trials (after two practice blocks). Each trial consisted of a grid with
75% gray pixels and the remaining 25% either black or white.
There were 33 different proportions of black versus white pixels
(evenly spaced, so that the middle level was 50% black and 50%
white), and the task was to determine whether this proportion was
a draw from a “bright” or from a “dark” distribution. Additionally,
in half of the blocks, the participants were asked to respond as
accurately as possible (accuracy condition [AC]), and in the other
half, to be as fast as possible (speed condition [SC]).

The research goal in this study was to study the relationship
between stimulus brightness and drift rate. A link was clearly
confirmed, and it was found that this link was nonlinear in nature.
Here, we go two steps further. First, we formalize the nonlinear
relation using a cumulative Weibull link function, which is a
nonlinear function that is common in the vision literature (see e.g.,
Wichmann & Hill, 2001). Then we investigate the effect of the
instruction (AC vs. SC) on the relation between stimulus bright-
ness and drift rate—because it could be hypothesized that a task
instruction affects the rate of information processing in the deci-
sion-making system, which would show itself in a different shape
of the link function. We focus on a single participant’s data.

Models. As an introductory example, we apply a basic HDM
to these data. However, the features added to the Wiener diffusion
are not limited to the trial-to-trial variance used by Ratcliff and
Rouder (1998): We also implement a nonlinear regression and
allow a difference between the instruction conditions. Specifically,
let C(s) � s/32 (s � 0, . . ., 32) be a measure of intensity (i.e.,
brightness) and i (i � 1 for AC; i � 2 for SC) be the instruction
condition. The index j (j � 1, . . ., J(si)) separates different trials for
a given intensity-by-instruction combination. Considering only
one participant (so that we can drop the index p), we have the
following model for the observed response vector Y(sij):

Y�sij	 � Wiener���sij	,��sij	,��sij	,��sij		.

We assume that the parameter � was subject to only a fixed effect
of instruction, as seen in

��sij	 � ��i	

(because it captures the speed–accuracy trade-off, which is exactly
what the instructions were), whereas � (initial bias), � (nondeci-
sion time), and � (rate of information uptake) are made subject to
random effects of trial, as seen in

��sij	 � U���i	
low,��i	

high	,

��sij	 � N��, �2	, and

��sij	 � N�
�si	, �2	.

The mean of the trial-to-trial distribution of � is additionally
subject to a random condition effect, as seen in


�si	 � N�, �ε
2	,

which introduces a key ability of the HDM. Here it becomes most
clear why these models are called hierarchical, because “layers” of
randomness are added incrementally (in this case, one at the
condition level and one at the trial level). (Note that this means that
we predict 
(si) to be identical if the same combination of stimulus
and instruction is presented twice. However, that does not imply
that the drift rate �(sij) will be identical as well, because it is still a
draw from N(
(si), �2).) In this context, 
(si) is the more interesting
parameter, because it pertains directly to the quality of the stimulus
but is not confounded by random trial-to-trial fluctuations (whose
magnitude is captured by �2).

Furthermore, the range of the trial-to-trial distribution of � is
made subject to a fixed effect of condition (following Ratcliff &
Rouder, 1998). The model with this set of assumptions will be
called BM1 (see Figure 3 for a graphical model illustration). Note
that model BM1, although acknowledging the possibility of a
difference between the 66 drift rates, contains no information to
quantify the differences between the conditions (i.e., nothing links
it to brightness): We are ignoring the available covariate informa-
tion and are assuming that all 66 drift rates are drawn from the
same pool (with mean  and variance �ε

2).
We model the experimental manipulation of speed-versus-accu-

racy instruction as a fixed effect because these levels constitute an
exhaustive list of the possibilities—they are not a random selection
from a larger pool of possible instructions. By contrast, the differ-
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ence between trials is modeled as a random effect, because we are
not (currently) interested in the effects of particular trials—we
assume those to be a selection from a larger pool of possible trials.
In the first model, we pretend to have no knowledge of the nature
of the differences in stimulus intensity but assume them to be a
random draw from the large set of possible stimulus intensities.

To continue, we can define multiple competing models. Ratcliff
and Rouder’s (1998) model did not restrict the across-condition
drift rate distributions.6 In contrast, we now define a second model
in which we formalize the connection between stimulus intensity
and drift rate with a Weibull regression. Formally, we redefine


�si	 � 
low � �
high � 
low	 �1 � exp[�(C(s)/

scale)
shape

]}�ε(si),

with upper and lower asymptotes 
high and 
low, shape parameter

shape, scale 
scale, and an error term ε(si) � N(0, �ε

2). Note that
although �ε

2 in BM1 indicated the across-condition variability in

(si), here it refers to the residual variability after accounting for the
nonlinear effect of the brightness condition. Importantly, the abil-
ity to quantify residual variability after controlling for the effect of
the brightness condition allowed us to investigate the magnitude of
interstimulus variability that is not due to an experimental manip-
ulation (but rather due to other manipulations or due to random,
uncontrolled differences between stimuli). The choice of the
Weibull function as a regression function is somewhat arbitrary
and can be adapted at will. For our purposes, the Weibull is a
nonlinear function with two horizontal asymptotes, a scale, and a
shape. The second model, now completely specified, is called
Model BM2.

However, we had originally set out to investigate the effect of
the experimental instruction on the drift rates. We therefore con-
structed a third model in which we allowed a difference in the drift
rate distributions as a function of the instruction condition, using
the link function


�si	 � 
�i	
low � �
�i	

high � 
�i	
low	 �1 � exp[�(C(s)/
(i)

scale)
(i)
shape

]}�ε(si).

Note that we added subscripts i to the Weibull’s parameters to
indicate their dependence on the instruction condition. This model
is called BM3. The three models are displayed as graphical models
in Figure 3.

Results. The means and standard deviations of the marginal
posteriors for some of the parameters in each model are given in
Table 2. Several results are immediately obvious. First, the param-
eters �AC and �SC are very different: The boundary separation in
the SC is much lower than in the AC, in all models. This is
consistent with the interpretation of that parameter. Second, the
posterior standard deviations are generally small compared with
the posterior means (EAPs), indicating narrow distributions and
therefore reliable estimates. Third, the mean nondecision time � is
about 270 ms, and its trial-to-trial standard deviation � is about 41
ms, which is normal in this type of application. Fourth, estimates
of the parameters that do not pertain to the Weibull regression
remain more or less constant between different models, indicating
that the models’ restrictions on the drift rate parameters do not lead
to trade-off effects for other parameters. Finally, the parameter �ε,
which indicates the amount of unexplained variability in drift rates,
strongly differs between models—apparently the added covariates
do explain a fair amount of variance. We therefore used the

difference in unexplained stimulus variance as a quality measure
of the Weibull regression, using a statistic akin to the familiar
statistic

R2 � 1 � � �res

�total
� 2

,

where in this case �total was �ε in BM1 and �res was �ε in the
model with which we wanted to compare. Given a series of
samples from each of these parameters, we computed a posterior
mean for the proportion of variance that was explained by the
addition of the nonlinear regressions.7 In BM2, the proportion of
variance explained was 96.50%, whereas in BM3 it was as high as
99.96%.

In Table 3, the parameters of the Weibull regression are shown
for BM2 and BM3. It is clear from the posterior means and
standard deviations that the Weibull regression function is quite
different between the two instruction conditions. In particular, the
upper and lower asymptotes are more extreme in the SC, and the
function is somewhat steeper in that condition as well. In fact,
according to the analysis, P(
SC

shape � 
AC
shape � D) � .9590. Figure 4

shows the Weibull regression lines for each instruction condition
and the individually estimated drift rates. To compare the perfor-
mance of the three models, we computed DIC values for each
model and found that BM3 performed best (DIC was 3,373.40,
2,087.60, and 642.63, for BM1, BM2, and BM3, respectively).
Finally, we provide a graphical illustration of the model fit using
posterior predictive checks. We generated, on the basis of 1,000
samples from the posterior, 1,000 posterior predictive response
probabilities (i.e., expected probability of a “bright” response) and
posterior predictive mean RTs for each of the 66 conditions. Figure
5 shows the generated probabilities (as gray dots) overlaid with the
observed data (black line). As can be seen, the changes in response
probability and RT over brightness conditions are well captured by
the model (even the somewhat capricious behavior near the ex-
tremes is well within the posterior uncertainty of the fitted model).8

Conclusion. Although the model we have applied to these
data is quite different from the one used by Ratcliff and Rouder
(1998), our conclusions generally echo theirs, with one significant
difference: We find an effect of instruction on drift rate. The
Weibull link functions are manifestly different between the in-
struction conditions—evidently the rate of information accumula-
tion is not entirely independent of the participants’ motivations

6 Ratcliff and Rouder (1998) do mention that they could (in principle)
further simplify the model by implementing a regression of mean drift rate as
a linear function of the probability that the stimulus was a draw from the
“bright” distribution, that is, 
(ps) � �(p)0 � �(p)1P(s), with P(s) � N(s � �1, �)/
[N(s � �1, �) � N(s � �2, �)] and �1 � 5/8, �2 � 3/8, and � � 3/16. However,
they did not actually apply this regression. Similar nonlinear regression models
of drift rate (cast in a classical statistical framework) have been investigated by
Smith, Ratcliff, and Wolfgang (2004) and Palmer, Huk, and Shadlen (2005).

7 Because we were not dealing with a linear model and were in fact
comparing across models with strongly different assumptions, the R2

statistic used here is not exactly the same as the familiar statistic. However,
for the purpose of comparing model fits, we believe it is a succinct
summary measure.

8 Further posterior predictives for this data set and a similar model are
reported in Vandekerckhove, Tuerlinckx, and Lee (2008).
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(see Vandekerckhove & Tuerlinckx, 2007, for analogous results).
Although we do not describe them here, the results were analogous
for the other two participants.

In addition to the relative ease with which it was applied (only
30 or so lines of highly redundant WinBUGS code; see the
Supplementary Materials), the model just described contains two
properties that are fundamentally novel in the domain. Trial-to-
trial variance and constraints on parameters have already been
applied (see e.g., by Vandekerckhove & Tuerlinckx, 2007), but the
application of Bayesian inference and in particular the addition of
random effects on the condition (stimulus) level are new. Random
effects are an important modeling construct that has not previously

been considered in this context. In the next example, we focus
more closely on the addition of random effects.

Example 2: ANOVA and Random
Person–Domain Effects

Introduction. In the previous application, we focused on
single participants (mainly because the data set contained only
three participants in total). However, one of the more significant
advantages of the hierarchical setting is that it allows for the
simultaneous analysis of many participants’ choice response time

Figure 3. A graphical model representation of each of the models for the first application. (a) In Model BM1,
�, �, and � are indexed for instruction conditions i, stimuli s, and trials j, indicating that we allowed these
parameters to be different for each condition-by-stimulus-by-trial combination. �, on the other hand, is indexed
by only i, for condition. The population parameters for �, called �high and �low, also depend on only the
instruction condition. 
 may differ between stimuli and instruction conditions, but its population distribution has
invariant parameters  and �ε. Finally, �, �, and � do not vary between conditions or stimuli either. (b) In Model
BM2, the mean of 
 is determined not by one but by four parameters (the parameters of the Weibull link). (c)
In Model BM3, those Weibull parameters are moved inside the plate over i, so that they may differ between
instruction conditions.
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data. For example, diffusion parameters could be kept constant
across items for each participant, but individual participants’ pa-
rameters would be considered random draws from a population
distribution. This would be a very typical hierarchical model; van
der Linden (2007) would call this a population model. Analyzing
data from different participants simultaneously results in greater
stability for the statistical inferences. In particular, it becomes
possible to fit the model even with relatively few data points per
participant.

However, because it remains unreasonable to assume that all
parameters stay exactly constant across trials, we combined mixing
over trials with mixing over persons. This yielded a multilevel
random effects design wherein the parameters of individual par-
ticipants’ mixing distributions were themselves draws from a
population-level distribution. A graphical representation of this
multilevel diffusion model is given in Figure 6. The data set to
which we applied this model was taken from a change detection
study (Vandekerckhove, Panis, & Wagemans, 2007, data used
with permission). For a detailed description of the research ques-
tions, the reader is referred to Vandekerckhove et al. (2007). For
the purposes of our demonstration, it suffices to know that the
difficulty of a visual detection task was manipulated in a 2 � 2
factorial design and that there were nine participants. The inde-
pendent variables of interest are called Q, for quality, and T, for
type. Because the manipulations were all intended to affect higher
order properties of the stimulus, we expected changes in drift rate
but not in any other variable. The main research question was
whether there is an effect of T on detection performance and
whether this effect is independent of Q. It is hence a straightfor-
ward ANOVA-type design, and we were interested in the main
effect of T and the T � Q interaction. The factorial design is given
in the second and third columns of Table 4.

Model. We define only one model, which includes a hierar-
chical structure that simultaneously incorporates different partici-
pants’ data. The assumptions of this population-hierarchical model
(PHM) are as follows.

The core of the PHM is still the Wiener diffusion model, so that
each individual data point y(pij) follows a Wiener distribution with
four parameters, as seen in

y�pij	 � Wiener���pij	,��pij	,��pij	, ��pij		,

with indices p for participants (p � 1, . . ., 9), i for conditions (i �
1, . . ., 4), and j for trials (j � 1, . . ., 80). We assume an unbiased
diffusion process: �(pij) � .5.

The hierarchical structure now contains two levels of random
variation: the trial level and the participant level. At the trial level,
the nondecision time � and drift rate � are assumed to vary between
trials, as seen in �(pij) � N(�(p), �(p)

2 ) and �(pij) � N(
(pi), �(p)
2 ). In

contrast, we treated the boundary separation as constant across
trials (for a given participant), as in �(pij) � �(p).

At the participant level, although the boundary separation is
assumed constant across trials, at a higher level of heterogeneity,
interindividual differences arise. We treated all interindividual
differences as random effects (because we knew that participants
were a random sample from a larger population), as seen in �(p) �
N(�, ��

2).
Further interindividual differences are allowed; that is, the pa-

rameters of the intertrial mixing distributions (those for � and �,
described earlier) depend on participant p and may depend on
condition i (in the case of drift rate), as seen in �(p) � N(�, ��

2)
and 
(pi) � N(
(i), �
(i)

2 ).
Note that the fixed effect of condition i remains present in the

dependence of 
(i) on i, but now it exists on the population level.
It is not necessary to define the factorial structure of the conditions
in the experiment at this stage; because the parameters in a linear
model that quantify main effects and interactions are mere linear
combinations of the data (i.e., the mean in each condition), we
could compute posterior distributions for each conditional mean
first and derive the posterior distributions of the ANOVA param-
eters later9 (see the next section).

Finally, although it was not the primary focus of the present
analysis, the trial-to-trial variability parameters were also given
population distributions, as seen in �(p) � N(�, ��

2) and �(p) �
N(�, ��

2). We did this primarily to formalize our knowledge that
participants were a random selection from a pool yet did exhibit
interindividual differences.

9 Parameters that are not directly estimated themselves but are obtained
from transformations or combinations of other parameters are sometimes
called derived parameters or structural parameters (Congdon, 2003; Jack-
man, 2000).

Table 2
Some Parameter Estimates for the First Application

Parameter

EAP Posterior SD (� 100)

Parameter interpretationBM1 BM2 BM3 BM1 BM2 BM3

�AC 0.2192 0.2314 0.2199 0.4344 0.5465 0.4507 Caution (AC)
�SC 0.0501 0.0511 0.0502 0.0984 0.0956 0.0990 Caution (SC)
� 0.2791 0.2769 0.2789 0.1758 0.1726 0.1779 Mean nondecision time
� 0.0412 0.0404 0.0410 0.0934 0.0917 0.0937 Intertrial SD of nondecision time
� 0.1261 0.1425 0.1273 0.7848 0.8903 0.7960 Intertrial SD of drift rate

�AC
low 0.3522 0.3431 0.3515 0.9947 0.9402 1.0429 Lower limit of initial bias (AC)

�AC
high 0.5755 0.5832 0.5757 0.8259 0.6975 0.8218 Upper limit of initial bias (AC)

�SC
low 0.4498 0.4492 0.4495 0.9888 1.0170 0.9984 Lower limit of initial bias (SC)

�SC
high 0.4779 0.4771 0.4776 0.9670 0.9835 0.9865 Upper limit of initial bias (SC)

�ε 0.4008 0.0732 0.0064 3.8249 1.1022 0.4323 Residual interstimulus SD of drift rate

Note. BM1–BM3 refer to the model names. EAP � expected a posteriori; AC � accuracy condition; SC � speed condition.
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In all cases, population distributions are truncated to a reason-
able interval (for numerical stability; see the Supplementary Ma-
terials for the intervals).

Results. We were interested in two different aspects of the
results. For the experimenter, it is important to know whether a
main effect of T and a T � Q interaction appear on the mean drift
rates 
(i). From a general-interest perspective, we were addition-
ally interested in the population-level variability of the different
parameters.

Summary statistics of the obtained drift rate population distri-
butions (per condition) are given in Table 1. It can be seen that the
distributions differ strongly between conditions. In order to more
precisely investigate our hypotheses, we transformed the drift rate
distributions into ANOVA contrast parameters that exactly quan-
tified the effects in which we were interested. First, the main effect
of T is given by the contrast �T � (
(1) � 
(3)) � (
(2) � 
(4)),
for which the posterior distribution is shown in Figure 7. It is clear

from that figure that there is strong evidence for a main effect of
T, averaged over levels of Q. Indeed, P(�T � 0 � D) � 0. Similarly,
in the second panel in Figure 7, we can confirm that there is a main
effect of Q, because for �Q � (
(1) � 
(2)) � (
(3) � 
(4)),
P(�Q � 0 � D) � .994. To investigate the interaction, we computed
the interaction contrast �I � (
(1) � 
(2)) � (
(3) � 
(4)). As
it turned out, P(�I � 0 � D) � .886, providing only marginally
convincing evidence for an interaction. The interaction pattern is
shown in Figure 8.

The population variability in the parameters is directly quanti-
fied by their variance parameters. Although not the focus of the
present experiment, each of these parameters has a unique inter-
pretation that may be relevant in other contexts (here their main
purpose was to account for extraneous variability in the data). For
example, the EAP of the interindividual standard deviation of
boundary separation �� estimates to 0.0541 and that of the inter-
individual standard deviation of mean nondecision time �� �

Figure 4. The Weibull regression on drift rate. Both panels, one for each instruction condition, contain
individually estimated drift rates for each level of stimulus intensity (
(si) from BM1), with error bars extending
one posterior standard deviation in both directions. Overlaid are the Weibull regression lines (from BM3), based
on the posterior means of 
(i)

high, 
(i)
low, 
(i)

scale, and 
(i)
shape from BM3. The Weibull function captures the effect of

stimulus intensity well.

Table 3
Parameter Estimates of the Weibull Regression in the First Application

Parameter

EAP Posterior SD (� 100)

Parameter interpretationBM2 BM3 BM2 BM3


AC
high 0.4132 0.3292 2.2774 1.4160 Upper asymptote (AC)


SC
high 0.4132 0.5110 2.2774 2.5016 Upper asymptote (SC)


AC
low �0.4296 �0.3516 2.4513 1.4473 Lower asymptote (AC)


SC
low �0.4296 �0.5654 2.4513 2.7277 Lower asymptote (SC)


AC
scale 0.5258 0.5259 1.0179 0.5080 Location (AC)


SC
scale 0.5258 0.5214 1.0179 0.6037 Location (SC)


AC
shape 5.4092 4.4127 70.6052 24.1439 Steepness (AC)


SC
shape 5.4092 5.2268 70.6052 42.4271 Steepness (SC)

Note. BM2 and BM3 refer to the model names, and BM2 does not allow for differences between AC and SC. EAP � expected a posteriori; AC �
accuracy condition; SC � speed condition.
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0.0663. By themselves, these numbers mean little, but given these
estimated population distribution parameters and their remaining
uncertainty (i.e., the posterior variance of these parameters), we
could now depict the distribution of the model parameters in the
population by computing posterior predictive distributions. Take,
for illustration, the population distribution of �. Given a single
sample �

(s) from the posterior distribution of �, and a single
sample ��

(s) from the posterior distribution of ��, one can generate
a single sample �(s). Repeating this procedure many times yields a
vector of � values that are sampled from the population distribu-
tion. Thus, a sufficiently high number of samples obtained this way
represents the expected population distribution of �. Figure 9

shows these predicted population distributions for the � and �
parameters. The parameter estimates for the nine participants in the
experiment are shown as circles under the distribution curve.
Figure 9 invites several insights with substantive implications
regarding the hierarchical diffusion model. First, it can be seen that
population variability in � is quite large—it spans almost the entire
range of �—whereas it is comparatively small for �.10 Also,
although the � parameters seem to follow a bell-shaped distribu-
tion, � parameters are more spread out and even appear to occur in
clusters.

The large interindividual differences in boundary separation
support a general argument of choice RT modeling as an improve-
ment over models for accuracy or RT only: If there are large
differences in how cautiously participants respond to stimuli, pure
accuracy or pure RT data may paint a deceptive picture. The
diffusion model allows one to quantify differences in participant
caution, and the HDM framework can be used to model boundary
separation (or indeed any other diffusion model parameter) at the
population level.

To conclude the discussion of the parameter estimates, it can be
interesting to compare the size of the variance on the trial level
with that on the population level. In the present model this is
possible for the nondecision time and for the drift rate in each
condition. For the nondecision time, the interindividual standard
deviation of �, ��, is estimated at 0.0659, and the average intertrial
standard deviation, �, is of a similar magnitude: 0.0807. For the
drift rates, however, the average intertrial standard deviation, � �
0.3500, clearly exceeds the interindividual standard deviations,

(i): 0.0858, 0.1496, 0.1388, and 0.1169.

Finally, in order to evaluate absolute model fit, we generated
posterior predictives by simulating 1,000 new data sets from the
joint posterior distribution of the parameters (i.e., we generated
data as predicted by the fitted model). Then we pooled these data
sets in each person-by-condition cell of the design and constructed
a histogram for each of these pooled data sets. Figure 10 shows this
histogram for each condition for three participants. The black line
is a (smoothed) histogram of the simulated data, whereas the gray
bars indicate the real data. The RTs for error responses were given
a negative sign, so that the inverted distribution on the left side of
the vertical axis indicates the error response distribution. Each cell
contains 80 responses. The figure does not seem to betray any large
systematic misfit of the model.

10 See Matzke and Wagenmakers (2009) for plausible ranges of diffu-
sion model parameters, as found in published studies.
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Figure 6. The graphical model representation of the population-hierar-
chical model. The shaded node indicates the observed data, and its direct
contributors are (clockwise starting from the left) the drift rate �, boundary
separation �, and nondecision time �. Drift rate and nondecision time have
across-trial means (
 and �, respectively) and standard deviations (� and �,
respectively). The rest of the parameters belong to prior distributions.
Subscripts (and plates) indicate repetitions of the parameter across partic-
ipants p, conditions i, and trials j. See text for more details.

Table 4
Posterior Distributions of the Mean Drift Rate in the
Population, per Condition

Condition i T Q 
(i) �
(i)

1 1 0 0.0870 0.0357
2 0 0 �0.0347 0.0555
3 1 1 0.2700 0.0558
4 0 1 0.0363 0.0448

Note. Where T � 0, the population distribution of the drift rate has much
mass around 0. T � type; Q � quality; 
(i) � posterior mean; �
(i) �
posterior standard deviation.
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Conclusion. In this advanced application, we applied a pop-
ulation-hierarchical model to choice response time data. We com-
puted ANOVA-style contrasts for the 2 � 2 factorial design and
found two main effects of the independent variables on the drift
rate parameter. The population-hierarchical diffusion model is
especially noteworthy because it combines information from dif-
ferent participants (and conditions) in a single model, allowing for
more reliable parameter estimates and hypothesis tests at the
population level.

Software Implementation

We believe the hierarchical extension of the Wiener diffusion
process has much potential for the field of cognitive science.
However, applying this model in practice is difficult and may be
prohibitively onerous for many researchers. For this reason, it is
important also to publish computer software to aid in the applica-
tion of the HDM.

Our software implementation is not a full software package but

rather a plug-in to an existing software package, WinBUGS. A
guide in the Supplementary Materials details how the software and
plug-ins need to be installed and also presents some examples of
usage. Note that the software is dependent on Microsoft Windows
and cannot currently be made to run optimally on other systems.

Discussion

We have introduced a hierarchical extension of the Wiener
diffusion model for two-choice response times (hierarchical diffu-
sion model, or HDM). With two examples, we have demonstrated
the feasibility of the HDM. In strictly formal terms, the HDM is
just another nonlinear mixed model, but it is special because it has
a bivariate random variable at the measurement level. As a new
data analysis approach, it is characterized by great flexibility
compared with existing treatments of choice response time data.
Additionally, by using the Wiener diffusion process as the mea-
surement level, the hierarchical analysis can be performed on
parameters that have well-defined substantive interpretations.

The substantively interesting process interpretation of the dif-
fusion model parameters is important for several reasons. First, it
is particularly appealing in the context of Borsboom’s (2006) view
that the fact that measurement models lack substantive foundation
is the main reason psychometrics has had a limited impact. That is,
although the analysis of choice response time data in a hierarchical
framework has already been addressed in the psychometric liter-
ature (Klein Entink, Kuhn, Hornke, & Fox, 2009; van der Linden,
2007), our use of a popular process model such as the diffusion
model is novel. At the same time, of course, the process interpre-
tation limits the applicability of the present approach, because one
is now required to assume that the process assumptions are not
violated. As a result, certain types of data (e.g., long response
times that would belie the assumption that a single information-
gathering process without regulatory processes is generating the
data) cannot be dealt with by the HDM.

Second, thanks to the substantively interesting process interpre-
tation of the diffusion model parameters, the HDM framework is
an instance of cognitive psychometrics, a relatively young subdis-
cipline of psychology. In this subdiscipline, models of cognition
are extended to encompass individual differences (i.e., participants
are no longer considered as mere replications of one another;
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Batchelder, 1998) in order to allow for population-level inferences.
This strategy has gained some momentum recently, with several
articles applying hierarchical models to pool data over participants
(see e.g., Hoffman & Rovine, 2007; Morey, Pratte, & Rouder,
2008; Morey, Rouder, & Speckman, 2008; Wetzels, Vandekerck-
hove, Tuerlinckx, & Wagenmakers, 2010), but the approach is
presently far from mainstream. We believe that cognitive psycho-
metrics—the result of trading between subdisciplines as advocated
by Cronbach (1957)—has many possible applications in a wide
variety of domains where psychological measurement is used.

We have elected to implement the HDM using Bayesian statis-
tical methods. This choice was influenced by many factors, both
practical and principled. An important corollary of the Bayesian
framework is that results from such an analysis have direct and
often intuitive interpretations. In one of the examples, we derived
posterior distributions of ANOVA contrasts, from which we could
directly draw (probabilistic) inferences regarding the hypotheses at
hand.

In order to facilitate the dissemination of hierarchical models
(i.e., cognitive psychometrics) into mainstream cognitive science,
we have provided software with which a hierarchical model for
two-choice response time data can be put into practice. Although
this software has some limitations (in particular, somewhat inef-
ficient sampling due to WinBUGS’s use of general-purpose rather
than tailor-made sampling algorithms), we believe it may be useful
for a wide audience.
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Appendix

Technical Details

Technical details concerning some of our analyses are provided
here in order to avoid cluttering the main text. We begin with some
details regarding the Bayesian statistical framework, then discuss
the examples from the main text within this more technical con-
text.

The Bayesian Framework

Computation in the Bayesian Framework

As mentioned in the main text, Bayesian methods require the
computation of the posterior distributions of model parameters,
p(� � y) � p(y � �)p(�)/p(y). Typically, however, these distributions
are mathematically complex, and it is nontrivial to compute sum-
mary statistics of the (often high-dimensional) posterior p(� � y). In
many cases it is comparatively much easier to generate randomly
drawn samples from this posterior distribution—in no small way
because this does not require the evaluation of p(y). Summary
statistics of a sufficiently large sample can then be used to accu-
rately represent the posterior distribution. A class of general meth-
ods for sampling from a complex distribution are Markov chain
Monte Carlo (MCMC; Robert & Casella, 2003) techniques and in
particular the Metropolis–Hastings algorithm, in which samples
are drawn from some initial distribution that is not the posterior,
and this initial distribution is changed as successive samples are
drawn in such a way that after a number of iterations the samples
drawn are truly samples from the posterior.

Importantly, this means that the first samples are not represen-
tative of the posterior distribution. That is, the convergence of the

MCMC algorithm to a stationary distribution is not immediate and
may in fact take some time. It is therefore necessary to check
whether convergence has occurred before the output of the algo-
rithm may be considered to be draws from the posterior distribu-
tion. Our preferred method of assessing convergence is to run a small
number of different chains (say, six). After discarding a certain
number of iterations, called the burn-in, we test whether the remaining
draws from the different chains are in fact draws from the same
distribution. For this, we use the R̂ criterion (Gelman et al., 2004), a
statistic that is similar to the F statistic in analysis of variance: R̂ is
large if the between-chain variance is larger than within-chain vari-
ance, and it approaches unity when the different chains have con-
verged to the same distribution. R̂ values lower than 1.1 are typically
considered satisfactory. In our applications, we always ran six inde-
pendent chains and obtained R̂ values under 1.05 for all parameters.

In this Appendix, we make brief notes regarding the technical
results of our examples (because we believe this is good practice),
even though they indicated good convergence and stable estimates
in each of the analyses.

Priors

A final technical matter is the choice of prior distributions p(�),
which are required for the computation of the posterior distribu-
tions. Choice of priors is a somewhat controversial topic in statis-
tics, mainly because they seem to require a somewhat subjective
judgment on the part of the researcher. It is also a matter of debate

(Appendix continues)
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Figure A1. An example of a sample chain. The parameter depicted is �ε,
the condition-level variability, in model BM1. Although the chain looks
well mixed in the right panel, the left panel shows that the first few
iterations are still distinctly overdispersed. However, because this overdis-
persion quickly dissipates and is comfortably within the burn-in zone, it
does not affect the quality of the sampling.
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Figure A2. An example of a sample chain from model population-
hierarchical model. The parameter shown is �, the population mean of the
boundary separations. In the left graph, the first 50 iterations are depicted,
showing that the six chains rapidly converge to the same region. In the right
graph, the entire chains are shown, showing that the six chains appear to be
sampling from the same stationary distribution.
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whether it is possible (and desirable) to construct prior distribu-
tions that are entirely uninformative. For our purposes, we have
struck a compromise: We selected theoretically informed limits on
the possible range of each parameter and chose a prior distribution
that reflected equiprobability of all values in that range (i.e., a
uniform, or “flat,” prior). Researchers who have more prior infor-
mation regarding the distribution of parameters can implement this
in our software easily. In practice, however, the influence of even
quite informative prior distributions on the posterior distributions
is small compared with the weight of the likelihood of the data.

Convergence Results for the Example Applications

Example 1

For each model, we drew samples from the posterior distribution
using the software described in the Supplementary Materials. We

ran six independent chains of 10,000 iterations, and 5,000 of these
iterations were discarded as burn-in. We computed the R̂ statistic
for each parameter and confirmed that they were all lower than
1.05, indicating good convergence of the chains. Visual inspection
of the chains indicated no issues (see Figure A1 for an example).

Example 2

We again drew 10,000 samples in each of six chains. We
discarded the first 5,000 samples as burn-in and computed the R̂
statistic for each parameter. The statistic was always lower than
1.05. Again, no issues with convergence were noticeable in a
visual inspection of the sample chains (see Figure A2 for an
example).
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