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In war, the will is directed at an animate object that reacts.

Carl von Clausewitz, On War

1 Introduction

The problem of information seems integral to the analysis of conflict. Indeed,

conventional wisdom in the field has long held that the outbreak of outright

conflict can only be due to asymmetric information about relative power. (See,

e.g., Blainey 1973.) If the two parties to a potential conflict agree on their re-

spective probabilities of winning, and some resources are lost in case there is

actual fighting, then there should be some peaceful solution that could be ac-

cepted by both.

Taken strictly, however, it is somewhat difficult to delineate a precise sub-

field studying information as it pertains to conflict. This is because any analysis

of interaction using a game-theoretical approach is, at its heart, about the use
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of information. A conflict situation may be such that what is best for one party

to do depends on what other parties plan to do, but if none of the participants

know about this state of things—are informed about it—then from every in-

dividual point of view what we have is a non-strategic, single-person decision

problem. Indeed, Robert Aumann, one of the founders of the discipline of game

theory, has suggested that the field should fall under the broader rubric of in-

teractive epistemology, as it fundamentally deals with rational actors reasoning

about the reasoning of other rational actors. (See, e.g., Aumann 1999.)

In this chapter we therefore take a broad view of information. We apply it,

however, to a narrowly defined class of conflict models. Specifically, we focus

here on the literature that models conflict as a contest. We further narrow the

focus by concentrating on 2-player contests. Within economics, there is a large

literature on multi-player contests in the context of the study of rent-seeking.

(See, e.g., Nitzan 1994 for a survey.) As armed conflict typically only involves

two parties, it seems natural not to cover such models here. Finally, we do not

study the tradeoff between aggressive and productive activities, as in such stud-

ies as, e.g., Skaperdas (1992), but instead take the value of winning a conflict as

given.

We shall be especially interested in how manipulating information affects

equilibrium efforts in contests.

In game theory, strategic situations are typically distinguished with regard

to information along two different dimensions. One is the dichotomy of perfect

versus imperfect information. An extensive form game, or game with a time di-

mension and sequential decisions, is said to be a game of perfect information

if all players are at all times completely aware of exactly what has happened

previously. If some action of some player is not observed by others, we instead

have a game of imperfect information. The study of equilibrium along this in-

formational dimension therefore deals with issues of the effects of commitment

and observability of actions, something we discuss in Section 3, under the label

of strategic information—information about what an opponent does.

A second distinct dichotomy is that of complete versus incomplete informa-
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tion. A game has complete information if every aspect of the game—i.e., who

the players are, which actions they have available, and what their payoff func-

tions are—is known to every player; and, indeed, not just known to every player,

but commonly known, in the sense that everyone not only knows all the details

of the game’s specification, but also knows that everyone else knows them, and

so on up to arbitrary levels of mutual knowledge. If such knowledge fails at

some point, the game is one of incomplete information. For this reason we

do not, strictly speaking, have a theory of games of incomplete information, as

any situation where at least some players have a faulty understanding of what

exactly is the nature of the situation would fall into this class. Instead, what is

normally meant by a game of incomplete information is the smaller, more man-

ageable class of games discussed by Harsanyi (1967–1968). Harsanyi suggested

that many forms of incomplete information could be modeled as games that

start with Nature drawing the types of the players, in the sense of their payoff

functions, from commonly known distributions. Such games may thereupon

be analyzed using a standard Bayesian approach.

The study of contests distinguished along this latter dimension therefore

deals with issues of asymmetric information about players’ utility from win-

ning, their costs of producing effort, abilities, etc, and, notably, what private in-

formation about aggressive potential implies for the probability of outbreak of

outright conflict instead of peaceful settlement—that is, we are here interested

in the effects of a player’s information about an opponent’s attributes. These

matters are discussed in Sections 4 and 5.

We conclude by drawing attention to some open questions worthy of fur-

ther study.

2 Preliminaries

Except for Section 5, we shall be concerned here exclusively with two-player

contests such that the probability of player i ∈ {1, 2}winning, given that efforts

(which may be taken to be expenditures on arms, or the sizes of armies) are x1
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and x2, is

p i (x1,x2) :=
�

x i/(x1+x2) if x1+x2 > 0

1/2 otherwise.
This functional form for the contest success function (CSF), which gives rise to

what is sometimes known as a “lottery contest,” is familiar from the economic

theory of rent seeking (Tullock 1980). Tullock (1975) used it for the study of

litigation, but it has roots that go back at least to Haavelmo’s (1954) discussion

of international conflict. Hirshleifer (1989) discusses the empirical relevance of

this form of the CSF, and Skaperdas (1996) provides an axiomatization.

As a benchmark, we shall start out by considering a simultaneous-move

contest in which all aspects of the game are commonly known among the play-

ers. Suppose the players value winning at v1 > 0 and v2 > 0, respectively,1 that

effort comes at unit cost and that both players are risk neutral. The payoff func-

tion of player i is then

u i (x1,x2) := p i (x1,x2)vi −x i . (1)

Note that there cannot be an equilibrium in which neither player expends pos-

itive effort, since given that the other player expends zero effort, you could win

with probability one in return for an arbitrarily small effort. Hence if the players

make their effort decisions simultaneously and independently, the best reply of

player i given the effort of player j 6= i is given by the first order condition

∂ u i

∂ x i
=

x j

(x1+x2)2
vi −1= 0.

That is, player i ’s best reply function is

x i =
p

x j vi −x j .

Since in equilibrium both players must be playing best replies, we must have

that

x1 =
v 2

1 v2

(v1+v2)2

1We shall speak of differences in valuations throughout, but the same framework can also

be used to address differential effort costs, or a combination of both. Suppose, more generally,

that player i values winning at vi and that one unit of effort costs him c i . Then maximizing

p i vi − c i x i is, of course, equivalent to maximizing p i (vi /c i )−x i .
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and

x2 =
v1v 2

2

(v1+v2)2
.

In equilibrium, the expected payoff of player i is therefore

u C
i :=

v 3
i

(v1+v2)2
.

Notice that player 1’s equilibrium probability of winning is

p1(x1,x2) =
x1

x1+x2
=

v1

v1+v2
.

The player with the higher valuation therefore has a greater probability of win-

ning in equilibrium. Dixit (1987) calls this player the favorite, the other the

underdog.

While not surprisingly equilibrium efforts are increasing in the valuations of

the players, perhaps more interesting is the fact that the greater is the difference

in valuation of winning between the players, the lower is aggregate equilibrium

effort. To see this, let v1 = v − δ and v2 = v + δ for some v and some δ > 0.

Aggregate equilibrium expenditure is then

x1+x2 =
v 2

1 v2+v1v 2
2

(v1+v2)2
= ((v −δ)+ (v +δ))

(v −δ)(v +δ)
((v −δ)+ (v +δ))2

=
v 2−δ2

2v
,

which clearly declines in δ. (Also see Konrad 2009.) Intuitively, the greater in-

centive to win of the player with the higher valuation makes it more costly for

the low-valuation player to participate.

3 Strategic information

3.1 Commitment

In a single-person decision problem, or game against Nature, having more in-

formation when you select your action is always beneficial. The more precise is

your information about whether there will be sunshine or rain later in the day,

the more likely is your decision to carry an umbrella or not to be optimal.
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In a strategic interaction this is not necessarily so. Having more informa-

tion can hurt a player, as this fact may be exploited by others. A familiar ex-

ample from economics is the Stackelberg model of competing firms, one of

which makes its observable and irrevocable supply decision before the other

firm makes its choice. The firm that goes second is better informed, since it

makes its choice knowing what the first firm has done. Nevertheless, anticipat-

ing a rational response on the part of the firm that goes second, the first firm

can improve its profit relative to equilibrium of a simultaneous-move model,

and that of the second firm decreases. In the same spirit, sequential decision-

making and commitment in contests is studied by, e.g., Dixit (1987), Baik and

Shogren (1992), and Morgan (2003).

Now assume that player 1 makes its irrevocable effort decision first and that

this decision is observed by player 2 before player 2 makes its decision. We use

backward induction to find a subgame perfect equilibrium. If player 1 knows

player 2 to be rational, then it knows that for any x1, the response of player 2 is

given by the best-reply condition (1) as

x2 =
�p

x1v2−x1 if x1 < v2

0 otherwise.

The problem facing the first-mover in a sequential contest is therefore de facto

that of selecting his favorite point on the second-mover’s best-reply function.

Hence at an equilibrium in which player 2 exerts positive effort, player 1’s

payoff function, taking into account player 2’s rational response, is in effect

u 1 =
x1

x1+x2
v1−x1 =

x1

x1+(
p

x1v2−x1)
v1−x1 =

p
x1

v1p
v2
−x1,

which is maximized at

x1 =
v 2

1

4v2
,

with player 2’s effort at

x2 =
2v1v2−v 2

1

4v2
.

If we have v1 ≥ 2v2, however, in equilibrium player 1’s effort is x1 = v2 and player

2’s is zero.
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Hence if we have v1 < v2, aggregate effort in the unique subgame perfect

equilibrium is

x1+x2 =
v 2

1

4v2
+

2v1v2−v 2
1

4v2
=

v1

2
<

v 2
1 v2+v1v 2

2

(v1+v2)2
,

i.e., aggregate effort is lower under sequential play than under simultaneous

play. If we have v1 = v2, the outcome is the same as under simultaneous de-

cisions. Finally, if we have v1 > v2, sequential play involves greater aggregate

effort than simultaneous play—even though it may be the case that player 2 ex-

erts no effort at all. In Dixit’s terminology, a favorite who is able to commit will

be more aggressive than otherwise, an underdog less aggressive.

In equilibrium under sequential decisions, with player 1 going first, player

1’s expected utility is therefore

u S
1 :=

v 2
1

4v2
.

Since we have that

u S
1 =

v 2
1

4v2
≥

v 3
1

(v1+v2)2
= u C

1

for all v1 and v2, the player who goes first always does at least as well as in the

simultaneous-move game.

Now consider endogenous timing of contest effort commitment. Specifi-

cally, let there be two time periods, and allow each player to decide indepen-

dently whether to commit effort in the first or the second period. If both players

commit in the first period, or both commit only in the second period, then play

is as in the simultaneous-move equilibrium. If one player commits in the first

period and the other in the second period, then play is as in the unique sub-

game perfect equilibrium of the sequential-move game. Baik and Shogren (1992)

show that in equilibrium the underdog commits in the first period and the fa-

vorite in the second, leading to lower aggregate equilibrium effort than under

simultaneous moves.

That viewing the problem of commitment as crucially an informational one

is not just gratuitous is brought home by the fact that commitment that is not
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observed might as well not have happened. In a memorable scene in Stanley

Kubrick’s 1964 film Dr Strangelove it is revealed that the Russians have installed

a “Doomsday Device” that responds automatically with a counter-attack when

it detects that missiles have been launched against the Soviet Union, thus en-

suring mutual annihilation. In the spirit of military secrecy, however, the Rus-

sians have neglected to tell anybody about it, and now it is too late.

Bagwell (1995) pointed out that even the slightest uncertainty about whether

a commitment has been correctly observed is enough to undermine any com-

mitment effects. (Nevertheless, van Damme and Hurkens 1997 argue that one

of the mixed-strategy equilibria of Bagwell’s example, which converges to the

unique subgame perfect outcome of the sequential game with perfect observ-

ability when the probability of correct observation approaches one, is more rea-

sonable than the other.) Morgan and Várdy (2007) make a similar point in the

explicit context of contests. Consider, as we have done, a 2-player sequential

contest. Suppose the player who goes second can learn about the effort of the

leader by paying a fee, which can be arbitrarily small. It cannot be the case that

the second-mover ever pays the fee in a subgame perfect equilibrium, since

in any equilibrium his choice of effort must be optimal given the effort of the

leader—that is, the concept of Nash equilibrium already implies knowledge of

the first player’s action, so that it cannot be rational to pay to learn about it. This

observation obviously generalizes beyond contest games. Whether the result

that in equilibrium one would never pay to learn what the opponent is doing is

an interesting insight or instead points to a fundamental logical flaw in the very

concept of equilibrium itself is beyond the scope of the present discussion.

3.2 Delegation

Schelling (1960) pointed out that the potential benefits of commitment may

also be attained through strategic delegation, when a player hires an agent to

play the game on his behalf, provided, of course, that the delegation contract

is observable and cannot be secretly renegotiated. Delegation in contests is

studied by, among others, Baik and Kim (1997), Wärneryd (2000), and Konrad
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et al (2004).

If the effort of the agent is observable and verifiable, a first-best contract

can be written that specifies the agent’s remuneration as a function directly of

his effort. Since the best a player could hope to achieve through delegation is

his favorite point on the opponent’s best-reply function, the optimal contract

therefore specifies the effort associated with this point and pays the agent the

smallest sum compatible with his rational participation if he exerts this effort,

and nothing otherwise. If efforts are not verifiable, however, the agent has to

be provided with an incentive to nevertheless exert effort. As we shall see, such

a moral-hazard problem in the agency relation may have the effect of lowering

equilibrium efforts and making both parties better off in a two-sided delegation

equilibrium—even though both players are now also paying for the services of

agents.

We illustrate this by considering the following example. Start by assuming

only player 1 is able to hire an agent, who will exert effort x a
1 in the contest

on the player’s behalf. The agent is exactly like player 1, risk neutral and with

access to the same conflict technology as his principal. Assume a contract be-

tween the player and his agent takes the form of a simple contingent fee w1, to

be paid to the agent by the player in case the contest is won. In case the contest

is lost, the agent is paid nothing. Again, we use backward induction to find a

subgame perfect equilibrium, starting with the game between player 1’s agent

and player 2, given that some contract specifying w1 has already been signed,

cannot be secretly renegotiated, and has been observed by player 2. The agent’s

payoff function is then

u a
1 (x

a
1 ,x2) := p i (x a

1 ,x2)w1−x a
1 ,

whereas player 2’s payoff function is as before. Hence in equilibrium in the

contest, the agent will expend

x a
1 =

w 2
1 v2

(w1+v2)2

9



and player 2 will expend

x2 =
w1v 2

2

(w1+v2)2
.

The agent therefore wins the contest on behalf of player 1 with probability

w1/(w1+v2).

From the point of view of the signing of the contract with the agent, player

1’s expected payoff is then

u 1(w1) =
w1

w1+v2
(v1−w1), (2)

which is maximized at

w1 =
p

v1v2+v 2
2 −v2. (3)

It now seems not unreasonable to conjecture that incentives to delegate obtain

in a similar fashion as with direct commitment; i.e., the underdog may wish to

delegate and the favorite not. Unfortunately, the present framework does not

allow this issue to be investigated in an analytically tractable manner. We shall

therefore only consider a special case—that of identical valuations. As will be

recalled from the discussion of direct commitment above, in this case there is

no incentive to commit. Strategic delegation is nevertheless not without inter-

est under these conditions.

Suppose, then, that we have v1 = v2 = v . First consider a player 1 who is the

only one to delegate. From (2) and (3)we see that we must have

w1 = v (
p

2−1)

and hence

u 1 = (3−2
p

2)v <
v

4
;

i.e., the delegating player is strictly worse off than under direct and simultane-

ous play. The non-delegating player 2, however, is strictly better off, with an

expected equilibrium payoff of v /2. Hence no player has an incentive to dele-

gate.
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But suppose both players are required to be represented by agents—as is

sometimes the case, for instance, in litigation. The equilibrium choices of con-

tingent fees w1 and w2 must now satisfy

w1 =
p

v w2+w 2
2 −w2

and

w2 =
p

v w1+w 2
1 −w1.

Hence we must have

w1 =w2 =
v

3
.

As it happens, a contingent fee of one-third of what is recovered for the client by

the attorney is a standard feature of lawyer-client contracts in US civil-justice

cases, although perhaps not too much should be made of this coincidence.

From (2)we have that equilibrium expected utility is

u 1 = u 2 =
v

3
>

v

4
.

When both players are required to delegate, they therefore both end up better

off than if they had played directly. Even though they are both paying agents,

the moral hazard problem in the agency relations induces lower equilibrium

efforts than under direct play.

4 Non-strategic information

4.1 Independent valuations

Suppose a player’s valuation is either vL or vH , with both ex ante equally likely

and 0 < vL < vH . A player knows his own valuation with certainty, but not that

of the other. Denoting by x j (vL) and x j (vH ) the opponent’s expenditure when

he is of low and high type, respectively, Player i ’s expected payoff is

u i (vi ,x i ,x j L ,x j (vH )) :=
1

2
p i (x i ,x j (vL))vi +

1

2
p i (x i ,x j (vH ))vi −x i .
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Assuming an interior equilibium exists, the first-order condition for a best reply

expenditure x i is then

∂ u i (vi ,x i ,x j (vL),x j (vH ))
∂ x i

=
1

2

x j (vL)
(x i +x j (vL))2

vi +
1

2

x j (vH )
(x i +x j (vH ))2

vi −1= 0.

By symmetry, in equilibrium we must have x1(vL) = x2(vL) = xL and x1(vH ) =

x2(vH ) = xH . Hence we need only solve two equations, one for each type, to

find that

xL =
v 2

L +6vLvH +v 2
H

8(vL +vH )2
vL

and

xH =
v 2

L +6vLvH +v 2
H

8(vL +vH )2
vH .

This example belongs to a small class of such problems that are analytically

solvable—in particular, the assumption that both values are equally likely is

necessary. Malueg and Yates (2004) study a slightly more general model.

Defining

b :=
v 2

L +6vLvH +v 2
H

8(vL +vH )2
,

and noting that xL = bvL and xH = bvH , we can now consider expected aggre-

gate effort in this contest. With probability 1/4, the players both have low valu-

ation and hence expend in aggregate 2bvL . With probability 1/4, both have the

high valuation, in which case a total of 2bvH is expended. Finally, with prob-

ability 1/2, one player has the low valuation and the other the high valuation,

so that total effort is b (vL + vH ). That is, aggregate expected equilibrium effort

when valuations are private information is

X P :=
1

4
2bvL +

1

4
2bvH +

1

2
b (vL +vH ) =b (vL +vH ).

For comparison, consider a contest where the valuations are identically dis-

tributed ex ante but commonly known among the players at the time of play.

With probability 1/4, such a contest will have two players with the low valu-

ation, so we know from Section 2 that total effort will be vL/2 in equilibrium.

With probability 1/4, both are of the high type and hence expend in total vH/2.
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Finally, with probability 1/2 one player will have the low valuation and the other

the high valuation, in which case total effort is (v 2
L vH+vLv 2

H )/(vL+vH )2. That is,

ex ante aggregate expected equilibrium effort in this perfect information case

is

X :=
1

4

vL

2
+

1

4

vH

2
+

1

2

v 2
L vH +vLv 2

H

(vL +vH )2
=

(vL +vH )3+4vLvH (vL +vH )
8(vL +vH )2

=b (vL +vH ) =X P .

Thus expected aggregate effort is the same regardless of whether information

is private or not. This may be thought to be an artifact of the risk neutrality

assumption. But then again, as we shall see next, it does not carry over to the

common-value case.

Not very much is known at this point about the case when players’ val-

uations are drawn from different distributions.2 Hurley and Shogren (1998a,

1998b) consider other special cases. Fey (2008) proves existence of equilibrium

in a model where the type of each player is drawn from a uniform distribution.

4.2 Common value conflicts

Consider now a two-player contest where ex post both players would value the

prize the same, but at least one player is uninformed of this value. To simplify,

suppose there are just two possible values of the prize, vH and vL , where we

have 0< vL < vH . Let the probability of vH be q . We assume one player, player I ,

is informed about the actual realization of the value, whereas the other, player

U , knows only the prior distribution. Alternatively, we need not assume the in-

formed player is perfectly informed. Suppose instead he receives a signal about

the realized value, such that the signal can take one of two values. We could

2That is, not very much is known about independent valuations in this particular class of

contest models. In the contest literature, another popular model is the contest in which the

player who exerts the greatest effort wins with probability one. This type of contest is also

known as a first-price all-pay auction, and the case of independent valuations is quite well

understood in this context. (See, e.g., Krishna and Morgan 1997.)
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then instead take vL and vH to be the conditional expectations of the actual

value, given the two possible values of the signal, with q characterizing the dis-

tribution of the conditional expectation.

Let xU be the effort of the uninformed player, and x I (vL) and x I (vH ) the ef-

forts of the informed player when he has observed the value to be vL and vH ,

respectively. The best-reply function of the informed player is then

x I (v ) =
�p

xU v −xU if xU < v

0 otherwise.

There can be no equilibrium such that x I (yH ) = x I (yL) = 0. If such an equilib-

rium existed, it would have to be the case that xU ≥ vH . But the uninformed

player would not be playing a best reply, since he could lower his effort and

still win with probability one in both states of the world, as the informed player

would always be exerting zero effort. Therefore there is no equilibrium where

the informed player never exerts positive effort.

Consider next the uninformed player. The rational uninformed player must

take the opponent’s privileged informational situation into account. In a stan-

dard, first-price, common-value auction, if everyone bids as if the object were

worth its expectation given only their own information, then a player’s win-

ning indicates that he has very likely overestimated the value, since everyone

else’s estimates are lower. This phenomenon, which does not appear in equi-

librium, is known as the “winner’s curse” in auction theory. An analogue of it

is, of course, a concern in the present setting, and therefore the uninformed

player must discount his estimation of the prize below its ex ante expectation.

There are two possible types of equilibria. In the one we consider first, both

informed types are active. That is, we have x I (vL) > 0 and x I (vH ) > 0. The

uninformed player’s expected payoff function is

uU (xU ,x I (v L),x I (vH )) = (1−q )
xU

xU +x I (vL)
vL +q

xU

xU +x I (vH )
vH −xU .

The first order condition for a best reply effort is therefore

(1−q )
x I (vL)

(xU +x I (vL))2
vL +q

x I (vH )
(xU +x I (vH ))2

vH −1=
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(1−q )
1
p

xU

p
vL +q

1
p

xU

p
vH −2= 0,

so the equilibrium effort of the uninformed player is

xU =
(q
p

vH +(1−q )
p

vL)2

4
.

In effect, in equilibrium the uninformed player acts as if estimating the value

of the prize, not at its expectation, but at the square of the expectation of its

square root.

The equilibrium efforts of the two types of the informed player may now, of

course, be readily computed. But we shall be interested only in one feature of

these efforts. Notice that, from the informed player’s best-reply function, his

expected effort may be written as

(1−q )(
p

xU vL −xU )+q (
p

xU vH −xU ) =
p

xU ((1−q )
p

vL +q
p

vH )−xU =
p

xU 2
p

xU −xU = xU ,

since from the expression for the equilibrium value of xU we have that (1 −
q )
p

vL +q
p

vH = 2
p

xU . That is, in equilibrium the two players exert the same

expected effort. Hence aggregate expected effort in this type of equilibrium is

2xU =
(q
p

vH +(1−q )
p

vL)2

2
.

Compare this outcome with the two relevant symmetric information scenarios.

Consider, first, a situation in which both players are uninformed. Both being

risk neutral, from the discussion in Section 2 we know that in equilibrium they

would each exert effort ((1−q )vL +qvH )/4, so that aggregate effort would be

(1−q )vL +qvH

2
.

If both were informed, then when the value was vL , they would each in equilib-

rium exert effort vL/4, and when the value was vH they would each exert effort

vH/4. Hence the ex ante expected aggregate effort would be the same under

this scenario as when both are uninformed.
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Since the square root is a strictly concave function, and by Jensen’s inequal-

ity the expectation of the square root of a stochastic variable is strictly less than

the square root of the expectation of the variable, we see that aggregate ex-

pected effort under asymmetric information is strictly lower than under either

symmetric information scenario.

Since we must have xU < vL for this to be an equilibrium, as otherwise the

informed player would not exert any effort when the value was vL , we must

have that

q <

p

vL/vH

1−
p

vL/vH

=: q̂ .

In the second type of equilibrium, only the highest informed type is active;

i.e., we have x I (vL) = 0. The uninformed player’s first-order condition then re-

duces to

q
x I (vH )

(xU +x I (vH ))2
vH −1=q

1
p

xU

p
vH −1−q = 0,

so we have that

xU =
�

q

1+q

�2

vH .

In order for this to be consistent with the lowest type expending nothing, we

must have xU ≥ vL , i.e., that

q ≥ q̂ .

Again we note that both players exert the same effort in expectation, as we have

that

Ex I =q (
p

xU vH −xU ) =
q 2

1+q
vH −qxU = (1+q )xU −qxU = xU .

We also have that

2xU = 2

�

q

1+q

�2

vH <
qvH

2
<
(1−q )vL +qvH

2
,

so that again expected aggregate effort is strictly less than under either symmet-

ric information scenario. As this result generalizes we conclude that, unlike in
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the independent valuations model, with common values asymmetric informa-

tion tends to lower aggregate effort.

By the strict convexity in x I of the relevant part of pU , the uninformed player’s

probability of winning, we have that

(1−q )pU (xU ,x I (vL))+qpU (xU ,x I (vH ))>
xU

xU +Ex I
=

xU

2xU
=

1

2
.

That is, the uninformed player’s expected probability of winning is, somewhat

surprisingly, strictly greater than that of the informed player. As an example,

note that in the second type of equilibrium, the uninformed player’s probability

of winning is

1−q +q
xU

xU +x I (vH )
= 1−q +

q 2

1+q
> 1/2.

Let q → 0 and vL/vH → 0 in such a fashion that the condition for the existence of

equilibrium is satisfied. Then the probability of the uninformed player winning

approaches 1.

It can be shown also in more general settings that the uninformed player al-

ways wins with a strictly higher probability than does the informed player. This

notwithstanding, an uninformed player is always strictly worse off than an in-

formed player. There is therefore an incentive to acquire information. Consider

two initially uninformed players who each have the option of acquiring infor-

mation about the realization of the prize prior to entering the contest. In equi-

librium, both would acquire information, even though in ex ante terms noth-

ing is gained by this, as they go from one symmetric information scenario to an

equivalent other.

More general results about 2-player common-value contests with asymmet-

ric information are proved in Wärneryd (2003).

It should be noted that the crucial feature of the common-value contest un-

der asymmetric information is, perhaps paradoxically, not that the valuations

are exactly the same, but rather that, in effect, at least one player does not know

its own type. The common-value contest is therefore not a special case of the

independent valuations model. The independent valuations model is a model

of a situation with asymmetric information about attributes of the players, i.e.,
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their payoff or utility functions. The common-value model is a model of a sit-

uation with asymmetric information about an attribute of the prize. In fact, we

can easily allow the players’ ex post valuations to differ. For instance, let y be

an uncertain attribute of the prize, and vi (y ) the valuation of player i .

5 Asymmetric information and conflict outbreak

So far, we have made no distinction between conflict efforts—in the sense of,

e.g., arms investments—and actual aggression. And, indeed, in static situations

of complete information about players’ attributes, there would seem to be no

reason for actual conflict ever to break out. Given that the players understand

what their equilibrium probabilities of winning would be, they could simply

share whatever they are in conflict over according to those probabilities, and

avoid actually fighting. (See, e.g., Skaperdas 1992 for an argument to this ef-

fect.) In particular if there is some cost associated with fighting itself, such a

solution would be strictly efficient. In the real world, of course, wars do break

out and people do take each other to court. We therefore need a theory of con-

flict outbreak.

Blainey (1973) influentially argued that war, if it is costly, can occur instead

of peaceful settlement only because states overestimate their probability of win-

ning. In this Section we investigate this issue formally by means of a simple

example, based on the more general discussion found in Bester and Wärn-

eryd (2006). The results apply, of course, not only to war, but also, for example,

to the analysis of pre-trial bargaining in litigation.

Consider two players who can each be either of the low strength type, t , or

the high strength type, t , with t < t . We assume the players’ types are inde-

pendent draws from the same distribution, with the probability of the low type

equal to q ∈ (0, 1). The relative strengths of the players determine their proba-

18



bilities of winning an outright conflict, according to

p i (t1, t2) :=







0 if t i < t j

1/2 if t i = t j

1 if t i > t j .

The problem concerns the division of a cake of fixed size 1. In case of outright

conflict, some of the cake is destroyed and only θ < 1 remains. Hence reaching

a peaceful agreement will always be efficient. Nevertheless, as we shall see,

peaceful agreements may be fundamentally impossible if the strengths of the

players are their private information.

To put this as starkly as possible, we assume the players can sign binding

agreements with a third-party mediator. This, naturally, is unlikely to be true

of international relations in reality. But it should be stressed that this approach

encompasses also all the contracts that the players could enforce themselves;

the point will be that even with extensive opportunities for commitment, a

peaceful solution may not always be attainable.

A contract will here be taken to be an incentive-compatible and individually

rational mechanism. By appeal to the relevation principle (Myerson 1979) we

restrict attention to direct mechanisms, i.e., mechanisms where the only thing

the players do is report their types to the mediator or mechanism designer.

A mechanism will be a pair of functions, β and π, which take as input the

type reports of the players, where β is the share of the cake received by player

1 in case conflict does not occur (and hence player 2 gets 1−β ), and π is the

probability of conflict. We allow a mechanism to specify a probability of out-

right conflict precisely since we wish to argue that if conflict is not destructive

enough, then there may be no incentive-compatible and individually rational

mechanism that always assigns probability zero to conflict.

A mechanism is incentive compatible if no type of any player has an in-

centive to report his type falsely, given that the opponent reports his truthfully.

Hence the mechanism (β ,π) is incentive compatible for the low type of player

1 if we have that

q ((1−π(t , t ))β (t , t )+π(t , t )(1/2)θ )+ (1−q )(1−π(t , t ))β (t , t )≥
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q ((1−π(t , t ))β (t , t )+π(t , t )(1/2)θ )+ (1−q )(1−π(t , t ))β (t , t ).

Similarly, the mechanism is incentive compatible for the high type of player 1

if we have that

q ((1−π(t , t ))β (t , t )+π(t , t )θ )+ (1−q )((1−π(t , t ))β (t , t )+π(t , t )(1/2)θ )≥

q ((1−π(t , t ))β (t , t )+π(t , t )θ )+ (1−q )((1−π(t , t ))β (t , t )+π(t , t )(1/2)θ ).

A corresponding set of conditions must, of course, hold for the two types of

player 2. Now suppose the mechanism is peaceful, in the sense of havingπ(t1, t2) =

0 for all (t1, t2). From player 1’s incentive-compatibility constraints, we then

have that

qβ (t , t )+ (1−q )β (t , t )≥qβ (t , t )+ (1−q )β (t , t )

and

qβ (t , t )+ (1−q )β (t , t )≥qβ (t , t )+ (1−q )β (t , t ).

We must therefore have that

qβ (t , t )+ (1−q )β (t , t ) =qβ (t , t )+ (1−q )β (t , t ),

i.e., that both types of player 1 have the same expected payoff under the mech-

anism. The simple explanation for this is, of course, that if you are never called

upon to actually fight, the cost of lying about your type is zero. If one type re-

ceived a greater share of the cake under the mechanism, the other type would

then have a strict incentive to claim to be the first type also.

Let V1 be this common expectation of the types of player 1. Since both types

have the same expectation, the ex ante expectation of player 1 is also equal to

V1; i.e., we have that

V1 =q (qβ (t , t )+ (1−q )β (t , t ))+ (1−q )(qβ (t , t )+ (1−q )β (t , t )).

Consideration of the corresponding conditions for player 2 shows that we must

have V2 = 1−V1.

Next consider the individual rationality constraints. In order to voluntarily

consent to be bound by the mechanism, each type of each player must expect
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at least the payoff he would get in an outright conflict. In particular, it must

hold for the highest type of player 1 that

V1 ≥qθ +(1−q )(1/2)θ

and for the highest type of player 2 that

V2 ≥qθ +(1−q )(1/2)θ .

Summing these two inequalities, and utilizing that V1 + V2 = 1, we see that a

peaceful mechanism only exists if we have that

θ ≤ θ̂ :=
1

1+q
.

The problem is that the highest type of a player may think itself likely to win an

outright conflict. If we are then dealing with players who are both of the high-

est type, there may be no way of splitting the cake peacefully that is compatible

with their overestimations of the outside option, provided enough would re-

main of the cake in case of conflict. One might think that this suggests that

peace is less likely the likelier are the players to be of the high type. The truth is

just the opposite, as we can see from the fact that θ̂ is declining in q , the prob-

ability that a given player is of the low type. It is precisely when the opponent is

ex ante very likely to be of the low type that the high type of a player may think

the outside option conflict is more attractive.

Related results are discussed by Powell (1996) and Brito and Intriligator (1985).

The latter allow for endogenous arms investments; the private information in-

stead concerns the parties’ payoff functions. What results is therefore a signal-

ing game.

Fearon (1995) is critical of rationalizations of war that are built exclusively

on mutual misperceptions of the probability of winning (as might seem, at first

glance, to be the case with the model of the present Section):

[T]he states know that there is some true probability p that one

state would win in a military contest. . . . [I]t could be that the states
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have conflicting estimates of the likelihood of victory, and if both

sides are optimistic about their chances this can obscure the bar-

gaining range. But even if the states have private and conflicting

estimates of what would happen in a war, if they are rational, they

should know that there can be only one true probability that one or

the other will prevail (perhaps different from their own estimate).

Thus rational states should know that there must in fact exist a set

of agreements all prefer to a fight.

The parties, Fearon argues, would seem to have an incentive to communi-

cate and share their information, since they would know that this must uncover

agreements that both would prefer to outright conflict. Private information by

itself cannot be a barrier to reaching agreement; only together with obstruc-

tions to the communication of such information, or incentives to misrepresent

information, can private information prevent peace. This argument appears to

fail to take into account that the process of information revelation in bargain-

ing itself may endogenously create incentives to lie, as the parties connive to

improve their relative position. In the setting discussed in this Section we have,

of course, incorporated the potential exchange of information directly into the

model, and shown that incentives to misrepresent may arise directly out of the

effect of one’s announcements on one’s bargaining position.

Fey and Ramsay (2007) note that once two states face each other on the bat-

tlefield, at the very least, they should realize that something is wrong, since they

could not both be willing to fight if they both had the correct perception of the

probability of prevailing. This is, of course, an application of Aumann’s (1976)

more general result that two players who have access to the same information

cannot “agree to disagree,” as it cannot be common knowledge among them

that their posteriors are different if they have the same prior.

One might think that information-gathering through espionage might facil-

itate reaching peaceful agreements. Bernard (2008) notes that, in the absence

of the possibility of signing binding agreements, espionage may actually raise

the probability of conflict, as any power imbalances will now be detected with
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certainty.

Finally, Garfinkel and Skaperdas (2000) is an example of a literature that ar-

gues that costly outright conflict can occur also in the absence of informational

problems. Their story is a dynamic one, in which a player may find it in his

interest to attack today if this improves his position tomorrow, even if peaceful

settlement would be efficient.

6 Suggestions for future research

As should be evident already from this brief and necessarily non-exhaustive

survey, many topics in the analysis of information as it relates to conflict remain

wide open. For instance, apart from a handful of special cases, next to nothing

is known about probabilistic contest models with independent valuations.

In all the models studied in this chapter, we have assumed that the par-

ties involved are unitary actors, who make decisions on their own to maximize

their individual, well-defined objective functions. Yet in most applications to

international conflict it does not seem reasonable to view states as players in

this fashion. Defense and aggression decisions by a nation are the outcomes

of political processes, involving many actors with at least potentially conflict-

ing interests. While the politico-economic literature contains models that take

this into account—for instance, by assuming that defense policy is set by a

politician who must have voter support—little appears to have been done that

relates to the specifically informational issues that arise. Thus we might ask,

for instance, if voters delegating conflict decisions to a politician has any spe-

cial, perhaps even counter-intuitive, implications for conflict efforts in interna-

tional equilibrium.

An area we have barely touched on here is that of information acquisition

and information revelation in conflict, for the simple reason that little formal

analysis of these issues appears to be available. Yet all nations keep military

secrets, and all nations employ intelligence services. Why? A naive reading of

sources such as Fearon (1995) would seem to suggest that, on the contrary, it
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would be in the interest of states to be as open as possible about their mil-

itary capabilities, as this would seem to make peaceful agreements easier to

reach. But this is, of course, an argument from an entirely static model. In a

dynamic perspective, something we have not discussed here, other possibili-

ties may arise. A nation might want to shroud its current capability in mystery

as it attempts to increase it for the future. But then again a currently power-

ful player would seem to have an incentive to reveal itself as such, so a policy

of non-disclosure could only signal weakness. The resultant signaling game is

another example of something that should prove a fertile field for further study.
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