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1 Introduction

The adoption of just-in-time (JIT) production processes has changed the face of

manufacturing on several dimensions and has particularly affected the demand for freight

transportation services. Regan and Garrido (2002) argue that JIT systems have changed

the criteria by which freight carriers are selected, increased shipper-carrier communica-

tion, reduced the number of carriers used, and increased contractual relationships between

producers and carriers. In addition, JIT production has made a particular quality dimen-

sion for freight services, the frequency of shipments, increasingly important, with reliabil-

ity being a related concern.1 Even beyond the specific JIT context, various authors have

shown the importance of freight scheduling to shippers. A principal components analysis

by Sheelagh and Gray (1993), which aggregates service characteristics into several main

clusters, demonstrates that the component including service frequency is an important

determinant of the choices of shippers using sea services as well as those shipping by

air. Similarly, Lu (2003) discusses the importance of scheduling in ocean shipping, while

providing extensive references to previous work on this topic.

With frequency well-established as a key component of service quality from the de-

mand side, this paper shifts attention to the supply side by analyzing the “supply” of

frequency by freight carriers. It does so by developing a model where carriers compete

both on price and on this frequency dimension, recognizing its importance to shippers.

Though related to several strands of literature on inventory and supply chain manage-

ment and on logistics services, the current model is among the first to pare away the

complexity of freight terminology in order to present the underlying “industrial organi-

zation” of freight competition in a stark, simple fashion. Through this simplification,

the paper transparently depicts the nature of competition when carriers set price and

service frequency, with an associated flexibility in the choice of vehicle size. The analysis

is able to present economically intuitive comparative-static results that show the impact

of changes in demand and cost parameters on the freight carrier’s choice variables. The
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model closely follows a previous model of frequency (or “schedule”) competition among

passenger carriers, developed by Brueckner (2010), and extends it to the freight context.2

In the model, producers ship out manufactured final goods to the market. Trans-

portation cost includes, along with the actual per unit transport cost, the cost of storing

inventory, which arises from the need to store output until a freight carrier picks it up from

the factory. These inventory holding costs, which are analogous to the cost of “schedule

delay” in the passenger framework of Brueckner (2010), are modeled very simplistically.

Each producer runs a continuous process that generates output uniformly over a period.

The time that an average unit of output is held in inventory is inversely proportional

to the number f of evenly spread freight dispatches over the period. The “full price” of

transportation per unit of output is then p + γ/f , which is the actual per unit price p

charged by a carrier plus the average holding cost per unit.

De Vany and Saving (1977) also use a full-price concept in modeling the capacity

and pricing decisions of trucking firms under uncertainty. In their model, stochastic

waiting time W gives rise to an inventory holding cost of ηW (parallel to γ/f). W

is determined using a complex queuing-theory approach, which was also adopted by a

number of subsequent authors.3 In the present model, by contrast, waiting time depends

deterministically on service frequency f in a transparent fashion. A contribution of the

paper is thus to provide a more elementary framework for the analysis of frequency

competition, which clearly exposes the decisions made by freight carriers.

In a standard competitive set-up, all producers would choose the carrier offering the

lowest full price (p+ γ/f) in the absence of some kind of friction. In the present model,

the required friction comes from idiosyncratic “brand loyalty” toward carriers on the part

of producers. With brand loyalty, a producer may end up choosing a preferred carrier

even when its full price is relatively high.

The nature of brand loyalty has been much debated in economics and in the psychology

and marketing literatures. Although development of a model where brand loyalty arises

endogenously is beyond the scope of the paper, there are good reasons to think that
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such loyalty may nevertheless be an important feature of the freight industry. Most

importantly, the evidence shows that relations between freight carriers and shippers often

involve long-term contracts (Regan, 2004; Hubbard, 1999, 2001). Such contracts lead to

familiarity, which is likely to breed inertia in future choices (with a change of carrier

involving search and other transaction costs). Brand loyalty could also arise from more

traditional factors such as locational proximity to a carrier’s base of operations or from

other idiosyncratic factors. In the model, these considerations generate exogenous brand

loyalty, which interacts with price and frequency offerings to yield an allocation of shippers

across carriers.

The paper assumes tractable forms for the key functions in the model: the producer

cost function, which depends on output; the producer utility function, which depends

on profit and brand loyalty to the particular carrier used for shipping; the carrier cost

function, which depends on vehicle capacity; the density function for brand loyalties. The

analysis solves the carrier’s profit-maximization problem and characterizes the resulting

competitive equilibrium. It then derives short- and long-run comparative-static results,

which show how service frequency, shipment price, and vehicle capacity depend on the

parameters of the model. Numerical examples are provided to supplement and generalize

the analytical results. The paper also provides an efficiency analysis, comparing the

equilibrium to the social optimum, and it attempts to explain the phenomenon of excess

capacity in the freight industry.

The paper abstracts away from modeling a specific mode of freight transportation

in order to formulate and analyze a very general model of competition between carriers

providing freight services. However, it is useful to place the model in some context. The

model is easily applicable to the trucking industry, where service frequency and truck

sizes are easily adjusted in response to demand. A key distinction in this industry is

between truckload (TL) and less-than-truckload (LTL) services, and the model implicitly

applies to the LTL case, where the individual shipment volume does not fill an entire

truck (requiring the carrier to combine loads). The reason is that the model presumes
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that a shipper uses only a single carrier, which means that its shipment volume cannot

exceed the chosen carrier’s capacity. This LTL intepretation also applies in the case of

container ships, where vehicle size and service frequency can again be easily adapted to

meet demand and where a single shipper typically does not produce enough to fill a ship.4

A similar story can be told about air freight, where the LTL case again seems typical and

the fleet deployment strategy is to match appropriate-size aircraft to different routes at

frequencies demanded by shippers.

The paper offers a rich analytical framework for studying freight-market competition.

The model could be a useful tool for analyzing the impact of freight deregulation, changing

tax and toll structures, oil price shocks, and so on.5 Given the increasing importance of

freight services and the dearth of theoretical models of freight competition, the paper

provides a useful addition to the transportation economics literature.

2 The Model

2.1 Producer profit maximization

A homogeneous good is manufactured by a continuum of perfectly competitive

producers with mass M . The producers rely on the services of n freight carriers to

transport their outputs to the market.6 Using a common technology, the producers each

generate Q units of output at cost given by E(Q), an increasing, strictly convex function.

Output accumulates as inventory until it is shipped out, with p giving the unit price

of shipping the good. With output produced evenly over a time circle of circumference

T , the average inventory holding time per unit of output equals T/2f , where f is the

number of freight dispatches (frequency). Letting µ equal the inventory holding cost per

unit of output per unit of time, the average holding cost is then µT/2f , or, combining

the constant terms, γ/f . Thus, the “full cost” of transport per unit of output is p+ γ/f ,

the actual shipping cost plus the inventory holding cost.7

Letting r denote the fixed selling price per unit of output, a producer’s profit is then
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given by

R =

[
r −

(
p+

γ

f

)]
Q − E(Q). (1)

The first-order condition for the producer’s profit-maximization problem is

r − p− γ

f
= E ′(Q). (2)

From the first-order condition, it is clear that the solutions for the producer’s output and

the resultant profits can be expressed as

Q

[
r − p− γ

f

]
and R

[
r − p− γ

f

]
, (3)

which are both increasing functions of their argument.

2.2 Producer brand loyalty and utility

As discussed earlier, brand loyalty to carriers is an important assumption of the

model. Loyalty adds a friction to producer choices that prevents a carrier from losing all

its customers when it raises its price or reduces frequency. A producer’s brand loyalty for

carrier i is captured by the parameter ai, i = 1, 2 . . . , n, whose size reflects the strength

of that loyalty. Note that each producer has a different vector of loyalties (a1, a2, . . . , an)

to the different carriers, with the density function of loyalties over the mass of producers

given by Φ(a1, a2 . . . , an).

A producer’s utility (u) depends on the profit earned as well as on the identity of the

carrier used for shipping, via the brand loyalty assumption. When a given level of profit

is earned using a less preferred carrier, the producer’s utility is lower. Conditional on the

choice of a particular carrier i, utility is assumed to be multiplicative in profits and the

brand loyalty parameter (ai), and it is written as

u(Ri, ai) = aiR

[
r − pi −

γ

fi

]
≡ aiRi. (4)
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A producer will choose carrier 1 to ship its output when

u(R1, a1) > u(Rj, aj), ∀j = 2, 3 . . . , n. (5)

Substituting from (4), carrier 1 is then chosen when

aj <
a1R [r − p1 − γ/f1]

R [r − pj − γ/fj]
≡ a1R1

Rj

, ∀j = 2, 3 . . . , n. (6)

The inequality in (6) implies that, for a producer to choose carrier 1, its loyalty to all

other carriers (j = 2, 3 . . . , n) must be sufficiently small.

2.3 Carrier shipment volume and profit

The total quantity qi of shipments transported by a carrier i will depend on the

extent of brand loyalty the carrier enjoys among producers and on the prices charged and

frequencies provided by all carriers. Carrier 1’s shipment volume is found by summing

the outputs of producers who choose it:

q1 =

∫ ā1

a1 = 0

∫ a1R1
R2

a2 = 0

∫ a1R1
Rn

an = 0

Q

(
r − p1 −

γ

f1

)
Φ(a1, a2..., an) da1da2 . . . dan. (7)

To see that the integral adds the outputs of producers using carrier 1, observe that the

integrand equals firm output evaluated at p1 and f1, which is then weighted by density at

the given (a1, a2, . . . , an) point, restricting attention to those points in the brand loyalty

space where carrier 1 is chosen. This restriction can be seen in the limits of integration,

recalling (6) and noting that ai is assumed to lie in the interval [0, āi], i = 1, 2, . . . , n.

Given q1 from (7), carrier 1’s revenue equals p1q1.

On the cost side, the cost per departure for carrier 1 is given by C(s1), where s1 is the

capacity of the transport vehicle. The cost function, which is common across carriers, is

increasing in s1, and C(s1)/s1 is decreasing in s1, reflecting economies of tonnage capacity

(the cost per ton transported falls as vehicle capacity increases). The total cost for carrier
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1 is equal to f1C(s1), frequency times the cost per departure.

Each carrier must have carrying capacity large enough to accommodate its demand, so

that f1s1 ≥ q1 must hold for carrier 1. As long as vehicle capacity s1 is freely adjustable,

this constraint holds with equality, implying the absence of excess capacity (no partially

empty vehicles). Section 8 below assumes instead that there exists a minimum vehicle

capacity, in which case excess capacity may emerge as a choice made by carriers in

equilibrium (the contraint f1s1 ≥ q1 is then nonbinding).

A carrier’s objective is to maximize profit, which equals revenue minus cost. Thus,

carrier 1’s maximization problem can be expressed as

max
{f1,p1,s1}

π1 = p1q1 − f1C(s1) subject to f1s1 = q1, (8)

with q1 given above in (7). In the maximization problem, the choices of other carriers

are viewed as fixed, as seen more clearly below.

3 Functional Form Assumptions

3.1 Producer’s cost function

When it chooses carrier 1, producer 1’s utility, as expressed in (4), equals

u(R1, a1) = a1R1 = a1

[(
r − p1 −

γ

f1

)
Q − E(Q)

]
. (9)

The producer’s cost function is assumed to take the form

E(Q) = Qβ, β > 1, (10)

so that the first-order condition (2) for profit (and hence) utility maximization becomes

r − p1 −
γ

f1

= βQβ−1. (11)
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Solving for Q yields

Q =

[
1

β

(
r − p1 −

γ

f1

)] 1
β−1

. (12)

Then, substituting Q into the utility function in (4) gives utility when the producer

chooses carrier 1, which equals

u(a1, R1) = a1δ

[
r − p1 −

γ

f1

] β
β−1

, (13)

where δ =
(

1
β

) 1
β−1
(
β−1
β

)
.

3.2 Distribution of brand loyalty

The next functional form assumption is that the distribution of brand loyalty is

symmetric and uniform, which yields8

Φ (a1, a2 . . . an) =
M

αn
, (14)

where the upper limit of ai, the parameter āi, equals α for all producers i = 1, 2...,M .

Substituting equations (12) and (14) into (7), carrier 1’s demand equals
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q1 =

∫ α

a1=0

∫ a1R1
R2

a2=0

. . .

∫ a1R1
Rn

an=0

(
r − p1 −

γ

f1

) 1
β−1
(

1

β

) 1
β−1 M

αn
da1da2 . . . dan

= (r − p1 − γ/f1)
1

β−1

(
1

β

) 1
β−1 M

αn

∫ α

a1=0

an−1
1 Rn−1

1∏
j 6=1

Rj

da1

= (r − p1 − γ/f1)
1

β−1

(
1

β

) 1
β−1 M

n

[
δ (r − p1 − γ/f1)

β
β−1

]n
∏n

j=1δ (r − pj − γ/fj)
β
β−1

=

(
1

β

) 1
β−1 M(r − p1 − γ/f1)

(n−1)β+1
β−1

n
∏
j 6=1

(r − pj − γ/fj)
β
β−1

(15)

In the second-to-last line of (15), the term equal to 1/n times the final ratio expression

equals the share of producers using carrier 1. The ratio expression can be either larger or

smaller than unity depending on the price and frequency choices of the carriers, making

the share greater than or less than one.9

3.3 Carrier’s cost function

The cost function for carriers is assumed to be linear in capacity and given by

C(s1) = θ + τs1, (16)

where θ is the fixed cost of operating a vehicle and τ is the marginal cost of additional

capacity. Note that (16) reflects economies of capacity, given that C(s1)/s1 is decreasing

in s1. With this cost function, carrier 1’s total cost is

f1C(s1) = (θ + τs1)f1. (17)
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4 The Carrier’s Optimization Problem

Since s1 = q1/f1 holds from the capacity constraint, carrier 1’s total cost in (17)

equals f1θ + τq1. The carrier’s profit in (8) can then be written as (p1 − τ)q1 − θf1.

Substituting for q1 from (15), profit equals

π1 = (p1 − τ)

(
1

β

) 1
β−1 M(r − p1 − γ/f1)

(n−1)β+1
β−1

n
∏
j 6=1

(r − pj − γ/fj)
β
β−1

− θf1. (18)

Carrier 1 then chooses p1 and f1 to maximize profit in Cournot fashion, taking its

rivals’ choices of price and frequency as given. Note that, while vehicle capacity does

not appear as an explicit choice variable, it can be recovered using the relationship s1 =

q1/f1 after the optimal price and frequency are determined. Also, note that profit is

independent of the degree of dispersion of brand loyalty (α), a feature also present in

Brueckner (2010) passenger-based model.

Assuming that the producer’s cost function is quadratic (β = 2) helps to generate

tractable analytical solutions. As seen in the numerical examples presented in section 5.6

below, the analytical results derived for this special case also hold for values of β other

than 2. When β = 2, the profit function in (18) reduces to

π1 =
M(p1 − τ)

2n

(r − p1 − γ/f1)2n−1∏n
j=2(r − pj − γ/fj)2

− θf1. (19)

Carrier 1 chooses f1 and p1 to maximize (8), taking fj and pj, j 6= 1, as given. The

first-order condition for f1 is

∂π1

∂f1

=
(2n− 1)M(p1 − τ)

2n

(r − p1 − γ/f1)2n−2∏n
j=2(r − pj − γ/fj)2

γ

f 2
1

− θ = 0, (20)

and first-order condition for p1 is

∂π1

∂p1

=
M
[
(r − p1 − γ/f1)2n−1 − (2n− 1)(p1 − τ)(r − p1 − γ/f1)2n−2

]
2n
∏n

j=2(r − pj − γ/fj)2
= 0. (21)
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Given symmetric carriers, the focus is on a symmetric Nash equilibrium, where all

carriers charge the same price and provide the same frequency.10 With pi and fi, i =

1, 2...n, taking common values denoted by p and f , (21) simplifies (after canceling the

multiplicative factor) to

r − p − γ

f
= (2n− 1)(p− τ). (22)

Rearranging, this equation provides a solution for p in terms of f :

p =
1

2n

[
r + (2n− 1)τ − γ

f

]
. (23)

Note, that unlike in a competitive market, where prices are driven down to marginal cost,

the equilibrium p given in (23) exceeds the marginal capacity cost τ . This claim follows

from (22) given that the left-hand-side expression must be positive.

After imposing symmetry and substituting the solution for p, (20) reduces to

(2n− 1)Mγ

2n2f 2

[
r − τ − γ

f

]
= θ, (24)

and rearranging terms yields

4n2θf 3

(2n− 1)M
− γ[(r − τ)f − γ] = 0. (25)

Note that (25) is a cubic equation in f , which (in a manner similar to Brueckner (2004)

and Brueckner and Flores-Fillol (2007)) can be used to compute a solution for f in terms

of the model parameters. Then, (23) provides a solution for p as a function of f and

hence as a function of model parameters.

The solution for f is best illustrated graphically using Figure 1. The first term in

(25) corresponds to the cubic curve in the figure while the second term represents the

straight line. The points of intersection of the curve and the line satisfy (25) and are
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thus candidate solutions for f .11 Only one of these intersections, however, satisfies the

second-order conditions for the optimization problem, which are assumed to hold. These

conditions, which require positive definiteness of the Hessian matrix for the problem,

imply that the slope of the cubic curve must be greater than the slope of the line at the

solution to (25) (see Appendix A.1). Since this condition is satisfied at point B in the

figure but not at point A, point B is the relevant solution to (25).

Note that, since prices and frequencies are equal across carriers in a symmetric equi-

librium, the distribution of shipments is determined by brand loyalty alone. In a duopoly

case (n = 2), producers whose combination of brand loyalties lies below (above) the 45◦

line in the (a1, a2) plane choose carrier 1 (2), a pattern that generalizes to higher n values.

5 Short-Run Comparative Statics

Treating the number of carriers n as an exogenous parameter, short-run comparative-

static analysis can be carried out using equations (23) and (25). Long-run analysis, where

n is endogenous, is discussed in the next section.

5.1 Effects of parameter changes on frequency

The effects on f of changes in the parameters M , θ, n, τ , and r are directly observable

from Figure 1. An increase in θ raises the cubic curve, resulting in a smaller f , while an

increase in M lowers the curve, leading to a larger f . An increase in n can be shown to

increase the ratio n2/(2n− 1), which raises the cubic curve and reduces f . A rise in r or

a fall in τ increases the slope of the line, resulting in a larger f . Thus,

∂f

∂M
> 0,

∂f

∂θ
< 0,

∂f

∂τ
< 0,

∂f

∂r
> 0,

∂f

∂n
< 0. (26)

The effect on f of an increase in γ, which is not directly observable from the figure,
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is derived in Appendix A.2, and it is positive:

∂f

∂γ
> 0. (27)

All these results make sense intuitively. An increase in costs (τ or θ) leads to lower

service frequency, while a larger market size (more shippers) increases shipment volumes,

inducing carriers to provide more frequent service. The effect of the product price r fol-

lows from an indirect effect: profit-maximizing producers increase production when the

market price of their product rises, resulting in larger volumes of output to be trans-

ported. Carriers, to accommodate this rise, increase frequency. Also, as expected, a

higher inventory holding cost γ, which raises the cost of waiting, leads carriers to respond

by raising frequency. Finally, a larger number of carriers n competing for a given market

size means a smaller share of goods for any particular carrier and, hence, lower frequency.

5.2 Effects of parameter changes on price

To derive the effect of parameter changes on p from (23), both direct effects and

indirect effects operating through f must be taken into account. To appraise the indirect

effects, note from (23) that f and p are directly related:

∂p

∂f
=

1

2n

γ

f 2
> 0, (28)

implying that carriers charge a price premium when they increase frequency, improving

the quality of service. Since the parameters θ and M do not appear in (23), they affect p

only indirectly through f . With (26) showing that a rise in fixed cost θ reduces f while

a larger market size M increases f , (28) implies the following impacts on p:

∂p

∂θ
< 0,

∂p

∂M
> 0. (29)
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Note that economic theory might suggest that a rise in fixed cost should not directly affect

price. However, in the current set-up, θ has a negative effect on p via the dependence of

price on frequency, which is affected by fixed cost. Also, an increase in the number of

producers naturally raises price.

The remaining parameters (τ , r, γ and n) affect price directly as well as indirectly

via frequency. In the case of r, the positive direct effect on p is reinforced by a positive

indirect effect, given that f rises with r from (26). Therefore, the net effect of an increase

in r is to raise p. The derivation of the net price effects for the other three parameters

is presented in Appendix A.3. The direct positive effect of marginal cost τ on price

dominates the indirect negative effect via frequency, so that p rises with τ . The net effect

of a higher holding cost γ is dominated by the direct negative effect, causing p to fall,

a result that is not very intuitive. Lastly, although the direct effect is ambiguous, the

net effect of a larger number n of competing carriers is to reduce p, a natural conclusion.

Thus,

∂p

∂τ
> 0,

∂p

∂r
> 0,

∂p

∂γ
< 0,

∂p

∂n
< 0. (30)

5.3 Effects of parameter changes on full price

Having derived comparative-static effects for the basic decision variables f and p, it

is useful to analyze the effects of parameter changes on the full price P , which determines

the volume of shipments. Using (23), the full price is

P = p +
γ

f
=

1

2n

[
r − (2n− 1)τ + (2n− 1)

γ

f

]
. (31)

As seen in the second expression in (31), the parameters θ and M affect P only

through f . An increase in θ reduces f by (26), which raises P , while an increase in

M raises f , which reduces P . By contrast, since an increase in τ both increases p and

reduces f , the net effect is to raise P , using the first expression in (31). The effects of

the remaining parameters are not clear from inspection and are derived in Appendix A.4.
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Following standard economic intuition, the direct positive effect of a change in r in the

second expression in (31) dominates the indirect negative effect through f , so that full

price rises when product price rises. Similarly, the direct positive effect of γ dominates

the negative effect operating through f , leading to an increase in P . Lastly, a rise in the

number of competing carriers naturally results in lower a full price. Thus,

∂P

∂M
< 0,

∂P

∂θ
> 0,

∂P

∂τ
> 0,

∂P

∂r
> 0,

∂P

∂γ
> 0,

∂P

∂n
< 0. (32)

5.4 Effects of parameter changes on total shipment volume

Total shipment volume (TS) is the sum of the symmetric equilibrium output pro-

duced by M firms or, equivalently, the sum of symmetric equilibrium quantity transported

by n carriers (derived from (12) and (15)):

TS = MQ = nq =
M

2

(
r − p− γ

f

)
=

M

2
(r − P ), (33)

where the second-to-last equality uses (12) with β = 2. It is clear that P and TS are

inversely related, with ∂TS/∂P = −M/2 < 0. Thus, using (32), it can be concluded that

the effects of the parameters θ, τ , γ and n, which affect TS only through P , are

∂TS

∂θ
< 0,

∂TS

∂τ
< 0,

∂TS

∂γ
< 0,

∂TS

∂n
> 0. (34)

Thus, reflecting the increase in P , total shipments fall when any of the cost parameters

(θ, τ , or γ) increases, while rising with the number of carriers (in response to a lower P ).

The parameters M and r have direct effects on TS along with indirect effects via P .

When M increases, both the direct and indirect effects work in the same direction since

P falls by (32), resulting in a higher TS. The direct positive effect of r on TS dominates

the indirect negative effect via P (see Appendix A.5), so that total shipments again rise

with r. This seems like a natural conclusion since it implies that the positive effect of
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the product price on shipments dominates the induced effect of more expensive freight

services used to transport the output to the market. Thus,

∂TS

∂M
> 0,

∂TS

∂r
> 0. (35)

5.5 Effects of parameter changes on vehicle capacity

Finally, consider comparative-static effects on the vehicle capacity chosen by carriers,

which is given by s = q/f . To evaluate this ratio, the q expression in (15) is simplified by

imposing symmetry and the p solution from (23) is substituted into it. Then, dividing

by f yields

s =
(2n− 1)

8n

M

f

[
r − τ − γ

f

]
. (36)

The comparative-static results for s are derived in Appendix A.6, taking account of

the direct parameter effects in (36) along with indirect effects via f . The results are:

∂s

∂θ
> 0,

∂s

∂τ
< 0,

∂s

∂M
> 0,

∂s

∂r
> 0,

∂s

∂γ
< 0,

∂s

∂n
> 0. (37)

The effects of changes in fixed or marginal cost are intuitive: a rise in fixed cost θ

provides incentives for carriers to increase vehicle capacity, whereas a higher marginal

cost τ encourages the use of smaller vehicles. A larger market and a higher product price

both lead to bigger vehicle sizes. Less intuitively, an increase in γ reduces capacity, while

an increase in n has the opposite effect. Since a larger γ raises frequency while reducing

q through a higher P , s = q/f must fall. Conversely, since a larger n raises q through a

lower P while reducing frequency, s must rise.

Table 1 summarizes the short-run comparative-static effects, which are also stated in

the following proposition:

Proposition 1: The short-run comparative-static properties of the model are as follows:

(a) An increase in fixed cost θ reduces frequency and price while raising vehicle capacity.
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The full price rises and shipment volume falls.

(b) An increase in marginal cost τ reduces frequency, raises price, and reduces vehicle

capacity. The full price rises and shipment volume falls.

(c) An increase in the number of producers M increases frequency, price and vehicle

capacity. The full price falls and shipment volume rises.

(d) An increase in the market price r of output increases frequency, price, and vehicle

capacity. The full price and shipment volume rise.

(e) An increase in the inventory cost parameter γ increases frequency and reduces price

and vehicle capacity. The full price rises and shipment volume falls.

(f) An increase in the number of competing carriers n reduces frequency and price and

raises vehicle capacity. The full price falls and shipment volume rises.

5.6 Numerical results for the short-run equilibrium

Numerical analysis confirms the analytical results derived so far, but its main purpose

is to show the same results hold for values of β different from 2. Setting base values for

parameters at M = 1000, θ = 1, τ = 0.01, r = 1, γ = 0.75, n = 2 and β = 2 leads to

an equilibrium with p and f values of 11.4 and 0.241, respectively, as seen in Table 2.

As a check on the analytical results presented in equations (26)–(37) and summarized in

Table 1, Table 2 shows the effect of changes in the other parameter values for the β = 2

case. For purposes of illustration, each parameter value is doubled. The results naturally

match the analytical findings. For example, increasing the number of producers M from

1000 to 2000 raises f by around 43 percent, to 16.3, and raises price marginally by 2

percent, to 0.246.

Next, the same exercise is carried out with β values of 1.5 and 2.5, with Tables 3 and

4 showing the results. As seen in these tables, the comparative-static effects are quali-

tatively identical to those in Table 2. Although the actual magnitudes of the variables
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are not informative, the percentage changes give a sense of the relative magnitudes of

parameter impacts. For example, the effects of parameter changes on f are relatively

large in percentage terms compared to the effects on p.

The effects of changes in β on the equilibrium outcomes can also be seen in the

numerical results. Borrowing information Table 4, the last row of Table 2 shows the

effect of increasing β from 2 to 2.5, holding the other parameters at their base values. It

can be seen that an increase in β tends to reduce p, f and P , while raising s.

6 Long-Run Comparative Statics

In the long-run, the number of carriers in the market is endogenous. Carriers

freely enter and exit the market, which drives profit down to zero. Evaluating the profit

expression (18) at the symmetric equilibrium and setting it equal zero yields

π =
M

8n3
(2n− 1)

(
r − τ − γ

f

)2

− θf = 0. (38)

Rearranging terms then yields

8n3θf − M(2n− 1)

(
r − τ − γ

f

)2

= 0. (39)

Equations (25) and (39) simultaneously determine long-run equilibrium values for the

number of carriers (n̄) and frequency (f̄). These values, substituted into (23), yield a

solution for the long-run equilibrium price (p̄), and solutions for the full price (p+ γ/f)

and vehicle capacity (s̄) can then be derived.

Since the equation system consisting of (25) and (39) is analytically intractable, nu-

merical calculations are used to derive the long-run comparative-static effects. Table 5

presents the numerical results, again setting M = 1000, θ = 1, τ = 0.01, r = 1, γ = 0.75

and β = 2 as the base case and now letting n be endogenous. The effects of varying the

parameter values on the long-run magnitudes of the endogenous variables are summarized
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in Table 6. In the table, a ∗ next to a sign indicates that it is different from the short-run

sign.

At first glance, the results appear atypical since some of the long-run effects take signs

opposite to those of the short-run effects. While the signs for effects on f and s are the

same as in the short-run, the effects on p and P change sign between the short- and long-

run. In the case of p, this reversal can be explained by noting that parameter changes

now have indirect effects through changes in n, in addition to having direct effects on p

and indirect effects via f . Thus, the net price effect comprises three partial effects. The

indirect effects via n seem to dominate in the long-run comparative-static effects on p

and, hence, these effects change signs from the short-run effects.12

7 Social Optimum

The next step in the analysis is to compare the equilibrium to the social optimum.

Holding n fixed, the social welfare function to be maximized is assumed to equal the sum

of producer and carrier profits, given by

S =
M∑

m = 1

Rm +
n∑

i = 1

πi = MR + nπ (40)

Note that producer utility, which includes a brand loyalty term that multiplies profit, is

not used in generating the welfare function. The planner’s objective could instead include

producer utility, but the resulting presence of a multiplicative brand-loyalty factor would

prevent a clearcut comparison between the social optimum and the equilibrium. In any

case, a welfare function based purely on profit is natural.13

Substituting the functional forms for R and π from (13) and (19), the welfare function
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can be written as

S =
M

4

(
r − p− γ

f

)2

+ n

[
M(p− τ)

2n

(
r − p− γ

f

)
− θf

]
=

M

2

[
1

2

(
r − p− γ

f

)2

+ (p− τ)

(
r − p− γ

f

)]
− θfn. (41)

In maximizing welfare, the first-order condition for choice of p gives the standard

economic rule of pricing at marginal cost:

popt = τ. (42)

The optimal price popt given by (42) is then lower than the equilibrium price pequi given

by (23):

pequi > popt. (43)

This result also holds in the passenger-based model of Brueckner (2010).

The first-order condition for frequency reduces to another cubic equation in f :

4n2θf 3
opt

2M
− γ[(r − τ)fopt − γ] = 0. (44)

The relation between the optimal and equilibrium frequencies can be derived by compar-

ing (44) and (25). Since 2 < (2n − 1) for all n ≥ 2, the cubic curve in equation (44) is

higher than the one in (25). The intersection with the line then moves leftward, as seen

in Figure 2. Thus,

fequi > fopt, (45)

indicating that carriers overprovide frequency in equilibrium. Thus, in maximizing their

own profits, carriers choose a frequency level higher than the one that would maximize

the combined profits of producers and carriers.

This overprovision result is opposite to that derived in the passenger-based model of

Brueckner (2010), where carriers underprovide frequency. Thus, while a general conclu-
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sion is that the optimum and equilibrium frequencies differ in models of this type, the

exact relation between the two frequencies appears to depend on the details of the model

structure. This issue could be further explored by reanalyzing the present model under

different functional-form assumptions, looking for a potential reversal of the overprovision

result.

The following proposition summarizes the comparison between the equilibrium and

the optimum:

Proposition 2:

(a) The equilibrium price is higher than the optimal price, which equals marginal cost.

(b) The equilibrium frequency is higher than the optimal frequency, implying that, in

equilibrium, freight carriers overprovide service frequency.

(c) The equilibrium full price, shipment volume and vehicle capacity are not clearly

comparable to their optimal counterparts.

8 Excess Capacity

In the analysis above, carriers operate at full capacity (with fs = q), so that no

vehicle is ever operated partially empty. This outcome, however, can be viewed as un-

realistic. Empty miles, which is the distance traveled by a truck without cargo, is an

important efficiency measure in the trucking industry. It is claimed that empty miles

were substantially reduced following deregulation Regan (2004). Also, heavy adoption of

information technology in the trucking industry has helped reduce empty miles by facil-

itating better matching of cargoes and available capacity. Despite these improvements,

carriers will still not always operate at full capacity.

While various factors (including stochastic demand by shippers) could lead to partially

empty freight vehicles, another possibility is that excess capacity arises out of the carrier’s

desire to maintain an attractive level of service frequency. This incentive can lead to
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excess capacity when vehicle capacity is not fully flexible, with carriers constrained by

some minimum vehicle capacity s̄. In such cases, excess capacity can only be eliminated

by reducing frequency, which may be undesirable.

Algebraically, in the presence of a minimum vehicle capacity, carrier 1’s profit-maximization

problem has two constraints: f1s1 ≥ q1 and s1 ≥ s̄. While the first constraint held as an

equality before, this outcome may no longer be optimal. The optimization is carried out

by formulating the following Lagrangian for carrier 1:

L = p1q1 − f(θ + τs1) + λ(s1 − s̄) + φ(f1s1 − q1), (46)

where q1 is given by (15). In this new problem, the first-order condition for frequency is

− τf + λ + φf = 0 (47)

If λ = 0, indicating that the minimum capacity constraint does not bind, then (47) yields

φ = τ > 0, which implies that the capacity constraint binds. In this case, the problem

reduces to the one already analyzed. But when λ > 0, so that the minimum capacity

constraint binds, then (47) implies φ < τ , in which case φ = 0 is admissible, implying

excess capacity.

In his passenger-based model, Brueckner (2010) analyzed the parameter changes that

cause a reduction in φ, arguing that large enough changes would drive φ to zero, leading

to the emergence of excess capacity. His analysis showed that excess capacity would

emerge when the minimum capacity s̄ is large, when passenger schedule-delay cost is

high (making frequency reductions less desirable), or when the number of carriers is large

(limiting shipment volume per carrier). Unfortunately, a parallel analysis in the present

model is intractable, and recourse to numerical methods would be required to identify the

parameter changes capable of generating excess capacity. While this exercise could be a

task for future work, the preceding analysis at least shows the nature of the problem.
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9 Conclusion

This paper has presented and analyzed a simple model where freight carriers compete

in price and service frequency. The model has captured key industry characteristics,

such as the importance of timely deliveries as well as brand loyalty. The paper has

used familiar functional-form assumptions to produce a tractable set-up that generates

useful comparative-static results showing the short-run effects of the model parameters on

frequency, shipment price, vehicle carrying capacity, and other variables. It has derived

long-run effects numerically while also providing an efficiency analysis of equilibrium

outcomes. Furthermore, the model has provided a possible explanation for the presence

of excess capacity in the freight industry as an equilibrium choice made by carriers in the

presence of a minimum vehicle capacity constraint.

Freight is shipped by truck, train, aircraft, and ship. All significant economic features,

including demand drivers, cost functions, the number of competitors, etc., are vastly

different across and even within these freight modes. The model does not capture such

differences but rather abstracts away from them in order to focus on a very basic but

crucial quality variable: service frequency, and its related choice variable, vehicle size.

Despite its abstractions, the model generates clear comparative-static predictions that

could be tested with real-world data. Assuming the availability of such data, useful

further research might then be empirical in nature, being designed to judge the relevance

and accuracy of the model’s predictions. Future work could also attempt to generalize the

model by eliminating reliance on specific functional forms where possible. Alternatively,

the model could be analyzed under different functional-form assumptions, with the goal

of gauging the robustness of the results in that fashion.
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A Appendix

A.1 Second-order conditions and the relevant f solution

In Figure (1), the cubic curve and the straight line intersect at two points in the positive

quadrant, A and B. If the cubic curve is flatter than the line at the solution, as is true

at point A, then the second-order conditions are violated, ruling out the solution. The

relevant solution is thus point B. The following analysis proves this claim, assuming

n = 2 so as to make the proof easier to follow.

The second-order derivatives, evaluated at the symmetric equilibrium (when n = 2),

are

∂2π1

∂p2
1

=
3M

2(r − p− γ/f)

[
−r + 2p +

γ

f
− τ

]
(48)

∂2π1

∂f 2
1

=
3Mγ(p − τ)

2f 3(r − p− γ/f)

[
−r + p + 2

γ

f

]
(49)

∂2π1

∂f1∂p1

=
3Mγ

4f 2(r − p− γ/f)

[
r − 3p − γ

f
+ 2τ

]
(50)

Using (23), The second-order conditions for maximization require

∂2π1

∂p2
1

' − r + 2p +
γ

f
− τ = − r + τ +

γ

f
< 0, (51)

where ' means ‘same sign as’, implying

r − τ − γ

f
> 0. (52)

In addition,

∂2π1

∂f 2
1

' − r + p + 2
γ

f
= − r + τ +

7

3

γ

f
< 0 (53)

implies

r − τ − 7

3

γ

f
> 0. (54)
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Furthermore,

|H| =

(
∂2π1

∂p2
1

)(
∂2π1

∂f 2
1

)
−
(

∂2π1

∂f1∂p1

)2

' 4(p− τ)

[
−r + 2p +

γ

f
− τ

] [
−r + p + 2

γ

f

]
− γ

f

[
r − 3p − γ

f
+ 2τ

]2

.

After considerable manipulation, it can be shown that the positivity of Hessian reduces

to the following requirement:

r − τ − 5

2

γ

f
> 0. (55)

Comparing the above conditions, it is clear that the positivity of the Hessian determinant

is the most stringent condition, since satisfaction of (55) implies that (52) and (54) are

satisfied.

Now consider the slopes of the cubic curve and the straight line in (25). The slope

of the cubic curve is 12θn2f 2/(2n − 1)M = 16θf 2/M when n = 2, and the slope of the

straight line is γ(r − τ). But at an f solution, 16θf 2/M = (3/f)γ((r − τ)f − γ) holds,

using (25). Therefore, for the cubic curve to be flatter than the line,

3γ

f
[(r − τ)f − γ)] < γ(r − τ) (56)

must hold. Rearranging, this inequality reduces to

r − τ − 3

2

γ

f
< 0 (57)

If the inequality in (57) holds, then the inequality in (55) cannot be satisfied. Thus,

the second-order conditions are violated at point A, where the cubic curve is flatter

than the line, ruling out A as the solution. When (55) is satisfied, then the reverse of

the inequality in (57) is guaranteed to hold. Thus, if the second-order conditions are

satisfied, the cubic curve must be steeper than the line, as at point B. Hence, the claim

that B is the relevant solution is established.
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A.2 Signing ∂f/∂γ

In order to sign ∂f/∂γ, recall from the discussion in Appendix A.1 that the cubic curve

is steeper than the straight line at the relevant solution. Hence, the inequality

12n2θf 2 − (2n− 1)Mγ(r − τ) > 0 (58)

must hold. Totally differentiating (25) with respect to f and γ yields

∂f

∂γ
=

(2n− 1)Mγ(r − τ)f − 2(2n− 1)Mγ

12n2θf 2 − (2n− 1)Mγ(r − τ)
. (59)

The denominator of (59) is positive from (58), while the numerator takes the same sign

as (r − τ)f − 2γ, which is positive from (55). Hence, ∂f/∂γ > 0.

A.3 Signing effects on p

Accounting for both direct effects p and indirect effects via f , the effect of an increase in

γ on p is given by

∂p

∂γ
= pγ + pf

∂f

∂γ
, (60)

where pγ and pf denote the partial derivatives of the p solution (23) with respect to γ

and f , respectively. Substituting from (59) into (60) yields

∂p

∂γ
= − 1

2nf
+

γ

2nf 2

[
(2n− 1)[M(r − τ)f − 2Mγ]

12n2θf 2 − (2n− 1)Mγ(r − τ)

]
= − 1

nf 2

[
nθf 3 + (2n− 1)Mγ2

12n2θf 2 − (2n− 1)Mγ(r − τ)

]
< 0, (61)

using (58). The effects of an increase in τ or n on p can be signed similarly.
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A.4 Signing effects on P

The full price P is given by (31). Consider the effect of a change in r:

∂P

∂r
= Pr + Pf

∂f

∂r
, (62)

where Pr and Pf denote the partial derivatives of the P solution (31) with respect to r

and f , respectively. Computing ∂f/∂r and substituting in (62) yields

∂P

∂r
=

1

2n
− (2n− 1)

2n

γ

f 2

[
−(2n− 1)Mγf

12n2θf 2 − (2n− 1)Mγ(r − τ)

]
=

1

2n
+

(2n− 1)

2n

γ

f 2

[
(2n− 1)Mγf

12n2θf 2 − (2n− 1)Mγ(r − τ)

]
> 0, (63)

using (58). The effects of an increase in γ or n on P can be signed similarly.

A.5 Signing partial effects on TS

Given total shipment volume in (33), the effect of a change in r on TS is derived as

follows:

∂TS

∂r
=

M

2

[
1 − ∂P

∂r

]
=

M

2

[
1 − 12n2θf 3 − (2n − 1)Mγ(r − τ)f − (2n − 1)2Mγ2

12n2θf 3 − (2n − 1)Mγ(r − τ)f

]
=

M

2

[
(2n − 1)2Mγ2

12n2θf 3 − (2n − 1)Mγ(r − τ)f

]
> 0, (64)

using (58). The effect on TS of a change in M can be signed similarly.
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A.6 Signing effects on s

The vehicle capacity s is given by (36). Consider the effect of a change in τ :

∂s

∂τ
= sτ + sf

∂f

∂τ
, (65)

where sτ and sf denote the partial derivatives of the s solution (36) with respect to τ

and f , respectively. Computing ∂f/∂τ and substituting in (65) yields

∂s

∂τ
= − (2n− 1)

2nf
− (2n− 1)M

8nf 2

(
r − τ − γ

f

)[
(2n− 1)Mγf

12n2θf 2 − (2n− 1)Mγ(r − τ)

]
= − (2n − 1)M

8f

[
1 +

(2n − 1)Mγ(r − τ − γ/f)

12n2θf 2 − (2n − 1)Mγ(r − τ)

]
< 0, (66)

using (58). All other effects on s can be signed similarly.

B Tables and Figures

Table 1: Short-run Comparative Static Effects

Variable: Frequency Price Full Price Shipment Volume Capacity
Parameter: (f) (p) (P ) (TS) (s)
Market Size (M) + + − + +
Fixed Cost (θ) − − + − +
Marginal Cost (τ) − + + − −
Product Price (r) + + + + +
Holding Cost (γ) + − + − −
Carriers (n) − − − + +
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Table 2: Short-run Comparative Static Effects
Numerical Exercise [Case 1: β = 2]

Parameter Values
Values Percentage change

f p P s f p P s
Base Case 11.40 0.241 0.307 60.8 – – – –
M = 1000 → 2000 16.29 0.246 0.292 86.9 42.9 2.0 -4.8 42.9
θ = 1 → 2 7.93 0.234 0.328 84.6 -30.4 -3.0 7.0 39.2
τ = 0.01 → 0.02 11.34 0.248 0.315 60.5 -0.6 3.1 2.5 -0.6
r = 1 → 2 16.54 0.496 0.542 88.2 45.1 105.8 76.5 45.1
γ = 0.75 → 1.5 15.87 0.234 0.328 42.3 39.2 -3.0 7.0 -30.4
n = 2 → 4 8.61 0.123 0.210 91.8 -24.5 -49.0 -31.6 51.0
β = 2 → 2.5 12.36 0.289 0.349 56.4 -8.4 -19.8 -13.9 7.3
Base Case: { M = 1000, θ = 1, τ = 0.01, r = 1, γ = 0.75, n = 2, β = 2}

Table 3: Short-run Comparative Static Effects
Numerical Exercise [Case 2: β = 1.5]

Parameter Values
Values Percentage change

f p P s f p P s
Base Case 9.83 0.162 0.239 69.7 – – – –
M = 1000 → 2000 14.26 0.166 0.219 98.6 45.1 2.4 -8.3 41.4
θ = 1 → 2 6.68 0.156 0.269 98.6 -32.1 -3.7 12.6 41.4
τ = 0.01 → 0.02 9.71 0.170 0.248 69.7 -1.2 5.0 3.8 0.01
r = 1 → 2 21.03 0.336 0.371 69.7 113.9 106.9 55.7 0.01
γ = 0.75 → 1.5 13.35 0.156 0.269 49.3 35.8 -3.7 12.6 -29.3
n = 2 → 4 7.44 0.084 0.185 104.6 -24.3 -48.2 -22.5 50.0
Base Case: { M = 1000, θ = 1, τ = 0.01, r = 1, γ = 0.75, n = 2, β = 1.5}
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Table 4: Short-run Comparative Static Effects
Numerical Exercise [Case 3: β = 2.5]

Parameter Values
Values Percentage change

f p P s f p P s
Base Case 12.36 0.289 0.349 56.4 – – – –
M = 1000 → 2000 17.60 0.294 0.337 80.8 42.3 1.9 -3.6 43.2
θ = 1 → 2 8.66 0.281 0.368 78.2 -30.0 -2.7 5.2 38.8
τ = 0.01 → 0.02 12.32 0.296 0.357 56.0 -0.4 2.4 2.0 -0.7
r = 1 → 2 15.81 0.593 0.640 92.2 27.9 105.3 83.2 63.5
γ = 0.75 → 1.5 17.32 0.281 0.368 39.1 40.1 -2.7 5.2 -30.6
n = 2 → 4 9.26 0.146 0.227 85.9 -25.1 -49.3 -34.9 52.4
Base Case: { M = 1000, θ = 1, τ = 0.01, r = 1, γ = 0.75, n = 2, β = 2.5}

Table 5: Long Term Equilibrium [Numerical Example]

Values Percentage change
n f p P s n f p P s

Base Case 4.75 7.95 0.104 0.199 101 – – – – –
M = 1000 → 2000 6.17 10.11 0.084 0.158 166 30.0 27.1 -19.3 -20.3 65.2
θ = 1 → 2 3.61 6.23 0.130 0.251 120 -23.9 -21.6 24.9 26.2 19.3
τ = 0.01 → 0.02 4.69 7.95 0.114 0.209 100 -1.2 -0.05 9.6 5.1 -1.2
r = 1 → 2 10.27 8.12 0.102 0.195 222 116.2 2.1 -1.8 -1.9 120.7
γ = 0.75 → 1.5 3.61 12.47 0.130 0.251 60 -23.9 56.8 24.9 26.2 -40.3
Base Case: { M = 1000, θ = 1, τ = 0.01, r = 1, γ = 0.75, β = 2}
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Table 6: Long-run Comparative Static Analysis

Variable: Carriers Frequency Price Full Price Shipment Volume Capacity
Parameter: (n) (f) (p) (P ) (TS) (s)
Market Size (M) + + −∗ − + +
Fixed Cost (θ) − − +∗ + − +
Marginal Cost (τ) − − + + − −
Product Price (r) + + −∗ −∗ + +
Holding Cost (γ) − + +∗ + − −

A

B

4 n2 Θ f 3

2 M

Γ((r – Τ)f - Γ)

 f*

Figure 1: Solution for f

4 n2 Θ f 3

2 Hn- 1LM

4 n2 Θ f 3

2 M

Γ

Γ((r – Τ)f - Γ)

fequifopt

Figure 2: Optimal versus Equilibrium ′f ′
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Notes

1With JIT production, a delay in deliveries or pickups can seriously disrupt production, imposing

large costs on the firm. As an example, consider the heavy losses incurred by several West Coast auto

assembly plants due to disruption in production caused by the ports strike in September-October 2002.

In some cases, a disruption in transportation services may even result in a temporary shut-down of JIT

plants.

2In work carried out contemporaneously, Kramer and Kramer (2010) also study price and frequency

competition between logistics services providers, using a related model. These authors in addition pro-

vide a road map to earlier work, which includes a detailed review by Minner (2003) of the inventory-

management literature, where the analysis focuses on shipping decisions conditional on carrier prices,

service levels and lead times while accounting for inventory holding costs. Several papers (Benjaafar,

Elahi, and Donohue, 2007; Cachon and Zhang, 2006; Jin and Ryan, 2009; Yang, Xiao, and Shen, 2009)

analyze the impact of carrier competition on choices made by shippers, while a third stream of literature

analyzes carrier competition but considers price and frequency competition separately rather than in a

single model (Ha, Li, and Ng, 2003; Gans, 2002; Allon and Federgruen, 2007).

3See for example, De Vany (1976), Koenigsberg (1980), Martin (1981), De Vany and Frey (1982),

Spiller (1982), De Vany and Saving (1983), Anderson and Ormiston (1983), Masarani and Gokturk

(1987) and, more recently, Parra-Frutos (2009).

4The flexibility of vehicle size in this case is confirmed by the fact that ships are often custom-built

for particular routes.

5For background on deregulation in the trucking industry, see Friedlaender and Chiang (1983), Mc-

Mullen (1987), Beilock and Freeman (1987) and Hubbard (1998).

6The producer’s optimization problems with shipping of output and input are similar in structure.

However, the case where the producer ships the input turns out, surprisingly, to be analytically the much

less tractable one. Hence, the paper focuses on the case where the output is shipped.

7In reality, inventory holding costs may be firm-specific, leading to different γ values across firms.

Such a structure would give rise to differentiated frequency-price equilibria where firms with low holding

costs would chose low-frequency carriers while those with high holding costs would choose high-frequency

carriers. However, the present model instead introduces firm heterogeneity through brand loyalty, using

a symmetry assumption on the loyalty distribution to generate symmetric equilibria.

8While brand loyalty is assumed to be exogenous, loyalty could be endogenous in a richer model.

In this case, carriers would make efforts to build brand loyalty, providing incentives to producers and

incurring costs to improve the chances of signing contracts. Such a model, however, would probably be

36



difficult to analyze.

9The share formula would be different under other assumptions on the distribution of brand loyalty.

For example, suppose that the natural logs of the individual ai parameters each follow the extreme

value distribution. Then taking logs on both sides of (6), the condition reduces to log(aj) + log(Rj) <

log(a1) + log(R1). But with the log(ai)’s having the extreme value distribution, the share of producers

chosing carrier 1 is then given by the multinomial logit expression R1/
∑
Rj . The analysis could be

carried out under this alternative assumption, and the results would presumably be similar to those

derived below.

10Asymmetric equilibria arising from cost asymmetries across carriers would be a possible modification

of the model. However, analysis of such a framework turns out to be unworkable.

11Any intersection in the third quadrant is not relevant since frequency must be positive. Also,

there might be only one tangency point between the curve and the line in the positive quadrant or no

intersection at all. Both these cases are ignored.

12To see this conclusion, consider the effect of a rise in a parameter, say, M , on p:

∂p

∂M
= pM + pf

∂f

∂M
+ pn

∂n

∂M
, (67)

where pM , pf and pn denote the partial derivatives of the p solution (23) with respect to M , f and n,

respectively. While M has no direct effect on p, M affects f and, hence, p positively, which results in

a positive relationship between p and M in the short-run. However, while the indirect effect via f still

exists in the long-run, being captured by the second term in (67) (still positive given Table 6), there

exists an additional indirect effect via n. The numerical results indicate that the net effect of a rise in

M is a fall in p, and the signs of all other long-run effects on p can be explained in a similar fashion.

13Total utility equals total profit times Ω = Mα/(n+ 1), and this factor would enter the comparison.

Note, however, that if social welfare were equal to 1/Ω times producer utility plus carrier profit, the

resulting welfare function would reduce to (40).
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