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BELIEVING THE AXIOMS. I

PENELOPE MADDY

Nothing venture, nothing win,
Blood is thick, but water’s thin.
—Gilbert & Sullivan

§0. Introduction. Ask a beginning philosophy of mathematics student why we
believe the theorems of mathematics and you are likely to hear, “because we have
proofs!” The more sophisticated might add that those proofs are based on true
axioms, and that our rules of inference preserve truth. The next question, naturally,
is why we believe the axioms, and here the response will usually be that they are
“obyious”, or “self-evident”, that to deny them is “to contradict oneself” or “to
commit a crime against the intellect”. Again, the more sophisticated might prefer to
say that the axioms are “laws of logic” or “implicit definitions” or “conceptual
truths” or some such thing.

Unfortunately, heartwarming answers along these lines are no longer tenable (if
they ever were). On the one hand, assumptions once thought to be self-evident have
turned out to be debatable, like the law of the excluded middie, or outright false, like
the idea that every property determines a set. Conversely, the axiomatization of set
theory has led to the consideration of axiom candidates that no one finds obvious,
not even their staunchest supporters. In such cases, we find the methodology has
more in common with the natural scientist’s hypotheses formation and testing than
the caricature of the mathematician writing down a few obvious truths and
praceeding to draw logical consequences.

The central problem in the philosophy of natural science is when and why the
sorts of facts scientists cite as evidence really are evidence. The same is true in the
case of mathematics. Historically, philosophers have given considerable attention
to the question of when and why various forms of logical inference are truth-
preserving. The companion question of when and why the assumption of various
axioms is justified has received less attention, perhaps because versions of the
«celf_evidence” view live on, and perhaps because of a complacent if-thenism.
For whatever reasons, there has been little attention to the understanding and
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classification of the sorts of facts mathematical scientists cite, let alone to the
philosophical question of when and why those facts constitute evidence.

The question of how the unproven can be justified is especially pressing in current
set theory, where the search is on for new axioms to determine the size of the
continuum. This pressing problem is also the deepest that contemporary mathema-
tics presents to the contemporary philosopher of mathematics. Not only would
progress towards understanding the process of mathematical hypothesis formation
and confirmation contribute to our philosphical understanding of the nature of
mathematics, it might even be of help and solace to those mathematicians actively
- engaged in the axiom search.

Before we can begin to investigate when and why the facts these mathematicians
cite constitute good evidence, we must know what facts those are. What follows
is a contribution to this preliminary empirical study (thus the reference to “be-
lieving” rather than “knowing” in my title). In particular, I will concentrate on the
views of the Cabal seminar, whose work centers on determinacy and large car-
dinal assumptions.! Along the way, especially in the early sections, the views of
philosophers and set theorists outside the group, and even opposed to it, will be
mentioned, but my ultimate goal is a portrait of the general approach that guides the
Cabal's work.?

Because of its length, this survey appears in two parts. The first covers the axioms
of ZFC, the continuum problem, small large cardinals and measurable cardinals,
The second concentrates on determinacy hypothesés and large large cardinals, and
concludes with some philosophical observations. '

§I. The axioms of ZFC. I will start with the well-known axtoms of Zermelo-
Fraenkel set theory, not so much because I or the members of the Cabal have
anything particularly new to say about them, but more because I want to counteract
the impression that these axioms enjoy a preferred epistemological status not shared
by new axiom candidates. This erroneous view is encouraged by set theory texts that
begin with “derivations” of ZFC from the iterative conception, then give more self-
conscious discussions of the pros and cons of further axiom candidates as they arise.
The suggestion is that the axioms of ZFC follow directly from the concept of set,
that they are somehow “intrinsic” to it {obvious, self-evident), while other axiom
candidates are only supported by weaker, “extrinsic” (pragmatic, - heuristic)
justifications, stated in terms of their consequences, or intertheoretic connections, or

"Naturally the various members of the Cabal do not agree on everything. When appropriate, I will
take note of these disagreements.

?1 am indebted to John Burgess, for introducing me to much of the material discussed here, to Matt
Foreman, Menachem Magidor, Yiannis Moschovakis, John Steel, and Hugh Woodin, for helpful
conversations, to Chris Freiling, Stewart Shapiro, John Simms, and an anonymous referee for helpful
comments on earlier drafts, and, especially, to Tony Martin, without whose patience and generosity the
project would have been dead in the water, Versions of this work have been delivered to helpful audiences
at the University of California at Los Angeles (Department of Mathematics) and Irvine (Department of
Philosophy), and at conventions of the Philosophy of Science and the American Philosophical
Associations. The support of NSF Grant No. SES-8509026 and the hospitality of the UCLA Math
Department are also gratefully acknowledged. '
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explanatory power, for example. (It is these extrinsic justifications that often mimic
the techniques of natural science.) Thus some mathematicians will stand by the truth
of any consequence of ZFC, but dismiss additional axioms and their consequences
as metaphysical rot. Even the most cursory look at the particular axioms of ZFC
will reveal that the line between intrinsic and extrinsic justification, vague as it might
be, does not fall neatly between ZFC and the rest. The fact that these few axioms are
commonly enshrined in the opening pages of mathematics texts should be viewed
as an historical accident, not a sign of their privileged epistemological or metaphys-
ical status.

The impulse towards axiomatization can be seen as beginning in 1883, when
Cantor introduced “a law of thought”,

... fundamental, rich in consequences, and particularly marvelous for its
general validity ... It is always possible to bring any well-defined set into the
form of a well-ordered set.

(Cantor [1883, p. 550], as translated in Moore [1982, p. 42]). Hallett[1984,
pp. 156-157] traces Cantor’s belief in the well-ordering principle to his under-
lying conviction that infinite sets are not so different from finite ones, that the most
basic properties are ones they share. (This will be called “Cantorian finitism”
in what follows. In this case, the basic property shared is “countability” or “enumer-
ability”.) Unfortunately, the mathematical community at large did not find it
obvious that infinite sets could be well-ordered, and by 1895, Cantor himself came to
the conclusion that his principle should really be a theorem.

Though Cantor made various efforts to prove this and related theorems (see, for
example, his famous letter to Dedekind [1899]), the first proof was Zermelo’s in
[1904]. This proof, and especially the Axiom of Choice on which it was based,
created a furor in the international mathematical community. Under the influence
of Hilbert’s axiomatics, Zermelo hoped to secure his proof by developing a precise
list of the assumptions it required, and proposing them (in [1908]) as an axiomatic
foundation for the theory of sets. The fascinating historical ins and outs of this
development are clearly and readably described in Moore’s book. The point of
interest here is that the first axioms for set theory were motivated by a pragmatic
desire to prove a particular theorem, not a foundational desire to avoid the
paradoxes.’

“For our purposes, it will be enough to give a brief survey of the arguments given
by Zermelo and later writers in support of the various axioms of ZFC.

1.1. Extensionality. Extensionality appeared in Zermelo’s list without comment,
and before that in Dedekind’s [1888, p. 45]. Of all the axioms, it seems the most
“definitional” in character; it distinguishes sets from intensional entities like

3See Moore [ 1982]. Apparently Zermelo discovered the paradox some two years before Russell. On his
interpretation, it shows only that no set can contain all its subsets as members (see Moore [1982, p. 897,
Recall that Cantor also took the paradoxes less seriously than the philosophers, for exampile, in the letter
to Dedekind [1899]. Godel also expresses the view that the paradoxes presenia problem for logic, not for
-mathematics {Godel [1944/67, p. 4741).
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properties or concepts. Most writers seem to echo the opinion of Boolos [1971,
p. 5017, that if any sense can be made of the distinction between analytic and
synthetic, then the Axiom of Extensionality should be counted as analytic. (See also
Shoenfield [1977, p. 3257, and Wang [1974, p. 533].)

Fraenkel, Bar-Hillel and Levy give a bit more in their [1973, pp. 28, 87]. They
argue that an extensional notion of set is preferable because it is simpler, clearer, and
more convenient, because it is unique (as opposed to the many different ways
intensional collections could be individuated), and because it can simulate
intensional notions when the need arises {e.g. two distinguishable “copies” of an
extensional set can be produced by taking its cross product with distinct singletons).
Thus extrinsic reasons are offered even for this most obvious of axioms.

1.2. Foundation. Zermelo used a weak form of the Axiom of Foundation (4 ¢ 4)
to block Russell’s paradox in a series of lectures in the summer of 1906, but by 1908,
he apparently felt that the form of his Separation Axiom was enough by itself, and
he left the earlier axiom off his published list. (See Moore [1982, p. 157]; Hallett
[1984, p. 252].) Later Mirimanoff [1917] defined “ordinary sets” to be those with-
out infinite descending epsilon chains. Using the notion of rank, he was able to
formulate necessary and sufficient conditions for the existence of ordinary sets.
Though he did not suggest that the ordinary sets are all the sets, he did think that
restricting attention to them (in effect adopting Foundation) was a good working
method.

This attitude towards Foundation is now a common one. It is described as
weeding out “pathologies” or “oddities” (Boolos [1971, p. 4917) on the grounds that

... no field of set theory or mathematics is in any.genesaineed of sets which
are not well-founded.

(Fraenkel, Bar-Hillel and Levy [1973, p. 88]) Von Neumann adopted it in [1925],
hoping to increase the categoricity of his axioms, and Zermelo included it in [ 1930]
because it was satisfied in all known applications of set theory and because it
gives a useful understanding of the universe of sets. (Supporters of the “iterative
conception” discussed below often see foundation as built into the very idea of the
stages. See Boolos [1971, p. 498]; Shoenfield [1977, p. 3271

1.3. Pairing and Union. Cantor first stated the Union Axiom in a lefter to
Dedekind in 1899 (see Moore [1982, p. 54]), and the Pairing Axiom superseded
Zermelo's 1908 Axiom of Elementary Sets when he presented the modified veron
of his axiom system in [ 1930]. Both are nearly too obvious to deserve comment from
most commentators. When justifications are given, they are based on one or the
other of two rules of thumb. These are vague intuitions about the nature of sets,
intuitions too vague to be expressed directly as axioms, but which can be used in
plausibility arguments for more precise statements. We will meet with a number of
these along the way, and the question of their genesis and justification is of prime
importance. For now, the two in question are limitation of size and the iterative
conception.

Limitation of size came first. Hallet{{ 1984] traces it to Cantor, who held that
transfinites are subject to mathematical manipulation much as finites are (as
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mentioned above), while the absolute infinity (all finites and transfinites) 1s God and
incomprehensible. Later more down-to-earth versions like Fraenkel’s hold that the
paradoxes are generated by postulating sets that are “too large”, and that set theory
will be safe if it only eschews such collections. (Hallett gives a historical and
philosophical treatment of the role of this rule of thumb in the development of
modern axiomatic set theory.) Thus, for example, Fraenkel, Bar-Hillel and Levy
[1973] argue that a pair set is of “very modest size”, and that the Union Axiom will
not produce any thing “too large”, because

___the sets whose union is to be formed will not be taken arbitrarily—they
must be members of a single given set”. (pp. 32-34)

(Hallett incidentally, disagrees about Union. See [1984, pp. 209-2107.)

The iterative conception originated with Zermelo [1930] (prefigured perhaps in
Mirimanoff [1917]). Although Cantor, Fraenkel, Russell [19067, Jordain [1904],
[19057, von Neumann [1923] and others all appealed to limitation of size, the
iterative conception is more prevalent today. Because of its general familiarity, I shall
not pause to describe it here. (See ¢.g. Boolos [1971] or Shoenfield [1977].) For the
record, then, given two objects a and b, let 4 and B be the stages at which they first
appear. (On the iterative picture, everything appears at some stage.) Without loss of
generality, suppose B is after A. Then the pair set of a and b appears at the stage
immediately following B. Similarly, if a family of sets f appears at stage F, then all
members of f, and hence all members of members of f, appear before F. Thus the
union of f appears at or before F. (Arguments of this form are given in Boolos [1971,
p. 4967 and Shoenfield [1977, p. 3251)

1.4. Separation. The Axiom of Separation isin many ways the most characteristic
of Zermelo's axioms. Here he sees himself as giving us as much of the naive
comprehension scheme as possible without inconsistency [1908, p. 202, We see
here the emergence of another rule of thumb: one step back from disaster. The idea
here is that our principles of set generation should be as strong as possible short of
contradiction. If a natural principle leads to contradiction, this rule of thumb
recommends that we weaken it just enough to block the contradiction. We shall
meet this principle again in [BAII, §Vi.3]

Zermelo steps back in two ways. First,

... sets may never be independently defined ... but must always be separated

as subsets of sets already given.
‘ from

[1908, p. 202]. Predictably, Fraenkel, Bar-Hillel and Levy see this as the result of
applying limitation of size to unlimited comprehension (p. 36). Zermelo’s second
modification is to require that the separating property be “definite” (p. 202), which
he understood as ruling out such troublesome turns of natural language as
“definable in a finite number of words”. The vagueness of the term “definite”
brought Zermelo’s Separation Axiom under considerable fire until Skolem sug-
gested that “definite” be replaced by “formula of first-order logic”. (Even then,
Zermelo himself held to a second-order version. See his [19301.) '



486 PENELOPE MADDY

Advocates of the iterative conception have no trouble with Separation: all the
members of a are present before a, so any subset of a appears at or before the stage at
which a itself appears (Boolos [1971, p. 494]; Shoenfield [ 1977, p. 3254

1.5. Infinity. The Axiom of Infinity is a simple statement of Cantor’s great
breakthrough. The rather colorless idea of a collection of elements that had lurked
in the background of mathematical thought since prehistory might have remained
there to this day if Cantor had not had the audacity to assume that they could be
infinite. This was the bold and revolutionary hypothesis that launched modern
mathematics; it should be seen as nothing less.

Hallett in his historical study of Cantorian thought, enshrines Cantor’s per-
spective into a rule of thumb called Cantorian finitism: infinite sets are like finite
ones. (This was mentioned above in connection with Cantor’s belief in the well-
ordering principle.) The rule and its applications are justified in terms of their
consequences. In this case:

Dealing with natural numbers without baving the set of all natural
aumbers does not cause more inconvenience than, say, dealing with sets
without having the set of all sets. Also the arithmetic of the rational
numbers can be developed in this framework. However, if one is already
interested in analysis then infinite sets are indispensable since even the
notion of a real number cannot be developed by means of finite sets only.
Hence we have to add an existence axiom that guarantees the existence of
an infinite set.

(Fraenkel, Bar-Hillel and Levy [1973, p. 45]). Iterative conception theorists now
often take the existence of an infinite stage as part of the intuitive picture (see Boolos
{1971, p. 492]; Shoenfield {1977, p. 324]), but this would hardly have come to pass if
Cantor had not taken a chance and succeeded in showing that we can reason
consistently about the infinite and that we have much to gain by doing so (see
epigraph).

1.6. Power set. Cantorian finiteness yields an argument for the Power Set Axiom,
as it is presumably uncontroversial that finite sets have power sets. The iterative
conception also makes quick work. If a appears at 4, then all the elements of a
appear before A, so any subset of a appears at or before 4. Thus the power set of a
appears at the stage after 4. Advocates of limitation of size suggest that the power set
of a given set will not be large because all its members must be subsets of something
small.

“Wang [ 19747 has a more philosophical account of the iterative picture in terms of what we can “run

through in intuition”, Thus his justification of Separation is:
. _ gven .
Since x is assel, we can run through all 8 members of x, and, therefore, we can do so with

arbitrary omissions, In particular, we can in an idealized sense check against A and delete only
those members of x which are not in 4. In this way, we obtain an overview of all the objects in
A and recognize A as a set.  (p. 333)

Parsons [ 1977] points out that this puts a terrible strain on the notion of intuition, and that the problem
becomes worse in the case of the Power Set Axiom. See also their exchange on Replacement.



BELIEVING THE AXIOMS. § 487

Hallettcasts some well-deserved doubt on this last form of justification for the
Power Set Axiom, but he does not mean to reject the axiom entirely. Instead, he
resorts to a series of extrinsic justifications, the simplest of which is reminiscent of
that given above by Fraenkel, Bar-Hillel and Levy for Infinity, namely, that Power
Set is indispensable for a set-theoretic account of the continuum:

This does not prove the legitimacy of the power-set principle. For the
argument is not: we have a perfectly clear intuitive picture of the
continuum, and- the power-set principle enables us to capture this set-
theoretically. Rather, the argument is: the power-set principle ... was
revealed in our attempts to make our intuitive picture of the continuum
analytically clearer; in so far as these attempts are successful, then the
power-set principle gains some confirmatory support. (p. 213)

Not surprisingly, a similar extrinsic support for the Power Set Axiom is to be found
in Fraenkel, Bar-Hillel and Levy (pp. 34-35).

17. Choice. The Axiom of Choice has easily the most tortured history of all the
set-theoretic axioms; Moore in [1982] makes it a fascinating story. In this case,
intrinsic and extrinsic supports are intertwined as in no other. Zermelo, in his
passionate defense, cites both. He begins:

... how does Peano [one of Zermelo’s critics] arrive at his own fundamental
principles and how does he justify their inclusion...? Evidently by
analyzing the modes of inference that in the course of history have come to
be recognized as valid and by pointing out that the principles are intuitively
evident [intrinsic] and necessary for science [extrinsic]-—considerations
that can all be urged equally well in favor of [the Axiom of Choice].
[1908, p. 187]

First the intrinsic supports predominate:

That this axiom, even though it was never formulated in textbook style, has
frequently been used, and successfully at that, in the most diverse fields of
mathematics, especially in set theory, by Dedekind, Cantor, F. Bernstein,
Schoenflies, J. Konig and others is an indisputable fact...Such an
extensive use of a principle can be explained only by its self-evidence, which,
of course, must not be confused with its provability. No matter if this self-
evidence is to a certain degree subjective—it is surely a necessary source of
mathematical principles ...

(Zermelo [ 1908, p. 1871, See also Fraenkel, Bar-Hillel and Levy [1973, p. 85].) Early
set theorists did indeed use Choice implicitly, and the continuing difficulty of
recognizing such uses is poignantly demonstrated by Jordain’s persistent and iil-
starred efforts to prove the axiom (see Moore [1982, §3.8]). Ironically, Choice was
even used unconsciously by several French analysts who were officially its severest
_ critics: Baire, Borel and Lebesgue (see Moore [1982, §§1.7 and 4.17).°

5The referee indicates that the Paris school did eventually distinguish what they considered acceptable
versions of Choice from the unacceptable ones, and that they were also the first to formulate the prin-
ciple of Dependent Choice, an important tool in the presence of full Determinacy (see [BAIL §V 7).
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The debates over the intrinsic merits of the axiom centered on the opposition
between existence and construction. Modern set theory thrives on a realistic
approach according to which the choice set exists, regardless of whether it can be
defined, constructed, or given by a rule. Thus:

In many cases, it appears unlikely that one can define a choice function for a
particular collection of sets. But this is entirely unrelated to the question of
whether a choice function exists. Once this kind of confusion is avoided, the
axiom of choice appears as one of the least problematic of the set theoretic
axioms. ‘

(Martin [SAC, pp. 1-2]) Iterative conception theorists seem also to lean on this
realism rather than on the iterative picture itself (see Boolos [ 1971, pp. 501--502];
Shoenfield [1977, pp. 335-336]). One might also revert to Cantorian finitism (see
Hallet[ 1984, p. 115]). (I will discuss another rule of thumb supporting Choicein IL.2
below.) ‘

Zermelo goes on to emphasize extrinsic supports:

But the question that can be objectively decided, whether the principle is
necessary for science, I should now like to submit to judgment by presenting
a number of elementary and fundamental theorems and problems that, in
my opinion, could not be dealt with at all without the principle of choice.

7 —1¢¢ .
[1908, pp. {Wﬂ He then describes seven theorems that depend on the Axiom of
Choice, including the fact that a countable union of countable sets is countable, as
well as two examples from analysis. Since then it has become clear that the Axiom of
Choice and its equivalents are essential not only to set theory but to analysis,
topology, abstract algebra and mathematical logic as well.

To take just one example, Moore [1982, §4.57 describes the axiom’s growing
importance in algebra during the 20s and 30s. In 1930, van der Waerden published
his Modern Algebra, detailing the exciting new applications of the axiom. The book
was pvery influential, providing 7Zorn and Teichmiiller with a proving ground for
their versions of choice, but van der Waerden’s Dutch colleagues persuaded him to
abandon the axiom in the second edition of 1937. He did so, but the resulting limited
version of abstract algebra brought such a strong protest from his fellow algebraists
that he was moved to reinstate the axiom and all its consequences in the third edition
of 1950. Moore summarizes, “Algebraists insisted that the Axiom had become
indispensable to their discipline” (p. 235). And they were not alone.

Nowadays, intrinsic arguments for Choice in terms of intuitiveness or obvious-
ness go hand-in-hand with extrinsic arguments in terms of its indispensability.
Modern mathematics bas sided firmly with Zermelo:

.. no one has the right to prevent the representatives of productive science
from continuing to use this “hypothesis”—as one may call it for all I care—
and developing its consequences to the greatest extent ... We need merely
separate the theorems that necessarily require the axiom from those that
can be proved without it in order to delimit the whole of Peano’s
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[choiceless] mathematics as a special branch, as an artifically mutilated
science, so to speak ... principles must be judged from the point of view of
science, and not science from the point of view of principles fixed once and
forall. (p. 189)

I.8. Replacement. Early hints of the Axiom of Replacement can be found in
Cantor’s letter to Dedekind [1899] and in Mirimanoff [1917], but it does not
appear on Zermelo’s list in [1908]. This omission is due to his reductionism, that 1s,
his belief that theorems purportedly about numbers {cardinal or ordinal) are really
about sets. Since von Neumann’s definition of ordinals and cardinals as sets, this
position has become common doctrine, but Zermelo first proposed his axioms in the
context of Cantor’s belief that ordinal and cardinal numbers are separate entities
produced by abstraction from sets. So, while Cantor sometimes stated the well-
ordering theorem in the form “Every set is isomorphic to some ordinal number”,
Zermelo preferred the form “Every set can be well-ordered”. As a result, he had no
need for Replacement. (See Hallett[ 19841

Around 1922, both Fraenkel and Skolem noticed that Zermelo’s axioms did not
imply the existence of

(N, P(N), Z@N)),...}

or the cardinal number ¥,,. These were so much in the spirit of informal set theory
that Skolem proposed an Axiom of Replacement to provide for them. It then took
von Neumann to notice the importance of Replacement for the ordinal form of the
well-ordering theorem, as well as in the justification of transfinite recursion.®
Zermelo included it (in his second-order version) in [1930].

Replacement is made to order for the limitation of size theorists:

... our guiding principle ... is to admit only axioms which assert the
existence of sets which are not too “big” compared to sets already
ascertained. If we are given a set a and a collection of sets which has no
more members than a it seems to be within the scope of our guiding
principle to admit that collection as a new set. We still did not say exactly
what we mean by saying that the collection has “no more” members than
the set a. [t turns out that it is most convenient to assume that the collection
has “no more” members than a when there is a “function” which correlates
the members of a to all the sets of the collection ...

(Fraenkel, Bar-Hillel and Levy [1973, p. 50]). The iterative conception does less well
because the only way to guarantee stages large enough to cover the range of the

given function is to assume a version of Replacement in the theory of stages (see
Shoenfield {1977, p. 326]); Boolos [1971, p. 500]).

6Von Neumann actually used a stronger principle based on limitation of size, namely, “A collection is
too large iff it can be put in one-to-one correspondence with the collection of all sets.” This implies
Separation, Replacement, Union and Choice (even Global Choice). Gidel found von Neumann’s axiom
attractive because it takes the form of a maximal principle (compare maximize in 11.2 below): anything
that can be a set, is. See Moore [ 1982, pp. 264-205].
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On the extrinsic side stand the deep set theoretic theorems noted in the paragraph
before last:

... the reason for adopting the axioms of replacement is quite simple: they
have many desirable consequences and (apparently) no undesirable ones.

(Booles [ 1971, p. 5007) Still, the consequences noted are all within set theory; thereis
nothing like the broad range of applications found in the case of Choice. Recently,
however, Martin used Replacement to show that all Borel sets are determined (see
Martin [19757). Earlier work of Friedman establishes that this use of Replacement
is essential (see Friedman [1971]). Thus Replacement has consequences in analysis,
consequences even for the simple sets of reals favored by the French analysts.
Furthermore, these consequences are welcome ones, as we shall see in [BAIL §V].

Let me end this survey here, leaving the interested reader to the more informed
works of the mathematical historians. I think enough has been said to demonstrate
that from the very beginning, the process of adopting set-theoretic axioms has not
been a simple matter of noting down the obvious. Rather, the axioms we now hold to
be self-evident were first justified by reference to vague rules of thumb and purely
extrinsic consequences, in addition to intrinsic evidence. The arguments offered for
the new axioms are no different. But first we should pause to look at the problem that
makes new axioms vital.

§11. The continuum problem. Cantor first stated his continuum hypothesis in
1878:

The question arises . . . into how many and what classes (if we say that [sets
of reals] of the same or different [cardinality] are grouped in the same or
different classes respectively) do [sets of reals] fall? By a process of
induction, into the further description of which we will not enter here, we
are led to the theorem that the number of classes is two.

(See Cantor [1895, p. 45].) The nature of this “process of induction” is never made
clear, but Hallettreconstructs it from the contents of a letter Cantor wrote to Vivanti
in 1886 (see Hallett [1984, pp. 85-86]). There Cantor comments on Tannery’s
purported proof of the continuum hypothesis:

He believed he had given a proof for the theorem first stated by me 9 years

ago that only two [equivalence] classes [by cardinality] appear among
linear pointsets, or what amounts to the same thing, that the [cardinality}.

of the linear continuum is just the second. However, he is certainly in error.

The facts which he cites in support of this theorem were all known to me et then
tlawsdawe, 25 anyone can see, and form only a part of that induction of which

I say that it led me to that theorem. I was convinced at that time that this
induction is incomplete and 1 still have this conviction today.

... the theorem to be proved is
= Nx.



BELIEVING THE AXIOMS. I 491

The facts on which Herr T. believes he can base the theorem are only these:

n+N0wN0’R0"{'"NDWRO,RO'"WNOsN% =N0,
NE = No; N§e = ¢, 2% =, oz, nM =

These facts suggest the conjecture that ¢ should be the power X, following
next after N,; but they are a long way from furnishing a}proof for it.

R b hardwy
Perhaps these facts seem even less persuasive today.

I1.1. Cantor's views. Cantor’s writings suggest two other reasons he might have
had for believing the continuum hypothesis.” In 1874, Cantor proved the first version
of his famous theorem: no countable sequence of elements from a real interval can
exhaust that interval. In 1883, he proved that there are more countable ordinals than
finite ordinals, and that any infinite set of countable ordinals is either countable or
equinumerous with the set of all countable ordinals. Three things must have struck
Cantor here: first, the two proofs of nondenumerability are similar (the usual
diagonal argument for the nondenumerability of the reals came only in 1891), which
produces an analogy between the reals and the countable ordinals (see below);
second, the property proved for infinite subsets of the countable ordinals is exactly
what CH conjectures for the reals; third, that the CH could now be formulated as
“the reals and the countable ordinals are equinumerous.”

Cantor apparently found evidence for the CH in the structural similarities
revealed by the two proofs of nondenumerability. In particular, he came to see the
reals and the countable ordinals as generated by similar processes from similar raw
materials; in both cases, one begins with a countable set (the rationals and the finite
ordinals, respectively) and one considers countably infinite rearrangements {Cauchy
sequences and well-orderings, respectively). This analogy suggests that the two sets
may also share the same cardinal number. Add to this the discovery that the set
of countable ordinals has exactly the property Cantor expected to hold for the
reals, and the CH in its new form seems a fairly natural conjecture (see Hallett
[1984, pp. 74-81]). _ :

Of course, wherever there are analogies there are both similarities and dissimilar-
ities. What makes the 1874 proof of nondenumerability go through is the fact
that any bounded sequence of reals approaches a limit; likewise, the 1883 proof of
nondenumerability depends on the fact that any countable sequence of countable
ordinals has a countable ordinal as its supremum. Still, as Hallekpoints out (p. 81),
the topologies underlying these limit properties are not really all that similar.

A second reason Cantor may have had for believing the continuum hypothesis is
based on the Cantor-Bendixbn theorem of 1884, that is, the result that every closed
infinite set of reals is countable or has a perfect subset, and hence, that CH is true for
closed sets of reals. At the end of the paper in which this result is proved, he
promises a proof of the same result for nonclosed sets of reals. He may have believed
at one time that the proof itself could be generalized, and in fact, it can to a certain
extent. I will take up the idea that these partial results constitute evidence for CH in

bhm
T Apparently, the term “continuum%;pe-t-hesie" was first used by Bernstein in 1901, See Moore [1982,
p. 561
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I1.3.1. In any case, it is clear that for a while he hoped to establish CH by finding a
closed set of cardinality ¥, . Such a set would be nondenumerable, so by the Cantor-
Bendixdn theorem, it would have the cardinality of the continuum. But that
cardinality is 2%, so CH is true. Working along these lines, in 1884 he wrote:

I am now in possession of an extremely simple proof for the most important
theorem of set theory, that the continuum has the [cardinality] of the [set
of countable ordinals] ... you see that everything reduces to defining a
closed set having [cardinality ¥, ]. When I have sorted it out, ¥ will send you
the details.

(See Hallett[ 1984, p. 923; Moore [1982, p. 43].) Of course, the details were never
sorted out.®

For the record, during the prehistory of CH (that is, before the consistency and
independence results), opinion seems to have been divided. Hilbert and Jourdain
were both in favor (Moore [1982, pp. 55, 63]), though Hilbert apparently did not
expect it to be provable in ZFC alone (Wang [1981, p. 656]). Konig attempted to
prove it false, but only because he felt the reals could not be well-ordered at all
(Moore [1982, §2.1]). Finally, Gédel cites Lusin and Sierpinski as tending to
disbelieve it for reasons closer to his own ([1947/64, p. 479]).

IL.2. Consistency and Independence. A wag once suggested that if only Godel had
announced having proved the continuum hypothesis, instead of its mere consistency,
there would be no ga@s® continuum problem. Strangely enough, Godel does almost
exactly that in [1938]. Of the Axiom of Constructibility, from which he did prove
CH, he writes:

The proposition ... added as a new axiom, seems to give a natural
completion of the axioms of set theory, in so far as it determines the vague
notion of an arbitrary infinite set in a definite way. (p. 557)

By [1944], however, he has changed his mind and come around to the view now $o
strongly associated with his name:

[The] axiom [of constructibility] states a minimum property. Note that
only a maximum property would seem to harmonize with the concept of set

(@p. €479)

Perhaps GOdel’s new opinion of ¥V = L wasalso influenced by his developing belief
in the falsity of CH (see I1.3.3 below).

We see here the statement of a new rule of thumb, namely maximize.’ This rule
is often associated with the iterative conception in two more specific forms:

Intrinsic necessity depends on the concept of iterative model. In a general
way, hypotheses which purport to enrich the content of power sets... or to
introduce more ordinals conform to the intuitive model. We believe that the
collection of all ordinals is very ‘long’ and each power set (of an infinite set)

8Cantor’s final attempt at proving the continuum hypothesis involved a new method of decomposing
arbitrary sets of reals. See Moore [1982, pp. 43-44], and Hailett[ 1984, p. 103].
9Recall the earlier hint of this rule in G¥del’s reaction to von Neumann's axiom.
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is very ‘thick.” Hence, any axioms to such effects are in accordance with our
intuitive concept.

(Wang [1974, p. 553]) For example, the Axiom of Choice is
contribute to the “thickness” of the power set (see e.g. il
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; P Drake [1974, p. 12]). T will take up the question of postulating more
ordinals in the next section, but for now it is clear that the restriction to definable
subsets at each stage can be seen as an unwelcome curtailment of the full power set.
The view that V = L contradicts maximize is widespread (see e.g. Drake [1974,
p. 131]; Moschovakis [ 1980, p. 610]; Scott [1977, p. xii]).*°

There are also extrinsic reasons for rejecting ¥ == L, most prominently that it
implies the existence of a 4 well-ordering of the reals, and hence that there is a Al
set which is not Lebesgue measurable.'* It can be proved in ZFC that every Borel
well-ordering of the reals is countable. A 4] set can be obtained from a Borel set by
one application of projection followed by one application of complement. Many
find it implausible that a set as complex as a well-ordering of the real numbers could
be generated by such simple operations.'* The Axiom of Choice guarantees that
there is such a well-ordering, but the proofs are highly nonconstructive, so it is
considered implausible that the well-ordering should be definable at all (see
Moschovakis [1980, p. 276]; Wang [1974, p. 5477; Martin [1976, p. 88] and
[PSCN, p. 2]). Further extrinsic evidence against ¥ = L will be discussed in 11.3.1,
below, and in [BAIL §V].

After his proof of the consistency of CH, Godel conjectured that it is independent
as well. The axioms of ZFC, he argues, are true in ¥ and in L, so one can hardly
expect to decide the numerical question of the size of the continuum until one has
settled “what objects are to be numered, and on the basis of which one-to-one
correspondences.” Even if one believes that V' = L,

A

... he can hardly expect more than a small fraction of the problems of set
‘theory to be solvable without making use of this, in his opinion essential,
characteristic of sets. [1947/64, p. 478]

Fiﬁally, in 1963, Cohen proved him right (see his [19667).13

101 should not suggest that no one supports the adoption of ¥ = L as an axiom; sentiment infavor can
be found (see e.g. Fraenkel, Bar-Hillel and Levy [1973, pp. 108-10%]; Devlin [1977, p. iv]). Reasons
usually given are that it is simple and safe (see Moschovakis [1980, p. 6097), and that it provides answers
to & great many outstanding problems. Discussion below and in [BAIL §VI] will suggest that these
answers are “in the wrong direction”, but that opinion is surely open to debate. Despite all this, 1 will stick
1o the anti-(V = L) line because it is favored by the Cabal group.

' Notation: £ is the class of open sets of reals; JI{ is the class of all complements of 2 9 sets of reals;
£2, | is the class of all countable unions of JT{ sets; and 47 = Z; n IT7. All these together are the Borel
sets. Further, £} is the class of all projections of closed sets; IT Lis the class of all complements of 2 ! sets;
I1,, is the class of projections of J1! sets; and 4] is Z} n 11 . These are the projective sets. In 1917,
Soustin proved that the Borel sets are the 4] sets. Finally, if Risa weli-ordering of the reals, then Fubini’s
theorem implies thétR is not Lebesgue measurable. :

12This way of putting the implausibility was suggested by Matt Foreman.

¥3See Scott [1977] and Wang [ 1981] for some discussion of why the independence proof was so long
in coming.



494 PENELOPE MADDY

While Godel’s result had a temporary discouraging effect on research in set theory
(for fear that the problem in question was in fact undecidable), Cohen’s invention of
the forcing method led to a boom (see Martin [1976, pp. 82—-83]). While the truth of
CH in the constructible universe has had some influence on opinion as to its truth or
falsity (see 11.3.4 below), the relevance of forcing models to that question is much less
clear. The plethora of different models moved Cohen himself to a version of
formalism (see his [1966] and [1971]), but Scott, another innovator in the early
development of forcing, writes:

I myself cannot agree, however. 1 see that there are any number of
contradictory set theories, all extending the Zermelo-Fraenkel axioms; but
the models are all just models of the first-order axioms, and first-order logic
is weak. I still feel that it ought to be possible to have strong axioms which
would generate these types of models as submodels of the universe, but
where the universe can be thought of as something absolute. [1977,
p. xiv]

(See also Kanamori and Magidor [1978, p. 109]).) Perhaps the association of CH
* with the restrictive ¥ = L, combined with the development of this striking new
technique for adding extra real numbers to models, led some to agree with Godel
that CH is false in the absolute real world. _

11.3. Informed opinion. Despite the results of Godel and Cohen, there remain set
theorists who feel the CH is a real question, the sort of thing that is either true or false
in the real world of sets. Various arguments for and against have been bandied about
in their ranks. The purpose of this subsectionis to summarize the most prominent of
these. :

[1.3.1. Partial results (in favor). Recall that Cantor may have expected the proof
of the Cantor-Bendi_bE’on theorem (that CH holds for closed sets of reals) to
generalize to all sets of reals. This program was carried forward by Young in 1906 to
a subset of the H19 sets, then by Hausdorfl in 1914 to all 19 sets, and finally, by
Hausdorfl again in 1916 to all Borel sets. Still, Hausdorff himself was reluctant to
count these results as evidence for the CH:

If we knew for all sets.what we know for closed{and IT 2]... then ... the
continuum-hypothesis.would be decided. However, in order to see how far
we still are from this goal, it is sufficient to recall that the system of sets
closed or[II korms only a vanishingly small part of the system of all point
sets.

Even after the proof had been extended to all Borel sets, he continued:

Thus the question of power is clarified for a very inclusive category of sets.
Nevertheless, one can scarcely see this as a genuine step towards the
solution of the continuum problem, since the Borel sets are still very
specialized, and form only a vanishingly small subsystem.

(Both translations are due to Hallet{[ 1984, p. 107].) Of course there are 22% setsof
reals, only 2%¢ of which are Borel.
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Even more damaging to the interpretation of these results as evidence in favor of
the CH is something Hausdorff apparently did not realize at the time, namely that
his proofs could be strengthened to the form of the original Cantor-Bendixbn result,
that is, that every infinite Borel set is either countable or contains a perfect subset. In
1916, Alexandroff proved the theorem in this form, and in 1917, Souslin extended it
to 2} sets. (In the presence of a measurable cardinal, this pattern can be extended to
21 See §1V below.) The trouble arises from Bernstein’s proof that there are
uncountable sets of reals without perfect subsets. Thus these proofs that CH holds
for restricted classes of sets all depend on establishing a stronger property, the
perfect subset property, that cannot hold for all sets of reals {(see Martin [1976,
p. 88]; Hallet 1984, pp. 103-110]). For this reason, the technique cannot be fully
generalized. :

In Cantor’s defense, it should be noted that he was probably unaware of the
existence of uncountable sets without perfect subsets. Most of the sets of reals
Cantor worked with were £} at worst. Furthermore, Bernstein’s proof, published in
1908, made essential use of the Axiom of Choice. Though Cantor often used that
axiom, he did so to form orderings, or to make simultaneous choices from many
order types or cardinalities, not to form sets of reals, so he may well not have noticed
this possibility.

In 1925, Lusin wondered whether every infinite II ! set is either countable or
contains a perfect subset. He writes:

My efforts towards settling this question have led to an unwelcome result:
we do not know and will never know ...

(Translation due to Hallett[ 1984, p. 108]). This may sound overly dramatic, but ina
sense, Lusin was right, for the Axiom of Constructibility implies the existence of
an uncountable I1! set with no perfect subset, while other hypotheses imply the
opposite (see [BAIL, #kasée §V]). That such a “pathology” should occur so low in
the projective hierarchy is considered another extrinsic disconfirmation of V = L
(e.g. Wang [1974, p. 547]). o

11.3.2. The effectiveness of CH (in favor). The generalized CH is an extremely
simple and powerful assumption that immediately settles all questions of cardinal
arithmetic. Furthermore, it allows any power set to be well-ordered in such a way
that every initial segment is no bigger than the original set. This facilitates many
complex constructions, such as saturated models of every regular cardinality.
Sierpinski’s book Hypothése du Continu deduces 82 propositions from the CH. In
stark contrast, Martin and Solovay remark [1970] that not a single one of these 82
propositions is known to be decided by the negation of the continuum hypothesis.

1L3.3. Godel's counterintuitive consequences (against). In [1947/64], Godel
argues that CH is false because it has certain “highly implausible consequences”
(p. 479). Several of these assert the existence of sets of reals of cardinality 2%° with
strong “smaliness” properties. For example, a subset of the unit interval is called
“absolute zero” if it can be covered by any countable collection of intervals. If
covering is only required when the intervals are of equal length, then the set would
have Lebesgue measure zero, but would not necessarily be absolute zero. Thus
Cantor’s discontinuum has Lebesgue measure zero, but is not absolute zero, because
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it cannot be covered by countably many intervals of length 1/3". In fact, no perfect
set can be absolute zero, and Borel conjectured that no set of size 2%0 could be. The
CH implies that there is such a set.

Commentators were quick to point out that many consequences of the set-
theoretic reduction of the continuum that do not depend on CH are similarly
counterintuitive, for example, Peano’s space-filling curve. Gddel insists that his
examples are not of this sort, because in those cases:

...the appearance [of counterintunitiveness] can be explained by a lack of
agreement between our intuitive geometrical concepts and the set-
theoretical ones occurring in the theorems. (p. 480)

While we all might be surprised at Peano curves or the uncountable Cantor set of
measure zero, this surprise is presumably based on exactly the clash Godel
mentions: a disagreement between our geometric intuition and our set-theoretic
geometry, or a vague feeling that sets large in cardinality should not also be small in
measure. But Godel is basing his reactions on something else.

What then? Wang suggests that

it cannot be excluded that someone might have such intimate knowledge
so that, for example, he can separate out e1rors coming from using the pre-
set-theoreticalfintuition].

[1974, p. 549]. He reminds us of Gddel’s view that all intuition must be cultivated. It
seems to me more likely that Godel had in mind some form of peculiarly set-
theoretic intuition not connected with pre-set-theoretic geometry. In either case, we
are left with Godel’s bare claims, because even our best set theorists do not share
these “intuitions”:

While Godel’s intuitions should never be taken lightly, it is very hard to see
that the situation is different from that of Peano curves, and it is even hard
for some of us to see why the examples Godel cites are implausible at all.

(Martin [1976, p. 87]; see also Martin and Solovay [1970, p: 177]).

Godel apparently did make at least one attempt to axiomatize his views on the
continuum. It appears in Ellentuck [1975] and takes its cue from a conjecture of
Borel. Suppose that the functions from w to w are ordered so that fis less than g if
and only if £(n) is always less than g(n) after a proper initial segment. Borel
conjectured that there is a set S of size ¥, which is cofinal in this ordering.
The “square axiom”, 4, is just this conjecture; the “rectangle axioms”, 4,, are
generalizations of the square axiom to functions from w, to w. Godel agreed with
Borel on the plausibility of A; his hope was that the 4,’s could be justified by
analogy with 4, and that they would set bounds on the size of the continuum,

Now ¥, is the only value for 2% that is known to be consistent with the
nonexistence of absolute zero sets. Furthermore, A, implies that 2%° < ¥,. Thus it
seemns Godel must have suspected that 2% = N, . Unfortunately, the plan to derive
this from a theory involving the rectangle axioms was ruined with the discovery that
A, implies CH. Alternate versions of the square axiom turned out to be relatively
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consistent with a wide range of values of 2%°, and A itself implies the existence of an
absolute zero set of size X,. While this is perhaps not so counterintuitive as an
absolute zero set of size 2%°, it must have been an unwelcome result. Thus this effort
of Gédel’s to formalize his intuitions about the continuum was quite unsuccessful.**

11.3.4. CH is restrictive (against). As mentioned earlier, perhaps some of the
reason CH is felt to be restrictive is because it is true in L. If this line of thought is to
have any force, it must first meet a difficult challenge, namely that the Axiom of
Choice, generally regarded as a maximizing principle in itself, is also true in L. If L is
so impoverished, why does the additional assumption of Choice have no maximizing
effect? (It doesn’t, because it is not an additional assumption, after all.}

I think the answer to this question is not so difficult. Choice is true in L because
there is a definable well-ordering of the constructible universe. This reverses the
intuitive order of things. Why is a given set well-orderable? Because an element can
be chosen for each ordinal until the set is exhausted. Why should such choices be
possible? Because realism and maximize guarantee the existence of a choice set. Thus
the well-ordering principle derives from Choice and not vice versa.

The maximizing force of Choice lies in its implying the existence of complex,
probably undefinable sets like a well-ordering of the reals, a non-lebesgue-
measurable set, and an uncountable set with no perfect subset. That the Axiom of
Constructibility forces such sets far down into the simple projective sets counts as
extrinsic evidence against it. Thus the Axiom of Choiceis truein L, but it does not do
any maximizing work because it is true for the wrong reason. It is not true because
there are complex sets; rather it is true because there is an artificially simple well-
ordering.

Now what about CH? Is it truly a maximizing principle that just happens to be
true in the restricted world of L because its maximizing force is masked by some
unrelated pathology? For what it’s worth, I see nothing in the proof of CH in L that
suggests this, CH is true in L because all the constructible subsets of wappearin L, ,
and L, has small cardinality. But why is that cardinality smali? Because the limited
procedure of subset formation in L only allows at most one new element for every
formula and finite sequence of parameters. Thus CH is true in L because the
formation of subsets is artificially restricted, not because some other pathological
condition in L is robbing it of its maximizing force.*

14The history of the square and rectangle axioms is described in more detail in Moore [1982].

157 should note that §. Friedman [1971] argues that GCH is a maximizing rather than a restrictive
principle. He does so by showing it equivalent to what he calls the “generalized maximizing principle,”
namely, the assumption that every “local universe” contains all its smaller-cardinality subsets. (Note the
similarity to von Neumann's maximizing principle above,) The problem is that a *“local universe” is
defined as a collection closed under Pairing, Union and Replacement. Obviousty Replacement is being
maximized at the expense of Power Set. Thus Friedman is right that:

A fundamental question is whether [the generalized maximizing principle maximizes these
operations [Pairing, Union and Replacement] at the expense of the power'set operation.

But perhaps he is less than candid when he claims:

[The Generalized Maximizing Principiasays nothing explicit about the power set operation,
but as an aftesthought, GCH follows from it. (p. 41)
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Another way of stating the idea that CH is restrictive is to insist that the
continuum is somehow too complicated to be numbered by the countable ordinals.
Drake presents a version of this view:

Of course, many mathematicians do not feel that the cumulative type
structure is a well-defined, unique object, and from this point of view the
independence results may have to be considered the final word on
the GCH. But there are also many mathematicians who feel that the
cumulative type structure is real enough, in & sense, for the GCH, or at least
the CH, to be a real question. It is worth noting that amongst these
' mathematicians, many feel that the GCH is just too simple.to be right.
Perhaps the following illustrates this feeling:. .. [1974, pp. 65-66]

He goes on to point out that ¥, is the cardinal number of the collection of all
countable well-ordering types, while 2%° is the cardinal number of the collection of
all countable linear ordering types.

To say of a linear ordering that it is a well-ordering is a very strong
requirement, so that there should be many more linear orderings than well-
orderings ... (p. 66)

Of course, if CH were true, it would not be the first time that a difference in
complexity was not mirrored in a difference in cardinality. It is hard to see why the
CH should be interpreted as saying that there are not very many subsets of o when it
could just as easily be taken to say that there are lots of countable ordinals.

The question of how complexity matches up with cardinality is further muddled
by results involving Martin’s Axiom (see Martin and Solovay [1970]). Recall that
many of the consequences of CH are made possible by the well-ordering of 2R with
countable initial segments. Though Martin’s Axiom is relatively consistent with ¥
< 2% it still guarantees that the cardinals smaller than 27 are well enough behaved
to allow complicated constructions to go through. As a result, 79 of Sierpifiski’s g2
consequences of CH also follow from MA + (X, < 2%0)(with the natural modifica-
tion that the countable/uncountable distinction is replaced by the less-than-2%o/2%e
distinction). Thus advocates of the view that the continuum is complex might
wonder if large cardinality alone is enough to guarantee that complexity.

IL3.5 Power Set is stronger than Replacement (against). This position is Cohen’s.
As a formalist, Cohen realizes he should reject the question of the truth or falsity of
CH [19&, p. #41, but he feels he cannot reject the same question concerning large
cardinals:

I, for one, cannot simply dismiss these question of set theory for the simple
reason of their reflections in number theory. I am aware that there -
would be few operational distinctions between my view and the Realist
position. [1971, p. 15]
Thus he is willing to speculate on the truth value of the CH from the realist point of
view:

A point of view which the author feels may eventually come to be accepted
is that CH is obviously false. The main reason one accepts the Axiom of
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Infinity is probably that we feel it absurd to think that the process of adding
only one set at a time can exhaust the entire universe ... Now N/ is the set of
countable ordinals and this. is merely a special and the simplest way of
generating a higher cardinal. The set C is, in contrast, generated by a totally
new and more powerful principle, namely the Power Set Axiom. It is
unreasonable to expect that any description of a larger cardinal which
attempts to build up that cardinal from ideas deriving from the Replace-
ment Axiom can ever reach C. Thus C is greater than N, N, X, where «
= N, etc: This point of view regards C as an incredibly rich set given to us
by a bold new axiom, which can never be approached by any piecemeal
process of construction. Perbaps later generations will see the problem
more clearly and express themselves more eloquently. [1966, p. 151]

In this connection, recall that the limitation of size theorists had difficulties with
Power Set but smooth sailing with Replacement. It should be noted that most set
theorists who disbelieve CH think 2%¢ is more likely to be very large, as Cohen
indicates, than to be ¥, as Godel suggests. :

11.3.6. Finitism (against GCH). Here the argument depends on analogy with the
finite numbers, where n + 1 = 2" is true only for 0 and 1. This is felt by some to
constitute an argument against the GCH, if not against the particular case of the CH
(see Drake [1974, p. 66]).

11.3.7. Whimsical identity (against GCH). This argument depends on the same
facts as the finitism argument, but it uses them in a different way. Notice that if the
GCH were true, then ¥, could be defined as that cardinal before which GCH is false
and after which it is true (excepting 0 and 1, of course). But this identity would seem
“accidental”, like the identity between “human” and “featherless biped”. While the
physical universe might be too impoverished to falsify such accidental identities, the
set-theoretic universe should be rich enough to rule them out. Therefore, GCH is
false. (Kanamori and Magidor [1978, p. 104] and Martin [1976, p. 85] use
whimsical identity arguments to support large cardinal axioms. See §11I below.) Of
course this line of argument faces considerable difficulties in explaining what is
meant by “accidental”, and how this particular identity can be seen to have that
property.

1.3.8. The delicate balance (against). This argument is stated by Wang:

Some set theorist states that if %, = 2%°, then there must be a surprisingly
delicate balance between the reals and the countable ordipals. {1974,
pp- 549-550]

As Wang goes on to point out, the balance must be delicate whatever the cardinality
of the reals turns out to be. Indeed, it might seern more delicate if 2%° were ¥, ;.

11.3.9. Gupta's wager (against). Gupta suggests, somewhat facetiously, that since
X, is only one among the proper-class-many values 2% might consistently take, it
makes more sense to plump for not-CH. _

11.3.10. Freiling's darts (against). Freiling [1986] suggests a thought experiment
in which random darts are thrown at the real line. Suppose that a countable set f(x)
is associated with each real x. Now I throw two darts; the firsthits a point X, and the
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second a point x,. Given that a countable set is very sparsely distributed, the
probability that my second dart will hit a member of f(x,) is vanishingly small.
Thus, in all likelihood, the point x, is not a member of f{xo) '

But the situation is symmetric: there is just as little reason to suppose that the first
dart has hit a point in the set f(x;). Thus Freiling proposes that for every assignment
of a countable set to each real, there are two reals neither of which is a member of the
set assigned to the other. This rather innocuous-sounding statement turns out to be
equivalent to not-CH.

A common objection to this line of thought is that various natural generalizations
contradict the axiom of choice as well. For example, if Freiling’s principle is
modified to cover assignments of sets of any cardinality less than that of the reals,
the result immediately implies that there is no well-ordering of the reals. Similarly if
we are allowed to throw @ + 1 darts, Members of the Cabal suggest that Freiling’s
hypotheses yields a picture more like that of the full AD-world (see [BAII §V]} than
of the choiceful universe V. Meanwhile, Freiling disputes the “naturalness” of these
generalizations. He also points out that one step back from disaster could provide a

rationale for accepting his axiom and rejecting its generalizations even if they are
“natural” ‘

11.3.11. Not-CH is restrictive (in favor). This argument uses the same general
considerations as I1.3.4 in support of the opposite conclusion. While established
opinion among more mature members of the Cabal is against CH, younger mem-
bers are sympathetic to this more recent argument and to the considerations raised
in the next subsection. Tt has been suggested that the cut-off age is 40.

To see how not-CH can be considered restrictive, we imagine ourselves con-
structing the iterative hierarchy. By stage @ + 2, we have the set of reals and we
have a well-ordering of type ¥;. The question is whether or not a one-to-one
correspondence between them is included at the next stage. Since it is consistent
to do so, it would artifically restrict the power set operation to leave it out. The
thinking behind I1.3.4 sees CH as restricting the size of the power set of w. From the
present point of view, not-CH is a restriction of the power set operation at the next
stage.!®

11.3.12. Modern forcing (in favor). Practitioners of modern versions of forcing
point out that it is much easier to force CH than not-CH; that is, that a wide variety
of forcing conditions collapse 2%o_Since the addition of generic sets tends to make
CH true, it is most likely true in the full richness of V itself.

1 think this list includes most of the arguments standardly offered for and against
the CH. It should be emphasized that few set theorists consider any of them
conclusive, and even those with fairly strong opinions adopt a decidedly wait-and-
see attitude toward CH. Let me turn now to the search for new axioms to settle the
question.

16Chris Freiling points out that an argument of similar form can be presented against the Axiom of
Choice. Notice that a choice function for a countable partition of the reals can becoded as a single real, At
stage @ + I, we have all the reals, so we also have all codes of choice functions for countable partitions.
Any countable partition can be coded as a set of reals at stage w + 2. Thus the question, at stage @ -+ 2,is
whether or not to include a countable partition without a choice function.
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§I1I. Small large cardinals—up from below. There are thos¢ who hold that the
universe of sets is not sufficiently well-defined for the continuum question to have an
unambiguous answer. Little can be done to rebut this position short of coming up
with an unambiguous solution, so perhaps this question should be set aside pending
further developments. A less reasonable view is that the consistency and inde-
pendence proofs by themselves show that the CH poses a meaningless question. It is
hard to see any justification for the implicit claim that the axioms of ZIFC must be
taken as the final word: : ‘

Although the ZFC axioms are insufficient to settle CH, there is nothing
sacred about these axioms...

. undecidability [of CH]J from the axioms being assumed today can
only mean that these axioms do not contain a complete description of {set-
theoretic] reality.

(Martin [1976, p. 847; Godel [1947/64, p. 476])
Where are we to look for the new axioms that will make our description more
complete? In [1946], Godel suggests: '

..stronger and stronger axioms of infinity...It is not impossible. .. that
every proposition expressible in set theory is decidable from the present
axioms plus some true assertion about the largeness of the universe of/sets.

(p. 85)'7 Skolem’s and Fraenkel’s introduction of the Axiom of Replacement can be
seen in this light as they specifically wanted to generate . Thus the suspicion that
adding larger ordinals can produce new results about sets of reals is confirmed by
I}g,?étin’s proof of Borel determinacy (see Hallett[1984, p. 102]; Kreisel [1980,
p- @])-

The first such new axiom of infinity is the Axiom of Inaccessibles, asserting the
existence of regular, strong limit cardinals. The existence of such cardinals was first
suggested by Zermelo [1930]; the axiom itself was formulated by Tarski in [1938].
Godel presents an intrinsic defense:

These axioms show clearly, not only that the axiomatic system of set theory
as used today is incomplete, but also that it can be supplemented without
arbitrariness by new axioms which only unfold the content of the concept
of set explained [by the iterative conception]. [1947/64, pp. 476~-477]

(See also Wang [1974, p. 554].) Of course, maximize presents a simple and
immediate defense for the Axiom of Inaccessibles. Recall that this rule of thumb is
actually a pair of admonitions: thicken the power set, and lengthen the class of
ordinals. Axioms of infinity in general, and the Axiom of Inaccessibles in particular,
clearly do the second of these. '

The most commonly given argument is more closely tailored to the actual content
of Inaccessibles (see e.g. Godel [1947/64,p.4761; Wang [1974, p. 5541; Drake [1974,

7This conjecture may seem less likely in light of Levy and Solovay’s strong theorem [1967] on the
stability of large cardinals under most forcing extensions. See §IV below.
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pp. 267-268]). It depends on the widespread view that the universe of sets 1$ too
complex to be exhausted by any handful of operations, in particular by power set
and replacement, the two given by the axioms of Zermelo and Fraenkel. Thus there
must be an ordinal number after all the ordinals generated by replacement and
power set. This is an inaccessible.’® Similarly, the universe above a given point
should not be exhausted by these two operations, so there is another inaccessible,
and so on. Versions of inexhaustibility can also be used to defend the various
hyperinaccessibles and Mahlo cardinals. All of these are generated by thinking of
processes that build wp larger ordinals from below.

The Axiom of Inaccessibles can also be defended by two other rules of thumb
each incomparably stronger than inexhaustibility. The first of these is uniformity.*®
To understand the thrust of this rule, suppose that a certain interesting situation
occurs at a low level of the iterative hierarchy. If no similar situation occurred in the
remainder of the hierarchy, it would be as if the universe had lost its complexity at
the higher levels, as if it had flattened out, become homogeneous and boring.
Uniformity says that this does not happen, that situations similar to our chosen
interesting one will recur at higher levels:

We mean by [uniformitﬂa proceés of reasonable induction from familiar
situations to higher orders, with the concomitant confidence in the
recurring richness of the cumulative hierarchy.

Uniformity of the universe of sets (analogous to the uniformity of nature):
the universe of sets doesn’t change its character substantially as one goes
over from smaller to larger sets or cardinals, i.e., the same or analogous
states of affairs reappear again and again (perhaps in more complicated
versions).

(Kanamori and Magidor [1978, p. 1041; Wang [1974, p. 541]; see also Solovay,
Reirhardt and Kanamori [1978], and Reinhardt [1974, p. 189]. Wang and
Reinhardt attribute support for this principle to Gédel)) Thus, ¥, is inaccessible, so
there must be uncountable inaccessible cardinals. Otherwise, the universe would be
sparse above ¥, or change its character in an objectionable way.

Uniformity arguments often go hand-in-hand with whimsical identity arguments.
In this case, for example, if there are no uncountable inaccessibles, then ¥, can be
defined as the inaccessible. But:

It would seem rather accidental if [&acan be characterized by [this]
propertfl.

(Kanamori and Magidor [1978, p. 104]; sce also Martin [1976, p. 85]). So there
must be uncountable inaccessibles.

180f course, Replacement must be taken in Zermelo's second-order form,

1%Solovay, Reinhardt and Kanamori [1978] and Kanamori and Magidor [1978] call this principle
generalization, while Wang [1974] calls it uniformity. T will want to retain the first of these for a slightly
different rule of thumb (see [ BAIL, §V1]). Hallet [1984, pp. 114-1 157 also connects uniformity to the views
behind cantorian finitism, but not in the way suggested here.
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Uniformity itself is sometimes defended on the basis of Cantorian finitism: the
sequence of natural numbers continues to produce interesting complexities
arbitrarily far out, so the sequence of transfinite ordinals should do the same. Un-
fortunately, the premise concerning the natural numbers is debatable. While the
sequence of natural numbers does continue to produce, for example, arbitrarily
large prime numbers, it may or may not continue to produce twin primes, and it
definitely runs out of adjacent primes after 2 and 3, and even primes after 2. This
highlights the delicacy of formulating the property to be projected. Projecting
properties of R, is similarly chancy. I will return to this point below, in connection
with weakly compact cardinals. ‘

The second powerful rule of thumb sometimes cited in support of Inaccessibles is
reflection: the universe of sets is so complex that it cannot be completely described;
therefore, anything true of the entire universe must already be true of some initial
segment of the universe. In other words, any attempt to uniquely describe ¥ also
applies to smaller R.’s that “reflect” the property ascribed to ¥.2° In particular, V' is.
closed under the operations of replacement and power set, s0 there is an R, which is
also so closed. Then « is an inaccessible. Similarly, V' is closed under replacement
and power set above this K, S0 there is another inaccessible, and so on.

Hallett[ 1984, pp. 116-118], traces reflection to Cantor’s theory that the sequence
of all transfinite numbers is absolutely infinite, like God. As such, it is incompre-
hensible to the finite human mind, not subject to mathematical manipulation. Thus
nothing we can say about it, no theory or description, could single it out; in other
words, anything true of V is already true of some R,. Reinhardt [1974, p. 191]
expresses a similar sentiment, though without the reference to God. A related view is
that the universe of set theory is “ever-growing”, so that our attempt to speak of “all
sets” actually refers to “temporary” partial universes that “approximate” the
universe of all sets (Fraenkel, Bar-Hillel and Levy [1973, p. 1187; see also Parsons
[1974] and Wang [1974, p. 5407). Discussions of this sort characteristically
emphasize the indefiniteness or incomprehensibility or ineffability of V.

Martin strikes a somewhat different note:

Reflection principles are based on the idea that the class ON of ## ordinal
numbers is so large that, for any reasonable property P of the universe[VJ!
ON is not the first stage o such that R, has P. [1976, pp. 8588 |

Here the emphasis is on the largeness and complexity of the class of ordinals rather
than some mysterious indefinability V;it is not that V is so inscrutable that nothing
can describe it, but that ON is so vast that whatever happens at the top must already
have happened before. :

In any case, reflection is probably the most universally accepted rule of thumb in
higher set theory (iz_}saddition to references already cited, see Solovay, Reinhardt and
Kanamori [1978, p. %], and many others). It is partially confirmed by weak, single
formula versions that are provable in ZFC (see Levy [1960]). More powerful
applications attempt to use stronger properties involving infinite sets of formulas,

20Notice that reflection implies inexhaustibility.
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and/or higher order properties, while avoiding “nonstructural” properties, like “x
= V", which lead to contradiction.

It should be mentioned that the Axiom of Inaccessibles also has a few extrinsic
merits. It implies that ZFC has a standard model in the iterative hierarchy, and thus,
that ZFC is consistent. This last is an arithmetic fact, and the Axiom of Inaccessibles,
like other axioms of infinity, also implies the solvability of new Diophantine
equations. (These facts are often cited. See e.g. Godel [1947/64, p. 4777, the
quotation from Cohen [1971, p. 15], cited in I1.3.5 above, and Kanamori and
Magidor [1978, p. 103], to name a few.) In addition, there are the impressive relative
consistency results of Solovay [1970]. Assuming a model of “ZFC + The Axiom of
Tnaccessibles”, Solovay uses forcing to collapse the inaccessible and obtains models
of ZFC in which all or many sets of reals are Lebesgue measureable (“many” means
those constructible from the reals). Thus, these conditions are refutable only in the
unlikely event that inaccessibles are refutable. Solovay’s theorem:

...even today rivals any other as the most mathematically significant result
obtained by forcing since Cohen’s initial work.

(Kanamori and Magidor [1978, pp. 204--205]). And it presupposes the consis-
tency, if not the existence, of an uncountable inaccessible.

There are larger small large cardinals, but nothing new appears in the usual
defenses.?! An exception is weakly compact cardinals, from discussions of
which two morals can be derived. These cardinals can be defined in terms of a
generalization of Ramsey’s thegbem; that is, k is weakly compact iff every partition
of the two-element subsets of x into two groups has a homogeneous set of size k.
Because of Ramsey’s theorem on ¥, the existence of an uncountable weakly
compact cardinals can be defended by uniformity or by whimsical identity. The first
point of interest is that the proof of Ramsey’s theorem also gives a homogeneous
set for partitions of n-element set into m groups, but this property cannot be
consistently generalized to an uncountable cardinal (see Drake [1974, p. 315]). This
dramatically spotlights the difficulty of knowing when uniformity and whimsical
identity can be applied without ill effect.

Second, the property of weakly compactness i equivalent to the compactness of
the language L, and to a certain tree property, and to an indescribability property,
and to several other natural properties (see Drake {1974, §10.21). This convergence
has led some writers to diversity, another rule of thumb:

It turned out that weak compactness has many diverse characterizations,
which is good evidence for the naturalness and efficacy of the concept.

(Kahamori and Magidor [1978, p. 113]). Recall that similar arguments were once
given for the naturalness of the notion of general recursiveness.

2Though extrinsic defenses are nothing new, Harvey Friedman has extended the range of such |
defenses for small large cardinals. His [1981] contains nonmetamathematical statements, statements
not involving such “abstract” notions as uncountable ordinals or arbitrary sets of reals, which are
- provable with and not without the assumption of Mahlo cardinals. See Drake [1974] for an account of
Mahlo cardinals, and Stanley {1985] for a deseription of recent extensions of Friedman [1981].
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§IV. Measurable cardinals. Measurable cardinals were introduced by Ulam in
[1930], where he proved that they are inaccessible. They are now known to be much
larger than that, larger than all the hyperinaccessibles, Mahlos and weakly
compacts. Indeed, because of their power, they are probably the best known large
cardinals of all. The voice of caution reminds us that they were invented by the same
fellow who invented the hydrogen bomb.??

Unlike the small large cardinals suggested by inexhaustibility, measurable
cardinals are not usually held to follow naturally from the concept of set or the
nature of the iterative hierarchy: '

__that these axioms are implied by the general concept of set in the same
sense as Mahlo’s has not been made clear yet.

(Godel [1947/64, pp. 476-477])** Some wish for an inexhaustibility defense:

What we would really like to do (but are presently unable to do) is to
reformulate the definition of a measurable cardinal to look like this:[rlis
measurable Liﬁ" R&Nﬁlosed under certain operations.

Py

(Shoenficld [ 1977, p. 343]) Others are more harsh:

Also there are axioms such as that of the Measurable Cardinal which are
more powerful than the most general Axiom of Infinity yet considered, but
for which there seems absolutely no intuitively convincing evidence for
either rejection or acceptance.

(Cohen [1971, pp. 11-12]) Against this we should point out that the very fact that
the Axiom of Measurable Cardinals implies the existence of so many small large
cardinals provides evidence based on maximize.

The rule of thumb most commonly cited in discussions of measurable cardinals 18
uniformity (see Wang [1974, p. 5551; Drake [1974, p. 177]; Kanamori and Magidor
[1978, pp. 108-1097; Martin [PSCN, p. 81). A measure on a cardinal x is a division .
of its subsets into large and small in such a way that x is large, & and singletons are
small, complements of large sets are small and small sets large, and intersections of
fewer than x large sets remain large. A measure on ¥, is formed by extending the
cofinite filter to an ultrafilter. Thus ¥, is measurable, so uniformity implies that there
are uncountable measurable cardinals. To apply whimsical identity instead, notice
that if there were no uncountable measurable cardinals, then W, could be defined as
the infinite measurable cardinal. (2 is also measurable.)

Unfortunately, as pointed out in connection with weakly compact cardinals,
uniformity can lead to inconsistencies. Thus in cases where this is the main rule of
thumb used, extrinsic evidence and evidence for relative consistency are both
extremely important. Before turning to these, I should mention that Reinhardt

22This particular voice of caution belonged to my thesis advisor, John Burgess.
23Moore [198?] points out that Godel’s attitude towards measurable cardinals had softened By 1966

when he thought their existence “followed from the existence of generalizations of Stone’s representation
theorem to Boolean algebras with operations on infinitely many clements”.
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[1974] has pro?e:d the existence of a measurable cardinal from a system which
embodies what he claims to be a version of reflection. Martin, however, calls these
“pseudo-reflection principles” [PSCN, p. 8] and Wang remarks that:

... reflection principles of diverse forms which are strong enough to justify
measurable cardinals (by way of 1-extendible pardinalg) no longer appear
to be clearly implied by the iterative concept of set. (1974, p. 555]

I will take this up Reinhardt’s ideas later, in [BAIL §VI], in connection with his
closely-related defense of supercompact cardinals.

Given how seriously the Axiom of Measurable Cardinals has been pursued, it
may seem surprising that the intrinsic and rule of thumb evidence is so scarce, but in
this case the extrinsic evidence is extremely persnasive. The two most impressive
consequences of the existence of measurable cardinals are that ¥ # L and that I}
sets of reals are determined (Martin [1970]). I will discuss the second of these in
[BAIL §V]. '

The first indication that the presence of measurable cardinals rules out V = L
came in Scott [1961], where he shows (using an ultrapower construction) that the
measure on a measurable cardinal cannot be constructible, This is a welcome result
(“so much the worse for the ‘unnatural’ constructible sets!” says Scott [ 1977, p. xii]),
but perhaps not completely surprising given how complicated a measure must be.
The nonconstructibility was brought closer to home by Rowbottom [1964] when he
showed that the presence of a measurable cardinal guarantees a nonconstructible
set of integers. Even further improvement came in Silver [1966] and Solovay
[1967], where the nonconstructible set of integers is shown to be as simple as 43,
Notice that these results {as well as Martin’s on the determinacy of analytic sets)
confirm Gddel’s prediction that the postulation of large cardinal numbers might
yield new facts about sets of integers and reals,

Silver’s model theoretic results show that ¥ # L can actually be derived from the
existence of one particular 4 1 set of integers, 0*. 0% codes a set of formulas which in
turn show how the constructible universe is generated by a proper class of order
indiscernibles that contains all uncountable cardinals and more. Thus, not only does
Silver's theory show that L goes wrong, it shows how L goes wrong: the process of
taking only definable subsets at each stage yields a model statisfying ZFC at some
countable stage, and all the further stages make no difference (this countable
structure is an elementary substructure of L). The range of L’s quantifiers is so
deficient that L cannot tell one uncountable cardinal from another, or even from
some countable ones. In purpler terms:

L-takes on the character of a very thin inner model indeed, bare ruined
choirs appended to the slender life-giving spine which is the class of
ordinals.

(Kanamori and Magidor [1978, p. 131]) The point is that 0% yields a rich
explanatory theory of exactly where and why L goes wrong. Before Silver, many
mathematicians believed that V # L, but after Silver they knew why.?*

241romically, Silver’s subsequent efforts have been to prove that measurable cardinals are inconsistent.
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Thus the assumption that 0% exists presents a very attractive form of V # L.
{Actually, the most attractive assumption is that x* exists for every real number x,
where x* codes the indiscernible conmstruction that shows ¥V # L[x]) This
assumption turns out to be equivalent to a determinacy assumption and to an
elementary embedding assumption (see [BAIL §§V and VIJ, respectively). This
prompts Kanamori and Magidor [1978] to another application of diversity:

[This] is a list of equivalences, much deeper than the confluence seen at
weak compactness. (p. 140}

Thus the implication of the existence of the sharps provides a very appealing
extrinsic support for the Axiom of Measurable Cardinals.

Another sort of extrinsic support comes from the fact that measurable cardinals
allow patterns of results provable in ZFC alone to be extended. For example, as
mentioned in 11.3.1, Souslin’s theorem that £ sets have the perfect subset property
can be extended, in the presence of a measurable cardinal, to the X} sets (Solovay
[19697). The same goes for Lebesgue measurability and the Baire Property. (Borel
determinacy and X! determinacy provide another example. See [BAIL §V1)
Kanamori and Magidor emphasize yet another form of extrinsic support when they
stress:

_the fruitfulness of the methods introduced in the context of large
cardinal theory in leading to new,'standard’ theorems of ZFC. (p.105)

Many of these new methods (e.g. Silver forcing (p. 152), Ulam matrices (p. 162)),
arose in studies of measurable cardinals. They also mention connections with other
branches of mathematics (p. 109).

Finally, as promised, I should mention some of the evidence presented for the
relative consistency of measurable cardinals. Oneidea is to show that various strong
consequences of the Axiom of Measurable Cardinals are relatively consistent
themselves; then we know at least that any inconsistency that follows from the
existence of a measurable cardinal is not to be reached by those particular routes.
So, for example, we know that V # L is relatively consistent (Cohen {19661}, and
furthermore, that the existence of a 4} nonconstructible set of integers with
properties much like those of 0* is relatively consistent (Jensen [1970] and Jensen
and Solovay [1970]). Another line of argument runs that:

.. some comfort can be gained from the fact that any number of attempts at
showing that measurable cardinals do not exist have failed even though
mughcleverness was expended.

(Scott [1977, p. xii]). (See footnote 24.)

This is already a quite impressive list of extrinsic supports, but at least two more
can be added. First, there is the inner model L[U], where U is a normal measure on
some uncountable cardinal k. This model is the smallest in which « is measurable,
and it does not depend on the particular choice of U. Surprisingly, L[U1] shares
many of the simplifying structural features of L: GCH is true, and there is a.45 well-
ordering of the reals (Silver [1971]). But this is only the beginning. K unen’s analysis
of L[U] via iterated ultrapowers [1970], and the work of Solovay and Dodd and
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Jensen [1977] on the fine structure of L[U } have revealed the “uniform generation
and combinatorial clarity” of this inner model in considerable detail (Kanamoriand
Magidor [1978, p. 1471). The familiarity and depth of understanding provided by
this inner model theory leads modern researchers to the view that:

One of the main plausibility arguments for measurable cardinals is that
they have natural inner models.

(Kanamori and Magidor [1978, p. 147]) The canonical inner model makes
measurable cardinals much less mysterious.

Second, concentration on the nontrivial elementary embedding of V into a
transitive model M that is provided by Scott’s ultrapower construction revealed that
the existence of such an embedding is in fact equivalent to the existence of a
measurable cardinal, (The first ordinal moved by such an embedding must be
measurable.)

Thus, the really structural characterization of measurable cardinals in set
theory emerged.

(Kanamori and Magidor [1978, p. 110]) Though this is not quite the inexhaustibility
characterization that was hoped for, it is simple and basic, and it does lead to many
fruitful generalizations (see [BAIL, §VI]). If the definition in terms of measures
or ultrafilters had once seemed unmotivated, the connection with elementary
embedding via ultrapowers revealed its true nature. Furthermore, elementary
embedding cardinals are more amenable to the rule of thumb justifications that
elude measurable cardinals in their original guise (see [BAIL, §V1]}.

Given this wide range of support for the Axiom of Measurable Cardinals, it is
perhaps not surprising that proof from that axiom, at least among members of the
Cabal group, has come to be treated as tantamount to proof outright. Here we have,
as Gddel predicted, an axiom so rich in extrinsic supports that:

... whether or not [it is] intrinsically necessary, [it is] accepted at least in
the same sense as any well-established physical theory. [1947/64, p. 4771

Unfortunately, for all that, it cannot answer the question we had hoped it would.
Levy and Solovay [1967] have shown that measurable cardinals, and indeed all
large cardinals of the sort developed so far, are preserved under most forcing ex-
tensions, and thus, that they can be shown to be relatively consistent with both the
continuum hypothesis and its negation.

In [BAII], I will consider axiom candidates of a completely different sort—
hypotheses on determinacy—along with the larger large cardinals.
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"This is a continuation of Believing the axioms. I,! in which nondemonstrative
arguments for and against the axioms of ZFC, the continuum hypothesis, small
large cardinals and measurable cardinals were discussed. I turn now to determinacy
hypotheses and large large cardinals, and conclude with some philosophical
remarks.

§V. Determinacy. Determinacy is a property of sets of reals.? If 4 issuchaset, we
imagine an infinite game G(4) between two players I and II. The players take turns
choosing natural numbers, In the end, they have generated a real number r (actually
a member of the Baire space “w). If ris in 4, I wins; otherwise, II wins. The set 4 is
said to be determined if one player or the other has a winning strategy (that is, a
function from finite sequences of natural numbers to natural numbers that
guarantees the player a win if he uses it to decide his moves).

Determinacy is a “regularity” property (sce Martin [1977, p. 807]), a property of
well-behaved sets, that implies the more familiar regularity properties like Lebesgue
measurability, the Baire property (see Mycielski [1964] and {19667, and Mycielski
and Swierczkowski [19641), and the perfect subset property (Davis [1964]).
Infinitary games were first considered by the Polish descriptive set theorists Mazur
and Banach in the mid-30s; Gale and Stewart [1953] introduced them into the
literature, proving that open sets are determined and that the axiom of choice can be
used to construct an undetermined set. ,

Gale and Stewart also raised the question of whether or not all Borel sets are
determined, but the answer was long in coming. Wolfe [1955] quickly established
the determinacy of X3 games, but it was not until [1964] that Davis showed the same
for £9 games. It was [1972] before Paris was able to extend the result to 29, and by
that point the proof had become fiendishly complex. Martin then capped the whole
enterprise with his surprising proof of Borel Determinacy in[19757. (This result was
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"Maddy [BAI].

My [1984] contains an earlier version of some of the material in this section. (The support of the
"NEH during that work is again gratefully acknowledged ) The standard (and excellent) reference for both
historical and mathematical information on determinacy is Moschovakis [1980]}. Notice that by “reals”
modern descriptive set theorists mean members of the Baire space “w, which is homeomorphic to the
irrationals.
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mentioned in [BAIL §§1.8 and III] because of its essential use of Replacement.)
Given that V = L implies the existence of a nonmeasurable 4} set, this result is the
best possible; any further determinacy goes beyond ZFC.?

The first determinacy hypothesis, suggested by Steinhaus in Mycielski and
Steinhaus [1962], was the full Axiom of Determinacy (AD), that is, the assumption
that every set of reals is determined. Given that it contradicts the Axiom of Choice,
the authors did not propose AD as a truth about V, but rather as applying to some
substructure thereof:

It is not the purpose of this paper to depreciate the classical mathematics
with its fundamental ‘absolute’ intuitions on the universum of sets (to which
belongs the axiom of choice), but only to propose another theory which
seems very interesting ... Our axiom can be considered as a restriction of
the classical notion of a set leading to a smaller universum, say of
determined sets, which reflect some physical intuitions which are not
fulfilled by the classical sets ([the various pathologies implied by Choice]
are eliminated). Our axiom could be considered as an axiom added to the
classical set theory claiming the existence of a class of sets satisfying [AD]
and the classical axioms (without the axiom of choice). (p. 2)

Though the Axiom of Choice implies the existence of various extremely complex
sets (for example, non-Lebesgue measurable sets, uncountable sets without perfect
subsets, well-orderings of the reals, etc.), the Axiom of Determinacy might still hold
ia some inner model of ZF (ZFC, without Choice). This inner model would then
consist only of regular sets; the irregular sets would appear in the more remote parts
of V:

We can only hope that some submodels of the natural models of [ZF @] are
models of {ZF@—!— AD] ... It would be still more pleasant if mﬁuCh a
submodel contains all the real numbers..In that case [AD] wat be
considered as a limitation of the notion of a set excluding some ‘patho-
logical’ [ZF @] sets.

(Mycielski [1964, p. 205]) The smallest such model is L[R], and the Axiom of
Quasi-Projective Determinacy (QPD)* is the assumption that all sets of reals in this

submodel are determined. This is the live axiom candidate (see e.g. Moschovakis
[1970, p. 31} and [1980, pp. 422 and 6057; Martin [PSCN, p. 81>

3] mean, full Z1 or ! determinacy go beyond ZFC. Modest gains beyond Borel determinacy are
possible without additional assumptions. See, for example, Wolf 119851

4This assumption is usually written symbolically as ADMRY and otherwise unnamed. In [1969],
Solovay uses the term “quasiprojective” for the sets of reals in L[R], so I have adopted his terminology.

5 A weaker assumption, the Axiom of Projective Determinacy (PD), is also discussed in the literature,
(PD is naturally the assumption that all projective sets of reals are determined; it is weaker than QPD
because all projective sets appear in L[R1) QPD is the better axiom candidate because the projective
hierarchy is only the second of a series of hierarchies, while L[ R} is a transitive model of ZFC generated
in a natural way.
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It is worth noting that QPD has a form reminiscent of a number of mathematical
implications (see Fenstad [1971, p. 42]; Addison and Moschovakis {1968, p. 7101).
The quantifier switch :

Ix Yy Rxy = Vydx Rxy
is a theorem of logic, but the other direction
¥x3dyRxy o dyVx Rxy

is nontrivial. Determinacy assumptions have the second form: if for every strategy
for I, there is a way for I1 to play that results in a win for IL, then there is a strategy for
11 that results in a win for II no matter what I plays. (In other words, if I has no
winning strategy, then II does.) This same nontrivial quantifier switch is seen in
various mathematical contexts, for example, in the implication from continuity to
uniform continuity. An implication of this sort usually requires a simplifying
assumption-—in the continuity example, that the space in question is compact. In
the case of QPD, the simplifying assumption is that the set in question is
constructible from the reals. So QPD at least has a general form that is familiar from
other parts of mathematics.

Still, as far as intrinsic evidence for QPD is concerned, even its staunchest
supporters are emphatic in their denials:

No one claims direct intuitions...either for or against determinacy
hypotheses.

There is no a priori evidence for [Q]PD.

Is [Q]PD true? It is certainly not self-evident.

(Moschovakis [1980, p. 610]; Martin [1976, p. 907; Martin [1977, p. 813]; see also
Wang [1974, p. 554]). What sets QPD apart (or what did set it apart before the
recent discoveries discussed in the next section) is that its defense has been purely
extrinsic. Even the most skeptical among the supporters of large cardinals admit
that extending the sequences of ordinals is intrinsic to the iterative conception of set
(for example, maximize). Nothing of this type whatsoever was offered for QPD from
its origin until the mid-80s.° Yet it has been taken very seriously as an axiom
candidate.

¢f o be accurate, I should admit one exception:

The reader who knows the Zermelo-von Neumann theorem on the strict determinateness of
finite positional games could accept perhaps the following ‘intuitive justification’ of [AD].
Suppose that both players I and IT are infinitely clever and that they know perfectly well what
[the set of reals] P is, then owing to the complete information during every pan'the result of
the play cannot depend on chance. [AD] expresses exactly this.

(Mycieiski and Steinhaus [1962, p. 1]) I ignore this argument for two reasons. First, it supports, if
anything, the full, false, AD. Second, it has not been adopted by subsequent rescarchers.
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On the other hand, the appeal to extrinsic supports has been quite explicit:

The author regards [Q]PD asan hypothesis with a status similar to that of
a theoretical hypothesis in physics ... quasi-empirical evidence for [Q1PD
[has}been produced.

_those who have come to favor these hypotheses as plausible, argue from
their consequences ... the richness and internal harmony of these
consequences.

In the case of [Q1PD the evidence is mostly a posteriori: its consequences
look right.

There is a good deal of a posteriori evidence for it.

(Martin [1977, p. 814} Moschovakis [1980, p. 610]; Martin [PSCN, p. 8]; Martin
[1976, p. 90]). T will sketch the three main types of extrinsic evidence—{rom
consequences, from intertheoretic connections, and from the “naturalness” of game
theoretic proofs—in the next three subsections. In the final subsection, I will
consider the relevance of determinacy assumptions to the continuum problem.
V.1. Welcome consequences. Recall that the existence of a 43 well-ordering of the
reals, a 41 non-Lebesgue measurable set, and an uncountable I } set with no perfect
subset were all counted as extrinsic disconfirmation for ¥V = L (see BAI, §§ I1.2 and
11.3.17). 1t was felt that these Choice-generated oddities should not appear among
the simpler sets, that they should probably not be definable at all. This might be
counted as a rule of thumb in favor of the banishment of such sets to remote regions
of V far beyond the simple sets. Of course, QPD does exactly this; it contradicts
V = L by forcing these “irregular” sets of reals out of the projective hierarchy, and
indeed, out of L{R]. Thus these consequences of V=L are called “a defect'in that
theory® (Fenstad [1971, p. 597) or “unpleasant crenuenos® of that theory”
(Martin [1977, p. 8061), while the corresponding consequences of QPD are

“pleasing consequences 5" the behavior of projective sets” (Martin [1976, p. 9071;

see also Martin [1977, p. 8111).

Another set of welcome consequences CORcerns the “structural” properties of the
projective sets: separation, reduction and uniformization. In the 30s, Kuratowski,
Lusin and Novikov established reduction and uniformization for 2 LIt and X3,
and separation for their opposites, i, ri, and M1} Thus the reduction and
uniformization principles hold for the circled classes, while separation holds on the
opposite side:

Z¥C

T For definitions, proofs and references, see Moschovakis [1980, pp. 33-35 and 4B.,10,4B.11,and 4D 4].
Here I} is taken to be the open sets of reals and I1} the closed. More on this choice of notation below.
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Nothing more was known until [19597, when Addison used the 4} well-ordering of
the reals in L to show that #@a® reduction and uniformization continue on the X
side, and separation on the I7 side, for the remainder of the projective hierarchy:

There the matter stood for nearly ten years.

The question of what pattern of structural properties to expect at the Z3/I15
~ level and beyond was somewhat overshadowed in the early 60s by the new forcing
industry. Among those interested in the truth of this matter, rather than in relative
consistency results, opinion varied. Some felt that the use of ameasurable cardinal at
the next level should push through the same pattern as V' = L. Speaking in 1967,
Addison considers this possibility:

This [Z-side] pattern at level 3 follows from the existence of a 43 well-
ordering of [the reals], which follows in turn from the axiom of
constructibility. One possibility is that higher “axioms of infinity” such as
the axiom of measurable cardinals might imply this pattern at the third
level. From results of Silver it is known that this S at the third level is
at Jeast consistent with the axiom of measurable cardinals. On the other
hand the axiom of measurable cardinals wipes out some nice well-orderings
of [the reals] and it is thought by some that still higher axioms of infinity
may be found which wipe out all projective well-orderings of [the reals].
Although nice well-orderings can be viewed as pushing in the direction of
[the Z-side]] pattern, weaker principles not ruled out by higher axioms of
infinity might still be enough to force it.

(Addison [1974, p. 9]) Others expected the pattern to continue alternating.
‘Addison again:

On the other hand if there is indeed some pressure, not yet understood,
pushing for the separation principle to hold on one side or the other then it
might be sufficient... to push through a[n alternating] pattern at level 3....
This might look surprising, but at least one respected logician has suggested
it. It has the advantage of prolonging the alternation... (p. 10)

It should be noted that the second group outnumbered the first, and that it included
Godel (Addison [1974, p. 10]).

What reasons could be given for or against the alternating pattern? The structural
properties at level three and above were strongly suspected of being independent,
although this was not proved until much later (sce Moschovakis [1980, p. 284]).
Those who expected the continuation of the Z-side patternof ¥V = L had a powerful
new hypothesis to work with (MC), one that had only recently begun producing
results about projective sets (Solovay [19691). Silver’s work on L[U] showed that
their conjecture was relatively consistent, and the similarity of that model to L made
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them expect the same pattern. Meanwhile, those favoring the alternating picture
were without a new assumption, but they were supported by the brute fact that
almost any human being will judge WVW to be a “more natural” continuation of
v than V— . (This fact is slightly compromised by its dependence on the
identification of X} with £9. Without this, the first “ig” of the “zigzag” is lost.” But
see the next quotation from Addison below.)

Moschovakis had adeeper reason for expecting the alternation to continue. In the
mid-60s, he showed how the prewellordering property could be used to lift the
structural theory of IT] sefs to X 1. A prewellordering misses being a full
wellordering by lacking antisymmetry; equivalently,itisa mapping onto an ordinal.
A class of sets of reals has the prewellordering property (PWO) if every set in it
admits a prewellordering that meets a delicate definability condition {see
Moschovakis [1980, 4B] for details). PWO(IT}) is essentially a classical theorem
proved by Lusin and Sierpinski in 1923 using something called the Lusin-Sierpinski
ordering.” . '

Since the prewellordering property is the key to the structural properties of the
projective classes, Moschovakis's idea was to prove:

PWO(IT}) = PWO(Z})

thus effectively lifting the theory of II! to £}. The proof takes a simple form.
Suppose A is Z}. Then thereis a 11} B such that

A = {x|3z((x,z) € B}.

If f maps B onto an ordinal as PWO(T}) requires, then a suitably definable
prewellordering of 4 is achieved by taking infimums: for x, y in A,

x <y iff inf{f(2)|(x.2)e B} < inf{ f(z){(».2) € B}.

In fact, this proof is perfectly general; whenever PWO holds at IT} it can be lifted to
Zher

If a proof using infimums moves the prewellordering property from Hito X}y,
shouldn’t a proof using supremums move it from X} to I}, 7 Of course this form of
proof cannot work without a new hypothesis, because Addison’s resultsfrom V =L
show that PWO(Z3) and not-PWO(HI 1) are relatively consistent. The trouble is that
the prewellordering defined using supremums is often trivial, so the definability
condition does not hold unless the set in question is more special than IT5. Still,
Moschovakis felt the failed argument was a “false, but natural” proof, too rea-
sonable to be completely off-base, too natural to be a totally wrong idea. The flaw
seemed akin to dividing by zero in a proof thatis otherwise in order; some minor

8Opinion on this matter varies. Some would find it more natural to start the projective hierarchy from
the Borel sets, which would destory the first leg of the alternation. It is worth noting that the £ beginning
does not work for the actual reals(see Martin [1977, p. 790]). (Recall that modern descriptive set theory is
done on the Baire space “w instead.)

9The “lightface” or effective version of the same theorem was proved in 1955 by Kleene. There the
ordering is called the Brouwer-Kleene ordering.



742 PENELOPE MADDY

adjustment—multiplying throughby a factor before dividing, or some such thing—
should be enough to make it go through. This line of thought led Moschovakis to
the conjecture that PWO(IT}), and to favor the alternating pattern.'®

Then came Blackwell [1967], in which an elegant new proof of Lusin’s classi-
cal theorem on the separability of X3 sets is derived from the determinacy of open
sets. Addison and Martin quickly adopted the method to show that the reduction
property for 1715 sets could be derived directly from the determinacy of 4; sets. When
Moschovakis heard of this work, he had his additional hypothesis. The “false but
natural” proof could be revived by requiring one supremum to be “effectively”
smaller than the other, where “cflectively” is parsed out in terms of a determined
game. In general, then, we get the periodicity theorem:

Det(4}) = (PWO(Z)) = PWO(IT} 4 1))
(See Addison and Moschovakis [1968]. Martin proved the same thing indepen-
dently, using degree theoretic methods, in [1968].) Thus under the assumption of

QPD, the alternating pattern of structural properties continues for the remainder
of the projective hierarchy:

QPD

This result—the extension of the alternating pattern—is now considered strong
extrinsic evidence in favor of QPD. In a footnote added to the pro-alternation
paragraph in the printed version of his talk, Addison remarks:

This paragraph turned out to be prophetic. Only a month or so after the
talk was given it was shown that [QPD] does indeed give the alternation of
... patterns discussed here ... Moreover the reasons mentioned above for
the plausibility of this hypothesis actually lie behind the proof of the
alternating pattern from...determinateness. Furthermore the idea of
considering X9 and 19 as the first level of the projective hierarchy is not
only completely vindicated by the outcome but indeed actually suggested
the structure of the proof of the alternating pattern. [1974, p. 10}

(This last because Blackwell's proof depended on the determinacy of A9 sets.)
Nowadays we read:

Which is the correct picture is perhaps not absolutely clear yet, but it is fair .
to say that many people working in this area and prone to speak of truthin
set theory (ourselves included) tend to favor the alternating picture.

abony
__ there is something odd & the sequence X, 1T}, 23, >y, Xi,..., the
sequence Z5, [11, X3, 113, 44 ... seems more plausible.

100otice that it was the structure of a proof (or an attempted proof) that produced this conjecture.
Philosophers are often tempted 10 think that conjectures are formed by a process quite independent of
proof, but this case suggests otherwise.
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1
(Moschovakis [ 1980, pp- 33-34]; Martin [ 1977, pp. 806 and 8117; see also Martin
[PSCN, p. 8]; Fenstad [1971, p. 59]; Wang [1974, pp. 547 and 553-554]).
To summarize these extrinsic supports:

[Q]PD has pleasing consequences about the behavior of projective sets,
such as: Every projective set is Lebesgue measurable; Every uncountable
projective set has a perfect subset. More impressive is the fact that [QIPD
allows one to extend the classical structural theory of projective sets, which
dealt only with the first two levels of the projective hierarchy, to a very
elegant and essentially complete theory of the projective sets. [QIPD
cannot be proved in ZFC.. .. but it is not unreasonable to suspect that it may
be true. :

(Martin. [1976, p. 901) The full extent of this beautiful and remarkably detailed
theory of the projective sets is clearly laid out in Moschovakis’s [1980].*

V.2. Intertheoretic connections. Despite the early (erroneous) suggestion that the
Axiom of Measurable Cardinals (MC) might force the “wrong” resolution for the
structural properties at the third level, measurable cardinals and determinacy
hypotheses were soon found to point in the same direction. Often QPD will extend 2
result provable from MC which in turn extends a result provable in ZFC.To use an
example that has already been discussed, ZFC implies that every uncountable X7 set
has a perfect subset, MC implies every uncountable X} set has a perfect subset, and
QPD implies every uncountable quasiprojective set has a perfect subset. Another
case in point: '

7ZF = Every Z} set is the union of ¥, Borel sets,

MC = Every 2} set is the union of ¥, Borel sets,
QPD = Every X} set is the union of N; Borel sets.

(Sierpinski [1925]; Martin [PSCN]) In other cases, the same result can be proved
using either MC or a determinacy hypothesis:

To take one example, the fact that II ! sets can be uniformized by 1} sets
follows both from MC and from Det(4 1), but by proofs which (at least on
the surface) are totally unrelated; one tends to believe the result then and
consequently to take both proofs seriously and to fee]l a little more
sympathetic towards their respective hypotheses.

(Moschovakis [ 1980, p. 6107) But these observations mark only the beginning of the
deep connection between measurable cardinals and lower forms of determinacy.
The first two results suggesting this connection were Solovay’s of 1967

AD = ¥, is a measurable cardinal

11t has been conjectured that these implications might be reversed, that is, that a strong determinacy
hypothesis might be derivable from the assumption that this rich theory holds of the projective sets. This
would obviously provide considerable additional support for determinacy.
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and Martin’s in [1970]:
MC = Det(Z}).

Inf ac't, Martin’s theorem only depends on the existence of the sharps, and by [1978],
Harrington had proved the converse:

Vx(x* exists) = Det(Z}).

Meanwhile, Solovay (building on work of Martin and Friedman) improved his
result to: -
Det(4%) = There are inner models with many MCs.

Martin saw the development of his and Harrington’s results as following a
pattern: a large cardinal axiom (MC) implies some determinacy assumption
(Det(Z1)); careful analysis reveals that the hypothesis can be weakened to the
existence of an inner model with a stightly smaller large cardinal and indiscernibles
(here ZFC itself is viewed as “large cardinal assumption™); finally, the implication is
improved to an equivalence. In view of Solovay’s result, this pattern might be
extended within the 43 sets. :

To get a finer breakdown of the Al sets, Martin turned to the “difference
hierarchy” of 11} sets: Ais a-I1} iff there is a sequence (A;: B < a)such thateach Ay is
1! and x € A iff the least § such that (8 = « or x ¢ A,) is odd. (Limit ordinals are
even,) Thus A is 1-I1}iff Ais IT}; Ais 2-117 iff Ais a difference of IT} sets; Ais 3-TT iff
A4 is the union of a difference of 171 sets and a IT] set; A is 4-I1 1iff A is the union of
two differences of IT! sets; and so on. The finite levels of this hierarchy generate all
the Boolean combinations of 1T} sets.

The theorem, then, is:

Det((w? - & + 1)-I1}) = Vx(there is an inner model of ZFC
containing x with indiscernibles
and o MCs).

For o = 0, this is exactly the Martin/Harrington equivalence. For o = 1,1t is:

Det((w? + 1)-IT}) = ¥x(there is an inner model of ZFC
containing x with indiscernibles
and one MC). |

The canonical model L[ U] has one measurable cardinal and indiscernibles, and the
set of formulas that codes its construction (just as 0% codes the construction of L} is
called 0. If x' is defined analogously with x*, the theorem for « = 1 can be written

Det{(w? + 1)-IT}) = Vx(x exists).

Thus the pattern continues: the existence of two measurable cardinals implies
Det((@? + 1)-11}). Careful analysis reveals that the hypothesis can be reduced to the
existence of an inner model with one measurable cardinal and indiscernibles.
Finally, the implication can be reversed. The general form of Martin’s theorem
shows that this pattern continues through the entire difference hierarchy of IT] sets.

Thus simple game-theoretic hypotheses are equivalent to the inner model
versions of measurable cardinal hypotheses for many natural classes of sets of reals
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within 41.2% This wonderful and surprising correspondence between powerful and
well-supported hypotheses of such different character counts as extrinsic evidence
for both.

V.3. The naturalness of game-theoretic proofs. Finally, there is what those
involved call the “naturalness” of the proofs from QPD: '

In fact, the most persuasive argument for accepting [quasi]-projective
determinacy (aside from Martin’s proof of Det(Z 1)} is the naturalness of
the known proofs of [the periodicity theorem], both Martin’s and ours.

(Moschovakis [1970, p. 347) Given our look at the development of that theorem in
V.1, it is casy to see what Moschovakis has in mind here. Not only does QPD imply
PWO(II}) and the rest, it does so by means of an argument that was previously
thought to be of the correct sort. The proof is “natural”.

Another aspect of “naturalness” is revealed when the new game-theoretic proofs
yield new, simpler proofs of old theorems, and recast them as special cases of new
more powerful theorems: r

One [reason for believing QPD] is the naturalness of })E;roofs from
determinacy—in each instance where we prove a property of 11 ! (say from
Det(4})), the same argument gives a new proof of the same (known)
property ‘@ II 1, using only the determinacy of clopen sets (which is a
theorem of ZF). Thus the new results appear 1o be natural generalizations
of known results and their proofs shed new light on classical descriptive set
theory. (This is not the case with the proofs from ¥ = L which all depend on
the [ 417 well-ordering of [the reals] and shed no light on IT}.)

(Moschovakis [1980, p. 610]) The periodicity theorem itself gives an example of this
phenomenon. Recall that the classical proof of PWO(IT}) involved the special
properties of I 1, in particular, the Lusin-Sierpifski ordering. Now for n = 0, the
periodicity theorem is '

Det(4}) = (PWO(Z}) = PWOILL)).

But determinacy of 4§ setsis just the Gale-Stewart theorem, and it is simple to show
PWO(Z1). Thus the periodicity theorem provides a new proof of PWO(IT}) that
avoids such complexities as the Lusin-Sierpinski ordering. (See also Moschovakis
[1980, p. 309].)

Another example is provided by Solovay’s proofs [1969] that the regularity
properties of X} sets could be lifted to X} assuming the Axiom of Measurable

t2This sequence of results canbe extended further. For example, Simms has shown that the existence of
a measurable cardinal which is the Hmit of measurably many measurable cardinals implies the
determinacy of countable unions of Boolean combinations of 1T} sets. The hypothesis can be improved
to the existence of an inner model with indiscernibles and a proper class of measurable cardinals. Then
the implication can be reversed,

Of course it would be nicer if the determinacy assumptions could prove the large cardinal hypotheses
gutright, but this is impossible. If, for example, x is the first measurable cardinal, thenR, is a model of
Det(Z}) but not of MC. Thus the inner model equivalences are the best possible.
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Cardinals. When Martin showed that Det{ 1 could be derived from MC, he opened
the way for game-theoretic proofs of these results. These new proofs avoid the
complex forcing constructions of Solovay’s original versions (see Moschovakis
11980, pp. 375-378, 544-546, 61 .

V.4. Relevance to the continuum problem. QPD gives us lots of information about
the projective sets; what can it tell us about the size of the continuum? The quick
answer is that it cannot settle the continuum hypothesis. (It will be easy to see why
from the result of the next section.) Still, it might give us evidence for or against, or,
even better, it might lead us in the direction of a larger theory that does decide the
question.

Under the assumption of QPD, the perfect subset property is extended to cover
the entire quasiprojective hierarchy, so the CH holds for all quasiprojective sets. As
mentioned earlier [BAI, §11.3.1], the fact that CH holds for many simple sets might
have been considered as evidencets favor, except that the perfect subset property is
known not to hold for all sets of reals. Thus this consequence of QPD does not
really provide evidence in favor of CH. '

What is at issue here is the length of the shortest well-ordering of the reals. Since a
definable well-ordering yields a definable non-Lebesgue measurable set, and QPD
implies that all quasiprojective sets are Lebesgue measurable, it also implies that
there is no quasiprojective well-ordering of the reals. This is as it should be (see V.1}.
In fact, the perfect subset property implies that every quasiprojective well-ordering
of a set of reals is countable. This means that no projective well-ordering can
provide a counterexample to CH; we cannot test the CH by looking at the projective
well-orderings.

What we can do is look into the lengths of projective prewellorderings:

Now every =} prewellordering has countable length, but there is a IT}
prewellordering of [the reals] of Icngth[t*t;]...f}?his already shows that our
simple sets are more typical with respect to prewellorderings than with
respect to well-orderings.

(Martin [1976, p. 89]) In particular, consider: 6 = sup{length of R|R is a 4}
prewellordering of the reals}. Information about these “projective ordinals” is
information about the length of the continuum. It is a classical theorem that
§! = ,; if any &) is greater than X, then the continuum hypothesis is false.

The best way to approach the question of the size of the projective ordinals under
QPD is to investigate them first under the full, false, AD, then to transfer the results
to L[R]. In the strange world of full AD, it is known that the projective ordinals
form a strictly increasing sequence of regular cardinals, in particular:

AD = 8} =¥y,
5% = Ny,
5§ =Not1s
53, = Ncu+2,a

1
55 = Nm(w“’}+£a

1
55 = N w4 2-
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(These results are due to many researchers, among them Martin, Solovay, Kunen,
Mansfield, Shoenfield and Jackson. See Moschovakis [1980, 7D.11]. Incidentally,
the cardinals between ¥, and ¥, are all singular assuming AD; the projective
ordinals are not only regular, but measurable.) This means that in the strange world
of full determinacy, the continuum hypothesis is false in the sense that the reals can
be mapped onto very large ordinals. In the real world, the Axiom of Choice would
then yield very large subsets of the reals, but Choice does not hold in the AD world.
There, remember, all uncountable sets have perfect subsets. Thus the CH is true in
the sense that there are no sets of reals of intermediate cardinality, but false in the
sense that the reals can be mapped onto large ordinals. As far as the actual
cardinality of the reals is concerned, in the world of full AD it is not an aleph at all,
because the reals cannot be well-ordered.

What does this mean for the real world, on the assumption that both QPD and
Choice hold there? Since QPD is the hypothesis that AD holds in L[R], the results
above hold unchanged in that inner model. From this it follows that:'?

QPD = 8; =N,
- 55 = (NZ)L{R] < Wy,
83 = Ny ) 8
= (the first regular cardinal after )R < W,
85 < RHMI <N,

Recently, Jackson has shown that AD implies that there are exactly three regular
cardinals between 1 and 8. By reasoning similar to what gave us the above, this
means that

QPD = 8} < ¥,

Of course it is relatively consistent that all these inequalities are strict, and that all
the projective ordinals are in fact 1¢,. On the other hand, 81 = W, is also relatively
consistent, and for someone looking for a theory to imply the falsity of CH, QPD
would seem to make a good beginning:

.. while our simple sets have not provably given us a counterexample to
CH, the possibility that they are counterexamples definitely arises.

{(Martin [ 1976, p. 89]) Working with Jackson’s three intermediate cardinals in the
context of QPD, Martin came to conjecture that the true picture might be

13 {ere we have another example of QPD extending a pattern that begins in ZFC and continues under
MC:

ZFC = 8} = Ry,
81 <™,

MC = 8} < K3,
QPD == 8} < W,
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something like this:
| Regular Cardinals in L[R] Regular Cardinals in V
R, =01 =%, '
N, =68} =%,
Wor1 = 5.% = N3
Worz2 = 531
o
g = Wy

1
Nower 43 = 55 =N

where o and B are the two other regular cardinals between 1 and 6} in the AD
world of L[R].

This complex conjecture can be partly confirmed by an assumption on saturated
ideals developed independently by Foreman and others (for related principles, see
Foreman, Magidor and Shelah [MM]). The saturated ideal hypothesis, along with
QPD, implies that 63 < Ws. It remains possible that &5 = X, for odd n, but a new
hypothesis would be needed, presumably one that would help us understand why
L[R] produces so many false cardinals, both regular and singular, between the first
few regular cardinals of V. Thus the best that can be said is that the rich theory of
the projective ordinals provided by determinacy hypotheses might one day con-
tribute to a theory that could falsify CH. Of course, QPD might eventually play
a role in a theory that verifies CH instead, and some members of the Cabal lean
toward this possibility.

§VI. Large large cardinaISwmddwn from above. By the éarly 70s, then, the most
productive and appealing new axiom candidate, QPD, was supported exclusively by
extrinsic evidence. Still, there was hope that an intrinsic connection could be found:

Some set theorists consider large cardinal axioms self-evident, or at least
as following from a priori principles [rules of thumb?] implied by the con-
cept of set. [Det(E i)]follows from large cardinal axioms. It is possible
that [Q]PD itself follows from large cardinal axioms, but this remains
unproved.

One way to increase the evidence for [Q]PD would be to Iprove it from
large cardinal axioms ...

(Martin [1977, p. 8131; Martin [PSCN, p. 8]; see also Martin [1976, p. 90]). The
inner model L[ U] discussed in [BAIL§IV], contains a measurable cardinal anda 4 :
well-ordering of the reals, so its A} sets arenot all determined. Thus it was clear that
a more powerful large cardinal would be needed.

Meanwhile, inspired by the success of measurable cardinals, and the isolation of
the simpler, structural characterization in terms of elementary embeddings, Solovay
arid Reinhardt produced stronger large cardinal axioms. 1 will discuss the first of
these in the next subsection, and two rule of thumb arguments for its existence in the
subsection following. The very Jargest of the large cardinals will then be introduced,
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and the final subsection traces the recently-revealed connections with determinacy
assumptions.

VI.1. Supercompactness. Recall that the ultrafilter on a measurable cardinal x
generates a nontrivial elementary embedding of V into a transitive M, and
conversely, that the first ordinal moved by such an elementary embedding, the
“critical point”, must be measurable. Many of the strong properties of measurable
cardinals spring from M'’s closure under arbitrary sequences of length , but M is
not closed under longer sequences. Thus, the search for a strengthening of the
Axiom of Measurable Cardinals naturally led Solovay and Reinhardt to try
imposing stronger closure conditions on the range of the elementary embedding.
This idea led to the notion of supercompactness:

Then all the desired fruit, suddently ripened, were easily plucked, and
appropriately enough, the new concept was dubbed supercompactness.

(Kanamori and Magidor (1978, p. 183]) Specifically, a cardinal x is A-supercompact
(for A = «) iff there is a nontrivial elementary embedding of V into a transitive M
with x critical and M closed under arbitrary sequences of length J; a cardinal k is
supercompact iff x is A-supercompact forall A = «.

The connections between measurability and supercompactness are quite simple:
« is measurable iff it is x-supercompact, and below a supercompact x there are x
measurable cardinals. Furthermore, like measurability, supercompactness also has
an ultrafilter characterization. Thus supercompact cardinals are thought of as “the
proper generalization of measurability” (Solovay, Reinhardt and Kanamori [1978, p. 83
#1). The rule of thumb involved here, generalization, seems {0 be a presumption in
favor of a natural strengthening of a well-supported axiom. Of course any large
cardinal axiom also acquires intrinsic support from maximize. (Other rules of thumb
favoring the Axiom of Supercompact Cardinals are discussed in V1.2 below.)

Until recently (see V1.4 below), the only significant consequences of the Axiom of
Supercompact Cardinals were various relative consistency results. When a state-
ment is too strong to be proved consistent relative to ZFC alome, its consistency can
sometimes be derived from the assumption that ZFC plus some further axiom is
consistent. (For example, recall Solovay’s results from the consistency of “ZFC
+ The Axiom of Inaccessibles Cardinals” mentioned in [BAL §I117.) Several strong
results of this sort follow from the consistency of “ZFC + The Axiom of
Supercompact Cardinals” (see €.g. Foreman, Magidor and Shelah [MM1]).

Notice that relative consistency results of this sort involving large cardinals are
among the most useful applications of these axioms:

... large cardinals via the method of forcing turn out to be the natural
measures of the consistency strength of ZFC + o for various statements ¢
in the language of set theory.

(Kanamori and Magidor [1978, p. 105]) Large cardinals provide such a yardstick
because they fit into an ordering:

As our edifice grew, we saw how one by one the large cardinals fell into place
in a linear hierarchy. This is especially remarkable in view of the ostensibly
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disparate ideas that motivate their formulation. As remarked by H.
Friedman, this hierarchical aspect of the theory of large cardinals is
somewhat of a mystery.

(Kanamori and Magidor [1978, p. 264]; see also Parsons [1983, p. 297] and Wang

'[1974, p. 5551). This unexpected pattern suggests that large cardinal axioms are
straightforward ways of saying that the iterative hierarchy contains more and more
levels, that is, that they are implementations of maximize:

_ the neat hierarchical structure of the large cardinals and the extensive
equi-consistency results that have already been demonstrated to date are
strong plausibility arguments for the inevitability of the theory of large
cardinals as the naturai@xtcnsion oﬂZFC.

(Kanamori and Magidor [1978, p. 264]) Thus the relative consistency results and
the linear ordering of the large cardinal axioms provide extrinsic evidence for the
large cardinal program in general.

V1.2. Arguments for supercompact cardinals. Two further rule of thumb based
arguments have been offered in favor of Supercompact Cardinals. The first is a fairly
simple set-theoretic argument based on the model theoretic Vopénka's principle.
The second, via extendibles,'* is a more elaborate argument due to Reinhardt. As
mentioned in §IV above, it depends on somewhat dubious pseudo-reflection
principles. Vopénka first.

The most general version of Vopénka’s principle states that any proper class of
structures for the same language will contain two members, one of which can be
elementarily embedded in the other. The rule of thumb usually cited as lying behind
this principle is the idea that the proper class of ordinals is extremely rich (Kanamori
and Magidor [1978, p. 1961). Suppose, for example, that a process is repeated once
for each ordinal—Ord-many times, we right say-—and every step produces a
structure. Then richness implies that no matter how closely we keep track of the
structures generated, there are so many ordinals that some will be indistin-
guishable.*® A similar idea can be developed from reflection. Anything true of V' is
already true of some R,, that is, there is an R, that resembles V. This property of V
should also be reflected, that is, there is an R, with a smaller Ry that resembles it.

14For details of extendibles, see Solovay, Reinhardt and Kanamori [1978, §5], or Kanamori and
Magidor [1978, §16]. On the relationship between supercompacts and extendibles, Kanamori and
Magidor remazk:

Albin all, supercompactness and extendibility have similar features. ..Supercompactness has
the flavor of # generalization from measurability, but extendibility refiects more ethereal
ambitions. (pp. 196, 192) :

The nature of these “ethereal ambitions™ will emerge from Reinhardt’s argument, below. As 1 find this
argument flawed, I will keep the emphasis here on supercompacts, rather than extendibles. Itis also worth
noting that supercompacts seem to occur more naturally in the hypotheses of theorems.

15Notice that the thinking behind richness is very close to that behind Martin’s version of reflection in
[BAJ, §IIT].
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Either way, we get a new rule of thumb, resemblance:
... there are PI;;:} that resemble each other.
" there should be stages R, and R, which _lgok. very much alike.

(Solovay, Reinhardt and Kanamori [ 1978, Bttgdigmiger]; Martin [1976, p. 86]; see
also Kanamori and Magidor [1978, p. 1047). The trick, of course, comes in spelling,
out “resembles”.

To do this, let us go back to richness and imagine ourselves in an Ord-long
process, generating an R, at each stage, one for each ordinal.*® Suppose we step
several ranks at a time, so that by step o, we ar¢ already to R, , for some y, > &. We
keep careful track of the structures at each stage by making copious notationson a
clipboard, one scoresheet for every stage; we note down every detail of the structure
we have just generated, along with every detail of the process that got us there.
Richness then implies that with so many stages, our scoresheets cannot all be
different. At step one, we record the complete diagram of

(R;00€ Ry B < 07).
At step two, we look to see if that scoresheet is satisfied by

(R,,,& (Rw:B < 1>).

Of course it is not, so we write down the complete diagram of this new structure.
And so on. At each step, we generate a new structure, then check to see if any of our
old scoresheets will doj; if not, we prepare a new one.

Richness then guarantees that we will eventually reach a step o’ where one of our
old scoresheets will match up. That is, we will reach a step o’ where

(R, . & <Ry, B <o)
is a model of the complete diagram of -

(R,..€ (R, B <))

for some o < o'. This means that the smaller structure can be elementarily embedded
in the larger; that is:

3j: (R, &6 Ry, B < ay)
—&e 5 (R, . & (R, f < o))
This embedding must be nontrivial, because:
o' = length((R,,: f < ')
= length{j({R,,: B < o))
2 j(length((Rn:ﬁ <o)
= j(o).

167 s treatment of the argument from Vopénka’s principle was suggested by Magidor and clarified in
discussion with Martin.



752 PENELOPE. MADDY

We thus have a nontrivial elementary embedding of R, into R, Our conclusionisa
special case of Vopenka’s principle, namely, that in any proper class of R,s,thereisa
nontrivial elementary embedding of one into another. We get a supercompact by
applying this to the class of all R,’s for limit o that reflect supercompactness. Some
Jarge cardinal theorists see this blend of richness, reflection and resemblance as
providing strong intrinsic evidence for the larger large cardinal axioms. ‘
Reinhardt's argument also begins with the consideration of the proper class ORD
of all ordinals. The universe V is then Rogp. Reinhardt now asks that we look at V
and ORD as it were “from the outside”, in which case we see that there would be
further ordinals and ranks of the form ORD + 1, ORD + ORD, Rerp+is
Rorp+orp» a0d s0 on. At this point, we seem to have introduced things other than
sets, which threatens the universality of set theory, but Reinhardt proposes that we

... mitigate this sorrow by seeing the universality[of set theorﬂnot in the
extension of the concept set, but in the applicability of the theory of
sets. [1974, p. 198]

In other words, we assume that our theory of sets is the universal theory of
collections, and hence that it applies to these new objects. This gesture produces lots
and lots of these class-like entities, lots of ordinal-like objects greater than ORD,
lots of stages of construction after V; and they all obey the axioms of set theory.

This treatment is neat, so neat that we begin to wonder if these new layers really
consist of entities of a new and different type; perhaps we just forgot to finish the
iterative hierarchy in the first place. To this Reinhardt replies by drawing a
distinction between sets and classes that depends on their behavior in counterfactual
situations. For example, the set consisting of the current members of congress would
be the same in any case, but the class of current members of congress would have
been different if the voters had favored the Republicans instead of the Democrats.
Reinhardt also imagines that there might be more ordinals in some counterfactual
situation, and hence, that there might have been more stages and more sets than
there are. Granted this assumption, a set is completely determined by its members—
it has the same members in every possible world—but a class might have more
members in another possible world—as, for example, the class ORD has more
members in a counterfactual situation with more ordinals.

Now let us imagine one of these counterfactual situations, a projected universe
with more ordinals. Reinhardt calls these extra ordinals, and the sets in the stages
they number, imaginary ordinals and imaginary sets. Our ORD becomes, in the
projected world, a new class j(ORD) that consists of real and imaginary ordinals,
while the old ORD is just an imaginary set, that is, J(ORD) > ORD. Sets, on the
other hand, do not change their membership in counterfactual situations, so j(x)
=x, forallxe V.

What about truth? Well, consider a proper class P. P consists of sets; it is a subset

of Rogp»a member of Rogp + - Thus j(P),in the projected world, consists of sets and
imaginary sets; it is a subset of Rjorp), aida member of Rjorp) +1- NOWw set theory is
the universal theory of collections, so what is true of P in Rorp+1 should be true of
j(PYin Rjorpy + 1, that is,

.. €.¢.
JjiRogp+y - > Rj(ORD)+1'
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And the same should be true of the extra layers of proper classes, That s, if Ais some
ordinal-like object greater than ORD, then
j: R}; """‘—e"f“""‘"’ Rj(l) .

Thus for any ordinal-like 4 greater than ORD, we have argued that there is an
elementary embedding of R; into Rj; with ORD as critical point, as shown in the
figure:

T4

|
'
i F(ORD)+1 ¢ (P)
ORD+ORD+ J

l 7{ORD)

ORD+1+ |

ORDI i
5 1
RE e
| l
l l
l E
l |
I 1
I l
i l
i I
| j(ORD) > ORD, |
| jz) =z VeeV, 1
7: Ry -Ef*'*R_.,-( A)
| The “real” world : The “projected” world

This is just to say that ORD is extendible. All that is needed now is an application of
reflection: if ORD is extendible, then there should be an extendible cardinal x. From
this we get our supercompact.

This argument has a number of severe shortcomings. The first arises even if we
accept Reinhardt’s premises; it is internal to the argument itself. Consider once again
the purported universality of set theory. This is first applied to guarantee that the
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theory of the “real” world, with its extra stages, is identical to the theory of V. S0 far,
so good. The second application comes when the “real” world is compared with the
projected world. Here it would seem fair to conclude that the theory of the projected
world is the same as that of the “real” world, that is, that they are elementarily
equivalent. This 1s enough to assure us an embedding that preserves truth for the
definable proper classes, but Reinhardt needs the full force of the elementary
embedding j. 1t is hard to see how the universality of set theory will do this job.

Several other objections arise once we allow ourselves to question Reinhardt’s
premises. First, there are the alarming entities ORD + 1 and Rogp+orp- Lhe
Vopénka argument involves thinking of proper classes of sets, but nothing so
extravagant and potentially treacherous as these. Second, there is the use of
counterfactual situations to distinguish these new entities from sets. I think even
those with strong modal intuitions will have trouble imagining how there might be
more pure sets and ordinals than there are. After all, V is supposed to contain all the
sets and ordinals there could possibly be.

Finally, there is a pernicious ambiguity in Reinhardt’s notion of a proper class.
Everyone grants that collections can be thought of in two quite different ways: as
extensions of concepts on the Fregean model, or as combinatorially generated in
stages on the iterative model. These are sometimes called the “logical” and the
“mathematical” notion of collection, respectively. When Reinhardt argues that
classes differ from sets in their behavior in counterfactual situations, he is playing on
the logical notion of extension; the extension of the concept “ordinal” is different in
the projected world. On the other hand, when he argues that set theory should apply
to all collections, classes included, he is thinking of classes on the mathematical or
combinatorial model. On the logical notion of class, there is little reason to think
that set theory should apply to entities so different from sets, and abundantreason to
think that it should not. For example, it seems that Jogical classes, like the class of all
infinite classes, can be self-membered.’’

But even if Reinhardt’s argument is flawed, we retain the Vopénka argument
based on richness, reflection and resemblance, as well as the earlier defenses in terms
of maximize and generalize.

V1.3. Huge cardinals and beyond. If strengthening the closure condition on the
range of the elementary embedding gives a natural generalization of measurability,
generalization itself suggests the closure conditions might be strengthened even
further. Indeed, why should the range of the elementary embedding not be
completely closed, that is, why should it not be ¥ itself 7:

In the first flush of experience with these ideas, Reinhardt speculated on the

possibility of an vitimate extension: Could there be an elementary embed-
ding j: V- V?

(Kanamori and Magidor [1978, p. 200]) It was not long before Kunen destroyed this
hope. In [1971], he showed that if j is an elementary embedding of V into a
transitive M, if x is the critical point of J, and if j{K) = Ky, jlrcy) = Ka,- - and x,
= lim, . ,, K, then there is a subset of x,, that is not in M. Thus M is not V.

17Some aspects of the set/class distinction are discussed in my [1983].
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Kunen's theorem shows when a large large cardinal axiom is too large, so large
that it contradicts ZFC (specifically, the Axiom of Choice):

Kunen’s result will limit our efforts in that we cannot embed the 'universe

into too “fat” an inner model. -

(Solovay, Reinhardt and Kanamori [1978, &]) Modern set theorists have reacted
much as Zermelo did to the inconsistencies of his day, that is, by applying the rule of
thumb one step back from disaster (see [BAIL, §1.41). Thus they consider n-huge
cardinals:

... they assert stronger and stronger closure properties, until their natural
w-ary extension @ inconsistent.
Fueny ouf P he
(Kanamori and Magidor [1973, p. 202]) A cardinal « is n-huge iff there is an
clementary embedding j of V into a transitive M such that M is closed under
arbitrary sequences of length . K unen’s theorem says that there isno such thing as
an w-huge cardinal.
Notice that O-hugeness is just measurability. In addition:

The n-huge cardinals certainly have an analogous flavor to A-supercompact
cardinals, but there is an important difference: While A-supercompactness
is hypothesized with an a priori /4 in mind as a proposed degree of closure
for M,.n-hugeness has closure properties only a posteriori: M here is to be
closed under k,-sequences, however farge the «, turn out to be. This is a
strengthening of an essential kind.

- (Kanamori and Magidor 1978, p. 198]) Thus the comparison with supercompacts
tends to tarnish the image of the n-huge cardinals:

Indeed, it is not clear how to motivate n-hugeness ... at all.

(Kanamoriand Magidor [1978, p. 198]) But if intrinsic support is lacking, at least n-
huge cardinals do have a familiar sort of ultrafilter characterization, and they have
played a role in some relative consistency results. Both these are cited as weak
extrinsic evidence (Kanamori and Magidor [1978, pp. 198, 200]).

Another method of applying one step back from disaster is suggested by the form
of Kunen’s proof. The argument depends on the occurrence of a certain function in
the domain of the elementary embedding. The domain of the function is the set of w-
sequences from k., 5o the function itself first occurs at the level R, 42- Thus Kunen
actually shows that there is no nontrivial elementary j: R, 2 = Ry, +2- This leaves
two possible forms of “there is a nontrivial elementary embedding of some R, into
itself”:

EE(]) 3 Reyv1 —=> Ry 15
EE(I1) 3j: R, —==> R,

It is known that EE(I)implies EE(II) and that EE(Il) implies the existence of n-huge
cardinals for every n. Indeed, the large cardinal property which EE(I) asserts of the
critical point of its embedding is so strong that the existence of such a cardinal
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implies the existence of an even larger cardinal with the same property (Kanamori
and Magidor [1978, p. 203]).

Even the defenders of large large cardinals express discomfort over axioms this
strong:

it seems likely that [EE(I) and EE(I) are] inconsistent since they appear to
differ from the proposition proved inconsistent by Kunefyin an inessential
technical way. The axioms asserting the existence of{n-hugeﬂ cardinals, for
n > 1, seem (to our unpracticed eyes) essentially equivalent in plausibility:
far more plausible than {EE(II)], but far less plausible than say
extendibility.

(Solovay, Reinhardt and Kanamori [1978, §7]; see also Kanamori and Magidor
[1978, p. 202]). Notice also that, given the reformulation of Kunen’s result, EE(I), if
consistent, would seem to be the largest possible large cardinal axiom. Some set
theorists feel that for every large cardinal axiom there should be a larger, and this
sentiment counts for them against EE(I).

V1.4. Connections with Determinacy. Recall that the existence of a measurable
cardinal implies the determinacy of X ! sets of reals (see V.2). This sort of result was
extended one level further, to the determinacy of £1 sets, by Martin in [1978], but
the large cardinal axiom this proof requires is EE(I). This result caused some soul-
searching among those who had hoped to increase the intrinsic support of
determinacy hypotheses by deriving them from large cardinal axioms, but who also
felt uncomfortable with EE(I). Furthermore, if the “last” large cardinal axiom was
indeed necessary to prove Det(Z3), then the program of proving all of QPD from
such axioms seemed hopeless. Still, the fact that EE(I) implied more determinacy,
and the naturalness of the proof, led to something of a softening in the attitude
towards this axiom.

There the situation remained unti 1984, when consideration of the sets
constructible from R, ., led Woodin to an elementary embedding condition
between EE(I) and Kunen’s inconsistency:

EE(0) 3j: L{Ry,, + 1] s L[Rxw+1]'

Then came the result that everyone had been hoping for; Woodin went on to derive
the full QPD from EE(0). With the discovery of EE(0), EE(I) no longer seemed the
“Jast” large cardinal axiom, and EE(0) produced a natural and detailed theory of
L[R,+1] that resembled the theory of L[R] on the assumption QPD. All this was
counted as extrinsic evidence in their favor.

Recall that in the wake of Martin’s earlier theorem deriving Det(Z1) from the
existence of a measurable cardinal, various determinacy assumptions were proved
equivalent to the inner model versions of the corresponding large cardinal axiom
(see V.2). In addition to indiscernibles and a slightly smaller large cardinal, these
inner models have well-orderings of the reals that are as simple as their level of
determinacy allows. For example, the existence of the sharps (the inner model
version of the Axiom of One Measurable Cardinal) guarantees the existence of an
inner model of ZFC with indiscernibles; that model has 4 ! determinacy, so it cannot
have a 4! well-ordering of the reals, but it does have a 4} well-ordering. Similarly,
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the inner model of ZFC + 2MC (the inner model version of the Axiom of Three
Measurable Cardinals) has {(®? + 1) — [T} determinacy, so it cannot have a 43 well-
ordering of a certain special sort, but it does have a 4} well-ordering. If this pattern
were to continue, as most set theorists concerned with the problem expected that it
would, then there should be inner models of all large cardinal axioms up to EE(1)
with various degrees of 4} determinacy and A} well-orderings of the reals. Alas, the
inner model theorists, Mitchell, Dodd, Steel and others, were unable to find such a
model; their efforts failed before they reached a supercompact cardinal.

The reasons for this failure were soon clarified from another quarter. Working on
the development of further relative consistency results, Foreman, Magidor and
Shelah were able to improve an older result of Kunen’s by reducing the hypothesis
from the consistency of a huge cardinal to the consistency of a supercompact
cardinal (see [MM]). Shelah and Woodin then managed to reduce the hypothesis
even more, to something between measurable and supercompact, and along the way,
Woodin realized their methods led to another surprising result: if there is a
supercompact cardinal, then every quasiprojective set of reals is Lebesgue
measurable, has the Baire and perfect subset properties, and so on. Thus, the model
the inner model theorists were seeking—an inner model with a supercompact
cardinal and a 4} well-ordering of the reals—does not exist. Indeed there is no inner
model with a supercompact cardinal and any quasiprojective well-ordering of the
reals. The neat inner model theory that did so much to familiarize measurable
cardinals cannot be duplicated for supercompacts.'®

But what about determinacy? There were two possibilities. Up to this point, the
old-fashioned regularity properties like Lebesgue measurability had done hand-in-
hand with determinacy. Now the determinacy of quasiprojective sets seemed to
require the somewhat staggering assumption of EE(0), while their other regularity
properties required only a supercompact cardinal. The first possibility was that
determinacy and Lebesgue measurability do in fact diverge here, and the inner
model equivalences possible within 4} cannot be extended. The second possibility
was that QPD could actually be proved from the far weaker assumption of a
supercompact cardinal.

Two who believed in the second possibility were Martin and Steel. Woodin had
shown that his theorem on the Lebesgue measurability of quasiprojective sets could
actually be derived from a complex hypothesis slightly weaker than the existence of
a full supercompact cardinal, so Martin and Steet felt they had an exact formulation
of the hypothesis that should yield QPD. Further, Steel had extensive experience
with the sort of phenomena that had blocked the development of the inner model
theory before it wasknown to be impossible. He and Martin theorized that whatever
blocked the construction of a nice inner model might be closely connected with
determinacy. Reasoning in this way, they were able to prove PD, and (using another
result of Woodin) QPD, from Woodin’s hypothesis, and hence, from the existence of
a supercompact cardinal.

18 A the existence of simple inner models made some set theorists more comfortable with measurable
cardinals, the nonexistence of such inner models makes supercompacts appeat more mysterious, perhaps
even dangerous.
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This sudden and unexpected reduction in the ante required for QPD naturally
contributes strongly to the attractiveness of the theory. All the determinacy needed
for descriptive set theory can be viewed as a theorem of “ZFC + The Axiom of
Supercompact Cardinals”. Indeed, the theory of L{R] under these axiomsis in some
sense “complete”: it is invariant under most forcing extensions (see [MM }). Thus
supercompact cardinals gain a tremendous amount of extrinsic evidence, and QPD
inherits various intrinsic and rule of thumb support (maximize, generalize, richness
and reflection) from the Axiom of Supercompact Cardinals. And both are extrinsi-
cally supported by the impressive strength of their intertheoretic connections.
Thus it is not surprising that some Cabal members view the Martin/Steel theorem
as proving the detailed descriptive set theory described in Moschovakis’s book
[1980]. ' :

Of course, now that QPD is seen to follow from the existence of a supercompact
cardinal, the Levy/Solovay theorem of [19677 immediately implies that QPD
cannot decide the size of the continuum. The next step would be to.investigate
hypotheses on the structure of L[Z(R)].

§VIIL. Concluding philesophical remarks. As this is not a history paper, and even
more obviously not a logic paper, I feel T owe at least a few philosophical reflections.
Of course the motivating force behind the presentation of all this material hasbeen a
philosophical one: I hope to display the role of nondemonstrative arguments in set
theory, especially in the search for new axioms, and to pose the philosophical task,
for epistemologists and philosophers of mathematics, of describing and accounting
for this role. In this final section, I will summarize and lightly categorize the data,
then address a few random remarks to the serious philosophical questions raised.

The defenses given here for set-theoretic axiom candidates have been roughly
divided into three categories: intrinsic, extrinsic and rules of thumb. So far, I have
not tried to classify particular rules of thumb as intrinsic, extrinsic or other, but it
should be clear that there is considerably variation within that group. Let me begin
with a rather stylized discussion of intrinsic justification.

I have argued elsewhere [1980] that we acquire our most primitive physical and
set-theoretic beliefs when we learn to perceive individual objects and sets of these.
We come to believe, for example, that objects do not disappear when we are not
looking at them, and that the number of objects in a set does not change when we
move the objects around. These intuitive beliefs are not incorrigible-—consider, for
example, our erstwhile convictions that objects are solid, or that every property
determines a set—but they do provide a starting point for our physical and
mathematical sciences. The simplest axioms of set theory, like Pairing, have their
source in this sort of intuition. If they are not strictly part of the concept (whatever
that comes to), they are acquired along with the concept. Given its origin in
prelinguistic experience, the best indication of intuitiveness is when a claim strikes
us as obvious, or in Gédel's words, when the axioms “force themselves upon us as
being true” [1947/64, p. 484].

The extrinsic evidence cited in previous sections came in a bewildering variety of
forms, among them: (1) confirmation by instances (the implication of known lower-
level results, as, for example, reflection implies weaker reflection principles known to
be provable in ZFC); (2) prediction (the implication of previously unknown lower
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level results, as, for example, the Axiom of Measurable Cardinals implies the
determinacy of Borel sets which is later proved from ZFC alone); (3) providing new
proofs of old theorems (as, for example, game-theoretic methods give new proofs of
Solovay's older set-theoretic results); (4) unifying new results with old, so that the old
results become special cases of the new (as, for example, the proof of PWO(II D
becomes a special case of the periodicity theorem); (5) extending patterns begun in
weaker theories (as, for example, the Axiom of Measurable Cardinals allows
Souslin’s theorem on the perfect subset property to be extended from X to 2 1y; (6)
providing powerful new ways of solving old problems (as, for example, QPD settles
questions left open by Lusin and Souslin); (7) providing proofs of statements
previously conjectured (as, for example, QPD implies there are no definable well-
orderings of the reals); (8) filling 2 gap in a previously conjectured “false, but natural
proof” (as, for example, Det(4}) filled the gap in Moschovakis’s erroneous “sup”
proof of PWO(IT 1)); (9) explanatory power (as, for example, Silver’s account of the
indiscernibles in L provides an explanation of how and why V # L), (10)
intertheoretic connections (as, for example, the connections between determinacy
hypotheses and large cardinal assumptions count as evidence for each).

All of these more or less correspond to forms of confirmation recognized in the
physical sciences. I would like very much to give an account of their rationality, but
even our best philosophers of science, from Hempel [1945] to Glymour [ 19801,
have so far been satisfied with predominantly descriptive accounts. A careful
analysis of the structure of such arguments must precede what we hope will be
an explanation of why they lead us toward truth (cf. Glymour [1980, p. m.””

Finally, rules of thumb. When uncritical, intuitive work with sets was inter-
rupted by the appearance of the paradoxes, examination of previously unexamined -
practice revealed that full Comprehension was not in fact used. Rather, sets were
thought of as being formed from objects already available. This lead to the separa-
tion of sets from classes, and eventually, to the development of the rule iterative
conception. The source of this rule of thumb in pretheorcticai practice, and the
overwhelming impression of its naturalness once it was specified, suggest that its
origin is at least partly intuitive (see, e.g. Shoenfield (1967, p. 238]). Realism,
maximize, and its companion, richness, are all closely tied to iterative conception.
Finally, reflection is often claimed to be intuitive, perhaps with grounds in maxi-
mize as well. Inexhaustibility is just a special case of reflection, and resemblance is
a consequence.

In contrast, the evidence for the boldest of our rules of thumb—Cantorian
finitism—1s predominantly extrinsic, lying in the depth, breadth and eflectiveness of
the subject it launched. Other rules have the flavor of general methodological
maxims, principles that express our higher-order preferences for theories of one sort
or another. An example from physical science is Maxwell's principle, which states
that a law of nature should be valid atall pointsin space and time (see Wilson [1979]
for discussion). Diversity and generalization are rules of thumb at a similar level of
abstraction. One step back from disaster, and its special case limitation of size, might
also be viewed as methodological, though they share something of the spirit of
maximize. Banishment, on the other hand, seems neither intrinsic, nor extrinsic, nor
methodological, but rather based in seat-of-the-pants experience with the theory in
question, like most conjectures. '
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Finally, uniformity and its capriciousness companion whimsical identity have been
defended both as methodological principles akin to Maxwell’s—a good theory does
not single out particular locations—and as intuitions about the nature of the
iterative hierarchy connected with richness and resemblance. Either way, we have
seen the dangers inherent in applications of these two related rules. Perhaps what is
needed is a theory of exactly what sorts of properties are allowable in uniformity and
whimsical identity arguments, much as only so-called “structural” properties are
allowed in reflection arguments.*® Another possibility would be to grant evidential
status to uniformity and whimsical identity arguments only in the presence of good
evidence for consistency, or perhaps to relegate them to the status of heuristic
devices for generating hypotheses that must then be justified by other, probably
extrinsic, means.?° .

If, as we have seen, the practice of mathematics can be understood as analogous to
that of the physical sciences in a great many respects, it must also be admitted that
there is a striking difference: mathematicians rarely rely on observations in their
nondemonstrative testing. This can be understood if we revert to our perceptual
story. When we learn to see sets of things, we learn to see number properties, and
from this we develop the humblest of our mathematical sciences: arithmetic. If our
rudimentary physical science is the study of things qua stuff, arithmetic is the study
of things qua individuals, the study of sets of things, and as such it is independent of
the make-up of a set’s elements qua stuff. As far as arithmetic is concerned, the
particular things in its sets are irrelevant, as is their stuff; a set of a given cardinality is
interchangeable, for arithmetical purposes, with a wide range of others, sets with
different particular elements but the same cardinality, even sets of symbols.?! Thus,
once our perceptual relation to the physical world has produced our ability to see
sets and our basic intuitions about them, the further observation of particulars is
unimportant,

This is not to say that the physical world remains entirely irrelevant after this
initial stage, but before I mention its further incursions, I should say a word about
the ramifications of a naturalistic, empirical, perception-based account of mathe-
matical knowledge.?? Such views face an unavoidable challenge from the venerable
philosophical observation that while our various perceptual, neurological and

'2We might try something along the following lines: in both forms of argument, the crucial property,
the onie that is to recur or the one that appears in the whimsical identity, must be “natural”. Obviously a
natural property cannot involve notions like “fret” or “smallest”, and it cannot involve proper names.
After this, it is hard to know what to say, except that the failures of uniformity and whimsical identity could
be explained away as involving instances of unnatural properties. That is, for example, “2 is the even
prime” shows that “prime” would be more naturaily defined as “odd number not divisible by anything but
itself and 17, and “N, is the cardinal x such that Va,m <k x — k" shows that arrow properties should
not be formulated to allow infinite exponents.

20Representatives of each these various opinions on uniformity and whimsical identity arguments can
be found within the Cabal.

23 Eyen sets of appearances. This is why the threat of sensory illusion is less pressing for mathematics
than for physical science: even if there were an evil demon systematically deceiving us as to the structure
of the external world, arithmetic would stii apply to the world of appearances.

22The idea that perception is involved in the genesis of mathematical knowledge is fairly popular these
days. See, for example, Resnik [1982], Kitcher [1983], Parsons (19 80].
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evolutionary interactions with the world might well tell us what is true, they cannot
 tell us what must be true. This, coupled with the equally venerable assumption that
mathematical truths are necessary, creates a mystery. We begin to ask ourselves odd
questions: if our world (or the evil demon’s illusion) were different, would we have a
different arithmetic? Of course, it is much easier to imagine a world with a different
. physical make-up than ours, or even different physical laws, than to imagine one to
which our arithmetic does not apply. But then again, if objects systematically
appeared and disappeared during counting, perhaps we would calculate differently;
at least it seems likely that the ancient Babylonians (or whoever) would have lost
interest in the subject. Still, it seerns that once a world has two objects, it has a
potential infinity of which arithmetic is true: the apple, the orange, the set of these
two, the set of the preceding three, etc.?® Perhaps only a world with absolutely no
differentiation, a world completely homogeneous, the eternal oneness of the mystics,
would be without number properties. But even if we leave aside the irritating
inconclusiveness of musings along these lines, I think we must question their moral,
their importance, their significance. We lack so much as a clear understanding of
what it means to say that something is necessary: truein all possible worlds? true due
to some irreducibly modal property of this world? At this point, it seems to me that
the most reasonable answet to the old question—how do we know that
mathematical truths are necessary?—must be that we do not know.**

Tt is worth noting that the same goes for certainty. This obvious point should not
need belaboring, except when a mathematical epistemologist attempts to find
arguments strong enough to “convince the skeptic”. Philosophers gave up the search
for such arguments in natural science long ago; its retention in the philosophy of
mathematics can only be traced to an outmoded vision of the nature of
mathematical knowledge. No one would expecteven the best scientific arguments to
be absolutely justifying. Our epistemological inquiries in mathematics will be
hampered if we set an unreasonably high standard.

What, then, is the post-perceptual evidential connection of set theory with the
physical world? 1 would suggest that it is the profound applicability of set theory’s
twin pillars: number theory and geometry/analysis. While number theory has its
origin in counting, geometry arises from the study of the shapes of things (things as
individuated objects, that is, ot as amorphous arrays of physical stuff) and analysis
from the study of their motions. Set theory systematizes and explains these two
extravagantly useful branches of mathematics, and in so doing, gains much of its
own justification (recall the extrinsic argument for the Power Set Axiom in [BAI,
§1.67). Notice that the continuum problem, whose independence prompted the
search for new axioms, and whose solution would provide the most impressive
extrinsic evidence, is itself a question about the real numbers of physical science.
This is a central reason why many set theorists are confident of its meaningfulness,
and thus of the propriety of the search for new axioms herein described.

23 perhaps this is the truth behind Brouwer’s obscure “two-oneness”. See his [1912]. In any case, one
object would do, as long as it was differentiated from its background: the it and the not-it.

24] do not mean by this that we know mathematics to be contingent, either, but that we have no
dependable information whatever on the question {assuming it is we]l-formed).
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The success of set theory—its objectivity and its applicability-—confirm the
enterprise and its justificatory practices as a whole, but within that whole, the
 particular methods can be analyzed, supported or criticized individually. Not only
would a clear account of the structure and rationality of nondemonstrative set
theoretic arguments provide solace for the practitioners and philosophers of the
subject, but it might even help with the very real problem of locating new rules of
thumb and new axiom candidates for the solution of the continuum problem. |
should emphasize that this is not a project of importance only to those with a
Platonistic bent. It is central to any philosophical position for which the size of the
continuum is a real issue: all realistic philosophies of set theory, even those that
eschew mathematical objects (like Kitcher's [1983], Resnik’s [19811, [1982], or
Shapiro’s [1983]); modalist accounts that depend on full second-order models (like
Putnam’s [1967] and Hellman's [1986]); and even some versions of Field’s
nominalism (the second-order option of [1985] where only one of “ZFC +
(V = L)” and “ZFC + QPD” can be conservative (see his footnote 16)). This
strongly suggests that in this area at least, we would do well to drop the ingrained
philosophical tendency to concentrate of the differences (however minute) between
positions, and to engage in a cooperative effort.
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