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?1. Historical introduction. The modern problem of infinity was first raised by Aris- 
totle who held (at least on the popular interpretation2) that infinite sets exist poten- 
tially (i.e. one more number can always be counted, one more division can always 
be made in a line segment) but not actually (i.e. the numbers or divisions cannot 
all exist at one time). In fact, Aristotle not only held that completed infinities never 
actually exist, but also that they are impossible, that is, that the assumption that 
they do exist leads to contradictions. To see this, consider Aristotle's view that 
mathematical entities depend for their existence on the existence of primary sub- 
stance in which they inhere, coupled with his view that there can be no infinite body. 
From these it follows that if there were actual completed infinities, infinite bodies 
would both exist and not exist. The details here are not so important as the idea 
that if a completed infinite is assumed to exist a contradiction follows. 

This negative attitude towards completed infinities flourished for centuries. By 
the mid- 1500's, the German mathematician Stifel (who apparently also invented 
Pascal's triangle) was moved to condemn irrational numbers simply by their as- 
sociation with the completed infinite :3 

... just as an infinite number is not a number, so an irrational number is not a true 
number, but lies hidden in a kind of cloud of infinity. 

About a hundred years later, Galileo further discredited the completed infinite by 
pointing out that line segments of different lengths can be brought into one-to-one 
correspondence by projection, as can the natural numbers and the perfect squares 
by assigning each number to its square. Here was another paradoxical result of the 
assumption of completed infinities: sets of clearly different sizes have the same 
size. All the more reason to ban them from mathematics. 

Then came the calculus whose successes were as undeniable as its methods were 
unacceptable. The main dissenting voice was that of the Irish bishop, George 
Berkeley, who published (in 1734) a work entitled: 

The Analyst, or a Discourse addressed to an Infidel Mathematician. Wherein it is 
examined whether the Object, Principles and Inferences of the Modern Analysis are 

Received August 10, 1980; revised April 1, 1981. 
'The author wishes to thank Phillip Bricker for his helpful criticisms. 
2As often happens, the popular interpretation misses numerous subtleties and controversies. 

For example, see J. Hintikka, Aristotelian infinity, Philosophical Review, vol. 75 (1966), pp. 197- 
218, and J. Lear, Aristotelian infinity, Proceedings of the Aristotelian Society, vol. 80, pp. 187-210. 

3Quoted in M. Kline, Mathematical thought from ancient to modern times, Oxford, 1972, p. 251. 
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114 PENELOPE MADDY 

more distinctly conceived, or more evidently deduced, than Religious Mysteries and 
Points of Faith. "First cast out the beam out of thy own eye; and then shalt thou see 
clearly to cast out the mote out of thy brother's eye." 

As the title suggests, Berkeley's aim was to defend faith against the scientific 
atheists by arguing that the standards of rationality in theology were at least as 
high as those in the calculus, by this time a cornerstone of science. In the process, 
he showed that the central notion of an infinitesimal quantity ('o' below) was 
dangerously inconsistent, as in this paraphrase of a Newtonian discussion of the 
derivative :4 

Hitherto I have supposed that 'o' is something . From that supposition it is that I 
get [my conclusions]. I now beg leave to make a new supposition contrary to the first, 
i.e., I suppose ... that 'o' is nothing; which second supposition destroys my first, and is 
inconsistent with it; and therefore with everything that supposeth it. All of which seems 
a most inconsistent way of arguing, and such as would not be allowed in Divinity. 

Thus Berkeley rejected the infinitestimal, the mirror-image of the infinitely large. 
He was joined by Kant who took the transition from potential to completed in- 
finity as a source of serious error in metaphysics, and probably considered the 
actual infinite as unnecessary, if not harmful, in mathematics as well. Admidst these 
attacks on the completed infinite, the calculus remained without a consistent found- 
ation. 

Much to everyone's relief, the work of Bolzano, Cauchy and Weierstrass in the 
late 19th century showed that the infinitely small could be eliminated from the 
foundations of the calculus, and Berkeley's objections thereby met. But the new 
theory of limits depended on the theory of real numbers, and the problem of found- 
ing the latter was left open. When workable theories of the reals were developed by 
Dedekind and others, they reintroduced completed infinities.5 

Thus, the problem of the completed infinite could no longer be avoided. This 
centuries-old problem was solved by Cantor's work around the turn of the century. 
Cantor developed a rich theory of transfinite cardinalities in a rough and ready 
style, and since then the vagaries of his exposition have been eliminated, leaving us 
with the modern theory of sets. Cantor's theory deals with Galileo's "paradoxical" 
conclusions by admitting them into the theory in a consistent way: infinite sets 
which are in one sense of different sizes (one being a proper subset of the other) can 
still be of the same size in another sense (being in one-to-one correspondence). 
Aristotle's older contradictory consequence of the existence of completed infinities 
was eliminated by a philosophical shift from the view that the existence of mathe- 
matical entities depends on that of physical instantiations to the view that mathe- 
matical entities can exist independently. Cantor himself distinguished two senses 
in which reality can be ascribed to mathematical concepts: (i) as taking a well-deter- 
mined place in the understanding, standing in definite relations to other consti- 
tuents of thought, and (ii) as images or representations of an outer reality of 

4The analyst, paragraph 14, The works of George Berkeley, Bishop of Cloyne (A. Luce and 
T. Jessop, eds.), Edinburgh, 1948-1957. 

5For example, the two sets of rationals which make up a Dedekind cut are both infinite, yet they 
are considered sufficiently complete to be combined into ordered pairs, then infinite sets of such 
ordered pairs, and so on. 
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PROPER CLASSES 115 

entities existing independently of human thought. He held that having reality of the 
first sort implies having reality of the second sort by a difficult metaphysical argu- 
ment which he did not give, but which depends on "the unity of the All, to which 
we ourselves belong".6 The requirements of (i) might seem to leave room for arbi- 
trary choices between equally clear concepts, but Cantor held that in such cases the 
incorrect concept would betray itself by being inconvenient or unfruitful. Here we 
have the beginnings of a kind of mathematical realism which depends both on the 
(almost) self-certifying clarity of some mathematical ideas and on some form of 
pragmatic or theoretical justification like that of physical science.7 

Thus ends our rationally reconstructed history. It is supposed to be the story of 
how the problem of the completed infinite, first raised by Aristotle, aggravated by 
Galileo and the calculus, was finally solved by Cantor. But does it really show this? 
What I want to suggest is that just as Cantor had successfully embraced the com- 
pleted infinities needed for the calculus, the problem of the completed infinite 
reappeared in his own theory, in a new form, and that Cantor's reaction, though 
motivated by different considerations, was not unlike Aristotle's. Let me explain. 

According to Cantor, corresponding to any set there is a general notion called 
its cardinal number. These include the usual natural numbers (1, 2, 3, ...) and 
Cantor's transfinite numbers (for example, x0, the cardinal number of the set of all 
natural numbers). By showing that the transfinites could be dealt with clearly and 

rigorously, Cantor introduced completed infinities into mathematical respectabil- 
ity. Continuing in this bold and fearless vein, he next considered the collection of 
all cardinal numbers. But the assumption that this set exists leads to a contradic- 
tion! The problem is (more or less8) this: if this set exists, then it has a cardinal 
number, say x. Then X must be bigger than all the cardinal numbers in the set of 
which it is the cardinal number, that is, in the set of all cardinal numbers. But X is 
a cardinal number, so it must be bigger than itself. This is impossible, so there is 
no set of all cardinal numbers. 

Some later results of this sort were quite alarming because it seemed impossible 
to tell ahead of time which sets could and could not be formed, but Cantor's res- 

ponse was simply to draw a distinction. We have a "consistent multiplicity" or 
"set" when 

... the totality of the elements of a multiplicity can be thought of without contradic- 
tion as 'being together', so that they can be gathered together into 'one thing' .... 

6See P. Jourdain's introduction to Cantor's Contributions to the founding of the theory of 
transfinite numbers, Dover, New York, pp. 67-68, and J. Dauben, George Cantor, Harvard, 
1979, pp. 132-133 and the references cited there. 

7Godel's mathematical realism is a more developed form of this view. See his Russell's mathema- 

tical logic and What is Cantor's continuum problem? in Philosophy of mathematics (P. Benacerraf 
and H. Putnam, eds.), Prentice-Hall, Princeton, N.J., 1964, pp. 211-232, 258-273. 1 have presented 
and defended a descendant of G6del's view in Perception and mathematical intuition, Philosophical 
Review, vol. 89 (1980), pp. 163-196, and in Sets and numbers, Nous, vol. 15(1981), pp.495-511. 
Both derive from my doctoral dissertation, Set theoretic realism, Princeton University, 1979. 

8J say "more or less" because this is really Cantor's argument that the set of all ordinal numbers 
cannot exist. Then he shows that there are as many cardinals as ordinals, and hence that the set of 
all cardinals cannot exist. See Cantor's Letter to Dedekind in Mathematical logic from Frege to 
Godel (J. van Heijenoort, ed.), Harvard University Press, Cambridge, Mass., 1967, pp. 113-117. 
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116 PENELOPE MADDY 

On the other hand, when a multiplicity is such that 

.. . the assumption that all its elements 'are together' leads to a contradiction, so that it 
is impossible to conceive the multiplicity as a unity, as 'one finished thing' . . . 

then it is an "absolutely infinite" or "inconsistent multiplicity".9 Notice the simi- 
larity between this position and Aristotle's. In both cases, there are objects which 
are held to exist (the natural numbers, for Aristotle, the finite and transfinite num- 
bers, for Cantor), but it is held that they cannot all exist at the same time (Aris- 
totle) or cannot all exist together (Cantor) on the grounds that the assumption that 
they do leads to a contradiction. 

It should seem surprising that Cantor, the man who had overturned Aristo- 
telianism with respect to certain infinities, would so happily accept it with respect to 
proper classes (as inconsistent multiplicities are now called10). It might be objected 
that the contradictions Aristotle derived from the existence of small completed 
infinities depended on questionable metaphysical assumptions, while the contradic- 
tions arising from inconsistent multiplicities were purely mathematical in char- 
acter, but recall that Galileo's paradoxical conclusions were also purely mathema- 
tical. 

In fact, Cantor's insistence that inconsistent multiplicities be denied the straight- 
forward ontological status he attributed to his transfinite numbers was at least 
partly based in theology. Pantheism had recently been condemned by papal decree. 
Theologians worried that Cantor's doctrine of actually existing infinities, combined 
with doctrines about God's infinity, might lend some support to this heresy. Cantor 
was a religious man (a Lutheran), and his work on infinity had generally been re- 
ceived with more interest and understanding by theologians than by mathemati- 
cians, so he was eager to defend his theory against this charge. His response was 
that the actual infinite of his transfinite numbers was something much less than the 
absolute infinite of all transfinite numbers, and that the latter was more proper to 
God :1 

I have never proceeded from any "Genus Supremum" of the actual infinite. Quite the 
contrary, I have rigorously proven that there is absolutely no "Genus supremum" of 
the actual infinite. What surpasses all that is finite and transfinite is no "Genus"; it is 
the single, completely individual unity in which everything is included, which includes 
the "Absolute", incomprehensible to the human understanding. This is the "Actus 
Purissimus" which by many is called "God". 

This move satisfied the cardinal, and led Cantor to various arguments for his theory 
of transfinites based on theological considerations.12 

9Cantor, Letter to Dedekind, p. 114. 
101n common usage, a proper class is a collection which for some reason or other cannot be a set. 

Later I will take up the problem of characterizing the difference between classes generally and sets. 
Then a proper class will be a class which is not coextensive with any set. 

"From a letter dated 20 June, 1908 to Grace Chisholm Young, an English mathematician. Cited 
in J. Dauben, George Cantor, Isis, vol. 69 (1978), p. 547. 

12For a more complete discussion of Cantor's interactions with the church and how they were 
influenced by Leo XII's encyclical Aeterni Patris of 1879, see J. Dauben, George Cantor, pp. 140- 
148. 
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How should we react to this situation? If we adopt some form of Cantor's 
mathematical realism, but reject his theological worries about pantheism, there 
is nothing in this metaphysic to prejudge a search for a consistent mathematical 
theory of proper classes. In fact, the spirit of this pragmatic realism suggests that 
the way to decide the question of whether or not proper classes exist is not by prior 
metaphysical considerations, but by attempting to formulate a consistent theory, 
and, if successful, by testing that theory for its workability and usefulness. There 
is room for such testing; modern mathematicians do talk about proper classes. 
Much of this talk is casual, in the sense that it can be translated away, but in some 
cases it seems likely that the translated version would never have been reached 
without the heuristic detour through proper classes. (For example, see Scott's ultra- 
power construction in the theory of measurable cardinals.13) On the other hand, 
some of the talk is serious, and much in need of foundational clarification. (For 
example, consider the current interest in reflection arguments.14) In general, since 
the discovery that the axioms of Zermelo and Fraenkel are inadequate to decide 
the continuum problem, there has been a search for new axioms, and this search 
has turned up a need for a clearer understanding of the basic notions: set and class. 
Furthermore, one of the central philosophical difficulties in mathematics concerns 
the identification of numbers with certain sets. If proper classes were available, 
they would make more likely, and hopefully less problematic, candidates for such 
an identification.15 So, though the need for a theory of proper classes may not be so 
great now as the need for a theory of limits was in the late 1800's, such a theory 
would have something to offer both philosophy and the foundations of set theory. 

?11. The dilemma posed by various class theories. Cantor's neo-Aristotelian view 
of proper classes as multiplicities, all of whose members cannot exist together, has 
already been discussed. A more precisely Aristotelian view would be that the ele- 
ments cannot all exist at the same time. This suggests a picture of a proper class as 
a collection whose members are continually coming into existence. This picture is 
not un-Aristotelian in spirit, but it does offend against our realistic metaphysic 
which assumes that mathematical entities are generally not the sort of things which 
come into and go out of existence. Perhaps for this reason, Cantor dropped the 
temporal reference in his formulation, but he puts nothing in its place. If sets all 
exist in Cantor's full-blooded sense, we wonder what more is needed for them to 
exist together. They cannot so exist on pain of contradiction (or so it seems), but 
what exactly is missing? 

13One begins with V, the class of all sets, then performs a complicated construction using the 
measurable cardinal. See F. Drake, Set theory, North-Holland, Amsterdam, 1974, Chapter 6, 
Section 2. 

14One argues that V, the class of all sets, is "structurally indefinable", and thus that any structural 
property of Vhas to be shared by some set. These discussions sometimes involve 0, the class of all 
ordinals, and even such things as 0 + 1, and 0 + 2. See W. Reinhardt, Remarks on reflection 
principles, large cardinals and elementary embeddings, Axiomatic set theory (T. Jech, ed.), Ameri- 
can Mathematical Society, Providence, R. I., 1974, pp. 189-205. 

15See P. Benacerraf, What numbers could not be, Philosophical Review, vol. 74 (1965), pp. 47-73. 
I discuss how proper classes fit into this problem in Sets and numbers. 

This content downloaded  on Thu, 14 Mar 2013 15:24:30 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


118 PENELOPE MADDY 

In 1905, a very important step forward in the understanding of the difference 
between sets and classes was taken by K6nig in an otherwise confused paper which 
contained a (purported) disproof of the continuum hypothesis.16 Konig tries to 
show that the set of real numbers cannot be well-ordered, and hence, that it cannot 
have cardinality x1. What he actually does is produce a form of definability par- 
adox, but for us the interest of the paper lies elsewhere. After giving his argument, 
K6nig considers a potential objection, namely that if his argument is correct, then 
it should apply to any uncountable set, for example to Wli, which is clearly prepos- 
terous. He replies that the word "set" is being used ambiguously :17 

When the notion of the continuum is formed, it is the 'arbitrary' sequence (al, a2. 
ak, . . .) that is primary, or fundamental. Through the stipulation that al, a2, .. . are to 
be replaced by definite positive integers, it becomes a 'definite' sequence, an element of 
the continuum ... The further stipulation that we consider the totality of these 'well- 
distinguished' objects then leads to the continuum. 

The situation is quite different in the case of [w1,]. Its 'elements' are determined by the 
'property' of being order types of well-ordered sets of cardinality ti, . . this property 
is only an abstraction, at best a means of distinguishing between objects belonging and 
objects not belonging to the class; however, it is certainly not a rule according to which 
every element of [w1] can be formed. What is primary, or fundamental, here is the 
collective notion, which for this very reason, . . . I would not call a 'set' but a 'class' . . . 

K6nig goes on the claim that (01 is a class, that is, not a "completed set", but a "set 
in the process of becoming", and thus that his argument does not apply to it. 

In the course of his fertile discussion, K6nig has actually described two forms of 
the set/class distinction. The second is a version of the neo-Aristotelian set/proper 
class distinction, but the first, contained in the extended quotation, represents a 
new approach. This new contrast is the one I want to focus on: the class as the ex- 
tension of a property versus the set as a combinatorially determined entity. My use 
of "combinatorial" here follows Bernays :18 

These notions are used in a "quasi-combinatorial" sense ... one views a set of integers 
as the result of infinitely many independent acts deciding for each number whether it 
should be included or excluded. 

This idea of set was developed by Zermelo and became our modern iterative con- 
ception :19 sets are formed in hierarchy of stages. The contrasting idea of classes as 
extensions of properties, or better, of concepts, formed the groundwork of Frege's 
theory. On this conception, we imagine the entire universe separated into two heaps 
depending on whether or not things have the given property or fall under the given 

16This paper was a sequel to another flawed attempt to disprove the continuum hypothesis which 
K8nig delivered to the Third International Congress of Mathematicians in 1904. This speech 
caused Cantor considerable unhappiness and may have contributed to one of his notorious break- 
downs. See J. Dauben, George Cantor, pp. 543-544. The paper under discussion in the text is On 
the foundations of set theory and the continuum problem in van Heijenoort, op. cit., pp. 145-149. 

17Ibid., p. 148. 
'80n Platonism in mathematics in P. Benacerraf and H. Putnam, op. cit., pp. 275-276. 
19The first explicit statement of this conception is probably in E. Zermelo, Uber Grenzzahlen und 

Mengenbereiche, Fundamenta Mathematicae, vol. 16 (1930), pp. 29-47. See also G. Kreisel, Two 
notes on the foundations of set theory, Dialectica, vol. 23 (1969), pp. 93-114, and George Boolos, 
The iterative conception of set, Journal of Philosophy, vol. 68 (1971), pp. 215-231. 
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concept. These contrasting ideas, set as iteratively generated versus class as 
extension, are often called the mathematical and logical notions of collection, 
respectively. 

Cantor's view can be understood in terms of this contrast. Sets are things which 
occur in the iterative hierarchy; they are formed in stages. Thus, the elements of a 
proper class like the class of all sets do all exist, but they do not exist together, in 
the sense that they do not form a set. The reason for this is now obvious: new sets 
are formed at each stage, so there cannot be a stage at which the set of all of them 
is formed. What is missing for this proper class is a stage after which all its elements 
have been formed.20 

This Konigean version of the set/class distinction is strongly supported. We have 
seen that it can be traced historically in the works of Zermelo and Frege, and that 
it helps motivate Cantor's remarks. Furthermore, as Martin has pointed out,21 it 
provides an explanation for the controversy over the axiom of choice: 

... much of the traditional concern about the axiom of choice is probably based on a 
confusion between sets and definable properties. In many cases it appears unlikely that 
one can define a choice function for a particular collection of sets. But this is entirely un- 
related to the question of whether a choice function exists. Once this kind of confusion is 
avoided, the axiom of choice appears as one of the least problematic of the set theoretic 
axioms. 

For these, among other reasons, this version of the set/class distinction is widely 
adopted in the literature. For example, Gbdel remarks that:22 

... this concept of set ... according to which a set is something obtainable from the 
integers (or some other well-defined objects) by iterated application of the operation 
set of', not something obtained by dividing the totality of existing things into two 

categories, has never led to any antinomy whatsoever. 

Parsons writes :23 

... classes are extensions of predicates ... the conception of an arbitrary subset which 
appears in set theoretic mathematics is of a combinatorial character ... 

And finally, Martin:24 

... sets are generated by an iterative construction process. Classes are given all at once, 
by the properties that determine which objects are members of them ... 'set' is a mathe- 
matical concept and 'class' is a logical concept. 

As might be anticipated, I intend to embrace this version of the distinction my- 
self; the hard part is seeing how it can be best exploited. What is needed is a system 
of sets and classes which clarifies their differences and their interrelationships. Zer- 
melo and his followers have developed an elegant and workable theory of sets. As 
far as classes are concerned, the system of Russell and Whitehead in Principia 

20The temporal metaphor is considered inessential. See C. Parsons, What is the iterative concep- 
tion of set? in Logic, foundations of mathematics and computability theory (Butts and Hintikka, 
eds.), Reidel, Dordrecht, 1977, pp. 335-367. 

21D. Martin, Sets versus classes, circulated xerox. This was also noted by Bernays, op. cit., p. 276. 
22 What is Cantor's continuum problem?, pp. 262-263. 
23C. Parsons, Sets and classes, Nous, vol. 8 (1974), pp. 7-9. 
24Martin, op. cit., pp. 9, 11. 
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Mathematica is the closest descendant of Frege's inconsistent system. It would be 
interesting, but beside the point, to get into the exact relationship between Frege's 
ontology and Russell's.25 The very fact that Russell's is a no-class theory shows 
that it is not suited to the realistic metaphysic adopted here. Furthermore, the sim- 
ple theory of types is more appropriate for the mathematical notion, where the sets 
are constituted by their elements, than for the logical notion, where the entire uni- 
verse, including both sets and classes, is understood as being divided into two 
categories. (Zermelo's system is really a simple type theory with cumulative types.) 
Finally, the ramification brought on by the banning of impredicative definitions 
(the vicious circle principle) is motivated by a constructivistic picture foreign to 
our undertaking. These features are enough to show that PM is not the system of 
classes we are looking for, but it might be added that by Cantor's lights, both PM 
and its Quinean descendants26 should be ruled out by their inconvenience and un- 
fruitfulness for mathematical science. Be that as it may, none of the aforementioned 
systems treats both sets and classes. Let us turn to an investigation of the concep- 
tual underpinnings of a representative sample of those systems which attempt 
this task. 

Von Neumann reacted to Zermelo's axiomatization of set theory as follows :27 

There is, to be sure, a certain justification for the axioms in the fact that they go into 

evident propositions of naive set theory if in them we take the word 'set', which has no 

meaning in the axiomatization, in the sense of Cantor. But what is omitted from naive 

set theory-and to circumvent the antinomies some omission is essential-is absolutely 
arbitrary. 

The system von Neumann proposes to eliminate this arbitrariness can be understood 
as presupposing two kinds of collections: those which can be elements of other 
collections, and those which cannot. His motivation for restricting some collections 
from membership in others is purely the avoidance of paradox. The collections 
thus restricted are those which are "too big", i.e., those which can be mapped onto 
the collection of all collections which can be members. Thus, von Neumann allows 
the "too big" collections disallowed indirectly by Zermelo, but avoids paradox by 
disallowing their membership in further collections. His axiomatization is elegant: 
the axiom of "too-bigness" implies Zermelo's separation, Fraenkel's replacement, 
and a global form of the axiom of choice. Von Neumann had his doubts about this 
axiom, but in the Cantorian spirit, he justified it pragmatically :28 

Axiom 1V2, to be sure, requires something more than what was up to now regarded as 
evident and reasonable for the notion 'not too big'. One might say that it somewhat 
overshoots the mark. But, in view of the confusion surrounding the notion 'not too big' 
as it is ordinarily used, on the one hand, and the extraordinary power of this axiom on 

25There is considerable difficulty involved in simply seeing exactly what Russell's system is, what 
his ontology includes, and whether or not it does the job it is supposed to do. See G6del's Russell's 

mathematical logic and W. Quine, Whitehead and the rise of modern logic in The philosophy of Alfred 
North Whitehead (P. Schilipp, ed.), Northwestern Universty Press, Evanston, 1941, pp. 127-163. 

26For discussion, see A. Fraenkel, Y. Bar-Hillel, and A. Levy, Foundations of set theory, North- 
Holland, Amsterdam, 1973, pp. 161-171. 

27An axiomatization of set theory in van Heijenoort, op. cit., pp. 396. 
28Ibid., p. 402. 
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the other, I believe that I was not too crassly arbitrary in introducing it, especially since 
it enlarges rather than restricts the domain of set theory, and nevertheless can hardly 
become a source of antinomies. 

How are von Neumann's small and large collections to be understood? The 
idea is that the small ones are just like Zermelo's sets, and the large ones are entities 
of exactly the same sort, except that their behavior must be restricted somewhat to 
avoid paradox. Are the small collections sets and the large collections classes? This 
could be partly correct, but the large collections cannot be all the classes because 
some classes are small (e.g. the extension of 'equal to 0' is co-extensive with { 0 }, 
and thus not "too big" in von Neumann's sense). Are the large collections proper 
classes and the small collections the rest of the classes? No, because the small collec- 
tions are generated iteratively. Thus, at best, von Neumann's is a distinction be- 
tween sets and proper classes, just as Cantor's was. As such, it makes some sense on 
our preferred picture: proper classes are 'too big' in the sense that their members 
occur arbitrarily high up in the iterative hierarchy, ruling out the possiblilty of a 
stage after which they have all been formed. 

But let us look a little more closely at von Neumann's proper classes. The above 
considerations do show why these proper classes cannot be elements of sets, but 
they do not rule out the possibility that proper classes might be elements of other 
proper classes. In fact, this possibility is strongly indicated by the logical notion. 
It seems clear that the class of all infinite collections is not only a member of the 
class of all collections with more than three elements, but also a member of itself. 
(I shall borrow a notation from Russell and write, for example, x (x is infinite) E 
x (x is infinite).) This indicates that von Neumann's proper classes are not quite our 
logical ones. 

This suspicion that von Neumann's proper classes do not conform to our neo- 
Konigean picture is borne out by the interpretation given to them by later devel- 
opers of the system. Both Bernays29 and Godel30 view von Neumann's large col- 
lections as substitutes for Zermelo's definite properties. Definite properties are 
those which determine subsets of previously given sets. In modern formulations of 
Zermelo's axioms, definite properties are replaced by open sentences, but this is 
considered an unwelcome limitation. As Drake says of the usual first-order version 
of the separation axiom :31 

This axiom can be regarded as an attempt to say that we intend, at each stage of the 
cumulative structure, to take every collection whose members have already been formed 
as a set at the next level. But we have only formulas of our language with which to 
describe the collections, and this limits the effect of this axiom. 

Zermelo's definite properties were intended to take every collection of elements 
already given; this way of speaking demonstrates that the notion is basically com- 
binatorial. Thus, the use of von Neumann's proper classes as stand-ins for definite 
properties reinforces my claim that they are more combinatorial than logical. 

29A system of axiomatic set theory, this JOURNAL, vol. 2 (1937), p. 65. 
30The consistency of the continuum hypothesis, Princeton University Press, Princeton, N. J., 

1940, p. 2. 
31F. Drake, op. cit., p. 9. 
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This leads to a serious problem in explaining the real nature of von Neumann's 
proper classes. Our investigation of the picture behind his system leads us to think 
of the proper classes as combinatorially determined subcollections of the universe 
of sets. Strengthenings of von Neumann's system like that of Morse and Kelley 
reinforce this image by striving to increase the number of such subcollections whose 
existence can be proved. The problem is that when proper classes are combinatori- 
ally determined just as sets are, it becomes very difficult to say why this layer of 
proper classes a top V is not just another stage of sets we forgot to include. It looks 
like just another rank; saying it is not seems arbitrary. The only difference we can 
point to is that the proper classes are banned from set membership, but so is the 
xth rank banned from membership in sets of rank less than x. Because the classes 
look so much like just another layer of sets, most set theorists simply think of the 
proper classes of a weak system like VNBG as metamathematical shorthand, and 
those of the stronger MK as subsets of a suitably chosen high rank. (For example, 
take V to be RX for X the first inaccessible cardinal, and take the proper classes to 
be 92(R) - Ri.) Let me express the objection I am making here to theories of 
this sort by saying they draw no significant difference between sets and classes. 

Another picture of sets and proper classes is presented by Ackermann's system.32 
It includes an extra constant symbol V for the class of all sets, and its main set 
comprehension axiom is a reflection principle stating that if sP is a formula not in- 
volving V or any proper class parameters, and p is true only of sets, then there is a 
set of all sets satisfying if. The ontological status of Ackermann's proper classes is 
a bit murky. In defending his restrictions on sp in the reflection schema, he argues 
that V is forever in the process of becoming, in the process of building, so it cannot 
be considered "well-defined". The same goes for other proper class parameters. 
This view is not unfamiliar (it is the neo-Aristotelian view discussed earlier), but it 
rests uneasily with the fact that Ackermann goes on to allow quantification over 
classes in sp; it is hard to see how this can be "well-defined" when the individual 
proper classes are not.33 Still, Ackermann's system represents an advance over 
VNBG and MK in one sense: the proper classes are allowed to be elements of other 
proper classes. (For example, V E x (x = V).) Unfortunately though, they are not 
allowed to be members of themselves, so it seems the only difference is that instead 
of adding one layer of combinatorially determined proper classes as in MK, Acker- 
mann's system adds several. The natural models of A interpret V as R, for some 
inaccessible X, and interpret the proper classes as RA - RK where A > K and certain 
definability conditions are satisfied.34 Reinhardt's system,35 a descendant of Acker- 
mann's, explicitly assumes regularity for sets and proper classes, reinforcing this 
picture. Once again, we are faced with the difficult problem of explaining what 
really distinguishes the layers of proper classes from additional layers of sets. 

32W. Ackermann, Zur Axiomatik der Mengenlehre, Mathematische Annalen, vol.131 (1956), pp. 
336-345. See also A. Levy, On Ackermann's set theory, this JOURNAL, vol. 24 (1959), pp. 154-166. 

33This point is made in A. Fraenkel, Y. Bar-Hillel, and A. Levy, op. cit., p. 150. 
34See R. Grewe, Natural models of Ackermann's set theory, this JOURNAL, vol. 34 (1969), pp. 

481-488. 
35See W. Reinhardt, Set existence principles of Shoenfield, Ackermann, and Powell, Fundamenta 

Mathematicae, vol. 84 (1974), pp. 5-34. 
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Finally, let me mention Parsons' relativisitic version of the set/proper class 
distinction.36 He suggests that the range of my set theoretic quantifier at a given 
time is some large set as yet "undreamed of" by me, and that the size of this set 
increases as my theory expands. (This view is actually closer to Lear's;37 Parsons 
insists that the range of my quantifier is indeterminate between many such large 
sets, and that the expansion of my theory just rules out some of these possibilities, 
or "raises the ante.") Which collections are sets and which are proper classes is 
relativised to a theorist at a time. A similar view can be expressed in terms of 
possible worlds.38 

... for a given 'possible world' we should think of the bound variables as ranging over 
a set, perhaps an Ra; but the sets that exist in that world are elements of the domain, 
while classes are arbitrary subsets of the domain. 

Thus, one world's classes are another world's sets. As Parsons himself notes,39 this 

view does not support a real distinction between sets and proper classes. To avoid 

this problem, Parsons moves toward the idea that a proper class "is not really an 

object, since even as an intension it is systematically ambiguous."40 Here he is 

closer to Cantor, and the official Ackermann, in denying proper classes the full 

ontological status of sets. 
This survey could undoubtedly be extended, but I have enough here to draw my 

moral. In our search for a realistic theory of sets and classes, we begin with two 

desiderata: 
(1) classes should be real, well-defined entities; 
(2) classes should be significantly different from sets. 

The central problem is that it is hard to satisfy both of these.41 Von Neumann, 

Morse, Kelley and Reinhardt concentrate on (1) and succeed in producing theories 

with classes as real, well-defined entities, but they run afoul of (2) because their 

classes look just like additional layers of sets. Lear and Parsons (in the first-men- 

tioned of his moods) again concentrate on (1) and produce real, well-defined proper 

classes, but these are just sets for another theorist, or for this theorist at another 

time, or in another possible world, again violating (2). On the other hand, con- 

centrating on (2) leads to Cantor's nonactual, or ineffable proper classes, or the 

official Ackermann's ill-defined entities, or Parsons's (in his second mood) non- 

objects. The choice seems to be between a neo-Aristotelianism of ill-defined, 

potential entities which satisfies (2) but not (1), and some form of a distinction 

without a difference which satisfies (1) but not (2). Let me now indicate how we 

might slip between these horns. 

36See C. Parsons, Sets and classes, and What is the iterative conception of set? 
37J. Lear, Sets and semantics, Journal of Philosophy, vol. 74 (1977), pp. 86-102. 
38 What is the iterative conception of set?, p. 350. 
39Ibid., p. 351. 
40Ibid., p. 355. 
41A similar formulation of the central difficulty appears in R. Rucker, The one/many problem in 

the foundations of set theory, Logic Colloquium 76, (R. Grandy and M. Hyland, eds.), North- 
Holland, Amsterdam, 1977, pp. 567-593. 
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?111. A suggestion. I want a theory of sets and classes based on Kdnig's version 
of the distinction between them. To avoid having this lapse into a distinction 
without a difference, let us begin by recalling the concrete contrasts this distinc- 
tion suggests. 

First, we have remarked that, pre-theoretically, some extensions seem to be 
members of others (e.g. x (x is infinite) E x (x has more than three elements)), and 
some extensions even appear to be self-membered (e.g., x (x is infinite) E x (x is 
infinite)). To preserve these intuitions we must allow classes to be elements (as 
von Neumann, Lear and Parsons would not), and we should not divide them into 
types (as Russell, Morse, Kelley and Reinhardt would). This last is enough in 
itself to keep classes distinct from sets, but as a second point of contrast, we should 
add that any kind of combinatorial determination of classes should be avoided. 
To put this in deceptive language, imagine all combinatorially determined "sub- 
collections" of V. (This language is deceptive because these do not exist. All 
combinatorially determined collections are already in V.) We are supposing that 
classes are closely tied to properties. My point is that we should leave open the 
question of whether or not there are enough properties to pick out all these "sub- 
collections." 

So far, this is an intuitively appealing conception, but unfortunately, it is a 
version of the one that got Frege into trouble in the first place. As Russell asked, 
what about x (x ? x)? The property 'x ? x' seems to divide the world of sets and 
classes into two categories as the logical notion requires, but the assumption that 
a class (its extension) corresponds to this property leads to paradox. We seem to 
have a property without an extension, a property that does not determine a class. 
Historically, there were two reactions. Zermelo scrapped the logical notion and 
turned to the mathematical one. Russell tried to retain the logical notion and 
ended up assuming that a class cannot be of the same type as its elements. This 
leads to an unacceptable hierarchy of classes. 

But there is a third option. To see what it is, consider a similar situation,42 that 
is, the problems surrounding such statements as "Everything I've ever said is false". 
If it turns out that everything I've ever said apart from this statement is false, then 
the assumption that this statement has a truth value leads to paradox. Here we 
seem to have a statement without a truth value, where above we had a property 
without an extension. And again, one solution involves typing. It requires that the 
idea of truth be typed, so that "Everything I've ever said is false" is a statement of 
a different type from that of the statements it refers to. (Thus it can be true without 
being paradoxical.) So, in both cases, we have allowed ourselves to survey a 
totality (all statements, all classes) which led to a contradiction. And in both cases, 
this pushed us towards a hierarchy. 

Now we are within range of the third option. Kripke43 has shown how the truth 
paradoxes can be solved without resort to the Tarskian hierarchy of languages. 
He does this by allowing truth value gaps as specified by a certain construction. 

42For discussion of this analogy see C. Parsons, The liar paradox, Journal of Philosophical Logic, 
vol. 3 (1974), pp. 381-412. 

43S. Kripke, Outline of a theory of truth, Journal of Philosophy, vol. 72 (1975), pp. 690-716. 
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What I propose is that we adapt this solution to the case of logical classes by 
allowing gaps in the membership relation. To any property, assign an extension 
and an antiextension, but allow some things to fall in between. 

This suggestion is not really new. Some version of this idea might be read into 
Frege's suggestion that the extensions of two predicates be taken as identical when 
every object, except the extension itself, falls under the first predicate exactly when 
it falls under the second.44 The question of whether or not the extension is self- 
membered can be thought of as undetermined. Gddel also suggests that the strong 
medicine of a type hierarchy might be avoided :45 

It might turn out that it is possible to assume every concept to be significant everywhere 
except for certain 'singular points' or 'limiting points', so that the paradoxes appear as 
something analogous to dividing by zero. Such a system would be most satisfactory in 
the following respect: our logical intuitions would then remain correct up to certain 
minor corrections, i.e., they could then be considered to give an essentially correct, 
only somewhat 'blurred' picture of the real state of affairs. 

And finally, Martin makes the suggestion that some sentence (here certain mem- 
bership sentences) should be allowed to lack truth value :46 

Obviously we must make some concession to avoid paradoxes ... The concession I 
have in mind is that not all sentences will have truth value. 

What I propose is to adopt indeterminate membership as a third difference between 
classes and sets, and to use an imitation of Kripke's construction to show when 
these indeterminate membership relations occur. 

To clarify what will follow, let me review Kripke's construction. He begins with 
an interpreted first order language L capable of expressing its own syntax, then 
adds a unary predicate T, which will be only partially defined, to obtain Y. A partial 
definition for T will be an ordered pair (S1, S2), where S1 is the extension of T, 
and S2 is its antiextension. S1 and S2 must be disjoint, but they need not be ex- 
haustive. Y(S1, S2) is an interpreted language with the old interpretations of L 
plus (S1, S2) as the partial interpretation of T. The values assigned to complex 
formulas are determined by Kleene's strong three-valued logic. (I shall write 
"'Y(S1, S2) 1= so" for "'Y(S1, S2) thinks so is true" and "'Y(S1, S2) V so" for 
"Y'(S1, S2) thinks so is false". So, "not Y(S1, S2) 1= sp" is not the same as "'Y(S1, S2) 

v (PI.) Then 

Y(S1, S2) 1= -an if Y(S1, S2) V 99, 

Y(S1, S2) V -in if Y(S1, S2) 1= en, 
Y(S1, S2) 1= so V b if Y(S1, S2) 1= so or Y(S1, S2) 1= si 
Y(S1, S2) V so V b if Y(S1, S2) V so and Y(S1, S2) V 0b 
Y(S1, S2) 3x if for some a, Y(S1, S2) 1= ([a], 
Y(S1, S2) 3x if for all a, Y(S1, S2) V 9'[a]. 

44See G. Frege, The basic laws of arithmetic, Universiiy of California Press, Berkeley and Los 
Angeles, California, 1967, translated and edited by M. Furth. p. 139. 

45Russell's mathematical logic, p. 229. 
46Sets versus classes, p. 9. 

This content downloaded  on Thu, 14 Mar 2013 15:24:30 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


126 PENELOPE MADDY 

In all other cases, Y(S1, S2) is undecided. The other connectives and the universal 
quantifier can be defined from these. Thus, Y(S1, S2) thinks a conjunction is true 
if it thinks both conjuncts are true, false if one conjunct is false. And Y(S1, S2) 
thinks Vxqp is true if for all a, Y(S1, S2) ,= q[a], false if for some a, Y?(S1, S2)O p [a]. 

Given any (S1, S2), we can form (S', S2) as follows: 
n E S' if n is the gddel number of a formula 'p such that Y(S1, S2) 1= s; 
n E S2 if n is the gddel number of a formula p such that Y(S1, S2) V ( 

Then the construction itself goes as follows: 
YO= = (S1, 0 S2, 0) where S1, 0 = 0 and S2, 0 = 0; 

Ya+1 = (S1, a+1, S2, a+1) where S1, +1 = S1,a and S2, +1 = S2,a; 

2A = Y(Ua<A S1, a, Ua<A S2, a) 

for limit A. Simple cardinality considerations show that there must be a countable 
a for which 27a = Y7a+1 and thus 2a is a language with its own truth predicate. 

This construction would never get off the ground if it were not for the following 
fact: 

if S1 c U1 and S2 c U2, then S U'and S2 U2. 
In other words, as the construction advances, as new elements are added to the 
extension and antiextension of T, no truth value previously assigned is changed or 
becomes undefined. Once a sentence is declared true or false, it never loses that 
truth value. If the truth value of a complicated statement depends on the truth 
values of a batch of other statements, its truth value simply will not be determined 
until the values of the statements in that batch are settled. This is why, for example, 
"This statement is false "never gets a truth value. It waits forever for the truth 
values of the statements on which it depends to be determined. This approach 
makes clear the role of "groundedness" in dealing with the truth theoretic 
paradoxes. 

In the next two sections, I shall imitate Kripke's procedure in a more complex 
setting to produce a semantics for a language with class terms. While the depend- 
ence of Kripke's truth definition on sentences is not an embarrassment, my close 
linkage between classes and class terms is. I do not mean to suggest that all classes 
are determined by predicates of any kind, let alone predicates of the language of 
ZFC, with or without parameters. But the only classes the semantics is able to 
deal with are the extensions of expressible properties. 

?IV. The language Y and its structures. Begin with the language L of ZF, speci- 
fically a first order language with one binary predicate letter 'e' and without 
'='. Let 

F0 = The set of all formulas of L with one free variable. 
Introduce a new symbol ̂  ("hat") and let 

To = {xkq/q E F0 and x is the free variable of sp}. 
So, for example, x (x E x) and y (Vz (z 0 y)) are in To. (Read: "The class of all 

x such that x E x," etc.) Now treat the elements of To as constants, and let L1 be 
a first order language with one binary predicate 'e' and these constants. So for 
example, x (x E x) E x (x E x) and Vz (z 0 x (x E x)) are formulas of L1. (N. B. 
Vy(y E z (z E y)) is not a formula of L1, because z E y contains two free variables.) 
Now let F1 be the set of all formulas of L1 with one free variable, and T1 be the set 
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of all xs, for sp E F1 and x the free variable of (p. In general, given L, Fn, and T, let 
Ln+, = a first order language with one binary predicate 'e' and the members of 

Tn as constants. 
Fn+, = the set of formulas of Ln+i with one free variable. 
Tx+, = {Xq(pl( E F.+, and x is the free variable of (p}. 

Finally, let T = U T, and let Y be a first order language with one binary predicate 
'e' and the members of T as constants. 

We need to describe an interpretation for the language Y. The interpretations of 
the terms in T will be classes, and we want to allow both classes as members of 
classes (even self-membership) and cases of indeterminate membership. So, we 
shall want to interpret a t E T by an ordered pair (t+, t-) where t+ is thought of as 
the extension of the class referred to by t, and t- is the antiextension of that class. 
(In other words, we represent a class by its extension and antiextension.) Of course, 
we do not require that all sets and classes be in t+ U t-. 

Now obviously, we cannot expect to be able to have the ordered pair (t+, t-) 
itself appear in t+ or t- unless we presuppose the kind of theory we are trying to 
create. But we must allow the possibility that t E t turns out true. In order to ac- 
complish this, we shall use the term 't' itself as a surrogate for the class it refers to. 
There is no difficulty with the term 't' appearing in t+ or t-. 

DEFINITION. An [-structure W is a nonempty domain of the form SW U CW where 
each member of C. is of the form (t, t+, t-) for some t E T, and Cw contains one 
such triple for each element of T. We also require that 

(i) S. n cf = 0. 
(ii) t? c: Sw U T. 

(iii) t- c: Sw U T. 
(iv) twf n t. = 0. 
(Notation. tw is the member of Cw whose first element is t. (t9+ = t+, (t)- t- 

and T(t w) = t.) 
DEFINITION. s is an 2-sequence for (p iff s is a function which assigns an element of 

W to each variable of (p and which assigns tw to t. 
s(x/a) is an 2-sequence exactly like s except that a is assigned to the variable x. 
Now we want to define what it is for a structure W to think a formula (p is true 

at an 2-sequence s, and what it is for W to think a formula false at a sequence. 
(Since W will be undecided on some matters, it is not enough just to define truth.) 
I shall define truth and falsity together by recursion on formulas. The only atomic 
formulas are of the form u e v where u and v are terms of Y, i.e. where u, v are 
either variables or members of T. We have the idea that for t e T, the members of 
the class for which t stands are in t, and the nonmembers are in t . This indicates 
how atomic formulas are to be decided when s(v) e Cw. But what about the other 
case, when s(v) e Sw? Basically, we think of an ordinary set as having its members 
as members and everything else as nonmembers. This "everything else" includes 
all classes, since the sets we are concerned with are ordinary sets with sets as mem- 
bers, and no class is equal to any set. 

(Notation. Write W # sp[s] for "2 thinks qp is false at s," not W 1= so[s] for "It is 
not the case that W thinks (p true at s," and W I= ? q[s] for "not 2 I (p[s] and not 
W # (D[s] ") 
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DEFINITION. If W is an Y-structure, (p a formula of ? and s an [-sequence for 

(p, then: 
(1) If (p is of the form u e v for terms u, v or Y, then 
W I= (p[S] iff: 

(i) s(u), s(v) e SW, and s(u) e s(v); or 

(ii) s(u) e SW, and s(v) e C?, and s(u) e s(v)+; or 

(iii) s(u), s(v) e C?, and T(s(u)) = t * and t* e (s(v))+. 

W V (psS] iff: 

(i) s(u), s(v) e SW, and s(u) 0 s(v); or 
(ii) s(u) e SW, and s(v) e C?, and s(u) e s(v)-; or 

(iii) s(u), s(v) e C?, and T(s(u)) = t * and t* e s(v)-; or 

(iv) s(u) e Cw and s(v) e SW. 
(2) If (p is of the form -b then 

W 21 (P[S] iff W ON; 
W 1# (P[S] iff W O Nbs]. 
(3) If qp is of the form 0b V 0, then 
2 I([s] iff W I [s] or W 21 0[s]; 
2 + (p[s] iff W 0 V[s] and W # 0[s]. 

(4) If (p is of the form 3xo, then 
2 I p[s] iff for some a e 21, W 21 0[s(xla)]; 
2 ( p[s] iff for all a e 21, W b 0[s(x/a)]. 

In all other cases, W is undecided. (Notation. In cases where no confusion will 

result we write W I= qp[t] or W I= (p[a] for W I= [s(x/a)].) Using the standard defini- 

tions, we get 
PROPOSITION. (5) If p is of the form cb A 0, then: 
2 = (p[s] iff W l [s] and W 21 0[s]; 
2 ( (p[s] iff 2 0[s] or W # 0[s]. 

(6) If q is of the form cb v 0, then: 
2 ( (p[s] iff 2 0[s] or W 21 0[s]; 
2 ( (p[s] iff 2 0[s] and W # 0[s]. 

(7) If q is of the form =b_ 0, then: 

(p[s] iff (Q 0[s] and W F 0[s]) or (21 0[s] and W 0[s]); 

(p[s] iff (W 0[s] and W F 0[s]) or (21 0[s] and W I 0[s]). 

(8) If (p is of the form Vxb, then: 

s (p[s] iff for all a e 2, W I= 0[s(x/a)]; 
2 p[s] ifffor some a e 2, W 2 0[s(x/a)]. 
What happens when new elements are added to t, or t- for some term t? We 

would hope that the resulting structure 2' would be more decisive than W was (i.e. 

that 2' would think true (false) some formulas about which W was undecided), 

but not in disagreement with W (i.e. 2' will not think true (false) any formula which 

W thought false (true)). This fact is fundamental. 
DEFINITION. If 2, W' are s-structures, then W ' 2 iff SW = SW,, and t2- t, 

and t- _ tw,, for all t e T. 
(Notation. If s is an W-sequence, let s' be an 2'-sequence exactly like s except 

that s'(t) = t ' rather than ta.) 

FACT. If W c 2', then for all (p and all W-sequences s for Dp: 
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# q s] W, (1 I]; 
k [s] =l 2' W [s]. 

The proof is a straightforward induction on the complexity of (P. 

?V. The construction. What has been done so far can be understood within 
ordinary model theory, but some features of what follows cannot. For example, 
I shall need to talk about V, the collection of all sets. Of course, this collection itself 
is a proper class, so in the metalanguage of a construction meant to clarify the 
nature of classes, one finds that one must already understand at least one class. 
(I should also note that I shall consider subclasses of V, or really, or V U T. It 
would contradict my own avowed conception of classes if these subcollections were 
to be understood combinatorially, but in fact they will be tied to terms.) I think this 
is unavoidable. In other words, to have one's notion of classes clarified, one must 
already possess a rudimentary notion of class. Notice that the same thing happens 
when the iterative conception helps us clarify our rudimentary notion of set. I 
suggest, then, that the following construction be approached as a device to clarify 
and sharpen our notion of class without reducing it to completely different notions. 

To follow Kripke's lead, we want to begin with the standard universe V of sets 
with the normal membership relation e, and build up the interpretations of the 
terms T in stages. So, start with t+ = t' 0 for all t E T, that is, start with the 
Y-structure SO where 

Swo= V 

and 

= {(t, to, to)/t E T and to = 0t } 

(Notice that to and t- are being used as abbreviations for t2+ and tj-. It should also 
be noted that Swo n C&0 = 0 becomes a problem if t is a set. For simplicity, 
I shall suppose it is not; otherwise, some disjointifying technique would be needed.) 

Let us consider a few examples of what Wo thinks. It is easy to see that 

wo o x e y[0, {0}], Wo V x E x[0]. 

Furthermore, for t E T, 

wo 2 t k Yy[{0}], wo 1= x E t[0] 
The next natural questions involve formulas with definite description operators 
like x = 0 where 0 = n yVz(z 0 y). Unfortunately 0 cannot be picked out in this 
way because the uniqueness condition is not satisfied. 

PROPOSITION. Not 2f #= VxVx'(Vz(z 0 x) A Vz(z 0 x') D x = x'). 
PROOF. First recall that = is not a primitive relation of our language Y; here it 

is being used as an abbreviation: x = x' for Vw(w X x -w e x'). Now Wo thinks the 
above sentence iff for all a, b E to, Wfo [ Vz(z 0 x)[a] or W2o i Vz(z 0 x) [b] or to 1f x = 

x' [a, b]. But Wo V Vz(z 0 x) [a] iff for some c E Wo, Wo [ z 0 x[z X]. The trick is that if 
a E CgO, there is no such c because (a)+ = 0. Similarly for the second disjunct if 
b E CW0. So for this particular choice of a, b, the whole disjunction will fail, unless 

2(ol=Vylw(wex w Jx') Lab ]. 
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This requires that for all c Er Wo, 

(to l= w exL X ]and Wo 1= Wex' 'X]) 

or 

(Wo F w E x Lc a] and to F w E x' Lc b ) 

But neither conjunct of either disjunct is true here because (a)+ = (a)- = (b)o = 
(b)- = 0. So Wo does not think the above sentence is true. 

In general, the problem with trying to specify 0 uniquely is that there is nothing 
true of 0 which is outright false of any class at this stage, though there are things 
true of 0 which are not true of any class (an example in a moment.) This fact, 
coupled with our interpretation of a, makes the mechanism of definite descrip- 
tions unusable here. (The cash value of definite descriptions will be recovered when 
parameters are allowed.) 

Despite the failure of the uniqueness condition, Wo does distinguish 0 from its 
empty classes in a number of ways. From the abbreviational analysis of = just 
given, it is easily seen that for all t E T, 

not Wo l= x = y [0, tko]. 

Furthermore, it is worth noting that 

Wo fk Vz(z 0 x) [0]. 
But for all t E T, 

not W2o 1= Vz(z 0 x) [tao]. 

Now we want to begin adding sets and classes (these latter via their terms) to 
the t+'s and t-'s. Basically if Wo thinks so is true of a set or class, we want to add 
that set or class to the extension of XsDx. On the other hand, if Wo thinks (I is false 
of a set or class, we want to add it to the antiextension of xq(px. Precisely let W, be 
an s-structure with 

SW1 = V and Cw1 = {(t, t+, tj)It E T} 

where for t = x(Px, 

ti = {a E V I W 1k=o [a]} U {t E T I Wo =p[to]}, 

tf = {a E V I Wo # [a]} U {t E T I Wo ([two]}. 

We can verify that W, is an s-structure by noting that Wo cannot think any for- 
mula both true and false, so tj+ n ti = 0. (This can easily be checked by induction 
on formulas.) Clearly Wfo W1, so W, thinks true (false) any formulas Wo thought 
true (false), and it decides some new formulas. For example, by one of our first 
examples concerning Wo, we now have 

0 E (X (X E X)) SO 1 y E X(X E X)[0]. 

And by our penultimate example concerning Wf, we have 

0 E (x(Vz(z 0 X)))+ 
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so 

W1V- = FyE (Vz(z X)) [0]. 

A slightly more involved example: 
PROPOSITION. W, I= Y E X ("x has one element") [{0 }]. 
PROOF. Parse "x has one element" as 3z(z e x A Vw(w E x D w = z)) where = is 

understood as above. Then 

to 1= 3z(z E x A Vw(w E x v w = z))[{ 0] 

iff for some a e Wo, 

oV=zex[ {0}] and Wok= Vw(wex v w = z)[{0}]. 

If we take a to be 0, then the first conjunct is easy. The second requires that for 
all b E Wo, 

Wo~wexLb {0}] or {) 0 

The first disjunct holds for all b's except 0, and the second holds for 0, so Wo does 
think the required formula true at {0}. Thus, 

{0 } E k("x has one element")1, 

which establishes the proposition. 
Let us do one more stage in detail before stating the general form of the transi- 

tion from W2L to Wf+. Let 22 be an s-structure with 

= V and Cot = {(t, t+, t-)It E TI, 

where for t = xfx5 

2= {a E V1W1 l (p[a]} U {t E T12f1 l [ttl]J9 

tj= {a E VIW1 ksoa]} U {t E TI21 k [tw']}. 

Once again, 22 is an s-structure because W1 cannot think any formula both true 
and false. Recall that it was easy to see that W2o ' W1 because t = -= 0; this 
time we need to use the fundamental fact. 

PROPOSITION. W1 ' W21 

PROOF. If t is X?px, then for a E V, 

fact 
a r tlo =- Wo l=- ([a] =:> W, (p Fa] 

= a s t+2. 

For u e T, 
fact 

1 E 0= 1 =s~? =* W, 1=- (plus,] =:> U E= t2 . 

So t+ c: t+. Similarly for tj c t-. 
Now let us look at a couple of things that happen at this stage. 
PROPOSITION. W2 I= A("x has one element") E x(3z(z E x)). 
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PROOF. Recall that W, 1= y e x ("x has one element") [{0}]. So 

1= F3Y(Y e z) [(X("X has one element"))IN] 

So 

x("x has one element") e (z(3y(y e z)))t. 

PROPOSITION. W2 W Z (3x(x e z)) e X(Vy(y E X)). 
PROOF. Clearly 

W0 W 3x(x e z)[0]. 

So 

W1 bEY E Z'(3X(X r= Z))[0]. 

Thus 

W, W Vy(y e x) [Z(3x(x e z))Wh]. 

So 

W2 W z(3x(x e z)) e x(Vy(y e x)). 

Finally, then, we define Wfa for ordinals a. Wo has been specified. Given Wa, let 
!Ka+, be an ?-structure with 

Sta 1 = V and Ca+1 = {(t, t++,1 t;+l)lt E T} 

where for t = x I 

t++l = {a e VlWa I= V[a]} U {t e TIta 1 p[tag}, 

taf1 = {a e Vlja W f [a]} U {t e Tja W (p[tIa]}, 

At limit stages A, let !A be the ?-structure with 

Svf = V and Cw, = {(t, tj, tfl lt e T} 

where 

tt U t+ and t-= 4t. 
a<A a<l 

The following theorem supports the implicit claim that t, is an ?-structure for 
all a, and shows that these ?-structures are increasing. 

THEOREM. For all a, t+ n ta = 0 andfor all 3 ?!r a, Wp Z Wa. 
PROOF. By induction on a. (1) The result has already been observed for a = 0, 1. 
(2) Suppose a = SS r for some ordinal r. Then for t =-XX, 

t= la e Vjltsr 1= q[a]} U {t E TIWsr k1 tD[Osr]}, 

a= {a E Vlsr V# qPa]} U {t E TjWsr b# (P[tw"11} 

As before t n ta =0 because Xsr cannot think the same formulas both true 
and false. As for the second part, we already know by the induction hypothesis 
that for all p ? S r, Wo a: ? Sr. Now C is clearly transitive, so- it is enough to show 
that %, ~r c 2ssr. Here once again we use the fundamental fact. Suppose t = *q(Px. 
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If a E V, then 
fact 

a ? t Wr k= (p[a] - %sr p q[a] t a e t= . 
ind.hyp. 

If u E T, then 

21 
fact 

W7 >UC 
U e r c 2tsr # 

+ = U tS ST ~~~~~~ind. hyp. 
s A S7 

Similarly t- c t - . So 1Sr c Ws7- as required. 
(3) Suppose a is a limit ordinal A. Then tt = Ua<t, t and ty = Ua< ta- So, if 

t,: n ti + 0. then there is an a E V U Tsuch that a e Ua<A t and a E uaA tU A 
Thus there must be , ' < A such that a e t+ and a e t, . Without loss of generality 
assume 3 < ,B'. Then by the induction hypothesis, t1 c ty, and thus a e tn 
Contradiction. For the second part, if p < A then W p WA by definition of 4A. 

(4) Suppose a = SA for a limit ordinal A. As before tS+A n t- = 0 because WA 
cannot think the same formula both true and false. For the second part, using the 
induction hypothesis and the transitivity of c, it is enough to show that WA Z WsA. 
Suppose t =x Px. If a E V, then 

aE te b a E Ua< t+ = there is a 3 < A such that a rt 

ind. fact 
=> a e t 2+j ( q[a], - I (,p[a] => a E ts. 

hyp. ind.hyp. 

If u e T, then 
u e tt > u e Ua<A t+ = there is a p < A such that u e tt 

ind. fact 
=> u E tp+, = O u = llp - - WA 1= OUWAI =* u C- t+ 

hyp. ind.hyp. 

Thus tt c tsA. Similarly t- c tS, so WI c 2, as required. 
Now we define the final '-structure V*. Let 

Sv= V and Cv {(t, t+, t-) te T} 

where 
t+ = Ut+ and t- = Ut;. 

a a 

By imitating the above theorem in the case of a limit ordinal, it can be seen that 
V* is an 2-structure (i.e. tr n t- =0), and that for all a, Wa ' V*. Thus V* 
inherits all the beliefs of the W.s. For example: 

V* 1 x ("x has one element") e x(3z(z e xj). 
V* ? z(3x(x E z)) e xV(y(y e x)). 
One example of self-membership is surely in order: 
PROPOSITION. V* |= Z(3x(x e z)) e Zi(3x(x e z)). 
PROOF. We noted earlier that 

12 = X ("x has one element") e x(3z(z e x)). 

Thus 

W2 1- 3z(z - x'(3z(z e- x))). 

So 

x(3z(z e x)) e c(3z(z E x))+. 
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So 

W3 F= x(3z(z E x)) E x(3z(z E x)). 

And finally since W ' V*, the proposition is established. 
Here is one question that is never decided: 
PROPOSITION. V* k= X(X ? X) E X(X ? X). 
PROOF. Suppose V* k= x(x ? x) E x(x ? x). Then 

X(X X) E X(X X)= U X(X X)a'. 
a 

So, there is a least a such that x(x 0 x) e x(x 0 x)+. a cannot be limit, so there is a 
r such that ca = S r and 

Wk = X x[x(X 0 X)r]. 

So 

Wr t- x(x 0 x) 0 x(x 0 x) 

But Wr W ag SO 

Wa # x(x x)?x(x x) and (a x(x~ x)ek(x~x), 

which is impossible. Similarly, it cannot be the case that V*W x(x 0 x) e x(x 0 x). 
Finally a remark about equality. Recall that the language Y does not contain 

- '. We can now expand to a language with '=' for V*. Let the constants of Y= 
be the terms of T, and the binary predicates be 'e' and '='. Interpret the elements 
of T and 'e' as before, and let V* k x = y [a, b] iff (i) a, b E V and a = b, or (ii) 
a, b E Cv. and (a)+ = (b)+ and (a)- = (b)-. Then it is easy to see that 

PROPOSITION. For all a, b E V* and allformulas SD of Y=, 
(i) V* k= x = x[a], 
(ii) if V* I= x = y [a, b], then V* [ Ha] => V* [ fib] and V* [ Ha] = V* V fp[b]. 

(Notice that since the terms of T are constants, '=' will not appear within the 
scope of an x&.) 

?VI. A nontrivial example. I want to establish the following: 
THEOREM. V* k= k("x is infinite") E A("x is infinite"). 
To simplify the argument, let us pause to consider this notion: 
DEFINITION. SD is setbounded in W at s iff 

(i) sq contains no class terms, 
(ii) range s c V. 

(iii) all sq 's quantifiers are bounded (i.e. occur in the form Vx(x E y ** ) or 
3x(x E y A ... ) where x and y are different variables). 

PROPOSITION. If SD is setbounded in Wa at s, then 
Wa = qfs] iPf is true in V at s, 
W a p[s] iff f is false in V at s. 
PROOF. By induction on the complexity of SD. 
Case 1. If sq is atomic then it is of the form u e v where u, v are variables (because 

sq contains no class terms). Then 
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a= (p[S] iff Wa 1= U E V[SJ iff s(u) E s(v) (because s(u), s(v) E V) if (o is true in 
Vats. 

Similarly, 
Wa s ]p[sl iff s(u) q s(v) iff qp is false in V at s. 
Cases 2 and 3. p is of the form - 0 or 0 V 0. These are perfectly straightforward. 
Case 4. 5p is of the form 3xo. Then sb is of the form x E y A 0 where x is different 

from y and 0 is setbounded, so 

a l= (s] iff %a t 3x(x E y A 0)[s] 

if there is an a E %a such that %a l= x Ey A 0 [s(x/a)] 

if there is an a E %a such that 

% a x E y[s(x/a)] and a t= 0[s(x/a)] 

if (because s(y) e V) there is an a E %a such that 

a E s(y) E V and a t= 0[s(x/a)] 
ind. 
iff (because a E V) there is an a E %a such that 
hyp. 

a E s(y) E V and 0 is true in V at s(x/a) 

iff there is an a E %a such that 

x E y A 0 is true in V at s(x/a) 

iff (p is true in V at s. 

%a q(PIsI iff %a [ 3x(x E y A 0)[s] 

iff for all a E W, % + x e y A 0[s(x/a)] 

iff for all a E %a, %a 0 x e y[s(x/a)] or %a k 0[s(x/a)] 

iff (because if a e Cwa, W k x e y[s(x/a)]) 

for all a e V, %(< [ x e y[s(x/a)] or 0[s(x/a)]. 
ind. 
iff for all a e V, a 0 s(y) e V or 0 is false in Vat s(x/a) 
hyp. 

iff for all a e V, x e y is false in V at s(x/a) 

or 0 is false in V at s(x/a) 

iff 3x(xEy A 0) is false in Vats 

iff qp is false in V at S. 

COROLLARY. If q is setbounded in W2fc at S, then not W2f k=? p[s]. 
To return to the theorem, let "x is infinite" be 

3y y C x A 3z z ; y A 3J: z 1 ) 
Onto 

(This actually says that x contains an infinite subcollection. This eliminates diffi- 
culties about the existence of functions with proper classes as range.) 

I shall divide the proof into two main lemmas. 
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LEMMA 1. If A is the set of all infinite subsets of N, and a e A, then Wo = "x is 
infinite" [a]. 

If this lemma were established then we would have 

W, 1 y e A("x is infinite")[a] 

so 

21, k Vw(w e y 2 w E X*("x is infinite"))[A] 

or 

W1 1= y c x("x is infinite")[A]. 

LEMMA 2. W 1= 3z(z ; y A 3ff: z -+nt y)[A]. 
If this lemma were established, then we would have 

, 1 ' "x is infinite" [x'("x is infinite")",] 

and thus 

x*C'x is infinite") e x("x is infinite")+ 

so 

-W2 1 X("x is infinite") E x("x is infinite"). 

Finally, W2 V'*, so the theorem would be established. 
PROOF OF LEMMA 1 . If a eA, then a is infinite, so there is a b ; a and a function 

F:b l -a. 
Onto 

We shall break the lemma into a series of claims: 
(i) W0 I= y c x[a, a]: y c x is Vw(w e y z w e x). This formula is setbounded 

in W0 at a and true in V at a. 
(ii) W( V z ; y [b, a]: z 5 y is Vw(wez D wey) A 3w(wEy A wqIz). This 

is setbounded in Wo at [b, a] and true in Vat [b, a]. 
(iii) 2o l= 66x is a function" [F]: "x is a function" is "x is a relation" and "x is 

functional". "x is a relation"' is 

Vz(z E x = 3u3v(u E z A v Ei z A 3sit(s ei u A s E v A t E v 

A VW(w e u v w=s) A Vw(w E v = (w = s V w =t))))) 

where w = s is Vy(y e w s y E s) A Vy(y E s : y Fe w). ('='will be so understood 
throughout this argument.) Similarly for w = t. This formula is setbounded in WO 
at F and true in Vat F. "x is functional" is 

VyVz(yex A zex z (3u(uEy A uEz A 3v 

(v E u A Vw(w e u = w = v))) z y = z)). 

Again this formula is setbounded in 2tf at Fand true in Vat F. 
(iv) Wo k- "x is 1-1" [F]: "x is 1-1" is 
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VyVz(y E x A z Ex v (3u(3v3v'(v Ey A v'E y A u E v A u 0 v') 

A 3v3v'(v E z A v'E z A U E V A u v')) s y = z)). 

Again, this formula is setbounded in W2 at F and true in Vat F. 
(v) Wo l= "dom x = y" [F, b]: "dom x = y" is "dom x c y" and "y c dom x", 

or 

Vz(z e x v 3w(w E z A 3u(u E w A Vv(v E w s v = u)) 

A Vs(s e w D s e y))) 

A Vz(z E y s 3u(u E x A 3v(v E u A z E v A Vw(w E v w =z)))). 

This formula is setbounded in W2 at[F, b] and true in Vat [F, b]. 

(vi) W2 1= "range x = y" [F, a]: "range x = y" is "range x c y" and "y s 

range x", or 

Vz(z E x 3 3u3v(u E z A v E z A 3s3t 

(sEu A sev A tev A tey))) 

A Vz(z E y 3 3u(u e x A 3s3t(s E u A t E u A 

3n3m(n E s A n E t A m E t A m = z)))). 

This formula is setbounded in W0 at [F, a] and true in V at [F, a]. Applying the 

proposition to (i)-(vi), we have 

Wo 1= y c X A z ! y Af z 11 Y+ Y Xb f] 

So 

Wo F 3y~y C xAt 3z~z; 5YAt3f~ Zonto Y))I[a] 

or Wo 1- "x is infinite" [a], as required. 

PROOF OF LEMMA 2. Now A is infinite, so there is a B ! A and a 

G: B 1-1 A. 
Onto 

All the formulas involved are setbounded in Wo at [G, B, A] and true in V at 

[G, B, A], so by the proposition, the lemma is established. 

This completes the proof of the theorem. 

?VII. Some remarks on parameters. The language Y considered so far contains 

only class terms of the form x q, where x is the only free variable in (p. (p can contain 

other class terms, but otherwise it involves only the binary predicate 'e'. Because 

definite descriptions cannot function in the usual way, the expressive power of (o 

is limited; for example, we cannot form something like x(x e {0}). This difficulty 

can be overcome by the introduction of set parameters into class terms. There are 

at least two ways to do this. 

Begin by forming L", Fn and Tn as before, except this time let Fn contain all 

formulas of L., not just those with one free variable. Let T = Un-N Tn. Now we 

have class terms with free variables, such as x(x e y) or z(Vw(w e z _ w E y)). 

This content downloaded  on Thu, 14 Mar 2013 15:24:30 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


138 PENELOPE MADDY 

There are two ways to allow sets as parameters in place of these free variables. The 
easiest is to think of the class terms of the language as carrying their parameter 
assignments with them; that is, let 

Tp = {(t, p)I t e Tandp is an assignment of members of 
V to the free variables of t} 

and let fp be the first order language with the binary predicate 'e' and the members 
of Tp as constants. Then an Yp-structure W will be of the form SW U CW where the 
members of C. are of the form ((t, p), (t, p)+, (t, p)-) and there is one such element 
of Cw for each (t, p) e Tp. (t, p)+ and (t, p)- will be subcollections of SW U Tp. 
Using these definitions, the construction can be carried out just as before, except 
that for t = xf, 

(t, P)+1 = {a E V~a # (p[p, a]} U {(u, q) e Tploa # (p[q, (u, q)a]} 

and similarly for (t, p)-. (In qp[p, a], the p assignments inside i are to be made first. 
Strictly speaking, it would be best to switch to a new variable if x occurs free else- 
where in (p.) In this system, the natural numbers can be defined more or less as Frege 
intended. 

DEFINITION. 

( onto oo1 X etc. 

The disadvantage of this straightforward method of introducing parameters is 
that it is impossible to quantify into class terms. For example, we cannot ask 
whether 3x(y e i(z e x)) is true at some y or other. To allow for this, the class terms 
cannot be thought of as carrying their parameters with them. Rather, the assign- 
ments to the free variables of members of Twill have to be made by the W-sequences 
s. This is easily begun by forming the first order language Y* with the binary 
predicate 'e' and our new T for constants. y*.structures will contain interpreta- 
tions for ordered pairs of the form (t, p), where t e T and p is an assignment of 
members of S. to the free variables of t. The added complexity comes with the 
definition of an u-sequence s. It is not enough to say that s(t) is (t, p), where p is the 
assignment s makes to the free variables of t because s might assign members of C. 
to some of these variables, and our Y*-structure W only contains interpretations 
for (t, p)'s where the p assignments are in Se. (The definition of W becomes viciously 
circular otherwise.) This difficulty can be overcome as follows: if s assigns a class 
to some free variable of t, substitute the term for that class into t and extend s to 
assign the appropriate members of SW to the free variables of the new, more com- 
plicated term. This may require some switching of free variables. More precisely, 
if s assigns (u, q)2 to some free variable x of t, replace the free variables of u by new 
ones vo, . . ., vn which do not occur in qn to form u', substitute u' for x in t to form 
tC, evaluate t' at s(vo, . . ., v"/q). Then W P qots] can be defined as usual, and the 
construction carried out as before. 

This second method of introducing parameters is only slightly more cumbersome, 
and it provides much more flexibility. For example, not only can the natural 
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numbers be defined i la Frege, they can also be quantified over. "All natural num- 
bers are s9" becomes 

Vz(z E y =) x 3f xnto I. ))) 

where y is assigned the set of finite von Neumann ordinals. So, the second method 
is clearly preferable. 

?VIII. Conclusion. I think this sketch goes some distance toward providing a 
theory of both sets and classes along Kbnigean lines. The sets of the semantics are 
understood combinatorially, just as in Zermelo's iterative hierarchy, and the classes 
are understood logically, as extensions. (Though, as I have said, the restriction to 
terms of Y, or even of Yp, is artificial.) Recalling the two desiderata at the end of 
?11, it seems clear that (2) is satisfied. Classes are significantly different from sets 
in several ways: they are logical, not combinatorial, they can be self-membered, 
and some membership relations involving them are indeterminate. The situation 
with respect to (1) is only slightly less clear. There is no trace in this account of the 
neo-Aristotelean ill-defined entities, and the indeterminacy of membership results 
from a type of ungroundedness, not from any sort of vagueness. On the other hand, 
since I have not presented a reduction of classes to other entities, I have not con- 
clusively shown them to be "real". But I can conclude that unlike other theories 
which satisfy (2), mine is at least consistent with (l). Finally, I think that tracing 
the Fregean class paradoxes to the intuitively satisfying notion of ungroundedness 
allows us to say, with G6del, that our logical intuitions are essentially correct, 
only somewhat blurred. 

Let me conclude then by saying that I hope the construction presented here might 
provide the groundwork for an acceptable theory of sets and classes. Among the 
many questions that remain open are the following: 

(1) Does the construction reach a fixed point? If so, where? 
(2) Are there any t 's such that t+ U t- = V U t? In particular, is there a t such 

that t+ = V and t- = T? 
(3) What happens to the construction if V is replaced by A, for some inaccessible 

a?. 

(4) How and to what extent can the theory of V* be axiomatized? 
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