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A B S T R A C T

Behavioral measures of incremental language comprehension difficulty form a crucial part of the empirical basis
of psycholinguistics. The two most common methods for obtaining these measures have significant limitations:
eye tracking studies are resource-intensive, and self-paced reading can yield noisy data with poor localization.
These limitations are even more severe for web-based crowdsourcing studies, where eye tracking is infeasible
and self-paced reading is vulnerable to inattentive participants. Here we make a case for broader adoption of the
Maze task, involving sequential forced choice between each successive word in a sentence and a contextually
inappropriate distractor. We leverage natural language processing technology to automate the most researcher-
laborious part of Maze – generating distractor materials – and show that the resulting A(uto)-Maze method has
dramatically superior statistical power and localization for well-established syntactic ambiguity resolution
phenomena. We make our code freely available online for widespread adoption of A-maze by the psycho-
linguistics community.

Introduction

One of the major questions in the cognitive science of language is
how comprehension unfolds in real time. A key part of the empirical
landscape is that processing difficulty is DIFFERENTIAL and LOCALIZED: some
parts of a linguistic input are more effortful and time-consuming than
others. In the field of sentence processing, researchers can gain insight
into this differential and localized difficulty by measuring word-by-
word patterns of reading behavior, which turn out to capture highly
incremental linguistic processing, reflecting not only the bottom-up
characteristics of the word currently being read, but also that word’s
relation to the context in which it appears (Frazier & Rayner, 1982;
MacDonald, 1993). These word-by-word patterns, measured at the
millisecond scale, enable the development and testing of detailed,
computationally explicit theories of real-time language understanding
(Bartek, Lewis, Vasishth, & Smith, 2011; Grodner & Gibson, 2005;
Smith & Levy, 2013; Staub, 2010). Experimental methods that effi-
ciently capture this incremental processing, are cheap and easy to de-
ploy, and yield easy-to-analyze data are thus of considerable scientific
value.

To date, the two most widely used methods of obtaining behavioral
data on reading measures are eye tracking (Rayner, 1998) and self-
paced reading (Mitchell, 1984). In eye tracking, a participant’s eye

movements are monitored with an infrared camera during reading of
on-screen material. This method yields high-quality data but requires
expensive equipment with a human operator and sometimes non-trivial
data post-processing. Self-paced reading, in which a sentence starts off
masked and an experimental participant presses a button to reveal each
successive word and mask the previous word, with the time between
button presses constituting the word’s READING TIME (RT), is technically
simpler. However, self-paced reading typically yields poorer temporal
resolution, with processing difficulty effects often not showing up in
RTs on the word of origin but instead “spilling over” some number of
words downstream; it is also vulnerable to inattentive participants.

Within the past decade, dramatic new possibilities for data collec-
tion in experimental psychology have opened up with the advent of
“crowdsourcing” web services such as Mechanical Turk (Paolacci &
Chandler, 2014) and Prolific (Peer, Brandimarte, Samat, & Acquisti,
2017), allowing large-scale recruitment of diverse populations with
access to the World Wide Web. Experimental psycholinguistics today
makes extensive use of crowdsourcing for data collection, including the
use of self-paced reading for measuring RTs (e.g., Enochson &
Culbertson, 2015). Here we present a study using a less-widely-used
method, the MAZE TASK (Freedman & Forster, 1985; Forster, Guerrera, &
Elliot, 2009), for crowdsourced web experiments on incremental lan-
guage processing. We find in this setting that the Maze task shows high
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sensitivity – far more than self-paced reading – for detecting processing
difficulty differences evoked by structural ambiguity resolution. We
further remove some critical barriers to the adoption of the Maze task
by introducing an automatic method to eliminate a great deal of ex-
perimenter effort in designing task stimuli.

The remainder of the paper is structured as follows. First, we review
methods for measuring incremental processing difficulty: self-paced
reading, eye tracking, and Maze. Then in ‘Automating maze’, we in-
troduce our new variant of the Maze task, which we call A(uto)-maze,
where distractor items are generated automatically using state-of-the-
art natural language processing (NLP) technologies. Next, we validate
A-maze and previous Maze variants in a web-based format, replicating
results from Witzel, Witzel, and Forster (2012) over Amazon Mechan-
ical Turk and using our A-maze system. We conclude with a discussion.

Behavioral methods for measuring incremental processing
difficulty

In the realm of human language understanding, one set of methods
focus on measuring real-time processing effects, by tracking how long
participants spend on each word as they read a sentence. These reading
or reaction times (RTs) can be interpreted as indicative of how hard the
words are to process; long RTs indicate some form of difficulty. Two
methods dominate this area: eye tracking and self-paced reading.

Eye tracking

With eye tracking, participants freely read sentences on a screen
while their eye movements are recorded by an infrared camera. Eye
movements are saccadic (consisting of sequences of fixations typically
200–300 ms in duration connected by rapid ~30 ms saccades) and
unconstrained, so several widely used dependent measures have been
developed to analyze them, including whether a word is skipped, how
long the eyes spend on the word the first time it is fixated, whether the
first saccade out of a word is progressive or regressive, total looking
time to a word, and how long until the participant moved on to the next
word (Rayner, 1998). In general, greater processing difficulty is mani-
fested in lower skip rates, longer looking times, and higher probability
of a regressive saccade after fixating a word; it is well documented that
both a word’s fixed features, such as its length and frequency, and
features of the word’s relation with its context, such as its contextual
predictability and whether it is grammatically or semantically anom-
alous given the context, affect these eye movement measures (Rayner,
Ashby, Pollatsek, & Reichle, 2004), though different features can affect
eye movements in different ways (e.g., Staub, 2011). One advantage of
eye tracking is that unconstrained reading is a natural everyday activity
for literate participants; however, this means participants are free to
skim, jump ahead, or look back while reading (Witzel et al., 2012),
which can offer challenging analytic and interpretive decisions for re-
searchers (von der Malsburg & Angele, 2017).

Because of the equipment required for eye tracking, these experi-
ments have to be done in laboratory settings under the supervision of
researchers. This makes these experiments costly in time and money
spent recruiting and running participants, and means that participant
pools skew towards undergraduate psychology majors.

Self-paced reading

The other commonly used incremental processing method is self-
paced reading (SPR). In moving-window SPR (the most common ver-
sion), participants read a sentence one word at a time, pressing a button
(e.g., the space bar on a computer keyboard) to mask the current word
and unmask the next one. The time between button presses (i.e. the
time a word was visible) is used as the dependent measure. This method
forces participants to read sentences sequentially, with no looking
ahead or looking back; however, participants can continue processing a

word as they look at later words. This can lead to “spillover” effects,
where the difficulty induced by a given word slows RTs one or more
words further downstream and may not manifest at all on the word in
question (e.g., Koornneef & van Berkum, 2006; Mitchell, 1984; Smith &
Levy, 2013). To compensate for this, SPR is often analysed using a
multi-word spillover region, which works if the location of potential
slow-down is known, but not if pinpointing the slow-down is the goal of
the experiment. To encourage more careful reading, SPR (and eye
tracking) can be paired with comprehension questions.

One of the advantages of SPR is that it can be run over the web with
participants recruited from crowdsourcing platforms, which leads to
quick and cheap data collection. Crowdsourcing websites such as
Amazon Mechanical Turk allow researchers to recruit and pay partici-
pants for doing small tasks, provided the task can be explained and
administered through a web browser. SPR and other tasks that involve
seeing stimuli and pressing buttons are easy to do in this environment,
and the time between button presses can be measured precisely
(Enochson & Culbertson, 2015). In addition, the participant pool from
online platforms may be more representative of the general population
than the participant pools available for in-person experiments at re-
search universities (Casler, Bickel, & Hackett, 2013), though these pools
are still not completely representative of the societies from which they
are drawn (Difallah, Catasta, Demartini, Ipeirotis, & Cudré-Mauroux,
2015). For crowdsourced populations there are also questions as to the
quality of data relative to in-lab experimental data. For some tasks,
crowdsourced data seem to be at least as high-quality as in-lab data
(Casler et al., 2013). For self-paced reading, at least some studies have
shown similar results in crowdsourced populations with web-based
methods and in-lab populations (Enochson & Culbertson, 2015). How-
ever, Enochson and Culbertson (2015) also found that web responses
were on average 180 ms faster than lab responses (and our unpublished
data suggest similar results), perhaps due to participants’ strong in-
centives to finish quickly. This raises the concern that crowdsourced
participants might read less carefully than in-lab participants, leading
to more superficial language understanding that might mask theoreti-
cally important comprehension processes.

Maze

A third incremental processing method that is used less often is the
Maze task (Forster et al., 2009). As pictured in Fig. 1, the Maze task has
participants read a sentence word by word, but at each word position
they are presented with a forced choice: between a correct word that
serves as a legitimate continuation of the sentence and a distractor that
does not. Participants must press a button corresponding to the correct
word, and reaction time (RT) is used as the dependent measure. If the
participant chooses the correct word, the trial continues with another
Maze step involving a choice between the correct next word of the
sentence and a distractor; if the participant chooses the wrong word,
the trial is terminated and no further words in the sentence are shown.
We are aware of two versions of the Maze task that have been tested:
G(rammaticality)-maze, which uses real word distractors that are
anomalous given the context, and L(exicality)-maze, which uses nonce

Fig. 1. In Maze tasks, participants see two words at a time and have to select
the word that continues the sentence. They then see the next pair of words.
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word distractors.
Empirically, published results reporting RT measures from Maze

tasks on well-studied sentence comprehension paradigms indicate that
Maze RTs reveal differences in incremental processing difficulty that
are largely consistent with those measured by self-paced reading or eye-
tracking, and that are interpretable within major sentence processing
theories. Forster et al. (2009), for example, found using both G-maze
and L-maze that among transitive English relative clauses (RCs) with
full RC noun phrases, RTs are faster for subject-extracted RCs than for
object-extracted RCs, consistent with well-established results from eye
tracking (Traxler, Morris, & Seely, 2002) and self-paced reading
(Grodner & Gibson, 2005), though the precise localization of reading-
time effects differs across eye tracking, SPR, and Maze (Staub, 2010).
To understand why Maze would evoke qualitatively similar RT differ-
ences, it is worth carefully considering what processes an experimental
participant must engage into select a correct Maze continuation. This
process plausibly involves: (a) identifying each candidate word; (b)
determining whether or how easily each candidate fits in the context,
(c) deciding which candidate is correct; (d) initiating and completing
motor actions to press the key corresponding to the chosen candidate,
and (e) completing the integration of the chosen candidate into the
context so processing can continue. Each of these parts may take effort
and time. Some of these may happen simultaneously (plausibly (d) and
(e), for example). Nevertheless, this process substantially overlaps with
that posited for normal reading and self-paced reading. In all cases,
readers must identify a word, integrate a word into the context, and
decide when they have integrated it well enough to continue (to initiate
a saccade in normal reading or to press a key in SPR). The biggest
difference with Maze is the forced choice between two candidate words
(though ordinary reading must also involve constant decision making
regarding whether to accept or reject the word encountered, to main-
tain robustness to errors). As hypothesized by Forster et al. (2009), this
need for a choice between candidates forces highly incremental pro-
cessing in Maze: in order to accurately discriminate the correct con-
tinuation, substantial integration with context is required (b above);
words that are hard to integrate will yield slow RTs on the word itself,
with minimal spillover to subsequent words. (Nevertheless, in cases
where the correct word is guessed without being well-integrated, the
participant will be poorly prepared for the next choice, potentially
leading to some amount of spillover.)

This improved localization means that some of the complexities in
interpreting RTs in eye tracking or SPR should be reduced in Maze. On
the other hand, there is a concern that variability in distractors could
affect RT. This variability may depend on the details of the decision
process (c above). Readers might try to integrate the two words in
parallel, choosing the first word that is integrated sufficiently well. In
this case, the time taken in successful trials should depend only on the
easier-to-integrate word (although perhaps longer than integrating in
isolation, if the parallel processing strains resources); and distractor
identity wouldn’t matter, as long as it was noticeably harder to in-
tegrate. Choosing might also involve more direct comparison between
the two candidates, perhaps along the lines of the diffusion decision
model (Ratcliff & McKoon, 2008) in which the properties of the dis-
tractor and its relationship with the target (such as their relative sur-
prisals) might also affect RTs.

At least a dozen papers have been published using the Maze method
(Kizach, Nyvad, & Christensen, 2013; Li, Zhang, & Ni, 2017; Nyvad,
Kizach, & Christensen, 2015; O’Bryan, Folli, Harley, & Bever, 2013;
Oliveira, Souza, & Oliveira, 2017; Qiao, Shen, & Forster, 2012; Sikos,
Greenberg, Drenhaus, & Crocker, 2017; Suzuki & Sunada, 2018; Wang,
2015; Witzel & Witzel, 2016), but this is tiny compared to the number
of studies that use SPR and eye tracking. While most uses of Maze have
been to test sentence processing theories, the Maze task has also been
used as a pedagogical tool for second language acquisition (Enkin,
2012). As far as we are aware, only Witzel et al. (2012) and Witzel and
Forster (2014) have directly compared the sensitivity of L-maze and G-

maze to that of SPR or eye tracking. In a comparison of eye tracking,
SPR, G-maze, and L-maze across three two-condition experimental
studies of syntactic attachment, Witzel et al. (2012) found that G-maze
showed a clear and well-localized effect that eye tracking did not in one
study,1 but failed to detect an effect that eye tracking did detect in
another (both methods localized the effect in the third study). In gen-
eral, G-maze generally had larger and more localized effects than SPR.
In another study, Witzel and Forster (2014) found clearer and more
tightly localized effects for lexical ambiguity resolution with G-maze
than with eye tracking.2 Both studies found that G-maze had larger and
more localized effects than L-maze.

However, G-maze has to date been much more laborious to con-
struct materials for than L-maze: whereas L-maze simply requires that
the distractor is a letter sequence that does not constitute a legitimate
word in the vocabulary, a process that can easily be automated, G-maze
requires that for each word in each experimental sentence, a distractor
word be chosen from the vocabulary that cannot be integrated into the
preceding context to continue the sentence, a process that to date has
required manual work by the experimenter and that is potentially error-
prone.

Like SPR and unlike eye tracking, the Maze task does not require
special equipment; all it needs is a way of displaying stimuli and re-
cording button-presses, so it should be amenable to running over the
web. Given that Maze seems to be an effective method, we want to
make it a more appealing option by making it easier to prepare mate-
rials and run on a large, crowdsourced participant pool.

Here we introduce two innovations to the Maze paradigm and then
validate them on the materials from Witzel et al. (2012). First, we set up
Maze to run over the web, enabling it to be run on crowdsourced
participants. Second, we use contemporary machine-learning language
models to automatically generate real word distractors, offering a
lower-preparation-cost version of G-maze that we call Auto-maze (A-
maze). We validate these methods by running A-maze along with G-
maze, L-maze, and SPR on Mechanical Turk participants, using the
materials of Witzel et al. (2012), a paper which compared in-lab SPR,
eye tracking, and L- and G-maze on three established syntactic ambi-
guity resolution phenomena. The results of Witzel et al. (2012) in-
dicated that some syntactic ambiguity resolution phenomena were
picked up as effectively by L-maze as by SPR, and that G-maze was
perhaps even more sensitive, although they did not conduct a direct
comparison of the sensitivity of the methods.

To foreshadow our findings, we find that G-maze and A-maze run
well over the web, and are more sensitive than SPR. Given that A-maze
performs well and is easy to prepare, we argue that web-based A-maze
should be added to the psycholinguist’s toolkit for sentence processing
research. We also make our code for generating distractors and running
Maze online freely available at github.com/vboyce/Maze.

Automating maze

Motivation

As described above, the Maze task is a good candidate for more
widespread adoption in sentence processing research, and for being
suitable for use on crowdsourcing platforms. Among maze variants, G-

1 This study involved high versus low RC attachment (The son of the actress
who shot herself/himself); G-maze found a highly significant effect at the
disambiguating reflexive pronoun, whereas in eye tracking only one of eight
measures across three regions in the sentence reached significance at <p 0.05,
an effect that might not survive correction for multiple comparisons (von der
Malsburg & Angele, 2017).

2 Here, the crucial interaction showed up immediately at the disambiguating
region at <p 0.001 with G-maze, but only on go-past times in a multi-word
post-disambiguation region in eye tracking at <p 0.05, an effect that might not
survive correction for multiple comparisons.
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maze shows signs of being more powerful than L-maze, but construction
of materials is much more laborious for G-maze than for L-maze. Thus,
it would be valuable to (a) automate the creation of distractors for G-
maze, and (b) develop software for running the Maze task online, on
crowdsourced populations.

The key requirement for automating G-maze materials construction
is to automate the selection of good distractor words – most crucially,
words that are a poor fit to a given context. This is not a trivial task
because there are many ways (both semantically and syntactically) that
a sentence can legitimately continue. Here we take advantage of the
impressive advances in NLP language models that are trained precisely
to perform this task, putting a conditional probability distribution over
next words given a preceding sentence context. These conditional
probabilities are often quantified in terms of bits of SURPRISAL, where
surprisal is the negative log of probability. (Thus, higher surprisal
corresponds to lower conditional probability, and something with 1 bit
more surprisal is half as likely to occur.) State-of-the-art language
modeling architectures today are often recurrent neural network (RNN)
models (Elman, 1990), typically using Long Short Term Memory
(LSTM) cells (Hochreiter & Schmidhuber, 1997), which have achieved
impressive performance in learning structure from the statistics of se-
quences and in representing long distance dependencies (Jozefowicz,
Vinyals, Schuster, Shazeer, & Wu, 2016). LSTM RNNs have been shown
to learn some hallmark grammatical dependencies; Gulordava,
Bojanowski, Grave, Linzen, and Baroni (2018) showed that with careful
parameter setting a model trained only on next-word prediction got
long-distance agreement relations right most of the time, in the absence
of semantic cues. While these models don’t have any formal notion of
“grammaticality”, they have been shown to assign higher surprisal to
ungrammatical forms compared to grammatical forms (Futrell et al.,
2019; Marvin & Linzen, 2018; Wilcox, Levy, Morita, & Futrell, 2018).

We use these models to select words that have high surprisal given
the context. While there is no guarantee that these words will be un-
grammatical, to the extent that a model has learned a distribution over
word sequences that correlates with human intuitive judgments, it
should be the case that words the model finds unlikely will also be
highly incongruous (and often ungrammatical) to human readers.

While we intend A-maze to be an easy to produce version of G-maze,
it’s important to note that the distractor selection criteria we have de-
veloped for A-maze could in principle lead to somewhat different types
of distractors than a human experimenter would develop for G-maze
under ideal conditions. Forster et al. (2009) describe the distractor as
intended to be “plainly ungrammatical when integrated with previously
chosen words”. High surprisal, the key criterion for our A-maze dis-
tractor generation process, is almost certainly a necessary condition for
plain ungrammaticality, but it is likely not a sufficient condition: severe
implausibility (e.g., “The spider devoured the theorem”) will typically
yield high surprisal even when a valid syntactic structure is available. A
researcher developing distractors by hand might take care to avoid such
cases. However, a grammatical integration of a high-surprisal distractor
will often not be easily identified by the reader, and even if identified
will typically be rejected in comparison with a target word that is a
good fit for the context, so that high surprisal may in practice serve well
as a sufficient criterion for distractors. Forster et al. (2009) acknowl-
edge a similar point (p. 164, discussing the comparison between “The
dog” and “The gone”).3 Furthermore, it is easy for a human researcher
developing G-maze materials to miss a grammatical interpretation of a
distractor that is intended to be ungrammatical (see our error analysis
in ‘Error rate’ for examples), so that in practice hand-developed G-maze

materials are likely to also rely on relative lack of fit rather than true
ungrammaticality. Since typical language models do not distinguish
between sources of surprisal (and in general these sources are corre-
lated so that a clean distinction may not always be possible), with A-
maze a high surprisal distractor could be ungrammatical, or it could
rely a low-probability syntactic parse, or it could require an atypical
part of speech for the distractor word, or it could be semantically
anomalous. It is possible, of course, that different reasons for distractor
lack of fit might engage different psychological processes; this possi-
bility is open for investigation in future work.

In addition to requiring high surprisal, we also impose other con-
straints on our distractor words. For the Maze task to be effective, the
distractor words should not only be identifiable as the wrong choice,
but also not introduce too much variance into reaction times. To this
end we match distractor words with the correct words for length (in
letters) and overall frequency, which are two effects known to affect
word recognition and reading times. This also prevents heuristic-based
strategies that do not involve relating a word to its preceding context,
such as ‘choose the short word’ or ‘choose the overall more familiar
word’, from being effective.

Auto-generation process

We illustrate our automated Maze materials construction process in
Fig. 2. It involves two main stages: a set-up stage and a distractor-se-
lection stage.

Set-up
In the set-up stage, we create look-up tables mapping from words to

frequencies and from length, frequency pairs to lists of potential dis-
tractor words.4

We use the Google Books Ngrams corpus (Michel et al., 2011) as our
source for word frequencies.5 By using a large corpus, we ensure that
we have frequency data for almost any word that might show up in
psycholinguistic materials (without a frequency to look up, our algo-
rithm doesn’t work, so researchers would need to take special measures
for experiments involving target sentences with words for which fre-
quency statistics are not available).

Distractors should be easily identifiable as words, so participants
aren’t surprised by misspellings, proper nouns, or words they don’t
know (all of which occur in the Google Books corpus). We also include a
requirement that distractors can legitimately be recapitalized to match
the capitalization of the correct word they are paired with. To this end,
we restrict distractors to words in the UNIX dictionary file that were
only made up of lowercase letters. Additionally, we manually exclude a
few short ‘words’ such as the letter ‘m’, which we consider to be in-
sufficiently word-like.

From these frequencies, we built two look-up tables; one from words
to frequency bins, and one from length, frequency-bin pairs to lists of
valid distractors.6

3 For example, in the sample G-maze in Fig. 1a, the distractor ‘pretty’ is a
legitimate continuation (i.e. The dog pretty much did nothing but look cute all
day); but it was chosen as ungrammatical by the author, who only realized the
legitimate parse a month later. However, ‘The dog pretty’ is still anomalous
compared to ‘The dog chased’.

4 These look-up tables are made available so one can generate Maze materials
without going through the set-up procedure. However, we also make all of our
code available so that the set-up process can be replicated or modified.

5 For most words, we use the overall unigram frequency; however, contrac-
tions were usually, but not always, parsed as multiple words, leading to in-
appropriately low unigram frequencies. For contractions, we manually ap-
proximated their frequencies using Google Ngrams Viewer (which shows their
accurate bigram frequency). A list of contractions and the frequencies we assign
to them is included with our code.

6 Frequencies were binned by taking the floor of log2 of the number of oc-
currences in the Google Book Ngrams corpus. We only considered words that
occurred at least 213 times, and all words that occurred more than 225 were
binned together. To account for sparsity of very short or very long words, words
of length 3 or less were treated as having length 3 and words of length 15 or
greater were treated as having length 15 for list-creation and look-up purposes.
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Distractor selection
When the automation process is run on materials; it iterates

through each item number (corresponding to a sentence, or minimal
set of matched sentences), and selects a distractor for each word
position. Distractors are selected to be matched to the real word(s)
for length and approximate frequency, and to be low probability in
context as judged by the language model. We set up the generation
process to run with either of two pre-trained, freely available models,
from Jozefowicz et al. (2016) and from Gulordava et al. (2018).
Future implementations could use other existing state-of-the-art
language models such as Transformer-XL (Dai et al., 2019) or Re-
current Neural Network Grammars (Dyer, Kuncoro, Ballesteros, &
Smith, 2016).

Rather than trying to globally optimize the choice of distractors
according to some unified objective functioning, we adopt a proce-
dure that runs quickly while still selecting sufficiently-low-prob-
ability distractors. To generate a distractor for a word wi in a sen-
tence, we run the language model on the sentence up through the
immediately preceding word wi 1, thus obtaining a probability dis-
tribution over possible next words wi . We then retrieve from our
look-up tables the set of all the possible distractor words with the
same length and frequency-bin as wi and randomly order that set into
a list. We then go through this list of potential distractors, checking
their conditional probabilities, until we find one with a surprisal
above a preset threshold (for the experiments presented here, we
used a threshold of 21 bits of surprisal, corresponding to a condi-
tional probability of roughly 4 in 10 million). Once a word with low

enough probability is found, it is chosen as the distractor.7 The
model continues until an above-threshold word is found or 100
words have been checked.8 If 100 words have been checked without
any word meeting the threshold, the word among these with the
lowest conditional probability is chosen as the distractor. The chosen
distractor is then matched to the correct word on capitalization and
end punctuation (period or comma). We then advance to the next
word in the sentence and repeat this procedure to choose an appro-
priate distractor for that word.

In some cases it may be desirable (for both G- and L-maze) to use
the same distractors across a set of minimally differing sentences
(typically, this would be for the sentences instantiating different
conditions of a given experimental item). For instance, Witzel et al.
(2012) used critical items coming in two variants differing by one
word, and gave the same word positions in each sentence the same
distractors. We follow this pattern, generating one distractor word per
word position per item number. Thus in the first pair of example
sentences in Table 1, ‘herself’ and ‘himself’ get the same distractor.
When there are multiple sentences to match, we consider distractors
matched to the average length and average log frequency of the cor-
rect words. When choosing a distractor, we take the first distractor

Fig. 2. Schematic of how A-maze materials are generated. Image of LSTM from colah.github.io/posts/2015-08-Unders.tanding-LSTMs.

7 Potential distractors that the model treated as unknown (i.e. outside of the
model’s vocabulary) are not selected because we don’t trust their conditional
probabilities to be accurate.

8 If the list of potential distractors runs out before one of these criteria is met,
the list of distractors with the same length, but the next higher frequency-bin is
used to supplement.
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that meets the threshold for all the contexts.9 Chosen distractors are
matched on capitalization and end punctuation individually to each
correct word.10

Web interface

In addition to providing a way of automating the generation of A-
maze materials, we also wrote an Ibex module so Maze experiments (A-
maze or otherwise) could be easily hosted on a web-server and used on
either crowdsourced or in-lab participants. Ibex is a freely-available
web-based psycholinguistic experiment software platform (github.com/
addrummond/ibex) that makes it easy for researchers to run experi-
ments in a variety of common paradigms including self-paced reading,
Likert scales, and acceptability judgments. We implemented the Maze
task as a new module based on the SPR module. In our Maze im-
plementation, each target–distractor word pair appears on-screen si-
multaneously, one on the right and one on the left. The participants
uses the ‘e’ and ‘i’ keys to select among the two words. If the participant
correctly selects the target, the experiment advances to the next word
pair. If they incorrectly select the distractor, an error message
(“Incorrect! Press any key to continue.”) is shown and with the next key
press the experiment continues to the next sentence. After correctly
completing a sentence, a participant sees the message “Correct! Press
any key to continue.” and with the next key press the experiment
continues to the next sentence. As a slight gamification, we added a
running counter of words correct at the top of the screen, which does
not reset between sentences (but does reset between experimental
blocks). The Maze module records time in between presses (using the
same button-press timing code as the SPR module), as well as whether
the selection was correct. When the experiment finishes, all results are
transmitted to the server and recorded, for later researcher download.

This innovation makes it easier to run Maze paradigms than it was
previously, by running them on a web-server in a browser. Many re-
searchers already use Ibex, so this should make it easy to incorporate
Maze into the existing toolbox. The A-maze materials can be output in a
format ready for copying into an Ibex experiment file, for easy in-
tegration.

Considerations when using A-maze

A-maze can be used on existing materials, such as those designed for
self-paced reading. Some small adaptations may be needed; such as
changing hyphenation of a compound word, or replacing a two word

place name with a one word place name. However, we find that A-maze
works even when some of the words in the materials are unknown to
the models, because the model can make reasonable predictions based
on the rest of the context.

Maze should be easy to run online; it merely involves showing sti-
muli on a screen and recording button press times, similar to SPR which
is run over the web. One concern with web-based SPR is noisy data from
inattentive participants, which researchers may attempt to weed out
with comprehension questions and exclusion criteria. A-maze (and G-
maze) are especially robust to participant pools where some partici-
pants don’t pay enough attention all of the time. Participants who aren’t
paying attention (either in general, or during a period of the experi-
ment) will have higher error rates. As soon as they make a mistake on a
sentence, that sentence ends. Thus, participants who make mistakes
before the region of interest on a sentence don’t contribute RT data to
the region of interest; and thus their potentially noisy data won’t affect
results. As we will see later, a substantial proportion of trials are filtered
out in this way within the first few words of the sentence when Maze is
run on Mechanical Turk, and this is likely to be a major advantage of
Maze over SPR. For this reason, however, we recommend that critical
words in a Maze task be at least a few words into the sentence.

One concern with using automated distractors is that sometimes the
algorithm might fail and generate a word that is acceptable in context.
We have found that this does happen occasionally, particularly on word
2 of the sentence, when the model, with only one word of context,
assigns low probability to many continuations, even some that can be
felicitously integrated into the sentence. As the sentence continues, and
context accumulates, the model’s judgments about low probability
words improve. This is not only a problem with the automated mate-
rials construction process of A-maze: even a highly trained and ex-
perienced human researcher constructing G-maze distractors can
sometimes miss a potential parse and allow a grammatical distractor to
slip through (see Table 3 for plausible distractors that emerged in our G-
maze and A-maze experiments). Crucially, while distractor generation
can take some computational time (depending on which model is used),
it does not take much researcher time.

Both poor distractors and distracted participants may contribute to
high error rates early in sentences, but we find that these error rates
generally stabilize by word 5 (see Fig. 4). As long as the critical regions
of a sentence are more than five words into the sentence, these effects
should not affect critical RTs.11 They may reduce the number of data
points available at the critical region, but this data loss can be estimated
ahead of time, and with crowdsourced experiments it is often easy to
recruit a greater number of participants.

The code for creating A-maze distractors is freely available at
github.com/vboyce/Maze/tree/master/maze_automate. As we update
the method to produce better matched distractors for a wider set of
experimental items, we will add improved versions of the process to this
repository.

Validation experiment

To compare the performance of these crowdsourceable experi-
mental methods and to evaluate the performance of our A-maze im-
plementation, we conducted 5 experiments: SPR, L-maze, G-maze,
Jozefowicz A-maze (using the language model of Jozefowicz et al.
(2016) for word conditional probability estimation), and Gulordava A-
maze (using the language model of Gulordava et al. (2018)). We use the
materials of Witzel et al. (2012), which further allows us to compare
our results with their in-lab results. We pre-registered this study in two
parts: one for SPR, L-maze and G-maze, and another for the A-mazes.
Pre-registrations are available at aspredicted.org/blind.php?x=iq2rd9

Table 1
Sample Stimuli with disambiguating words underlined.

Relative Clause – Low attachment:
The son of the lady who politely introduced herself was popular at the party.
Relative Clause – High attachment:
The son of the lady who politely introduced himself was popular at the party.
Adverb clause – Low attachment:
James will fix the car he drove yesterday, but he will need some help.
Adverb Clause – High attachment:
James will fix the car he drove tomorrow, but he will need some help.
Sentence v Noun Phrase conjunction (S v NP) – With comma:
The swimmer disappointed her coach, and her mother tried to console her.
Sentence v Noun Phrase conjunction (S v NP) – No comma:
The swimmer disappointed her coach and her mother tried to console her.

9 If 100 words are checked without any word meeting the threshold, the word
with the highest minimum surprisal across all sentences is chosen.

10 One consequence of this: distractors might not be identical in capitalization
or punctuation if target words forming a set across otherwise matched sentences
differ in this respect. For instance, in the last pair of example sentences in
Table 1, the distractor paired with “coach,” might be “chaos,” (with comma),
but the distractor paired with “coach” would be “chaos” (no comma).

11 If critical words need to be early in the sentence, one could potentially filter
the data and only consider data from sentences that were (correctly) completed.
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and aspredicted.org/blind.php?x=m9n5bc. The SPR, L-maze and G-
maze data was collected on 25 July 2018, and the A-maze data was
collected on 9 May 2019. We make our materials, data, and analysis
code available at github.com/vboyce/Maze/tree/master/experiment.

Methods

Materials
We requested and received materials from Witzel et al. (2012), and

followed their design closely. These experimental materials examined
three different attachment preferences. In each case, the context sets up
a syntactic attachment ambiguity in which one attachment possibility
has generally been found to be preferred in incremental processing by
native English speakers; we expect that the critical disambiguating
word in the sentence that will be harder to process when it dis-
ambiguates to the previously dispreferred attachment than when it
disambiguates to the preferred attachment (see Table 1 for sample
stimuli).

The first ambiguity involves attachment of relative clauses into
preceding complex noun phrases that involve a prepositional phrase
postmodifier; in English it is typically the case that “low” attachment, to
the most recent noun, is preferred (Cuetos & Mitchell, 1988). These are
disambiguated by gendered reflexive pronouns within the relative
clause which match the gender of only one of the nouns. The second
ambiguity involves attachment of temporal adverbs into nested pre-
ceding verb phrases; again, “low” attachment into the most recent verb
phrase is generally preferred. These are disambiguated by the temporal
adverb (which might be two words, i.e. ‘next week’), which matches the
tense of only one of the clauses. The last ambiguity involves the am-
biguity of an “and NP” sequence immediately following a transitive
clause as involving either Sentence or Noun Phrase (S v NP) co-
ordination. When the preceding transitive clause is ended with a
comma, Sentence coordination is typically preferred; when it is ended
without a comma, Noun Phrase coordination is typically preferred
(Frazier & Clifton, 1997). This is disambiguated by the second verb,
which disambiguates to a sentence conjunction. Thus, based on pre-
vious studies and on the results of Witzel et al. (2012), we expect faster
RTs at the critical disambiguating word in the low-attachment and
comma condition, because participants would be less likely to favor a
parse of the sentence inconsistent with this word.

For SPR, Witzel et al. (2012) used yes/no comprehension questions
for half of the items. We wrote similar comprehension questions for the
other half of the items, and gave a comprehension question after every
item. For L-maze and G-maze, we used the same distractor words and
the same positioning (was the correct word on the left or right?) as
Witzel et al. (2012). For both A-maze tasks, we used the same correct
materials, but generated our own distractors, using the process de-
scribed in ‘Auto-generation process’. We ran our procedure twice, once
for each of the two models. We took the distractors as is, without any
checking or quality control. For both A-mazes the right/left positioning
of correct words and distractors was randomized, except that the first
word of each sentence was always presented on the left, against a dis-
tractor of ‘x-x-x’.

Participants
We recruited 50 participants in each of the five experiments.

Participants were recruited from Amazon Mechanical Turk and paid
$3.00 for each task. Participants clicked the link, which opened our
study running on a webpage; at the end of the experiment they were
given a code which they could enter on Mechanical Turk to receive
payment. We used UniqueTurker ID (uniqueturker.myleott.com) to
ensure that individuals did not particulate in multiple experiments.

Procedure
We used the Ibex web-based psycholinguistic experiment software

platform (github.com/addrummond/ibex) for our experiments. For

SPR, we used the SPR module already provided in Ibex. For the Maze
tasks we used our Maze module (described above).

At the start of the experiment, participants were told how their data
would be used and asked to indicate their informed consent. They then
saw instructions, followed by 8 practice items. They then saw 24 sen-
tences of each type (12 in each of the two levels) mixed in with 24 filler
items.12 These items were arranged in 8 blocks of 12 items each, with a
brief pause between blocks when participants were told how many
blocks were left. This is the same design as used in Witzel et al. (2012).
For SPR, each sentence was followed by a yes/no comprehension
question (and feedback was given on the correctness of the response);
for Maze, no comprehension questions were used.

At the end of the experiment, participants were asked for feedback
on the experiment, asked for demographic information and debriefed
about the goals of the experiment. They were then given a code which
they could enter into Amazon Mechanical Turk to receive payment. The
entire experiment took on average 15 min, plus a couple of minutes for
instructions and optional demographic questions.

Data analysis

Although this study was described as being for native English
speaking US citizens, anyone could complete the experiment and get
paid. In the demographic section, we included three yes/no questions:
were they US citizens, were they currently living in the US, and were
they native English speakers. Only data from participants who an-
swered yes to all three of these questions was included in the analysis.
After this exclusion, we had 44 participants contributing data for L-
maze, 44 for G-maze, 43 for SPR, 46 for Gulordava A-maze, and 42 for
Jozefowicz A-maze.

For SPR, we additionally exclude data from participants who cor-
rectly answered less than 80% of comprehension questions, leaving us
with data from 32 participants. For the Maze tasks, we only include RTs
where the correct word was chosen. Because sentences terminate when
a mistake is made, we don’t have data for the rest of a sentence after a
mistake. Accounting for this, we have RTs for 75% of words for L-maze,
64% for G-maze, 64% for Gulordava A-maze, and 55% for Jozefowicz
A-maze. This leaves us with roughly comparable amounts of data across
all Maze tasks and SPR. In many RT-based sentence processing studies,
very long RTs are often identified as “outliers” and excluded or replaced
to improve statistical power; we instead use log(RT) as our dependent
measure, which reduces these concerns as RTs are right-skewed and
very roughly log-normal distributed (Luce, 1986; Van Zandt, 2000;
Baayen & Milin, 2010). We excluded 2 words from L-maze and 1 word
from Jozefowicz A-maze for having recorded RTs of 0; indicative of a
software error in RT recording.

For all tasks, the key measure is the difference in RT between the
two conditions at the critical word (where disambiguation occurs) and
at the following region (see Table 1 for examples of disambiguating
words). We measure the difference in RT at each word position (relative
to critical/disambiguating word) from −5 to +5 (five words before,
the critical word, five words after). We follow Witzel et al. (2012) in
averaging the RTs for the two-word critical regions (e.g. ‘next week’)
and analysing them as one word. We used the mixed effects model.

log(RT) ~ condition + (condition | subject)
+ (condition ∣ item)

for each word position, type of item, and task combination. We report
estimated effect sizes and two-sided p-value equivalents. We do not
correct for multiple comparisons, as our goal is to compare the

12 Due to a typo in the grouping label, only half of the Adverb clause sen-
tences (12, 6 in each level) were shown to G-maze participants. This reduction
in data would be expected to lead to weaker results, compared to if all items
had been shown.
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strengths of effects found by different experimental methods, rather
than make claims based on significance of any particular result.13

Analysis was done in R, using brms (Bürkner, 2018; R Development
Core Team, 2009).

Results for the 0–3 word region are shown in Fig. 3, a table of all the
estimated effect sizes and p-value equivalents is included in Table 2.

To allow for direct comparison between our results and the in-lab
results of Witzel et al. (2012), we obtained the data from Witzel et al.
(2012) and re-analysed it identically to how we analysed our own data;
these re-analysed data are referred to as Lab SPR, Lab G-maze, and Lab
L-maze.

Results

Fig. 3 summarizes the estimated effect size for each type of

attachment ambiguity and each experimental method, at the critical
disambiguating words and each of the next three words. As is im-
mediately evident, G-maze and both A-mazes generally yield large,
immediate effects strongly localized to the disambiguating word (with
smaller effects sometimes also spilling over one to two words further
downstream), compared to SPR and L-maze, which do not.

Looking first at relative clause attachment disambiguation, we see
significant effects of 105 ms for Web G-maze ( =p .0025), 73 ms for
Gulordava A-maze ( =p .0095), and 163 ms for Jozefowicz A-maze
( =p .001). These are all qualitatively similar to the 121 ms effect on
Lab G-maze. We see a numerical trend towards the effect to also appear
on one to two words downstream, but this reaches significance only for
word +2 and only for Jozefowicz A-maze. Neither Web L-maze nor
Web SPR finds an effect on the critical word, although L-maze does
have an effect of 46 ms on the immediately following word ( =p .047).

For adverb attachment disambiguation, we see larger effects all
around, consistent with the findings of Witzel et al. (2012). Web G-
maze, Gulordava A-maze, and Jozefowicz A-maze again have large ef-
fects of 213 ms, 175 ms, and 170 ms respectively (p’s .005) on the
critical word. Gulordava A-maze also has a 77 ms spillover on the next
word ( =p .001). For comparison, Lab G-maze has a 216 ms effect on the

Fig. 3. Mean difference in RT between the dispreferred conditions (high attachment or no comma) and the preferred conditions. Error bars indicate 95% confidence
interval. P-value equivalents are shown when <p . 05.

13 By “p-value equivalent” we mean the following: if the largest symmetric
interval on the posterior distribution for the fixed effect of ‘condition’ that does
not include zero contains probability mass q, then we report q(1 ) as a “p-
value equivalent”, following common practice in Markov-chain Monte Carlo
fitting of mixed effects models (e.g. Baayen, Davidson, & Bates, 2008).
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critical word, followed by 78 and 93 ms spillover effects on the next two
words, respectively. Web L-maze finds a localized effect of 44 ms
( =p .014) on the critical word; this is similar to the 48 ms effect from
Lab L-maze. Web SPR shows no significant effect on the critical word,
but finds spillover effects of 27 ms on the next two words (p .005);
Lab SPR had effects of 56 ms on the critical word, and 25 ms on the next
word ( <p . 05).

For disambiguation of S v NP coordination ambiguity, both A-mazes
find effects on the critical word; Gulordava A-maze finds a 96 ms effect
( =p .013) and Jozefowicz finds a 134 ms effect ( =p .024). This effect
does not show up with the other tasks, but did show up in the eye
tracking data from Witzel et al. (2012) (not shown here).

Overall, these results indicate that G-maze, Gulordava A-maze, and
Jozefowicz A-maze are roughly equivalently good methods that can
find strong, localized effects where SPR and L-maze cannot. They find
comparable effect sizes to Lab G-maze. We take this as evidence that
web-based A-maze may be superior to web-based SPR for at least some
crowdsourced psycholinguistics experiments: A-maze detected effects
for all three phenomena we tested whereas SPR detected only one, and
for A-maze the effect was always largest immediately at the critical
disambiguating region, whereas SPR detected its one effect only in
spillover.

Error rate

To better understand how and when data are lost to participant
mistakes, we conducted a post hoc analysis of error rates by word po-
sition for G-maze and A-maze. Word positions earlier in sentences tend

to have higher error rates than later words (Fig. 4). This is likely due in
part to mixed participant diligence. Participants with higher error rates
will contribute disproportionately to the error rates at early words.
Once a participant makes a mistake on a sentence, they no longer
contribute to error rates for later words. It could also be due to worse
(i.e. more plausible) distractors early in sentences.

We also directly checked how participant attentiveness differed
between the web-based experiments and the in-lab experiments. We
operationalized participant attentiveness by the number of sentences
they completed (i.e. made no mistakes on), and compared the in-lab G-
maze results and the web-based G-maze and A-maze results. As we see
in Fig. 5a, the web-based experiments had some participants who were
not very attentive, while the in-lab experiment did not. However, if we
weight not by participant, but by completed sentence (a proxy for
reaching late-in-sentence critical words), the distributions of quality are
more similar: most of the completed sentences are coming from fairly
attentive participants (Fig. 5b). Thus, this task seems to give us a way of
selectively getting data from attentive participants, given a mixed
participant pool, without having to create exclusion criteria.

We next looked at what sentence/correct word/distractor combi-
nations had high error rates, both on G-maze and on A-mazes. These
sources of high error rates drive data loss (when participants choose
incorrectly, they don’t see the rest of the sentence), and are likely to
indicate places where it was ambiguous which word was the correct
choice.

We found a few instances in the hand-constructed G-maze materials
where the distractor word was grammatical and plausible (see Table 3).
While these grammatical distractors were rare, they illustrate the

Table 2
Mean difference in RT between the dispreferred conditions (high attachment or no comma) and the preferred conditions. P-value equivalents are in parentheses.
Bolding indicates <p . 05.

Word Position Lab SPR Lab L-maze Lab G-maze Web SPR Web L-maze Web G-maze Web A-maze Gulordava Web A-maze Jozefowicz

Relative Clause
−5 −4 (0.65) 16 (0.17) 3 (0.89) −10 (0.23) −7 (0.67) −3 (0.9) 10 (0.53) −11 (0.56)
−4 4 (0.7) −10 (0.58) −4 (0.85) 2 (0.8) 22 (0.19) 7 (0.71) −10 (0.63) −8 (0.57)
−3 6 (0.64) −1 (0.95) 37 (0.099) −10 (0.26) 13 (0.49) −8 (0.72) −14 (0.39) −20 (0.48)
−2 2 (0.87) 2 (0.88) −31 (0.33) −10 (0.29) 17 (0.33) −1 (0.99) 16 (0.42) −2 (0.92)
−1 6 (0.7) −11 (0.63) −33 (0.3) −7 (0.48) 14 (0.46) −44 (0.22) 35 (0.21) −14 (0.68)

0 15 (0.39) 35 (0.051) 121 (0) −10 (0.31) 18 (0.32) 105 (0.0025) 73 (0.0095) 163 (0.001)
1 23 (0.15) 26 (0.27) 39 (0.33) 17 (0.17) 47 (0.047) 58 (0.14) 82 (0.23) 5 (0.88)
2 24 (0.063) 21 (0.43) 14 (0.61) 10 (0.3) 23 (0.22) 2 (0.96) −2 (0.9) 68 (0.045)
3 −2 (0.85) 27 (0.13) −10 (0.71) 4 (0.68) 1 (0.95) −15 (0.61) 14 (0.58) 26 (0.34)
4 −11 (0.29) −8 (0.72) −51 (0.059) 1 (0.89) −4 (0.8) −51 (0.19) 17 (0.45) 17 (0.49)
5 −3 (0.77) 19 (0.32) −9 (0.76) 14 (0.23) 56 (0.052) −22 (0.62) −16 (0.49) 20 (0.56)

Adverb Clause
−5 0 (0.98) −3 (0.84) −12 (0.57) 5 (0.53) −1 (0.99) −31 (0.5) −9 (0.66) 2 (0.94)
−4 15 (0.19) 9 (0.51) −12 (0.51) 4 (0.57) 7 (0.74) −22 (0.46) −15 (0.4) 11 (0.61)
−3 −1 (0.95) 18 (0.28) 12 (0.68) 0 (0.97) 8 (0.59) −64 (0.15) 9 (0.7) 14 (0.61)
−2 18 (0.048) −8 (0.7) 33 (0.27) −14 (0.092) −24 (0.24) 0 (0.98) 32 (0.2) 16 (0.59)
−1 8 (0.45) −10 (0.57) −17 (0.42) −8 (0.34) −15 (0.36) −3 (0.94) 18 (0.41) −26 (0.33)

0 56 (0.017) 48 (0.0025) 216 (0) 9 (0.33) 44 (0.014) 213 (0.005) 175 (0) 170 (0.001)
1 25 (0.032) 13 (0.4) 78 (0.0065) 27 (0.002) −11 (0.5) 13 (0.72) 77 (0.001) 32 (0.22)
2 15 (0.083) 9 (0.62) 93 (0.003) 27 (0.0045) 7 (0.62) −5 (0.89) 6 (0.76) 30 (0.15)
3 9 (0.48) −8 (0.72) −30 (0.22) 14 (0.12) −7 (0.73) 39 (0.41) 27 (0.23) 1 (0.95)
4 13 (0.093) 3 (0.88) 23 (0.35) 15 (0.02) −41 (0.054) 41 (0.18) 0 (1) 12 (0.66)
5 8 (0.32) 16 (0.29) 20 (0.4) 10 (0.19) −2 (0.91) 30 (0.37) −15 (0.42) −41 (0.11)

S v NP
−5 5 (0.59) 9 (0.5) −6 (0.8) 6 (0.39) 12 (0.49) −31 (0.29) −1 (0.96) −10 (0.73)
−4 −69 (0.0045) 5 (0.76) 2 (0.93) −5 (0.57) −28 (0.17) 2 (0.94) −25 (0.46) −55 (0.11)
−3 −9 (0.37) −32 (0.024) −17 (0.42) −14 (0.064) −25 (0.078) −14 (0.6) −6 (0.75) 4 (0.87)
−2 11 (0.15) −28 (0.078) −46 (0.054) 2 (0.82) −23 (0.18) −24 (0.37) −12 (0.42) 5 (0.86)
−1 7 (0.48) −13 (0.47) −6 (0.82) 2 (0.75) −33 (0.071) −38 (0.09) −10 (0.54) −32 (0.3)

0 17 (0.17) −5 (0.81) −7 (0.86) 2 (0.82) −1 (0.98) 19 (0.65) 96 (0.013) 134 (0.024)
1 12 (0.28) −6 (0.82) 15 (0.58) 0 (0.98) 0 (0.99) 13 (0.6) −32 (0.11) −2 (0.92)
2 3 (0.73) −6 (0.71) 38 (0.099) 5 (0.55) 7 (0.7) −42 (0.12) −8 (0.7) 1 (0.98)
3 6 (0.57) −3 (0.88) 9 (0.74) 2 (0.81) −6 (0.69) −2 (0.92) 1 (0.95) 45 (0.14)
4 −3 (0.7) −7 (0.79) −27 (0.37) −1 (0.87) −3 (0.88) −25 (0.42) 4 (0.83) −5 (0.92)
5 −13 (0.42) 30 (0.34) −13 (0.7) 6 (0.71) −12 (0.78) −3 (0.95) 29 (0.28) −28 (0.56)
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difficulty of constructing distractors that don’t fit under any parse.
Some other moderately high error-rates in G-maze seemed to come
from distractors that, while ungrammatical, were very similar to plau-
sible words, such as untensed forms of verbs that were good semantic
fits in the context.

Both our A-mazes also occasionally generated grammatical, plau-
sible distractors, especially for the second word of the sentence (see
Table 3 for examples). This is perhaps unsurprising given how little
context there is at the second word of the sentence, and given our A-
maze constraint that the distractor is length-matched to the target (truly
ungrammatical continuations at the second word of the sentence will
often require a word in a closed-class part of speech, such as The of, and
these words are few and typically short). This leads to substantial data
loss at word 2 (Fig. 4). Future deployment of the Maze task might ad-
dress this by using x-x-x distractors for more than just the first word of a
sentence, introducing real-word distractors only after there’s enough
context for sharper constraint on sentence continuations. One might
also construct a hybrid between Maze and centered SPR, where the first
few words are presented by themselves (no distractor) as SPR and the
rest of the sentence (including any critical regions) is done with Maze. It
may also be possible to adjust the A-maze algorithm’s thresholds for
accepting distractors to reduce the chance of getting grammatical dis-
tractors, even with very little sentence context.

We also examined error rates at and around the critical dis-
ambiguating words. One puzzle in our results is that the two A-maze
tasks find a reasonably large effect on the critical word in the S v NP
condition, while G-maze, either in lab or over the web, doesn’t. This

Fig. 4. Error rate by word position. Word 1 is the first word of the sentence (always with an x-x-x distractor). In Lab G-maze, participants pushed a button to continue
at word 1, but could not make an error.

Fig. 5. Distributions of participant and completed sentence quality. While some crowdsourced participants do not complete many sentences; most of the completed
sentences come from diligent participants.

Table 3
Examples of plausible distractors and associated higher error rates.

Prefix Correct Distractor Error Rate

G-maze

Sarah and her mother had steak, mental, 35% (web),
57% (lab)

Margo will open bakeries in
Chicago and

New carve 34% (web),
46% (lab)

Jane prepared first 28% (web),
21% (lab)

A-maze Gulordava

The niece cooks 44%
The swimmer disappointed propositions 30%

The semester steroids 29%
The daughter of the actor who

hated herself/himself for
failing

always taught 28%

A-maze Jozefowicz

Mark will answer the email exams 48%
The husband authors 46%
Jim listened survived 43%
The uncle roads 42%
The knight saints 40%
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seems to suggest that for G-maze, the correct word in each condition
was about as easy to select and integrate into the sentence; which could
potentially be due to distractors that were better fits (more distracting)
in the comma condition. If this were the case, we would expect to see
inflated error rates. In Fig. 6, we can see a spike in error rates in both S v
NP conditions (especially for G-maze), but not in other conditions. This
suggests that distractors at the S v NP critical word may have been hard
to rule out.

More generally, it will likely be desirable for researchers to spot-
check A-maze distractors at key parts of the sentence, including early on
in the sentence and at and immediately after the critical word, carefully
replacing any automatically generated distractors that are un-
satisfactory. Additionally, an important post hoc check on the quality of
experimental materials is that error rates are low at critical words in the
sentence. Researchers must also keep in mind that hard-to-reject dis-
tractors will generally yield longer RTs, and ensure that differences in
RTs are not due to differences in the quality of distractors across con-
ditions.

Power analysis

We can start to quantify the sensitivity of each experimental method
studied here by performing power analysis for prospective future re-
plications of these studies based on the data reported here. We assume
reuse of the same materials (including the same distractors for the Maze
study) and use Monte Carlo simulation to estimate the probability of

obtaining an effect significant at the p-value equivalent 0.05 level as a
function of the number of participants recruited. Simulated participant
counts ranged from 10–60, and we ran 500 Monte Carlo replicates for
each manipulation/method combination. For each replicate, we simu-
lated new participants, but kept the items the same. To model data lost
to errors (including earlier in the sentence), we assumed that partici-
pant data loss rates were normally distributed with the experimentally
determined mean and variance, and sampled data loss rates for each
participant. We randomly eliminated lines of data with probability
equal to the simulated participants data loss rate. Using the same brms
model as described in ‘Data analysis’, for each replication, we sampled a
set of parameter values from the posterior and simulated data using
these parameters. Then, we modelled the simulated data using the same
model (run in lme4 (Bates, Mächler, Bolker, & Walker, 2015) for speed).
We report the proportion of replicates for which the effect size reaches
statistical significance (operationalized as >t 2) as the statistical power
level. Because SPR is usually analysed with a spillover region, here we
calculate its power on the summed 0–3 word region; power in the Maze
task is simulated just on word 0.

Fig. 7 shows the results of our power simulations. Consistent with
the results seen in Fig. 3, we find that A-maze and G-maze are the most
powerful methods, requiring fewer participants to have a high prob-
ability of finding a significant effect for these well-established syntactic
attachment disambiguation phenomena. While different methods are
better on different tasks, we find that A-maze tends to be higher pow-
ered than SPR, even when SPR is summed over a spillover region.

Fig. 6. Error rates at the critical/disambiguating word by condition. Error rates are generally stable in this region, but the S v NP conditions have higher error at the
critical word.

Fig. 7. Estimated power for different numbers of participants. Power for SPR was calculated on the summed 0–3 word region, to account for spillover effects.
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Discussion

This paper reports two methodological innovations for sentence-
processing experiments and a test of these innovations. First, we created
a web-based implementation of the Maze paradigm that can be used for
crowdsourced populations. Second, we developed and implemented a
procedure for A(utomatically) generating distractor words for
G(rammaticality)-mazes. We find that the Maze task, but not self-paced
reading, works as well on Mechanical Turk as in-lab. We further find
(consistent with the results of Witzel et al. (2012)) that crowdsourced
G-maze is more powerful than crowdsourced L(exicality)-maze for the
syntactic attachment disambiguations studied here. Finally, we find
that both our A-mazes, where distractors are generated entirely auto-
matically, are just as powerful as G-maze with hand-constructed ma-
terials, and for one of the three phenomena studied was even more
powerful.

We see the main utility of Maze tasks (including A-maze) as sup-
planting SPR as an incremental processing method that can be used for
high-powered crowd-sourced studies. Our results indicate that web-
based Maze has better localization and higher power than web-based
SPR. It remains to be seen whether this pattern holds on other mate-
rials, but Maze appears to solve the main issues of web-based SPR by
reducing spillover effects and eliminating data from inattentive parti-
cipants. We thus recommend researchers consider A-Maze as an alter-
native to SPR, though we acknowledge that future comparisons be-
tween A-Maze and SPR on a wider variety of sentence-processing
materials (e.g., those that do not involve structural ambiguity resolu-
tion) will continue to be valuable in order for the field to obtain a fuller
picture of any systematic differences in the types of difficulty patterns
revealed by the two methods. We expect Maze to be a less attractive
option to researchers whose questions benefit from the naturalness and
richness of data that eye-tracking provides. A-maze may still be useful
for piloting materials before committing the resources needed for an
eye-tracking study; but we expect A-maze to be of interest mainly in
situations where collecting eye-tracking data from enough participants
would be infeasible or undesirable.

We have presented the idea of automating material generation for
the Maze task, and shown a proof-of-concept with an implementation
and a small test that it works. There are many possibilities for future
work including more comparisons between Maze and other methods of
other phenomena of interest. While many phenomena of interest have
been studied using a variety of tools, there are few direct comparisons
between methods, and so little is known about how powerful different
methods are at detecting or localizing effects. More comparisons be-
tween methods would let researchers make more informed choices
about their experiment designs.

Another avenue for research is systematically manipulating prop-
erties of Maze distractors (such as exact surprisal value or part-of-
speech) and seeing how this influences how easy it is to select the
correct word. This research would likely lead both to a better under-
standing of what makes some words easier or hard to integrate into
sentences as well as improved A-maze implementations that reduce the
rate of overly plausible distractors.

In terms of implementation, our work identified opportunities for
further methodological refinement, including tweaking surprisal
thresholds and criteria for distractor matching (both to target words
and across sentences). In particular we identified a problem with A-
maze distractor generation at word 2 which may be addressable by
revised distractor criteria for that position (see ‘Error rate’).

While the implementation of A-maze we present is specific to
English (and specific to the two language models we use), the same
principles could be used to automate distractor generation for any
language with large enough corpora for training good language models.
We speculate that this could potentially get around difficulties creating
G-maze for languages with more flexible word order than English,
where hand-constructing materials may be even more difficult (free

word order could make it more difficult to think of contextually in-
appropriate distractors). In addition, this set-up could be adapted to use
future models, as better and better language models emerge from NLP
research.

While our main interest is in developing a method for easier in-
cremental processing data, our results also tell us something about the
capacities of these NLP language models. For one, their predictions of
high surprisal seems to align reasonably well with human plausibility
judgments. However, their predictions seems much better a couple of
words into a sentence than at the beginning.

We encourage researchers to consider using A-maze as an alter-
native to SPR for crowdsourced experiments (and potentially even for
in-lab experiments). With automated distractor generation, A-maze is
no more work than SPR to set up. Researchers familiar with the widely
used Ibex software for SPR experiments should find it particularly easy
to transition to web-based Maze tasks; the results are in nearly identical
format.

Self-paced reading, eye tracking, and Maze differ in their cognitive
demands, motor requirements, and decision-making task structure. In
eye tracking but not in moving-window self-paced reading or Maze, the
reader can freely consult previous words in the sentence. In self-paced
reading and Maze, the motor-control bottleneck is button-pressing; in
eye tracking it is eye movements. Eye tracking involves sequential de-
cision making about when and where to move the eyes; self-paced
reading about when to press a button; Maze about which button to
press. While our results, and those of previous researchers using Maze
(Forster et al., 2009; Witzel et al., 2012; Witzel & Forster, 2014), sug-
gest that the qualitative difficulty patterns for a number of sentence
processing phenomena are similar to those revealed by self-paced
reading and eye tracking, it remains an open question whether and how
these differing cognitive demands, motor requirements, and decision-
making structure change or differently weight the fundamental lan-
guage processing operations underlying reading. This question can be
addressed only by further accumulation of experimental data com-
paring these methods, and should be revisited as these data accumulate
in the sentence processing literature.

In sum, our work helps unlock the potential of the Maze task for
psycholinguistics research by removing three hurdles to its adoption:
(1) we show that it can be run reliably in a crowdsourced format; (2) we
provide a procedure for automatically generating distractors; and (3)
we show that our automatic distractor-generation procedure leads to
successful and powerful experimental tests for established sentence-
processing phenomena. We make our A-maze generation code, as well
as the Ibex code for the web-based Maze task, freely available online at
github.com/vboyce/Maze.
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