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Abstract
I explore the hypothesis that the universal properties of human languages can be explained
in terms of efficient communication given fixed human information processing constraints.
I argue that under short-term memory constraints, optimal languages should exhibit in-
formation locality: words that depend on each other, both in their interpretation and in
their statistical distribution, should be close to each other in linear order. The information-
theoretic approach to natural language motivates a study of quantitative syntax in Chapter 2,
focusing on word order flexibility. In Chapter 3, I show comprehensive corpus evidence
from over 40 languages that word order in grammar and usage is shaped by working mem-
ory constraints in the form of dependency locality: a pressure for syntactically linked
words to be close. In Chapter 4, I develop a new formal model of language processing cost,
called noisy-context surprisal, based on rational inference over noisy memory represen-
tations. This model unifies surprisal and memory effects and derives dependency locality
effects as a subset of information locality effects. I show that the new processing model
also resolves a long-standing paradox in the psycholinguistic literature, structural forget-
ting, where the effects of memory appear to be language-dependent. In the conclusion I
discuss connections to probabilistic grammars, endocentricity, duality of patterning, incre-
mental planning, and deep reinforcement learning.
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名不正，則言不順；言不順，則事不成；

事不成，則禮樂不興；禮樂不興，則刑罰

不中；刑罰不中，則民無所措手足。故君

子名之必可言也，言之必可行也。

Confucius, Analects 13.3

1.1 Introduction

What kind of thing is natural language? Why are natural languages the way they are?

How should we model a natural language mathematically? These questions are crucial

for understanding linguistic behavior, as well as for developing technologies that can use

natural language.

Here I argue that the distinctive properties of human language can be derived from ratio-

nal communication among agents with humanlike information processing characteristics,

such as incrementality of processing and restrictions on short-term memory and planning

capacity. The main result is that under these constraints, natural language should have the

property of information locality: if elements of an utterance depend on each other, then

those elements should be close in linear order. Dependence can take two forms: context-

dependent interpretation—where the interpretation of one linguistic element depends on

the presence of some other linguistic element—and probabilistic dependence, where one

linguistic element makes another more or less likely to occur. I give evidence that in-

formation locality holds based on quantitative, information-theoretic analysis of syntax in

dependency corpora of many languages.

This work aims to combine cognitive, typological, and computational perspectives in

order to explain the universals of human language. From the cognitive side, I use the broad

generalizations about human sentence comprehension and production: that it is highly in-

cremental and operates with imperfect memory (Gibson, 1998; Christiansen and Chater,

2016). From the typological side, I use some of the generalizations that have been dis-

covered about languages, especially implicational universals about word order (Greenberg,

1963; Dryer, 2002, 2011; Hawkins, 2004). From the computational side, I use the mathe-
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matical language and model of communication from Information Theory (Shannon, 1948;

Cover and Thomas, 2006), probabilistic modeling concepts, and richly annotated linguistic

resources from the parsing community (Nivre, 2015).

The idea of explaining language universals functionally, in terms of communication

efficiency and information processing cost, has a rich history in linguistics (Zipf, 1949;

Hockett, 1960; Greenberg, 1966; Slobin, 1973; Comrie, 1981; Bates and MacWhinney,

1989; Givón, 1991, 1992; Dryer, 1992; Hawkins, 1994, 2004, 2014; Dryer, 2006; Croft,

2001, 2003; Haspelmath, 2008; Richie, 2016). This work aims to introduce information

locality as a new and multifaceted quantitative generalization into the linguistics discourse.

On the cognitive side, a growing contingent of researchers has been arguing for commu-

nicative optimality as an explanatory principle for linguistic phenomena (Ferrer i Cancho

and Solé, 2003; Jaeger and Tily, 2011). For example, Regier et al. (2015) argues that

linguistic category systems are shaped by simultaneous pressures for communication and

simplicity, with evidence from the semantic domains of color (Regier et al., 2007), kinship

(Kemp and Regier, 2012), spatial terms (Khetarpal et al., 2013), numeral systems (Xu and

Regier, 2014), and others (Xu et al., 2016; Regier et al., 2016). Piantadosi et al. (2011) pro-

vide evidence that word lengths are optimized for efficient communication, and Piantadosi

et al. (2012) argue that efficiency in communication can explain the presence of ambiguity

in natural language (see also Juba et al. (2011) for related arguments). These arguments

have typically applied at the level of words and lexicons, rather than syntactic structures

(though for an exception see Gildea and Jaeger (2015)). This thesis focuses on the ques-

tion of how this approach may be used to explain syntax, arguing that syntactic systems

conform to locality constraints induced by memory limitations in incremental processing.

Previous work has argued for the pivotal role of incrementality of processing in shaping

the organization of linguistic systems (Christiansen and Chater, 2016); this thesis empha-

sizes locality constraints as a consequence from that hypothesis.

For many years, alongside linguistics and cognitive science, there has existed a sound

and actively developed theory of communication, with deep roots in probability theory,

in the form of information theory (Shannon, 1948; MacKay, 2003; Cover and Thomas,

2006). Information theory has seen great success in theoretical and practical analysis of
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digital communication codes, but it has had less success as applied to human languages.

This is because many of the properties of information theoretically optimal codes do not

seem to hold in natural language (see Section 1.3.5 for detailed discussion).

Here I will argue that the distinctive properties of natural language can be derived using

the standard tools of information theory while appropriately factoring in human-specific

information processing constraints. In particular, I consider the communicative utility of

languages given limitations on the representational capacity of short-term memory. I find

that under these limitations, optimal languages have the property of information locality:

utterance elements that depend on each other, either for their meaning or their distribu-

tion, must be close. This thesis is devoted to exploring the idea of information locality

from a theoretical perspective and building evidence for it using crosslinguistic studies of

quantitative syntax, based on parsed dependency corpora of many languages.

The basic idea of information locality has been proposed in various forms in previous

work. It is recognizable as Behaghel (1932)’s fundamental principle of word order: “that

which belongs close together mentally is also placed close together.”1 It can be seen as a

generalization of the idea that is variously known as dependency locality (Gibson, 2000),

domain minimization (Hawkins, 2004, 2014) or dependency length minimization (Fer-

rer i Cancho, 2006; Liu, 2008; Gildea and Temperley, 2010). Inasmuch as dependency

locality is a subset of information locality, information locality can explain pervasive word

order universals in language (Hawkins, 2004, 2014; Ferrer i Cancho, 2006; Gildea and

Temperley, 2010).

Given this previous work on locality concepts, the contribution of this thesis is three-

fold. First, I provide a sound mathematical footing for information locality by defining it in

terms of mutual information. Second, I derive information locality formally from a utility

function for languages that factors in short-term memory constraints (see Section 1.5 and

Chapter 4). Third, I provide unprecedented large-scale evidence that languages follow in-

formation locality, both in the form that dependency lengths are short (Chapter 3) and that

words that covary in general are close (Section 4.4).

I am arguing that natural languages satisfy a notion of communicative optimality, but I

1Das oberste Gesetz ist dieses, daß das geistig eng Zusammengehörige auch eng zusammengestellt wird.
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remain agnostic as to the mechanism by which languages end up becoming more optimal—

whether it happens over generational language change or some more dynamic process. This

work aims to describe a communication-related utility function for languages that makes

interesting predictions about syntax and to show that languages apparently maximize that

function. I leave the detailed investigation of how that optimization happens to other work.

The most common proposals for how languages become more functional include biases

that emerge through learning and cultural transmission in conjunction with communication

(Kirby, 1999, 2002; Griffiths and Kalish, 2007; Fedzechkina et al., 2012; Culbertson et al.,

2012; Kirby et al., 2014), although see Bybee and Slobin (1982) for arguments against the

idea that language learners drive language change.

The rest of this introduction will be devoted to developing the idea of the commu-

nicative utility of a language and how information processing constraints interact with it.

I introduce the conceptual framework for thinking about language as an optimal code in

Section 1.2, and introduce mathematical concepts from information theory in Section 1.3.

In Section 1.4, I distill these concepts into a utility function for languages as efficient com-

munication systems, but this utility function does not incorporate the effects of information

processing constraints. In Section 1.5, I show how to incorporate information processing

constraints into the language utility function, and give examples showing how to derive

information locality effects from this utility function when we assume limits on short-term

memory capacity.

1.2 Conceptual framework

My goal here is to provide an explanatory framework for natural languages in terms of

efficient communication subject to information processing constraints. In this section, I

first lay some groundwork about what precisely I mean by language and communication.

1.2.1 Language as a code vs. language as a distribution

The term “language” is used ambiguously in the literature and in common usage. “Lan-

guage” can mean a code for expressing meanings, or it can mean a set (or probability
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distribution) of sentences or utterances. In this section I will refer to these distinct ideas as

“language as a code” and “language as a distribution”. Here I am making only terminolog-

ical distinctions; no nontrivial empirical claims should be implied. Language as a code is

a mapping from a meaning to a distribution over utterances to express that meaning. I will

notate a language as a code as a function ℒ(·). Language as a distribution is a probability

distribution over utterances, as we might observe in a corpus. I will notate a language as a

distribution as 𝐿.

Formally, let a meaning be an element of the setℳ, called the meaning space. Let 𝑀

be a probability distribution overℳ. Going forward, I will try to make as few assumptions

as possible about meanings and the space of meanings. I will often assume that 𝑀 can be

represented as a discrete distribution, but this should not be taken as crucial. I will also

assume frequently that 𝑀 is stationary, meaning that it does not change over time. If 𝑀 is

not stationary, then the extent to which languages adapt to its value at any particular point

in time may be reduced. I discuss the effects of nonstationarity of 𝑀 further in Section 5.3.

Let an utterance be an element of the set 𝒰 . An utterance is a sequence of symbols

called linguistic elements (phonemes or morphemes, depending on the particular level of

analysis). A language as a code ℒ(·) is a function from ℳ to probability distributions

over 𝒰 . A language as a distribution 𝐿 is a probability distribution over 𝒰 , generated by

drawing samples from 𝑀 and expressing them into utterances with ℒ(·). A corpus is a

finite set of samples from 𝐿. I also write 𝐿 as ℒ(𝑀).

In formal language theory, a language is viewed as a set of strings, corresponding to

language as a distribution (Hopcroft and Ullman, 1979). A probabilistic formal language

(p-language: Ellis 1969; Kornai 2011) is exactly language as a distribution. Language as

a code is just a p-language conditional on the meanings that one wishes to express when

speaking.

Relation with Previous Concepts

The distinction of language as a code vs. language as a distribution overlaps with previ-

ous distinctions from the linguistic literature, but is separate from them in important ways.

Chomsky (1988) made a distinction between I-language, meaning language as a formal
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system known in the minds of speakers, and E-language, meaning observable linguistic

behavior. I-language corresponds roughly to language as a code inasmuch as it instantiates

a relationship between form and meaning. E-language corresponds to language as a dis-

tribution: or more precisely, E-language is a set of observations drawn from a language as

a distribution. While I-language is mental and E-language is physically observable, I do

not make any such distinction for language as a code vs. language as a distribution. My

distinction is relevant for the description of languages as mathematical objects, and does

not imply anything about the instantiation of these objects in minds and in the world.

The distinction is orthogonal to the previous distinction of competence vs. perfor-

mance. Competence is a speaker’s knowledge of how language normatively works; Chom-

sky (1965) views it as a formal system. Performance is linguistic behavior, which is a

function of competence but including practical constraints and sources of error. Along

similar lines, Saussure (1916) made a distinction between langue, meaning language as an

abstract formal system as might be described in a grammar, and parole, meaning observ-

able speech. He gave the example of a language derived by taking French and mapping

its phonemes onto other phonemes one-to-one. The utterances in the resulting language

consist of phonetic sequences that are isomorphic to French phonetic sequences. Saus-

sure (1916) claimed that the resulting language is the same langue, but results in different

parole. In my framework, language as a code describes any mapping from meanings to

utterances. The mapping may be factored into an idealized system (competence/langue)

that is noisily translated into physical utterances (performance/parole), or it may not be,

depending on the analysis.

The concept of performance introduces the notion of error: people might know a lan-

guage and desire to speak according to that language, but still end up producing utterances

that are not licensed by the language. For example, disfluencies, false starts, and sentence

“blends” (Fromkin, 1971; Garrett, 1975, 1980; Fromkin, 1980), are all in the domain of

performance and E-language, rather than competence and I-language. My concepts of lan-

guage as a code and language as a distribution do not treat the notion of error in the same

way. A speaker may know a language should be spoken a certain way, but fail to speak

it that way due to planning errors; in my terminology, these errors happen in the mapping
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from meaning to form, i.e. in language as a code. A language as a code is an object de-

scribing any mapping from meaning to utterance; if we wish to model the effects of speech

errors, then a mapping ℒ may be derived by adding speech errors to some other error-free

mapping ℒ′.

The common distinction of grammar and usage is also separate from the one I wish

to draw. I am intending language as a code to encompass all aspects of the mapping from

a meaning to a distribution over utterances that one might say in a language to express

that meaning. In this sense, “language as a code” subsumes phenomena such as pragmatic

choice of utterances in particular contexts (Grice, 1975), which is often viewed as part

of usage, not grammar. It may well be possible to separate pragmatics from the literal

semantics of a language, with a notion of a literal, possibly nonprobabilistic language-as-

a-code (grammar), which gives rise to probabilistic pragmatic behavior (usage). I will use

a grammar vs. usage distinction in this sense in Section 3.3, for example. By language

as a code, I simply mean the probability distribution over utterances a speaker would say

conditional on an intended meaning.

1.2.2 Means of explaining properties of languages

The conceptual framework above for languages is extremely generic and does not yield

any predictions at all about what the form of languages should be. I have only assumed

that there are objects called meanings that are related to objects called utterances, which

are sequences of symbols. I say that any mapping from meanings to sequences of symbols

can be called a language. Thus I consider the range of possible, describable languages

to be much larger than the set of observed languages. I will aim to describe the set of

observed human languages—a small subset of possible languages—by hypothesizing that

they are the languages which maximize a utility function related to communication under

information processing constraints.

This conceptual approach differs from the common approach taken in linguistics, where

the formalism in which languages are defined places constraints on what languages are

possible—the notion of “explanation by constrained description” (Pollard and Sag, 1994;
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Newmeyer, 1998, 2005; Haspelmath, 2010), as seen in Optimality Theory (McCarthy,

2002), and prominently associated with the field of generative formal syntax (e.g., Chom-

sky, 1965, 1988; Travis, 1989; McCloskey, 1993; Kayne, 1994). Even if the research pro-

gram of explanation by constrained description succeeds, it raises the question of why the

formal definitional restrictions that constrain languages exist. These restrictions may be

justified externally, in terms of effort and utility, as is sometimes done in Optimality The-

ory (Bresnan, 1997; Aissen, 2003), or claimed to be arbitrary and innate: this is the notion

of Universal Grammar (Chomsky, 1988).

The distinction between description and explanation of languages here is like the dis-

tinction between kinematics and dynamics in physics. Kinematics is the mathematical

language for describing objects in motion without reference to the cause of motion; dy-

namics is the study of forces acting on those objects. It is possible to describe in kinematic

language many spatial trajectories which are not licensed by any known laws of physics,

just as it is possible to describe many bizarre languages as a function from meanings to

utterances. Explanation of observed motion comes through dynamics, just as explanation

of observed languages here comes through a utility function based on communication with

information processing constraints.

The utility function for language as a code ℒ with respect to meaning distribution 𝑀 is

to maximize the quantity of information transmitted about 𝑀 in utterances, minus the cost

of sending and receiving those utterances, all under information processing constraints.

Utility of a language ℒ is calculated according to the best possible behavior of the speaker

and listener respecting their information processing constraints. These constraints induce

bounds on how closely the speaker and listener can approximate the behavior described by

ℒ. Languages that cannot be spoken or understood will have low utility, even if they would

allow excellent communication in principle between ideal agents.

Note that the formulation here includes the possibility of learnability as a constraint,

though I will not talk directly about learnability constraints in this work. Learnability af-

fects the ability of the speaker and listener to approximate a language. It can also affect the

cost of sending and receiving utterances, because if a language is hard to learn, then the

speaker and hearer will have high uncertainty about the grammar, making processing more
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costly. There is considerable evidence that learnability constraints, along with communica-

tive pressure, are behind the emergence of systematicity in linguistic structure, because

they force the language to be compressible (Kirby et al., 2008, 2014, 2015; Cornish et al.,

2017). Although I will talk mostly about online processing constraints, this should not be

taken to exclude the effects of learnability in this framework. Exploring how learnabil-

ity interacts with the frameworks and phenomena discussed here is rich ground for future

work.

Crucially, the utility function for languages depends on language as it is used. We

will see this claim fleshed out in more detail below, but for now it is enough to note that

appropriateness for communication is a function of what people actually say when they

wish to express meanings. Thus communicative efficiency depends on language as it ends

up being used; it is not solely based on language as a normative ideal abstract formal system

known to speakers (competence, I-language, langue, etc.) We will also see below that,

because language processing is affected by probabilistic expectations, the communicative

efficiency of a language under information processing constraints depends to some extent

on the language as a distribution independently from the language as a code (Section 1.5.4).

The fact that efficiency has to do with usage justifies a quantitative approach to syntax,

analyzing the frequencies with which different constructions appear and the information

theoretic properties of the resulting joint distribution over constructions. It will turn out

that the probabilistic aspects of language as a distribution have major consequences for

communication and efficiency; as a result, this work can be considered in the vein of usage-

based linguistics (Langacker, 1987, 1991; Tomasello, 2003; Bybee, 2010). The importance

of statistical distributions arises because linguistic processing involves forming probabilis-

tic expectations about future material (Marslen-Wilson, 1975; Kutas and Hillyard, 1984;

Hale, 2001; Kamide et al., 2003; Kliegl et al., 2004; Frisson et al., 2005; Dambacher et al.,

2006; Levy, 2008a; Demberg and Keller, 2009). Chapter 2 is a case study in the practical

issues that arise when attempting to use information theoretic concepts to study quantitative

syntax in this way.

The key result that I argue for, and the source of the title of this thesis, is that under mild

assumptions about memory resources used in the course of incremental processing, we can
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derive locality constraints on optimal languages. In particular, words that depend on each

other should be close to each other in linear order. Words can depend on each other because

they are in a syntactic dependency relationsip, in which case we predict that dependency

length should be minimized.

Below, I will first provide some background on the information theoretic concepts

needed to analyze language as a code (Section 1.3). Then I will present the utility function

for languages in an ideal setting (Section 1.4), and then show how to augment this utility

function to account for information processing constraints (Section 1.5).

1.3 Information theoretic concepts

Here I will introduce some of the mathematical concepts that I will use in this thesis. These

concepts are drawn primarily from the field of information theory (Shannon, 1948; Cover

and Thomas, 2006). Although there were early attempts to use the tools of information the-

ory to describe natural languages as codes (Shannon, 1948; Bell, 1953; Mandelbrot, 1953;

Burton and Licklider, 1955; Pereira, 2000), the theory has mostly been used to describe

digital codes, a concept I will contrast with natural languages in Section 1.3.5. For accessi-

ble and wide-ranging introductions to information theory, see MacKay (2003) and Cruise

(2014). While introducing these concepts, I will emphasize connections with notions of

efficient communication and coordination among agents.

For those who are already familiar with information-theoretic functions such as entropy

and mutual information, Sections 1.3.1 and 1.3.2 are likely familiar. Sections 1.3.3 and

1.3.4 introduce some lesser-known information theoretic functions (interaction information

and cross information) which will play a crucial role in the definition of the utility function

for a language under information processing constraints.

1.3.1 Entropy

Entropy is the fundamental concept of information theory, providing a link between the

probability of a message and the effort required to encode and send that message according

to some code.
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Suppose we are observing samples from probability distribution 𝐴 and we want to write

down a codeword for every sample 𝑎 ∼ 𝐴, where a codeword is a sequence of symbols

drawn from some alphabet. For simplicity, we assume the alphabet has only two possible

symbols in it, 0 and 1, corresponding to a binary code. We notate the set of all finite-length

sequences of 0s and 1s as {0,1}*. The mapping from values 𝑎 ∼ 𝐴 to codewords in

{0,1}* is a code. We want to design an efficient code, meaning the expected number of

symbols we have to write is minimized.2

The expected length of codewords in an efficient code is given by the entropy of the

distribution 𝐴 (Shannon, 1948):

𝐻(𝐴) ≡ E
𝑎∼𝐴

[− log 𝑝𝐴(𝑎)] ,

where the base of the logarithm is the alphabet size. When the alphabet size is 2 (which

I will assume always, for simplicity), then entropy is measured in units called bits. The

length of the codeword for any particular value 𝑎 ∼ 𝐴 according to the efficient code is

given by the surprisal or information content of 𝑎:

ℎ𝐴(𝑎) ≡ − log 𝑝𝐴(𝑎).

I will also write ℎ(𝑎) when the relevant probability distribution is clear.

The expression ℎ(𝑎) is called surprisal because it is high for low probability values and

low for high probability values. It measures how surprising the value 𝑎 is, and entropy

𝐻(𝐴) represents uncertainty about what value will be sampled from 𝐴.

We can also see ℎ(𝑎) as the number of random decisions required to generate 𝑎 from

𝐴 by an efficient program which minimizes the expected number of random decisions per

sample generated. Inasmuch as deciding on random values requires energy, 𝐻(𝑎) measures

a lower bound on the expected energy usage of such a program (Brillouin, 1953, 1956).

Each random decision in an execution trace of the efficient program corresponds to a bit in

a codeword for an efficient code. Thus we can see bits as both part of the representation of

2Also, efficiency in this narrow sense requires that no codeword for a value be a prefix of a codeword for
another value.
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a value, and as a representation of the decisions required to generate a value.

1.3.2 Conditional entropy and mutual information

Now I will introduce notions dealing with collections of random variables: conditional

entropy and mutual information.

Suppose we have two jointly distributed random variables (𝐴,𝐵). The distribution

(𝐴,𝐵) generates ordered pairs of values (𝑎, 𝑏). Think of 𝐴 as a probabilistic program that

uses on average 𝐻(𝐴) random decisions to generate values. When seen alone, 𝐵 also

makes on average 𝐻(𝐵) random decisions when generating its values. But when we view

𝐴 and 𝐵 together, we might find that 𝐵’s decisions are predictable from 𝐴’s. In that case,

then knowing the decisions made by 𝐴 reduces our uncertainty about the decisions of 𝐵.

We can measure conditional entropy 𝐻(𝐵|𝐴), the expected remaining random decisions

that 𝐵 appears to make after we account for the ones that were predictable from 𝐴.

Alternatively, imagine we are assigning codewords to ordered pairs (𝑎, 𝑏) ∼ (𝐴,𝐵).

𝐻(𝐴) is the expected number of bits we have to write for 𝑎 and 𝐻(𝐵|𝐴) is the expected

number of bits we have to write for 𝑏. The intuition is that if 𝑏 is predictable from 𝑎, then

we can get away with writing fewer bits for 𝑏. Conditional entropy is:

𝐻(𝐵|𝐴) ≡ E
𝑎,𝑏∼𝐴,𝐵

[︀
− log 𝑝𝐵|𝐴(𝑏|𝑎)

]︀
.

We can also define conditional surprisal, the number of bits that have to be written to

represent a particular 𝑏 after a particular value 𝑎:

ℎ𝐵|𝐴(𝑏|𝑎) ≡ − log 𝑝𝐵|𝐴(𝑏|𝑎).

Conditional surprisal has the perhaps surprising property that it is possible for ℎ(𝑏|𝑎) to be

greater than ℎ(𝑏). That is, it is possible that one has to write down more bits for 𝑏 as part

of a code for (𝐴,𝐵) than one would have had to write in a code for only 𝐵. This situation

arises when the value 𝑎 makes 𝑏 more surprising than it would have been otherwise. Nev-

ertheless, on average, conditional entropy must be less than unconditional entropy (Cover
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and Thomas, 2006):

𝐻(𝐵|𝐴) ≤ 𝐻(𝐵).

Now I arrive at the notion of mutual information. Consider again the joint random

variables (𝐴,𝐵). When we considered 𝐵 alone, it appeared to be making 𝐻(𝐵) random

decisions, but when we considered 𝐴 and 𝐵 together, we saw that 𝐵 was actually only

making 𝐻(𝐵|𝐴) random decisions on its own, and the rest were copied from 𝐴. So the

expected number of copied random decisions is 𝐻(𝐵)−𝐻(𝐵|𝐴). Equivalently, this is the

expected number of bits that are copied from codewords for 𝐴 to codewords for 𝐵. Mutual

information measures the number of bits that 𝐵 is copying from 𝐴, as we observe when

we see the two of them together. Mutual information is calculated as:

𝐼(𝐴;𝐵) ≡ E
𝑎,𝑏∼𝐴,𝐵

[︂
log

𝑝𝐴,𝐵(𝑎, 𝑏)

𝑝𝐴(𝑎)𝑝𝐵(𝑏)

]︂
= 𝐻(𝐵)−𝐻(𝐵|𝐴). (1.1)

Since 𝐻(𝐵|𝐴) ≤ 𝐻(𝐵), it follows that mutual information must be nonnegative:

𝐼(𝐴;𝐵) ≥ 0.

From the definition in Equation 1.1, we can also see that mutual information is symmetrical:

𝐼(𝐴;𝐵) = 𝐻(𝐵)−𝐻(𝐵|𝐴)

= 𝐻(𝐴)−𝐻(𝐴|𝐵)

𝐻(𝐵|𝐴) = 𝐻(𝐵)− 𝐼(𝐴;𝐵)

𝐻(𝐴|𝐵) = 𝐻(𝐴)− 𝐼(𝐴;𝐵).

That is, mutual information tells how many bits are being copied from one distribution to

the other, but it does not tell us who is doing the copying. It simply tells us that when we

view (𝐴,𝐵) as a system, it looks like there are fewer random decisions being made than

when we viewed 𝐴 and 𝐵 separately. This view corresponds to the following equations for
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mutual information:

𝐼(𝐴;𝐵) = 𝐻(𝐴) +𝐻(𝐵)−𝐻(𝐴,𝐵) (1.2)

𝐻(𝐴,𝐵) = 𝐻(𝐴) +𝐻(𝐵)− 𝐼(𝐴;𝐵). (1.3)

These equations express that mutual information is the discrepancy between the number of

bits that appear to be present in the system when we view 𝐴 and 𝐵 separately (𝐻(𝐴) +

𝐻(𝐵)), and the number of bits in the system when we view 𝐴 and 𝐵 together (𝐻(𝐴,𝐵)).

We can also define pointwise mutual information for a particular pair of values (𝑎, 𝑏)

as the difference between the length of the codeword for 𝑏 with respect to 𝐵, and the number

of bits representing 𝑏 in the codeword for (𝑎, 𝑏) ∼ (𝐴,𝐵):

pmi𝐴,𝐵(𝑎; 𝑏) = log
𝑝𝐴,𝐵(𝑎, 𝑏)

𝑝𝐴(𝑎)𝑝𝐵(𝑏)

= ℎ𝐵(𝑏)− ℎ𝐵|𝐴(𝑏|𝑎)

= ℎ𝐴(𝑎)− ℎ𝐴|𝐵(𝑎|𝑏)

ℎ𝐵|𝐴(𝑏|𝑎) = ℎ𝐵(𝑏)− pmi(𝑎; 𝑏)

ℎ𝐴|𝐵(𝑎|𝑏) = ℎ𝐴(𝑎)− pmi(𝑎; 𝑏).

When pointwise mutual information is positive, we can see it as the number of shared bits

in the representations ℎ(𝑎) and ℎ(𝑏), which get merged together in a joint representation

ℎ(𝑎, 𝑏). When it is negative, this means that writing 𝑏 required more bits in the context

of 𝑎 than it would have required otherwise. While pointwise mutual information can be

unboundedly negative, it cannot exceed the surprisal of either 𝑎 or 𝑏:

−∞ < pmi(𝑎; 𝑏) ≤ ℎ(𝑎)

≤ ℎ(𝑏).

These equations say that 𝑎 cannot provide more information about 𝑏 than is contained in 𝑎

itself, nor can 𝑎 provide more information about 𝑏 than is contained in 𝑏 to begin with.

To visualize mutual information, imagine 𝐴 and 𝐵 are two dots moving around on a
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grid. Let 𝐴 be a distribution over directions {up,down,left,right}; the dot for 𝐴

moves around according to these sampled directions. Let 𝐵 be another randomly moving

dot, placed next to 𝐴. When we look at either dot individually, it appears to be moving

around unpredictably. But when we look at these two dots moving together, we might find

that they are synchronized: 𝐵 moves as 𝐴 does. This is a case of high mutual information.

This synchronization is only possible if 𝐴 and 𝐵 share information about each other’s

random decisions. Let’s assume that 𝐴 is making truly random decisions, and 𝐵 is simply

following what 𝐴 does: that is, the dots are moving around with perfect synchronicity. 𝐵

has to receive information from 𝐴 to know how it should move; if 𝐴 does not make its de-

cisions perceptible to 𝐵, then 𝐵 will not know how to move. Mutual information measures

the number of 𝐴’s random decisions that it must make available to 𝐵 to enable coordina-

tion. Equivalently, mutual information is the expected length of the shortest message that

𝐴 must send to 𝐵 to enable coordination.

For this reason, we can see mutual information as a measure of the energy usage re-

quired to maintain coordination. The energy required to send a message of some length

is at least proportional to the length of the message, simply because sending each symbol

takes effort. Thus, mutual information measures a lower bound on the energy required for

coordination among two agents—they must send messages to each other of length deter-

mined by the mutual information. Thus coordination is harder than independence; joint

actions that require more coordination require more energy, though they may lead to much

higher reward.

The mutual information of a distribution (𝐴,𝐵) measures the coordination energy re-

quired to maintain the distribution beyond what would be required if 𝐴 and 𝐵 were inde-

pendent. When 𝐴 and 𝐵 are not synchronized and move totally independently, then the

total random decisions made by 𝐴 and 𝐵 is 𝐻(𝐴) +𝐻(𝐵) and mutual information is zero

(following Equation 1.2).

Thus, mutual information is a highly general way of quantifying dependence among

random variables, and it also gives some insight into the nature of communication. 𝐴

and 𝐵 must communicate to coordinate, and mutual information quantifies the amount of

communication they will have to do.
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𝐴 𝐵 𝐶
0 0 0
0 1 1
1 0 1
1 1 0

Table 1.1: An example joint distribution 𝐴,𝐵,𝐶. 𝐴 and 𝐵 are Bernoulli coinflips generat-
ing 0 or 1 with equal probability. 𝐶 = XOR(𝐴,𝐵).

1.3.3 Interaction information

In the course of this thesis I will use some lesser known information theoretic concepts,

including interaction information. For attempts to visualize and give intuition about inter-

action information, see Bell (2003); Jakulin and Bratko (2003); Crooks (2016).

Interaction information (McGill, 1955) is a generalization of mutual information to

the case of more than two variables. Recall that mutual information is the bits shared

among 2 variables, which appeared to be random when we viewed the variables separately.

Interaction information is the bits shared among 𝑛 variables, which appeared to be random

when we viewed all the strict subsets of the variables. For three variables, it is the difference

in joint entropy of three variables (𝐴,𝐵,𝐶) from what one would expect from observing

any pair of them:

𝐼(𝐴;𝐵;𝐶) = 𝐻(𝐴,𝐵) +𝐻(𝐴,𝐶) +𝐻(𝐵,𝐶)

− [𝐻(𝐴) +𝐻(𝐵) +𝐻(𝐶)]

−𝐻(𝐴,𝐵,𝐶)

𝐻(𝐴,𝐵,𝐶) = 𝐻(𝐴) +𝐻(𝐵) +𝐻(𝐶) (1.4)

− 𝐼(𝐴;𝐵)− 𝐼(𝐵;𝐶)− 𝐼(𝐴;𝐶)

− 𝐼(𝐴;𝐵;𝐶).

Example A classic example of interaction information is the case of three variables

𝐴,𝐵,𝐶 where 𝐴 and 𝐵 are independent Bernoulli variables generating 0 or 1, and 𝐶 =

xor(𝐴,𝐵). The joint distribution of 𝐴, 𝐵, and 𝐶 is described in Table 1.1.

The total joint entropy is 𝐻(𝐴,𝐵,𝐶) = 𝐻(𝐴) +𝐻(𝐵|𝐴) +𝐻(𝐶|𝐴,𝐵), by the chain
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rule. The variable 𝐶 is a deterministic function of 𝐴 and 𝐵 so 𝐻(𝐶|𝐴,𝐵) = 0; and 𝐴 is

independent of 𝐵, so 𝐻(𝐵|𝐴) = 𝐻(𝐵). Thus 𝐻(𝐴,𝐵,𝐶) = 𝐻(𝐴) +𝐻(𝐵) = 2.

Now let’s think of how to decompose this joint entropy into interaction informations,

according to Equation 1.4. In that equation for this example, the pairwise mutual informa-

tion terms such as 𝐼(𝐴;𝐵) are all equal to 0, because no variable in 𝐴,𝐵,𝐶 is predictable

given one other variable. So if we calculate up to the last term, we get 1+1+1−0−0−0 =

3. Now we know the result we want to get is 2, so we need 3 − 𝐼(𝐴;𝐵;𝐶) = 2. Thus

𝐼(𝐴;𝐵;𝐶) = 1, indicating that there is 1 bit of information shared among 𝐴,𝐵,𝐶 that

could not be detected when considering the variables in isolation or in pairs.

Another way of looking at this example is to say that neither 𝐴 nor 𝐵 alone were

informative about 𝐶, but when we considered 𝐴 and 𝐵 together, they provided 1 bit of

information about 𝐶. Later I use this logic to describe a case where two words together

might be informative about meaning in a way that cannot be detected from either word

alone (Section 1.5.5).

We can also think about interaction information in terms of conditional mutual infor-

mation, the expected mutual information between two variables 𝐴 and 𝐵 conditional on a

third variable 𝐶. Conditional mutual information is:

𝐼(𝐴;𝐵|𝐶) ≡ E
𝑐∼𝐶

E
𝑎,𝑏∼𝐴,𝐵|𝐶

[︂
log

𝑝𝐴,𝐵|𝐶(𝑎, 𝑏|𝑐)
𝑝𝐴|𝐶(𝑎|𝑐)𝑝𝐵|𝐶(𝑏|𝑐)

]︂
= 𝐼(𝐴;𝐵) + 𝐼(𝐴;𝐵;𝐶)

𝐼(𝐴;𝐵;𝐶) = 𝐼(𝐴;𝐵|𝐶)− 𝐼(𝐴;𝐵).

For example, in the XOR case, the mutual information 𝐼(𝐴;𝐵) was 0, but the conditional

mutual information 𝐼(𝐴;𝐵|𝐶) was 1, because knowing 𝐶 makes 𝐵 become predictable

from 𝐴. Thus the interaction information 𝐼(𝐴;𝐵;𝐶) = 𝐼(𝐴;𝐵|𝐶)−𝐼(𝐴;𝐵) = 1−0 = 1.

In general, for a set 𝛼 of 𝑛 random variables, interaction information is (Tin, 1962;

Jakulin and Bratko, 2003):

𝐼(𝛼1; ...;𝛼𝑛) ≡ −
∑︁
𝛽⊆𝛼

(−1)𝑛−|𝛽|𝐻(𝛽). (1.5)
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Interaction information must be nonnegative for even 𝑛, and it can be positive or negative

for odd 𝑛. Negative interaction information corresponds to a case where viewing 𝑛 vari-

ables together makes them appear to have less shared bits than viewing all the sets of 𝑛− 1

variables. Positive interaction information means that viewing 𝑛 variables together makes

them appear to have more shared bits than when viewing all the sets of 𝑛− 1 variables, as

in the XOR example above.

1.3.4 Cross entropy and KL divergence

Next I introduce notions related to cross entropy. I will introduce a novel notion of cross

information, which will be crucial in the description of communication under information

processing constraints (Section 1.5).

Cross entropy measures the expected number of bits that are needed to encode samples

from a distribution 𝑃 , using a code that was optimized for another distribution 𝑄. It is

defined as (Cover and Thomas, 2006):3

𝐻(𝑄→ 𝑃 ) ≡ E
𝑥∼𝑃

[− log 𝑝𝑄(𝑥)] . (1.6)

Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) represents the extra

bits of information that are required to encode samples from 𝑃 in a code optimized for

distribution 𝑄:4

𝐷KL(𝑄→ 𝑃 ) ≡ E
𝑥∼𝑃

[︂
log 𝑝𝑃 (𝑥)

log 𝑝𝑄(𝑥)

]︂
= 𝐻(𝑄→ 𝑃 )−𝐻(𝑃 ).

Cross Information

I introduce here a notion of cross information, the mutual information shared between two

jointly distributed random variables 𝐿 and 𝑀 conditional on the encoder knowing 𝑀 and

3Cross entropy is usually written with the notation 𝐻(𝑃,𝑄). I use the notation in Equation 1.6 because
(1) it is not ambiguous with 𝐻(𝑋,𝑌 ) meaning the joint entropy of 𝑋 and 𝑌 ; and (2) it makes clear that the
distribution 𝑄 is meant to be approximating 𝑃 . My notation for KL divergence has a similar rationale.

4More commonly notated as 𝐷KL(𝑃 ||𝑄) or KL(𝑃 ||𝑄).
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an approximate conditional distribution ℒ′ = 𝐿′|𝑀 :

𝐼(𝐿′ → 𝐿;𝑀) ≡ E
𝑚∼𝑀,𝑢∼ℒ(𝑚)

[︂
log

𝑝ℒ′(𝑢|𝑚)

𝑝𝐿′(𝑢)

]︂
(1.7)

= E
𝑚∼𝑀,𝑢∼ℒ(𝑚)

[︂
log

𝑝ℒ′(𝑢|𝑚)𝑝𝐿(𝑢)𝑝ℒ(𝑢|𝑚)

𝑝𝐿′(𝑢)𝑝𝐿(𝑢)𝑝ℒ(𝑢|𝑚)

]︂
= E

𝑚∼𝑀,𝑢∼ℒ(𝑚)

[︂
log

𝑝ℒ(𝑢|𝑚)𝑝𝐿(𝑢)𝑝ℒ(𝑢|𝑚)

𝑝𝐿(𝑢)𝑝𝐿′(𝑢)𝑝ℒ′(𝑢|𝑚)

]︂
= 𝐼(𝐿;𝑀) +𝐷KL(𝐿

′ → 𝐿)−𝐷KL(𝐿
′ → 𝐿|𝑀), (1.8)

with the conditional KL divergence 𝐷KL(𝐿
′ → 𝐿|𝑀) defined as:

𝐷KL(𝐿
′ → 𝐿|𝑀) ≡ E

𝑚∼𝑀
[𝐷KL(𝐿

′|𝑚→ 𝐿|𝑚)] .

Conditional KL divergence must exceed KL divergence (conditioning increases diver-

gence; 𝐷KL(𝐿
′ → 𝐿|𝑀) ≥ 𝐷KL(𝐿

′ → 𝐿)) (Gray, 1990, Chapter 5) (Polyanskiy and Wu,

2016), therefore:

𝐼(𝐿′ → 𝐿;𝑀) ≤ 𝐼(𝐿;𝑀).

This inequality expresses the fact that when meaning is transmitted using the distribution

ℒ and received by an agent that can only interpret it using ℒ′, less information is communi-

cated than when the message is received by an agent that can use the true ℒ. Thus, a person

who knows a language well will get more information about meaning from it than a person

who knows the language less well.

The notion of cross information will play a key role in the definition of language util-

ity under information processing constraints in Section 1.5.4. Information processing con-

straints mean that an agent is effectively decoding an utterance using a distributionℒ′ which

is different from the distribution ℒ under which it was encoded. Thus cross information

provides a way to quantify information loss due to information processing constraints.
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1.3.5 Natural language vs. digital codes

Taking an information theoretic approach to linguistic communication suggests natural lan-

guages might share properties with the optimal codes studied in coding theory (MacWilliams

and Sloane, 1981; Blahut, 1983; van Lint, 1999). A quick perusal of that literature will

make it clear that there are major differences. The codes designed in these fields are not

subject to human constraints such as limited memory and incremental planning capacity. I

will call them digital codes, because they are intended for use by computers and other dig-

ital devices, as opposed to human codes (natural languages). Below, I give some examples

that show that natural language has major differences from digital codes.

Digital codes are often prefix-free. This means that in an efficient code for indepen-

dent identically distributed (iid) samples, the code will assign each sample a codeword in

{0,1}* with the constraint that for all codewords 𝑤, there is no other codeword 𝑤′ such that

𝑤 starts with 𝑤′. This constraint allows codewords for samples to be concatenated together

as a stream without delimiters, and enables the stream as a whole to achieve its minimum

possible expected length. If we take the words of a language to be similar to codewords for

iid samples (a risky move), then we might wonder if words are prefix-free. But no known

language has a prefix-free lexicon, although there is some evidence that word beginnings

are more distinctive than word endings (King and Wedel, 2017).

The whole idea that natural language words might correspond to codewords reveals

another way in which natural language differs from digital codes. Words as they appear

in sentences are not probabilistically independent; if a sentence contains the verb eat then

it is more likely than chance to contain the noun food. The occurrence of these words is

correlated, so it is suboptimal to write them with context-invariant forms: because food is

predictable from eat, it should be possible to write food in some shorter form. Again, natu-

ral languages show a tendency in this direction: Mahowald et al. (2013) show that speakers

prefer reduced wordforms in contexts that make a word predictable, and Piantadosi et al.

(2011) show that lengths of words are correlated with their average predictability in context.

But in the vast majority of cases, words have the same form no matter what context they

appear in, despite their probabilistic dependence on context, and this is plainly suboptimal
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(Mandelbrot, 1953, p. 494). Pate (2017) shows formally that this constraint means that

natural languages cannot reach their best possible efficiency. There must be some pressure

in natural language, absent in digital codes, which makes wordforms consistent in context.

Words are also problematic because they are contiguous. When I use the word dog, the

three phonemes that make it up all appear adjacent to each other. Words are concatenated

together, rather than interleaved or combining according to some process that would make

their forms context dependent. Jackendoff (2002) describes the concatenation of words as

the “absolute universal bare minimum” of human languages (cf. Haspelmath, 2011). In

general, more and more abstract levels of linguistic structure (morphemes, phrases, dis-

courses) show less and less contiguity with increasing abstractness. Morphemes are mostly

contiguous, except for occasional disruption by infixes and circumfixes. Phrases are con-

tiguous inasmuch as a language is context-free (see Section 3.1.2), but discontiguous con-

stituents exist (Weir, 1988; Joshi et al., 1991) (exemplified, for example, by wh-movement),

and they are very common in some languages (Hale, 1983; Austin and Bresnan, 1996). Dis-

courses are highly discontiguous, as shown in Wolf and Gibson (2005).

But in optimal codes used for communication in the face of noise, contiguity is not

a desirable property. Suppose that a message is affected by noise before being received,

such that some characters are erased or deleted. In order to make the message robust to

this noise, digital codes use a method known as block coding. In block coding, a set of

samples from a probability distribution is encoded into a string in {0,1}*, and then that

string is segmented into blocks of 𝑘 bits. Each block is then encoded into a string of length

𝑛 > 𝑘 with some redundancy, such that a receiver receiving a noisy version of the code

can correct errors. This procedure approaches the theoretical limits of efficiency for robust

codes. Crucially, the block boundaries are independent of codewords, such that individual

codewords are not necessarily represented by contiguous bits in the final resulting string.

That is, the final resulting string has nothing at all comparable to the contiguous words

of natural language; the bits of information about these words are distributed through the

block.

Contiguous words are problematic even under a noise model which is highly plausible

for human linguistic communication. Suppose noise typically affects contiguous parts of
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an utterance; for example, a speaker is talking when a car goes by so that the listener misses

a contiguous subsequence of the utterance. In the presence of this kind of noise, it would

be optimal to spread the bits of information from each codeword out evenly throughout an

utterance. Some natural language grammatical devices go in this direction: for example,

we can see grammatical gender and agreement systems as error-correcting bits that spread

information away from nouns (Futrell, 2010; Dye et al., 2017). But nothing goes as far as

would be optimal unless there were some other pressure strongly favoring contiguity and

context-independence of words.

The examples in this section show that if we view natural language as an optimal ef-

ficient code, then it must operate under very different constraints from the optimal digial

codes studied in coding theory. In particular, it must have pressures favoring context-

invariance and contiguity of linguistic forms that have to do with particular dimensions

of meaning (i.e., words). Previous work on the emergence of words as a linguistic unit

(e.g., Nowak et al., 1999; Plotkin and Nowak, 2001; Tria et al., 2012; Spike et al., 2016)

does not directly address the issue of contiguity. The pressures in favor of contiguity and

context-invariance might have to do with both online processing and learnability.

To summarize, while languages have some features which point in the direction of the

kinds of codes and constraints studied in coding theory, they have fundamental properties

that digital codes do not. The goal of this work is in part to explain these discrepancies in an

information theoretic framework, by considering constraints on memory and planning that

apply when humans communicate using language but not when computers communicate

using digital codes.

1.4 Utility of a language for ideal agents

Here I will define the utility of a language in the case of ideal agents, who know and agree

on the language perfectly and who are able to use the language to encode and decode

meaning with optimal efficiency. The utility function ultimately developed in this section

is essentially the same as the one proposed on independent grounds for natural commu-

nication systems by Ferrer i Cancho and Solé (2003, Eq. 9), with further development in
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Ferrer i Cancho (2005) and Ferrer i Cancho and Díaz-Guilera (2007). This function is a

distillation of information theoretic notions of ideal codes; it does not include the influence

of information processing factors. In the following section, I will show how to augment

this utility function to account for these factors.

1.4.1 Reward and cost

The utility of a language ℒ with respect to meaning distribution 𝑀 is:

𝑈𝑀(ℒ) ≡ 𝑘𝑅𝑀(ℒ)− 𝐶𝑀(ℒ), (1.9)

where 𝑅 is a reward function, 𝐶 is a cost function, and 𝑘 is a constant stating the relative

importance of reward vs. cost and converting reward into the same units as cost.

I will argue below for the following concrete expression for language utility:

𝑈𝑀(ℒ) = 𝑘𝐼(𝐿;𝑀)−𝐻(𝐿). (1.10)

Reward

I define reward as the mutual information of 𝐿 = ℒ(𝑀) and 𝑀 :

𝑅𝑀(ℒ) = 𝐼(𝐿;𝑀). (1.11)

This term describes a pressure to maximize the information contained in 𝐿 about 𝑀 . It

has its maximum at 𝐼(𝐿;𝑀) = 𝐻(𝑀), when the language as a code conveys all possible

information about 𝑀 . Such a code enables maximal coordination between agents. The

minimum of 𝑅𝑀(ℒ) is 0.

The notion of reward here is similar to the concept of channel capacity (Shannon,

1948), except that channel capacity is computed according to the best possible source distri-

bution, whereas reward here is calculated relative to a fixed source distribution 𝑀 . Reward

also corresponds to the notion of reconstruction error which is given as the communica-

tive reward function in Regier et al. (2015). Simultaneous minimization of reconstruction
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error and formal simplicity has been argued to explain category systems across languages

and semantic domains. In that work, a speaker is assumed to choose an utterance to min-

imize a listener’s reconstruction error for the speaker’s intended meaning. Reconstruction

error for a meaning 𝑚 ∼𝑀 and an utterance 𝑢 is:

𝐷KL(𝑀 |𝑢→ 𝛿𝑚) = log
1

𝑝(𝑚|𝑢)

= ℎ(𝑚|𝑢).

Thus a speaker minimizes the listener’s surprisal of the intended meaning given the ut-

terance, as in RSA models (Goodman and Stuhlmüller, 2013). The expectation of this

surprisal for a whole linguistic system is 𝐻(𝑀 |𝐿) = 𝐻(𝑀) − 𝐼(𝐿;𝑀). Thus, when we

minimize this expression with respect to the conditional distribution of utterances given

meanings ℒ = 𝐿|𝑀 , it is the same as maximizing 𝐼(𝐿;𝑀). So our maximizing our pro-

posed reward function is the same as minimizing reconstruction error, a previously pro-

posed cost function.

Cost

The cost function for a language requires somewhat more subtlety. Producing and com-

prehending utterances requires some effort. This effort involves many factors: the search

time required to plan an effective utterance; the energy required to move one’s articulators

to produce speech; the attention required to focus on perceptual input in order to determine

meaning; etc. Very generally, I propose that the cost of a language is the expected cost of

its utterances:

𝐶𝑀(ℒ) = E
𝑚∼𝑀

E
𝑢∼ℒ(𝑚)

[𝐶𝑀(𝑢)] .

We can then consider lower bounds on the cost required to produce an utterance. The

quantity ℎ𝐿(𝑢) represents the number of bits required in an efficient encoding of an utter-

ance 𝑢 with respect to the language as a distribution 𝐿. Imagine that you must retrieve

an utterance (or a word, or some other unit) from a store of utterances, and you can do so

by making a series of binary cuts of the set of all utterances until you narrow down on the
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correct one. ℎ𝐿(𝑢) is the expected number of binary cuts you will have to make. In general,

the surprisal of a value represents the number of decisions that have to be made to retrieve

or produce that value.

The number of decisions provides a lower bound on effort required to produce or re-

trieve a value. In the most general sense, imagine a probabilistic program for generating

samples from 𝐿 conditional on 𝑀 . The generation of any particular 𝑢 will require at least

ℎ𝐿(𝑢) steps, corresponding to decisions that have to be made about the utterance, or to bits

of meaning that have to be read and encoded into the utterance. So as a lower bound, we

can expect that the effort required to produce 𝑢 is a linear function of ℎ𝐿(𝑢) (Brillouin,

1953, 1956). In accordance with this idea, there is evidence for decision making cost in

humans being proportional to surprisal: in human psychometric data, the time taken to

perform a task appears to be (approximately) linear in the number of decisions required, a

generalization known as Hick’s Law (Merkel, 1885; Hick, 1952; Hyman, 1953; Welford,

1960; Smith, 1968; Teichner and Krebs, 1974; Luce, 1986) (cf. Luce, 2003; Schneider and

Anderson, 2011; Pavão et al., 2016).

As a measure of cost, the surprisal of an utterance ℎ𝐿(𝑢) is also well justified on em-

pirical grounds from the side of comprehension, according to well-motivated and well-

supported theories of comprehension difficulty. According to Surprisal Theory (Hale, 2001;

Levy, 2008a), the effort required to comprehend a word in context is proportional to the

surprisal of the word in context. This theory has been validated as a predictor of reading

times (Smith and Levy, 2013).

The expected value of ℎ𝐿(𝑢) is 𝐻(𝐿), so I propose the following expression as a lower

bound for cost:

𝐶𝑀(ℒ) = 𝐻(𝐿). (1.12)

It is also possible to interpret 𝐻(𝐿) as representing the complexity of a language, which

is related to its learnability. Using 𝐻(𝐿) as a cost function means that our utility function

is entropy-regularized (Grandvalet and Bengio, 2005), meaning that complex languages

are penalized. This interpretation of entropy as language complexity is appealing because

it means that the overall utility function for languages contains a term for maximizing
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informativity and minimizing complexity, the two criteria that have been observed to result

in the emergence of natural-language-like codes in laboratory settings (Kirby et al., 2015).

In contrast with the definition here of utterance cost as surprisal, a common notion

of message cost in information theory is message length. In an efficient code, expected

message length corresponds to the entropy over messages (Shannon, 1948), as in Equa-

tion 1.12. It is very likely that the expected length of the actual symbol sequences making

up utterances is a great deal higher than the entropic lower bound, because of the context-

invariance of wordforms and other linguistic units (as discussed in Pate (2017); see also

Section 1.3.5). Therefore, if we see utterance length as the true cost, then Equation 1.12 is

only (proportional to) a lower bound on it.

When defining the language cost function, we run the risk of letting language cost be-

come a dumping ground for arbitrary constraints. If arbitrary constraints can be encoded

into language cost, then it would be possible to reproduce any desired pattern over result-

ing languages, rendering the theory unfalsifiable. To mitigate this risk, the expression for

language cost should be maximally generic and/or justifiable on empirical grounds. In the

framework I am setting up here, I am opting for the highly generic route, of defining cost

as only the entropy of the language as a distribution. In doing so, I am dealing only with an

absolute lower bound on language cost.

In Section 1.5, my goal will to incorporate information processing constraints into the

utility function. It may be tempting to do so by putting these constraints in the cost function,

penalizing utterances that we believe may be hard to plan, produce, and comprehend. I will

not do it that way, because information processing constraints do not only affect language

cost. They also degrade information transmission (the reward term), and thus require a

different approach.

1.4.2 Combined utility function

Combining Equations 1.11 and 1.12, we get the utility function:

𝑈𝑀(ℒ) = 𝑘𝐼(𝐿;𝑀)−𝐻(𝐿). (1.10)
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Since 𝐻(𝐿) is only a lower bound on cost, this function is actually only an upper bound on

utility. However, in the present work I will use it as the full utility function. Future work

should explore more detailed cost functions.

The scaling factor 𝑘 determines the relative importance of reward as opposed to cost.

When 𝑘 ≤ 1, the reward of speaking does not overcome the cost of speaking, thus I will

assume 𝑘 > 1.

The utility function developed so far is essentially the same as the one provided by

Ferrer i Cancho and Solé (2003), and studied subsequently in Ferrer i Cancho (2005); Ferrer

i Cancho and Díaz-Guilera (2007). Subsequent work has offered explanations for a number

of linguistic phenomena in terms of the maximization of this function, including synonymy

avoidance (Clark, 1987; Ferrer i Cancho, 2017), Zipf’s Law of meaning frequencies (Zipf,

1945; Ferrer i Cancho, 2016), and most prominently, Zipf’s Law of word frequencies (Zipf,

1949; Ferrer i Cancho, 2005). See Salge et al. (2015) for an alternative utility function with

similar aims.

While previous work has made use of this utility function to explain frequency distri-

butions and properties of words, this thesis ultimately aims to derive properties of natural

language syntax. For reasons explained in more depth in Section 5.1, the current form

of the utility function does not make interesting predictions about syntax. However, in

Section 1.5, I will develop an extension of the utility function to incorporate information

processing constraints, taking it beyond previous work and allowing it to derive information

locality and other ordering constraints on syntax.

1.4.3 No free variation

As an example of what we can conclude given the utility function in Equation 1.10, here

I show that an optimal language is deterministic, meaning that every meaning in 𝑀 is

expressed by only one utterance, which has conditional probability 1. I do not wish to

claim that real natural languages are deterministic, only that communicative utility pushes

languages away from free variation.

We can rearrange Equation 1.10 to expose the conditional entropy of utterances given
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meanings, 𝐻(𝐿|𝑀):

𝑈𝑀(ℒ) = 𝑘𝐼(𝐿;𝑀)−𝐻(𝐿)

= 𝑘𝐼(𝐿;𝑀)−𝐻(𝐿|𝑀)− 𝐼(𝐿;𝑀)

= (𝑘 − 1)𝐼(𝐿;𝑀)−𝐻(𝐿|𝑀). (1.13)

Now 𝐻(𝐿|𝑀) = 0 when utterance is a deterministic function of meaning. If the space of

languages as codes is unrestricted, then for every code ℒ achieving some 𝐼(𝐿;𝑀), there is

another code achieving the same 𝐼(𝐿;𝑀) but with 𝐻(𝐿|𝑀) = 0, thus attaining equal or

higher utility.

Therefore fully optimal languages will not have free variation. Free variation denotes

variation in utterances that is uncorrelated with meaning of any kind; the term is most com-

mon in phonology (Clark et al., 2007). The notion has been criticized on the grounds that

apparently meaningless variation often contains social signalling information (Meyerhoff,

2006).

The interpretation of the argument against free variation here depends on the interpre-

tation of the language cost function. Free variation means that there are bits of information

in the language that are useless: they do not communicate any meaning. Producing these

bits requires inherent effort. The presence of these bits in the language also will make mes-

sage lengths needlessly long on average, because valuable real estate in the space of short

utterances will be taken up by multiple variants of utterances for frequent meanings. If

we interpret the language cost 𝐻(𝐿) as the complexity of the language, then free variation

represents additional complexity which results in no benefit.

While I have shown that fully optimal languages will not have free variation, this re-

sult may not hold if the space of possible languages (or practically usable languages, as

discussed in Section 1.5) is limited.

For a derivation of the converse claim—that optimal languages according to this utility

function have a deterministic mapping from utterances to meanings (no ambiguity)—see

Ferrer i Cancho (2017). Nevertheless, all known natural languages have ambiguity at the

level of the utterance; such ambiguity can be explained in this framework by considering

47



the presence of outside, extralinguistic information that reduces uncertainty about mean-

ings given utterances (Piantadosi et al., 2012).

1.5 Utility of a language under information processing con-

straints

So far I have built up an information-theoretic language for describing natural languages

as codes, and I have argued that ideal communication systems maximize a utility function

where reward is the quantity of information transmitted and cost is the effort required to

send and receive messages. This utility function assumed that agents can encode and de-

code utterances with perfect efficacy and efficiency. But in real human communication,

there are information processing constraints that affect our ability to use language opti-

mally. For example, short-term memory constraints mean that when we are understanding

one part of an utterance, we may have forgotten the exact form of the preceding parts of

the utterance. Now I address the question of how these information processing constraints

should be included in the utility function for language.

In this section I will develop a theory of communicative utility under information pro-

cessing constraints. These constraints reduce the extent to which a language can convey

information about meaning in practice, and they increase the cost of producing and com-

prehending utterances. I will focus on constraints introduced by incrementality and limited

memory, which appear to be major constraints for humans. I show that memory constraints

induce locality constraints: languages convey less information and are harder to process

when utterance elements that depend on each other—either in terms of their distribution or

in terms of their interpretation—are far from each other.

Next I will formalize this theory by generalizing the utility function for languages.

The basic idea for the formalization is that, when we consider the utility of a language

as a code ℒ, we should think of the producer and comprehender as encoding and decoding

meaning using notℒ, but rather using distorted languagesℒ′ which reflect their information

processing constraints. We favor languages ℒ which enable efficient communication even
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when distorted by information processing constraints.

1.5.1 Incrementality

The primary constraint on human language processing, at least on the comprehension side,

is incrementality. In spoken language—the dominant modality for human language for

the vast majority of its time of existence—one hears an utterance once, incrementally, and

cannot go back to listen to parts of it again (except at high cost, by asking the speaker to

repeat herself).5

Utterances are sequences of symbols in time, and humans perceive them transiently,

with very limited memory. These sensory facts put major constraints on what information

processing can be done with the signal (Christiansen and Chater, 2016). In particular,

comprehension must be done incrementally, with as much processing being done on the

currently present signal as possible before more signal is received.

Next I formalize the notion of incrementality a bit. Consider an utterance as a sequence

of linguistic units w = {𝑤𝑖}𝑛𝑖=1, 𝑤𝑖 ∈ 𝑊 . As a comprehender perceives this utterance, he

encodes its meaning into some representation 𝑐 ∈ 𝐶. Incrementality means that the com-

prehender encodes the meaning of the utterance w by successively applying some function

𝑓 : 𝑊 × 𝐶 → 𝐶 which takes a currently perceived linguistic element 𝑤 and integrates

it into the current context representation 𝑐 to produce a new context representation 𝑐′. For

example, using 𝑓 , a sequence of three linguistic elements 𝑤1, 𝑤2, 𝑤3 is encoded as:

enc(𝑤1, 𝑤2, 𝑤3) = 𝑐final = 𝑓(𝑓(𝑓(𝑐initial, 𝑤1), 𝑤2), 𝑤3).

5In reading, one can look back to previous parts of an utterance, and this ability might explain differences
in language structure between spoken and written texts. In particular, in reading, memory constraints are
relaxed, so information locality effects should have less influence.
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In general, a sequence w is encoded as:

enc(w) = 𝑐final = 𝑓(...(𝑓(𝑓(𝑐initial, 𝑤1), 𝑤2), ...), 𝑤𝑛) (1.14)

= 𝑐initial f○𝑤1 f○𝑤2 f○... f○𝑤𝑛,

(1.15)

where 𝑐 f○𝑤 means 𝑓(𝑐, 𝑤). I have motivated the definition of the representation-updating

function 𝑓 solely from the definition of incrementality. It is worth noting that 𝑓 is exactly

the function learned by recurrent neural networks, currently the best-performing language

comprehension model at many tasks including language modeling (Jozefowicz et al., 2016)

and translation (Wu et al., 2016; Johnson et al., 2016). 𝑓 may be probabilistic, in which

case the encoding function returns a probability distribution over possible representations.

Now I will show how the incremental encoding function of Equation 1.14 fits in with

the theoretical framework I have been developing. A rational speaker who wishes the

listener to achieve a representation 𝑐target should plan and produce an utterance w such that

the resulting distribution 𝐶final over context representations is maximally close to 𝑐target,

minimizing the following function representing reconstruction error:

𝐷KL(enc(w)→ 𝛿𝑐target) = ℎ(𝑐target|𝐶final). (1.16)

The speaker’s behavior here is a language as a code ℒ. Minimizing expected reconstruction

error over possible meanings 𝑀 is the same as maximizing language reward 𝐼(𝐿;𝑀),

as in Equation 1.10, for the reasons discussed in Section 1.4.1. Therefore the notion of

incremental coding fits nicely into the proposed language utility framework.

Within this notation for thinking about incrementality, it is highly intuitive that com-

prehension effort appears to be a function of the surprisal of a word in context. Surprisal

is the upper bound on how many bits will be written onto a representation 𝑐 given obser-

vation of a word 𝑤. To see this, in 𝑓(𝑐, 𝑤), let 𝑐 be a representation of some distribution

the listener cares about, such as the posterior on intended meaning 𝑀 , and let 𝑓 perform a

Bayesian update of 𝑐 given new evidence 𝑤. Now ℎ(𝑤|𝑐) is the total bits of information in

50



𝑤 given knowledge of 𝑐, and as such it is the upper bound on the evidence 𝑤 can provide

about any third variable 𝑀 given 𝑐 (i.e., 𝐼(𝑊 ;𝑀 |𝑐) ≤ 𝐻(𝑊 |𝑐)). So at most ℎ(𝑤|𝑐) bits

of information will be encoded onto 𝑐 as a result of reading 𝑤. To explain the observed

surprisal effect, we only need the additional postulate that that the time taken to encode 𝑘

bits is linear in 𝑘.

On its own, the notion of incrementality does not make any predictions about what

kinds of sequences are easier to produce or comprehend. However, incrementality does

make such predictions under further assumptions about memory, and limitations on what

can be encoded in the incremental representation 𝑐.

1.5.2 Memory constraints

In this section, I argue that memory constraints affecting the incremental representation

of an utterance result in processing cost and inaccuracy, and thus affect the utility of a

language for communication. After this, I will show that these memory constraints give rise

to locality constraints, such that groups of linguistic elements that are dependent should be

placed near to each other in linear order to avoid processing cost and inaccuracy.

In incremental comprehension, at time 𝑡 the comprehender has a representation 𝑐𝑡,

which contains information about some variable that the comprehender is interested in,

such as the speaker’s intended meaning 𝑀 . In order to influence the final representation

𝑐final, the bits in 𝑐𝑡 must be maintained in all the intermediate representations from 𝑐𝑡 to

𝑐final. But if memory is limited or faulty, then the relevant bits in 𝑐𝑡 might become degraded

in various ways through the timecourse of the sentence, such that some of the bits do not

make it all the way to 𝑐final. Here I show how this kind of memory constraint gives rise to

processing cost, such that optimal languages have word orders that minimize this cost.

The logic for how memory constraints affect communicative efficiency is as follows.

Suppose 𝑐𝑡 is noisy with respect to the true sequence of linguistic units 𝑤1:𝑡 that gave rise

to it: that is, a reconstruction of 𝑤1:𝑡 from 𝑐𝑡 is noisy. This noisiness could be an inherent

property of the memory in which 𝑐𝑡 is stored, or it may be the result of there being a limit on

how many bits can be stored in memory at a time, such that some bits of 𝑐𝑡 might have to be
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thrown out. Then if the word at time 𝑡+ 1 depends statistically on the exact words in 𝑤1:𝑡,

the surprisal of that word given the context representation ℎ(𝑤𝑡+1|𝑐𝑡) might be greater than

its surprisal given the true context, ℎ(𝑤𝑡+1|𝑤1:𝑡). The extra bits of surprisal in ℎ(𝑤𝑡+1|𝑐)

would represent excess cost beyond what would have been required if 𝑐𝑡 had provided an

exact representation of context.

A noisy representation 𝑐𝑡 might not only cause excess processing cost, it might result in

inaccuracy in comprehension. Suppose that the interpretation of a word 𝑤𝑡+1 with respect

to meaning depends on a previous context word 𝑤𝑖, 𝑖 < 𝑡 + 1, but that 𝑐𝑡 is noisy, such

that 𝑤𝑖 cannot be reconstructed from it. In that case, 𝑤𝑡+1 might be interpreted incorrectly.

Thus memory constraints cause 𝑐𝑡 to be potentially noisy as a representation of 𝑤1:𝑡, which

in turn creates potential for inaccuracy and duplicated effort in comprehension.

1.5.3 Locality constraints from memory constraints

Now let’s make a further assumption that information about context becomes increasingly

noisy the longer it has been kept in memory.6 In that case, the excess processing cost due to

memory limitations increases when elements that predict each other are far apart. To see

this, consider the case where the surprisal (processing cost) of a word given the encoded

context ℎ(𝑤𝑡+1|𝑐𝑡) was greater than its surprisal given its true context ℎ(𝑤𝑡+1|𝑤1:𝑡). As 𝑐𝑡

becomes noisier and noisier as a representation of the true context 𝑤1:𝑡, the discrepancy

between these surprisals must increase on average. The true context 𝑤1:𝑡 contains informa-

tion that lowers the surprisal of 𝑤𝑡+1, but if the representation of context does not contain

the relevant bits, then they are not present to lower the surprisal of 𝑤𝑡+1 conditional on

the context representation. So the surprisal of 𝑤𝑡+1 will be higher on average as 𝑐𝑡 gets

noisier as a representation of the true context. Thus we expect more processing cost and

inaccuracy as linguistic elements that predict each other get farther apart. By similar logic,

there should be inaccuracy in comprehension when words that depend on each other for

their interpretation are far apart. This is the general idea of information locality, discussed

in depth in Chapter 4.

6An increasing noise rate with time is unavoidable on average, as it is a natural consequence of the Data
Processing Inequality (Cover and Thomas, 2006).
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There is ample evidence for locality effects on human language processing difficulty.

The most commonly discussed kind of locality is dependency locality, which denotes an

increase in processing complexity when words that are syntactically dependent are far apart

(Gibson, 1998, 2000; Grodner and Gibson, 2005; Demberg and Keller, 2008; Husain et al.,

2015; Shain et al., 2016).

Locality in Languages

As argued above, for reasons of accuracy and efficiency, memory limitations which alter 𝑐𝑡

from its ideal form should reduce the utility of a language. Supposing memory limitations

are fixed at some level, we can compare languages based on how much inefficiency and in-

accuracy is introduced by the memory limitations. In general, memory constraints militate

against long-distance context-dependence in interpretation and syntactic distribution.

We saw that processing cost increases when linguistic elements that predict each other

are far apart. By similar logic, inaccuracy increases when linguistic elements that depend

on each other for interpretation are far apart. Thus, the best languages under memory

constraints are those where related words are close: those that predict each other and those

that depend on each other for interpretation. This is the idea of information locality as a

constraint on languages.

Dependency locality—the idea that syntactic words in dependencies should be close in

word order—is one kind of information locality constraint. In previous work, it has been

argued to explain many syntactic universals of language such as Greenbergian word order

correlations (Greenberg, 1963; Hawkins, 1994) as well as exceptions to these (Dryer, 1992;

Gildea and Temperley, 2010), and also ordering preferences of constituents with regard to

length (Behaghel, 1932; Yamashita and Chang, 2001; Wasow, 2002; Hawkins, 2004), and

projectivity or context-freeness (Ferrer i Cancho, 2006). In Chapter 3, I provide detailed

and large-scale corpus evidence across many languages that both grammar and usage are

affected by dependency locality, in that they place syntactically related words close in linear

order, beyond what would be expected from well-motivated baselines.
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1.5.4 Formalization

Here I provide a formalization of the logic by which memory constraints affect the utility

function for languages. I augment the utility function from Equation 1.10 to account for in-

formation processing limitations on the parts of the speaker and listener. Then I show how

to derive from the augmented utility function the central predictions from Section 1.5.2,

that memory constraints lead to inaccuracy and processing inefficiency. The resulting aug-

mented utility function thus favors languages that exhibit information locality, as discussed

in Section 1.5.3, or other properties that result in processing efficiency in general.

I formalize the notion of information processing difficulty using the concepts of cross

entropy and cross information (introduced in Section 1.3.4). Language utility ends up

splitting into different forms for the speaker and listener, a split which is not necessary

for the more basic utility function in Equation 1.10 (Ferrer i Cancho and Díaz-Guilera,

2007). I leave for future work to explore in detail the extent to which these functions differ

in behavior, and whether the form of languages is better explained by listener or speaker

utility.

The idea behind the formalization is the following. Suppose we want to evaluate the

utility of some hypothetical language as a code ℒwith respect to meanings 𝑀 . We do so by

considering a speaker and listener who do not actually encode and decode utterances using

ℒ, but rather using distorted languages ℒ𝑠 (for the speaker) and ℒ𝑙 (for the listener). These

languages describe the behavior of agents who know the language ℒ, but are constrained by

information processing constraints in how they apply this knowledge. An agent’s distorted

language represents the agent’s best possible behavior given that they know ℒ but have to

approximate it under information processing constraints.

A language ℒ may seem to have high utility when we consider it in the ideal case, but

it might not yield efficient communication when evaluted under the best possible behavior

of the speaker and listener under information processing constraints. This is the means by

which information processing constraints are incorported into the utility function.
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Listener’s Utility

Imagine an agent is speaking a language ℒ to another agent, who processes language as

if it came from a related language, ℒ𝑙. The listener may well know that ℒ is the source

language, but in the course of incremental encoding he can only work relative to ℒ𝑙. The

utility of the pair of languages (ℒ,ℒ𝑙) for the listener is:

𝑈 𝑙
𝑀(ℒ,ℒ𝑙) ≡ 𝑘𝐼(𝐿𝑙 → 𝐿;𝑀)−𝐻(𝐿𝑙 → 𝐿) (1.17)

= 𝑘𝐼(𝐿;𝑀)− 𝑘𝐷KL(𝐿𝑙 → 𝐿|𝑀) + 𝑘𝐷KL(𝐿𝑙 → 𝐿)

−𝐻(𝐿)−𝐷KL(𝐿𝑙 → 𝐿)

= 𝑈𝑀(ℒ)⏟  ⏞  
utility without processing constraints

− 𝑘𝐷KL(𝐿𝑙 → 𝐿|𝑀) + (𝑘 − 1)𝐷KL(𝐿𝑙 → 𝐿)⏟  ⏞  
utility loss due to processing constraints

,

(1.18)

where 𝐼(𝐿𝑙 → 𝐿;𝑀) is cross information (bits of meaning encoded using ℒ decoded

successfully using ℒ𝑙), and 𝐻(𝐿𝑙 → 𝐿) is cross entropy (the cost of processing samples

from 𝐿 as if they came from 𝐿𝑙). (See Section 1.3.4 for the properties of cross entropy and

cross information.)

We model information processing constraints by supposing that the listener processes

samples from 𝐿 as if they came from some other distribution, 𝐿𝑙. Let’s think about how

this would play out in the case of memory constraints. In Section 1.5.2, I showed how

a lossy memory representation 𝑐𝑡 causes a linguistic unit 𝑤𝑡+1 to have on average higher

surprisal ℎ(𝑤𝑡+1|𝑐𝑡) than ℎ(𝑤𝑡+1|𝑤1:𝑡), resulting in excess processing cost. The expected

surprisal of the distribution over words 𝑊𝑡+1 conditional on a true generating context, 𝑤1:𝑡,

is 𝐻(𝑊𝑡+1|𝑤1:𝑡). Now the expected surprisal of 𝑊𝑡+1 conditional on a context repre-

sentation 𝑐𝑡, when 𝑊𝑡+1 was actually generated conditional on 𝑤1:𝑡, is a cross entropy

𝐻(𝑊𝑡+1|𝑐𝑡 → 𝑊𝑡+1|𝑤1:𝑡) = 𝐻(𝑊𝑡+1|𝑤1:𝑡) +𝐷KL(𝑊𝑡+1|𝑐𝑡 → 𝑊𝑡+1|𝑤1:𝑡).

We can see the conditional distribution 𝑊𝑡+1|𝑤1:𝑡 as defining a language 𝐿. The key

idea here is that the distribution 𝑊𝑡+1|𝑐𝑡 defines a new language 𝐿𝑙, a distortion of 𝐿 where

symbols are generated sequentially conditional on a lossy representation of their context,

rather than conditional on their true context. This is the meaning of 𝐿𝑙 in Equation 1.17,
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and the justification for the term 𝐻(𝐿𝑙 → 𝐿) as processing cost under information process-

ing limitations. The logic for the cross information term is similar: information processing

constraints implicitly define a new language 𝐿𝑙, under which samples from 𝐿 are inter-

preted.

Treating information processing constraints as cross entropies guarantees that these

constraints lead to higher cost and lower reward. In the case of cost, higher cost is guaran-

teed because 𝐻(𝐿𝑙 → 𝐿) ≥ 𝐻(𝐿). In the case of reward, an example is instructive: see

Section 1.5.5.

Finally, I consider how ℒ𝑙 is chosen based on ℒ. The listener wants to maximize the

utility function in Equation 1.17, and finds the best ℒ𝑙 for that purpose:

ℒ𝑙 = argmin
ℒ𝑙

𝑘𝐷KL(𝐿𝑙 → 𝐿|𝑀)− (𝑘 − 1)𝐷KL(𝐿𝑙 → 𝐿). (1.19)

This equation expresses the idea that the information processing characteristics of the lis-

tener are shaped by a desire to maximize language utility. It has a minimum when ℒ𝑙 = ℒ,

that is, when the listener can perfectly approximate the language of the interlocutor. But un-

der cognitive limitations, it may not be possible to achieve ℒ𝑙 = ℒ, resulting in processing-

based cost and inaccuracy.

Equation 1.19 expresses that information processing (but not the space of possible in-

formation processing algorithms) is shaped to some extent by the language being spoken;

for example, if memory capacity is limited to 𝑏 bits, then following Equation 1.19 would

lead a listener to save only those bits in memory that have the highest contributions to

utility, thus performing lossy compression. See Section 5.4.4 for more discussion of this

idea.

Speaker’s Utility

The expression for the speaker’s utility under information processing constraints is similar

to that of the listener. We assume the speaker knows a language ℒ and believes that her

interlocutors follow it, but speaks herself according to a distorted distributionℒ𝑠 integrating
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information processing constraints:

𝑈 𝑠
𝑀(ℒ,ℒ𝑠) = 𝑘𝐼(𝐿→ 𝐿𝑠;𝑀)−𝐻(𝐿𝑠). (1.20)

This is identical to the listener’s utility Equation 1.17, except that (1) the “known” language

ℒ is now the approximating distribution in the mutual information term, and (2) the cost of

generation is not a cross entropy, but rather the plain entropy of the distorted distribution 𝐿𝑠.

Difference (1) reflects the fact that the producer speaks in a certain way ℒ𝑠, but the listener

will interpret it according to a different distribution ℒ. Difference (2) reflects the fact that

the producer’s cost has to do with what she actually produces; whereas the comprehender’s

cost has to do with what he receives, which is out of his control. These asymmetries have

the effect that the speaker’s utility does not reduce as nicely as the listener’s utility in

Equation 1.18.

For the speaker, the primary constraints that might give rise toℒ𝑠 ̸= ℒ are constraints on

incremental planning of utterances (Lashley, 1951; MacDonald, 1999; MacDonald, 2013).

These constraints have been advanced as an explanation for “easy-first” ordering prefer-

ences in language, whereby words that are easier to produce in a context are produced

early in an utterance (Bock, 1982; Levelt, 1982; Bock and Warren, 1985; Chang, 2009;

Tanaka et al., 2011). I will not discuss these phenomena in detail in this thesis, but I note

that they can be accommodated in this framework in the speaker’s utility. In general, we can

see the speaker as having a noisy sampler for sequences ℒ, which produces the distribution

ℒ𝑠. See Section 5.4 for more detailed discussion of this point.

Given the utility in Equation 1.20, the speaker’s best ℒ𝑠 is simply

ℒ𝑠 = argmax
ℒ𝑠

𝑈 𝑠
𝑀(ℒ,ℒ𝑠); (1.21)

no terms can be removed because they all contain 𝐿𝑠.
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Remarks

The expression for listener’s utility reveals an interesting case where language as a distri-

bution 𝐿 appears to matter separately from language as a code for meaning ℒ. From the

listener’s perspective, ideal languages must produce distributions over utterances that can

be well-approximated. To see this, we use the fact that 𝐷KL(𝐿𝑙 → 𝐿|𝑀) > 𝐷KL(𝐿𝑙 → 𝐿)

(conditioning increases divergence) to write an upper bound on the listener’s utility:

𝑈 𝑙
𝑀(ℒ,ℒ𝑙) = 𝑈𝑀(ℒ)− 𝑘𝐷KL(𝐿𝑙 → 𝐿|𝑀) + (𝑘 − 1)𝐷KL(𝐿𝑙 → 𝐿) (1.18)

≤ 𝑈𝑀(ℒ)− 𝑘𝐷KL(𝐿𝑙 → 𝐿) + (𝑘 + 1)𝐷KL(𝐿𝑙 → 𝐿)

= 𝑈𝑀(ℒ)−𝐷KL(𝐿𝑙 → 𝐿). (1.22)

It follows that the listener’s utility must be less than 𝑈𝑀(ℒ) − 𝐷KL(𝐿𝑙 → 𝐿), hence the

utility of the language is affected by the ability of the listener to approximate the language

as a distribution without regard for meaning. This result justifies the study of efficiency in

languages based solely on the language as a distribution, without regard to unobservable

meaning.

From the perspective of reducing the ill effects of information processing constraints,

the best language is one where it is possible to achieve ℒ𝑠 = ℒ𝑙. In that case, the speaker

and listener utilities simplify to the ideal utility, and there is no excess cost or inaccuracy

due to information processing constraints. Yet all observed languages are subject to inac-

curacy in comprehension and production. This happens because achieving ℒ𝑠 = ℒ𝑙 may

come at the cost of overall combined utility for the speaker and listener. That is, it may be

that there is a language pair (ℒ𝑠,ℒ𝑙) which achieves high combined utility for the speaker

and listener with some excess processing cost, but this level of utility cannot be achieved

with zero excess processing cost. Those languages that can be spoken error-free might be

too simplistic to convey much information.
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𝑊1 𝑊2 𝑀
a a 0
a b 1
b a 1
b b 0

Table 1.2: An example language ℒ generating ordered pairs (𝑊1,𝑊2) conditional on 𝑀 .
For meaning 0, the language generates aa or bb with equal probability. For 1, it generates
ab or ba with equal probability.

1.5.5 Example: Context-dependence in interpretation

Here I will work out an example, demonstrating the idea that memory constraints disfavor

context-dependence in interpretation, as claimed in Section 1.5.3. The basic idea is just

that if the interpretation of a word depends on context, and context has been forgotten, then

the word will likely be interpreted incorrectly.

Suppose that a language ℒ for meanings 𝑀 has utterances that always consist of two

symbols in order, 𝑊1 and 𝑊2. For the sake of the example, let 𝑀 be a Bernoulli variable

generating 0 or 1 with equal probability. Furthermore let 𝑊1 and 𝑊2 range over the alpha-

bet {a,b}. For meaning 0, the language generates aa or bb with equal probability. For 1,

it generates ab or ba with equal probability. The specification of ℒ is shown in Table 1.2.

(This example may be familiar from Section 1.3.3.)

Now let us consider how ℒ would be understood by a comprehender with extremely

limited memory for wordforms. The comprehender reads 𝑊1 and then 𝑊2. Suppose that

the comprehender’s representation of context contains no information at all about words

before the one being currently perceived. The comprehender may have a perfect represen-

tation of meaning as inferred from previous words, but does not remember the wordforms

themselves. So after reading 𝑊1, the comprehender’s distribution over possible meanings

will be 0 with probability 1
2

and 1 with probability 1
2
. That is, reading the first word pro-

vided no useful information about meaning at all.

Now when the comprehender reads 𝑊2, he is interpreting it in isolation. So while

the distribution over words at this point in the true language ℒ is 𝑊2|𝑀,𝑊1, we would

model the comprehender’s encoding distribution ℒ𝑙 at this point as 𝑊2|𝑀 , where 𝑀 is

the comprehender’s inferred distribution over meaning given the first word, representing

59



the fact that the comprehender does not remember wordforms. Furthermore, 𝑀 is not

informative about 𝑊2 in isolation—for any given meaning, 𝑊2 could be a or b with equal

probability. So the listener’s distribution over the second word after hearing the first word

is just the unigram distribution over the second word, 𝑊2.

In that case, the cross information of 𝑀 and 𝐿 under 𝐿𝑙 is:

𝐼(𝐿𝑙 → 𝐿;𝑀) = E
𝑚∼𝑀

E
𝑤1,𝑤2∼ℒ(𝑚)

[︂
log

𝑝ℒ𝑙
(𝑤1, 𝑤2|𝑚)

𝑝ℒ𝑙
(𝑤1, 𝑤2)

]︂
= E

𝑚∼𝑀
E

𝑤1,𝑤2∼ℒ(𝑚)

[︂
log

𝑝ℒ(𝑤1|𝑚)𝑝ℒ(𝑤2|𝑚)

𝑝ℒ(𝑤1)𝑝ℒ(𝑤2)

]︂
= E

𝑚∼𝑀
E

𝑤1,𝑤2∼ℒ(𝑚)

[︂
log

𝑝ℒ(𝑤1|𝑚)𝑝ℒ(𝑤2|𝑚)𝑝ℒ(𝑤1, 𝑤2|𝑚)𝑝ℒ(𝑤1, 𝑤2)

𝑝ℒ(𝑤1)𝑝ℒ(𝑤2)𝑝ℒ(𝑤1, 𝑤2|𝑚)𝑝ℒ(𝑤1, 𝑤2)

]︂
= 𝐼(𝑊1,𝑊2;𝑀) + 𝐼(𝑊1;𝑊2)− 𝐼(𝑊1;𝑊2|𝑀)

= 𝐼(𝐿;𝑀)⏟  ⏞  
information transmitted in ideal case

− 𝐼(𝑊1;𝑊2;𝑀)⏟  ⏞  
information loss due to memory constraints

.

Thus, because of the comprehender’s memory limitations, a quantity of information equal

to 𝐼(𝑊1;𝑊2;𝑀) was not received. In this case of this example language, that 𝐼(𝑊1;𝑊2;𝑀) =

1 bit was the entire relevant information about meaning, so the language would have at best

0 utility for the listener. (For the speaker, under these memory constraints it would simply

be impossible to produce informative samples from ℒ.)

Thus, in the face of memory limitations, linguistic elements should be context-independent

in their interpretation. In a way, this example already contains the ideas of information lo-

cality, domain minimization, etc., which this thesis will be focusing on.

1.5.6 Example: Context-dependence in form

As a second example, I consider a case where processing constraints lead to additional

processing cost, but not to inaccuracy in information transmission. This case arises due

to context-dependence in utterance form: the form of one word depends on the form of

another word in a way that does not contribute to meaning. Consider a language on the

alphabet {a,b,c,d} specified by the function ℒ shown in Table 1.3.

Let us consider the listener’s utility for this language under an incremental processing
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𝑊1 𝑊2 𝑀
a a 0
b b 0
c c 1
d d 1

Table 1.3: An example language ℒ generating ordered pairs (𝑊1,𝑊2) conditional on 𝑀 .
All pairs (𝑊1,𝑊2) are generated with uniform probability conditional on 𝑀 .

𝑊1 𝑊2 𝑀
a a 0
a b 0
b a 0
b b 0
c c 1
c d 1
d c 1
d d 1

Table 1.4: ℒ𝑙 implied by Table 1.3 under a processing model where the comprehender has
no memory for wordforms.

model where, after each word, the listener remembers an inferred meaning, but does not

remember the exact wordform that was used. That is, after hearing a as 𝑊1, the listener

infers that the meaning is 0, but then does not know whether the next word will be a or b.

Thus the listener’s information processing constraints imply an approximating language ℒ𝑙

as shown in Table 1.4.

The excess cost of processing this language (𝐷KL(𝐿𝑙 → 𝐿), Equation 1.17) comes out

to 1 bit:

𝐷KL(𝐿𝑙 → 𝐿) = E
𝑚∼𝑀

E
𝑤1,𝑤2∼ℒ(𝑚)

[︂
log

E𝑚′∼𝑀 [𝑝ℒ(𝑤1, 𝑤2|𝑚′)]

E𝑚′∼𝑀 [𝑝ℒ𝑙
(𝑤1, 𝑤2|𝑚′)]

]︂
= E

𝑚∼𝑀
E

𝑤1,𝑤2∼ℒ(𝑚)

[︂
log

1
2
· 1
2
+ 1

2
· 1
2

1
2
· 1
4
+ 1

2
· 1
4

]︂
= E

𝑚∼𝑀
E

𝑤1,𝑤2∼ℒ(𝑚)
[log 2]

= 1 bit.

However, the language does not induce any information loss under memory constraints.
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The listener’s information reward is 𝐼(𝐿𝑙 → 𝐿;𝑀) = 𝐼(𝐿;𝑀) − 𝐷KL(𝐿𝑙 → 𝐿|𝑀) +

𝐷KL(𝐿𝑙 → 𝐿). As argued above, the unconditional KL divergence term is equal 1 bit.

To calculate conditional KL divergence, note that conditional on any value 𝑚 ∼ 𝑀 , the

distribution ℒ𝑙(𝑚) is the product of the marginals for 𝑊1,𝑊2|𝑚. Now mutual information

is equal to the KL divergence from the product of the marginals to the joint distribution, so

it follows that 𝐷KL(𝐿𝑙 → 𝐿|𝑀) = 𝐼(𝑊1;𝑊2|𝑀) = 1 bit. Thus the communicative reward

𝐼(𝐿𝑙 → 𝐿;𝑀) = 𝐼(𝐿;𝑀) + 1− 1 = 𝐼(𝐿;𝑀).

This redundant language is suboptimal because, under memory constraints, it creates

extra processing work. The choice of aa or bb to express meaning 0 is essentially noise;

and the correlation of 𝑊1 and 𝑊2 creates correlated noise. This example shows that cor-

related noise is suboptimal in languages: it creates extra processing effort, because it takes

extra resources to predict specific wordforms which have no utility for communication.7

Note that, for example, if the language in Table 1.4 were the true language, there would be

no excess processing cost, because there would be no need to remember the form of 𝑊1 to

predict 𝑊2.

1.6 Summary and roadmap

In this introduction I have provided a formal framework in which we can view natural

languages as local maxima in a utility function defined by communicative efficiency under

information processing constraints. The bulk of the thesis will consist of in-depth empirical

and theoretical studies of the specific ideas brought up here, without explicitly situating

those studies in the formal framework.

Chapter 2 is a case study on the concept of analyzing syntax quantitatively using the

information theoretic concepts developed here. I study variation in word order conditional

on dependency structure, and examine theoretical issues and also practical issues that arise

in trying to do this with current data and statistical methods. The basic idea here is to

take the unordered dependency tree structure as a partial representation of the meaning

𝑀 , and think about word orders as codes ℒ for 𝑀 . I propose the entropy of word orders

7However, it has utility in the case of communication over a noisy channel, because it adds redundancy.
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conditional on unordered dependency trees 𝐻(𝐿|𝑀) as the central measure of word order

freedom; in a communication theoretic framework, this quantity represents the maximal

information that word order in a language can convey beyond what it is conveying about

predicate-argument structure. I show in corpora that in languages where subject and object

can be distinguished easily given morphology, the order of these words is more variable.

This work was published as Futrell et al. (2015c, DepLing).

Chapter 3 is a detailed empirical study of dependency length minimization in crosslin-

guistic dependency corpora. I compare observed dependency length to expected depen-

dency length under independently motivated constraints, such as projectivity and consis-

tency in head direction. This work was published as Futrell et al. (2015b, PNAS). I also

address the question of whether dependency length minimization affects grammar or usage

or both, by comparing observed dependency length to dependency length under possible

grammatical reorderings of dependency trees per language. This comparison is accom-

plished by developing a probabilistic model of word orders conditional on unordered de-

pendency trees; a paper describing this model was published as Futrell and Gibson (2015,

EMNLP).

Chapter 4 proposes a new theory of human sentence processing difficulty, noisy-

context surprisal, that reconciles approaches based on memory (Gibson, 1998; Lewis and

Vasishth, 2005) with those based on probabilistic expectations (Hale, 2001; Levy, 2008a),

and provides a model of structural forgetting, a phenomenon involving interactions of

these two factors (Gibson and Thomas, 1999; Vasishth et al., 2010; Frank et al., 2016). In

addition I show that noisy-context surprisal derives information locality effects, and provide

evidence for information locality from crosslinguistic corpora. I argue that dependency lo-

cality (thus dependency length minimization) and information locality are linked under the

hypothesis that syntactic dependencies correspond to word pairs with high mutual infor-

mation; I provide evidence that this is true, and I speculate on the theoretical justification

for why this is true. This work was published as Futrell and Levy (2017, EACL).

Chapter 5 discusses extensions and future directions, including connections to natural

language processing, and concludes.
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Chapter 2

Case Study in Quantitative Syntax:

Word Order Freedom
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2.1 Introduction

Comparative cross-linguistic research on the quantitative properties of natural languages

has typically focused on measures that can be extracted from unannotated or shallowly an-

notated text. For example, probably the most intensively studied quantitative properties of

language are Zipf’s findings about the power law distribution of word frequencies (Zipf,

1949). However, the properties of languages that can be quantified from raw text are rela-

tively shallow, and are not straightforwardly related to higher-level properties of languages

such as their morphology and syntax. As a result, there has been relatively little large-scale

comparative work on quantitative properties of natural language syntax.

In recent years it has become possible to bridge that gap thanks to the availability of

large dependency treebanks for many languages and the development of standardized anno-

tation schemes (de Marneffe et al., 2014; Nivre, 2015; Nivre et al., 2015). These resources

make it possible to perform direct comparisons of quantitative properties of dependency

trees. Previous work using dependency corpora to study crosslinguistic syntactic phenom-

ena includes Liu (2010), who quantifies the frequency of right- and left-branching in depen-

dency corpora, and Kuhlmann (2013), who quantifies the frequency with which natural lan-

guage dependency trees deviate from projectivity. Other work has studied graph-theoretic

properties of dependency trees in the context of language classification (Liu and Li, 2010;

Abramov and Mehler, 2011).

Here we study a particular quantitative property of language syntax: word order free-

dom. We focus on developing linguistically interpretable measures, as close as possible to

an intuitive, relatively theory-neutral idea of what word order freedom means. In doing so,

a number of methodological issues and questions arise. What quantitative measures map

most cleanly onto the concept of word order freedom? Is it feasible to estimate the proposed

measure given limited corpus size? Which corpus annotation style—e.g., content-head de-

pendencies or dependencies where function words are heads—best facilitates crosslinguis-

tic comparison? In this work, we argue for a set of methodological decisions which we

believe balance the interests of linguistic interpretability, stability with respect to corpus

size, and comparability across languages.
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We also present results of our measures as applied to 34 languages and discuss their lin-

guistic significance. In particular, we find that languages with quantitatively large freedom

in their ordering of subject and object all have nominative/accusative case marking, but that

languages with such case marking do not necessarily have much word order freedom. This

asymmetric relationship has been suggested in the typological literature (Kiparsky, 1997),

but this is the first work to verify it quantitatively. We also discuss some of the excep-

tions to this generalization in the light of recent work on information-theoretic properties

of different word orders (Gibson et al., 2013).

2.2 Word order and the notion of dependency

We define word order freedom as the extent to which the same word or constituent in the

same form can appear in multiple positions while retaining the same predicate-argument

structure and preserving grammaticality. For example, the sentence pair (1a-b) provides an

example of word order freedom in German, while sentence pair (2a-b) provides an example

of a lack of word order freedom in English. However, the sentences (2a) and (2c) do not

provide an instance of word order freedom in English by our definition, since the agent and

patient appear in different syntactic forms in (2c) compared to (2a). We provide dependency

syntax analyses of these sentences below.

(1a)

Hans sah den Mann
Hans saw the-ACC man

nsubj

dobj

det

Meaning: “Hans saw the man.”

(1b)

den Mann sah Hans
the-ACC man saw Hans

dobjdet nsubj

Meaning: “Hans saw the man.”

(2a)
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John saw the man.

nsubj

dobj

det

(2b)

*The man saw John.

dobjdet nsubj

Cannot mean: “John saw the man.”

(2c)

The man was seen by John.

det

nsubjpass

aux

nmod

case

In the typological literature, this phenomenon has also been called word order flexibil-

ity, pragmatic word order, and a lack of word order rigidity (Givón, 1992). These last two

terms reflect the fact that word order freedom does not mean that that word order is ran-

dom. When word order is “free”, speakers might order words to convey non-propositional

aspects of their intent. For example, a speaker might place certain words earlier in a sen-

tence in order to convey that those words refer to old information (Ferreira and Yoshita,

2003); a speaker might order words according to how accessible they are psycholinguisti-

cally (Chang, 2009); etc. In English, word order is used to convey whether an expression is

a question or a statement. Word order may be predictable given these goals, but here we are

interested only in the extent to which word order is conditioned on the predicate-argument

structure of an utterance.

In a dependency grammar framework, we can conceptualize word order freedom as

variability in the linear order of words given an unordered dependency graph with labelled

edges. For example, both sentences (1a) and (1b) are linearizations of the unordered de-

pendency graph in Figure 2-1.

The dependency formalism also gives us a framework for a functional perspective on

why word order freedom exists and under what conditions it might arise. In general, the

task of understanding the propositional meaning of a sentence requires identifying which
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sah

Hans Mann

den

nsubj dobj

det

Figure 2-1: Unordered dependency graph representing a class of German sentences.

words are linked to other words, and what the relation types of those links are. The depen-

dency formalism directly encodes a subset of these links, with the additional assumption

that links are always between exactly two explicit words. Therefore, we can roughly view

an utterance as an attempt by a language producer to serialize a dependency graph such

that a comprehender can recover it. The producer will want to choose a serialization which

is efficient to produce and which will allow the comprehender to recover the structure ro-

bustly. That is, the utterance must be informative about which pairs of words are linked in

a dependency, and what the relation types of those links are.

Here we focus on the communication of relation types. In the English and German

examples above, the relation types to be conveyed are nsubj and dobj in the notation of

the Universal Dependencies project (Nivre et al., 2015). For the task of communicating

the relation type between a head and dependent, natural languages seem to adopt two non-

exclusive solutions: either the order of the head, the dependent, and the dependent’s sisters

is informative about relation type (a word order code), or the wordform of the head or

dependent is informative about relation type (Nichols, 1986) (a case-marking code). Con-

siderations of robustness and efficiency lead to a prediction of a tradeoff between these

options. If a language uses case-marking to convey relation type, then word order can be

repurposed to efficiently convey other, potentially non-propositional aspects of meaning.

On the other hand, if a language uses inflexible word order to convey relation type, then

it would be inefficient to also include case marking. However, some word order codes

are less robust to noise than others (Gibson et al., 2013; Futrell et al., 2015a), so certain

rigid word orders might still require case-marking to maintain robustness. Similarly, some

case-marking systems might be more or less robust, and so require rigid word order.
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The idea that word order freedom is related to the prevalence of morphological marking

is an old one (Sapir, 1921). A persistent generalization in the typological literature is that

while word order freedom implies the existence of morphological marking, morphological

marking does not imply the existence of word order freedom (Kiparsky, 1997; McFadden,

2003). These generalizations have been made primarily on the basis of native speaker intu-

itions and analyses of small datasets. Such data is problematic for measures such as word

order freedom, since languages may vary quantitatively in how much variability they have,

and it is not clear where to discretize this variability in order to form the categories “free

word order” and “fixed word order”. In order to test the reality of these generalizations, and

to explore explanatory hypotheses for crosslinguistic variation, it is necessary to quantify

the degree of word order freedom in a language.

2.3 Entropy measures

Our basic idea is to measure the extent to which the linear order of words is determined

by the unordered dependency graph of a sentence. A natural way to quantify this is condi-

tional entropy:

𝐻(𝑋|𝐶) =
∑︁
𝑐∈𝐶

𝑝𝐶(𝑐)
∑︁
𝑥∈𝑋

𝑝𝑋|𝐶(𝑥|𝑐)log𝑝𝑋|𝐶(𝑥|𝑐), (2.1)

which is the expected conditional uncertainty about a discrete random variable 𝑋 , which

we call the dependent variable, conditioned on another discrete random variable 𝐶, which

we call the conditioning variable. In our case, the “perfect” measure of word order free-

dom would be the conditional entropy of sequences of words given unordered dependency

graphs. Directly measuring this quantity is impractical for a number of reasons, so we will

explore a number of entropy measures over partial information about dependency trees.

Using a conditional entropy measure with dependency corpora requires us to decide on

three parameters: (1) the method of estimating entropy from observed joint counts of 𝑋

and 𝐶, (2) the information contained in the dependent variable 𝑋 , and (3) the information

contained in the conditioning variable 𝐶. The two major factors in deciding these param-

eters are avoiding data sparsity and retaining linguistic interpretability. In this section we

discuss the detailed considerations that must go into these decisions.

70



2.3.1 Estimating entropy

The simplest way to estimate entropy given joint counts is through maximum likelihood

estimation. However, maximum likelihood estimates of entropy are known to be biased and

highly sensitive to sample size (Miller, 1955). The bias issues arise because the entropy

of a distribution is highly sensitive to the shape of its tail, and it is difficult to estimate

the tail of a distribution given a small sample size. As a result, entropy is systematically

underestimated. These issues are exacerbated when applying entropy measures to natural

language data, because of the especially long-tailed frequency distribution of sentences and

words.

The bias issue is especially acute when doing crosslinguistic comparison with depen-

dency corpora because the corpora available vary hugely in their sample size, from 1017

sentences of Irish to 82,451 sentences of Czech. An entropy difference between one lan-

guage and another might be the result of sample size differences, rather than a real linguistic

difference.

We address this issue in two ways: first, we estimate entropy using the bootstrap esti-

mator of DeDeo et al. (2013), and apply the estimator to equally sized subcorpora across

languages1. Second, we choose dependent and conditioning variables to minimize data

sparsity and avoid long tails. In particular, we avoid entropy measures where the condi-

tioning variable involves wordforms or lemmas. We evaluate the effects of data sparsity on

our measures in Section 2.4.

2.3.2 Local subtrees

In order to cope with data sparsity and long-tailed distributions, the dependent and con-

ditioning variables must have manageable numbers of possible values. This means that

we cannot compute something like the entropy over full sentences given full dependency

graphs, as these joint counts would be incredibly sparse, even if we include only part of

speech information about words.

1At a high level, the bootstrap algorithm works by measuring entropy in the whole sample and in subsam-
ples and uses these estimates to attempt to correct bias in the whole sample. We refer the reader to DeDeo
et al. (2013) for details.
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We suggest computing conditional entropy only on local subtrees: just subtrees con-

sisting of a head and its immediate dependents. We conjecture that most word order and

morphological rules can be stated in terms of heads and their dependents, or in terms of

sisters of the same head. For example, almost all agreement phenomena in natural language

involve heads and their immediate dependents Corbett (2006). Prominent and successful

generative models of dependency structure such as the Dependency Model with Valence

Klein and Manning (2004) assume that dependency trees are generated recursively by gen-

erating these local subtrees.

There are two shortcomings to working only with local subtrees; here we discuss how

to deal with them.

First, there are certain word order phenomena which appear variable given only local

subtree structure, but which are in fact deterministic given dependency structure beyond

local subtrees. The extent to which this is true depends on the specifics of the dependency

formalism. For example, in German, the position of the verb depends on clause type. In a

subordinate clause with a complementizer, the verb must appear after all of its dependents

(V-final order). Otherwise, the verb must appear after exactly one of its dependents (V2

order). If we analyze complementizers as heading their verbs, as in (3a), then the local sub-

tree of the verb sah does not include information about whether the verb is in a subordinate

clause or not.

(3a)

Hans sah den Mann
Hans saw the-ACC man

nsubj

dobj

det

(3b)

Ich weiß, dass Hans den Mann sah
I know that Hans the man saw

nsubj dobj dobjdet

nsubj

As a result, if we measure the entropy of the order of verbal dependents conditioned
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on the local subtree structure, then we will erroneously conclude that German is highly

variable, since the order is either V2 or V-final and there is nothing in the local subtree

to predict which one is appropriate. However, if we analyze complementizers as the de-

pendent of their verb (as in the Universal Dependencies style, (3c)), then the conditional

entropy of the verb position given local subtree structure is small. This is because the po-

sition of the verb is fully predicted by the presence in the local subtree of a mark relation

whose dependent is dass, weil, etc.

(3c)
sah

dass Hans Mann

den

mark nsubj dobj

det

Ich weiß, dass Hans den Mann sah
I know that Hans the-ACC man saw

nsubj

dobj

mark

dobjdet

nsubj

We deal with this issue by preferring annotation styles under which the determinants

of the order of a local subtree are present in that subtree. This often means using the

content-head dependency style, as in this example. When we condition on the local subtree

structure and find the conditional entropy of word orders, we call this measure Relation

Order Entropy, since we are getting the order with which relation types are expressed in

a local subtree.

The second issue with looking only at local subtrees is that we miss certain word order

variability associated with nonprojectivity, such as scrambling.

For example, in German subordinate clauses, the following orders are both grammati-

cal:

(4a) ... dass der Mann den Kühlschrank zu reparieren versprach

73



(4b) ... dass den Kühlschrank der Mann zu reparieren versprach

“... that the man promised to repair the refrigerator.”

These sentences are both linearizations of the same overall unordered tree. However, both

of them correspond to the same linearizations of the two local subtrees:

(5a)

Mann reparieren versprach

nsubj

dobj

(5b)

Kühlschrank zu reparieren

dobj

mark

So a conditional entropy measure that only looks at the word order of local subtrees

would miss this variability.

We can incorporate these nonprojectively free word orders into our entropy measures

in two ways. First, we could get entropy over orders conditioned on subtrees beyond im-

mediate subtrees. For example we could look at counts of linearizations of large subtrees.

However, the height of the subtrees we would need to condition on to capture all nonpro-

jective phenomena is potentially unbounded. Second, we could incorporate “gaps” in our

representation of the order of words under a head. For example, the linearization of (5b)

for the linearization in (4a) would be (6a), and for (4b) would be (6b):

(6a)

Kühlschrank zu reparieren

dobj

mark

(6b)

Kühlschrank GAP zu reparieren

dobj

mark
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Then taking the entropy of the orders of dependents would incorporate order freedom

introduced by nonprojectivity. An array of words containing a GAP can be thought of

as two blocks in the sense of Kuhlmann (2013); these are equivalent to components in

the production rules of a linear context-free rewriting system. Measuring the entropy over

arrays containing GAPs is the same as measuring the freedom of words to appear in different

orders and to be split into different blocks, or the entropy over rule expansions containing

the same words in a probabilistic mildly nonprojective dependency grammar.

For simplicity in the present work, we ignore nonprojectivity.

2.3.3 Dependency direction

Another option for dealing with data sparsity is to get conditional entropy measures over

even less dependency structure. In particular we consider the case of entropy measures

conditioned only on a dependent, its head, and the relation type to its head, where the

dependent measure is simply whether the head is to the left or right of the dependent. This

measure potentially suffers much less from data sparsity issues, since the set of possible

heads and dependents in a corpus is much smaller than the set of possible local subtrees.

But in restricting our attention only to head direction, we miss the ability to measure any

word order freedom among sister dependents. This measure also has the disadvantage that

it can miss the kind of conditioning information present in local subtrees, as described in

Section 2.3.2.

When we condition only on simple dependencies, we call this measure Head Direction

Entropy.

2.3.4 Conditioning variables

So far we have discussed our decision to use conditional entropy measures over local sub-

trees or single dependencies. In this setting, the conditioning variable is the unordered local

subtree or dependency, and the dependent variable is the linear order of words. We now

turn to the question of what information should be contained in the conditioning variable:

whether it should be the full unordered tree, or just the structure of the tree, or the structure
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of the tree plus part-of-speech (POS) tags and relation types, etc.

In Section 2.3.1 we argued that we should not condition on the wordforms or lemmas

due to sparsity issues. The remaining kinds of information available in corpora are the

tree topology, POS tags, and relation types. Many corpora also include annotation for

morphological features, but this is not reliably present.

Without conditioning on relation types, our entropy measures become much less lin-

guistically useful. Much linguistic work has to do with the relationship between word

order and grammatical relations; without including dependency relation types, very little

information about universal grammatical relations is available. For example, if we did not

condition on dependency relation types, it would be impossible to identify verbal subjects

and objects or to quantify how informative word order is about these relations crosslinguis-

tically. So we always include dependency relation type in conditioning variables.

The remaining questions are whether to include the POS tags of heads and of each

dependent. Some annotation decisions in the Universal Dependencies and Stanford De-

pendencies argue for including POS information of heads. For example, the Universal

Dependencies annotation for copular sentences has the predicate noun as the head, with the

subject noun as a dependent of type nsubj, as in example (7):

(7)

Bob is a criminal

nsubj

cop
det

This has the effect that the linguistic meaning of the nsubj relation encodes one syntactic

relation when its head is a verb, and another syntactic relation when its head is a noun. So

we should include POS information about heads when possible.

There are also linguistic reasons for including the POS of dependents in the condi-

tioning variable. Word order often depends on part of speech; for example, in Romance

languages, the standard order in the main clause is Subject-Verb-Object if the object is a

noun but Subject-Object-Verb if the object is a pronoun. Not including POS tags in the

conditioning variable would lead to misleadingly high word order freedom numbers for

these clauses in these languages.
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Therefore, when possible, our conditioning variables include the POS tags of heads and

dependents in addition to dependency relation types.

2.3.5 Annotation style and crosslinguistic comparability

We have discussed issues involving entropy estimation and the choice of conditioning and

dependent variables. Here we discuss another dimension of choices: what dependency

annotation scheme to use.

Since the informativity of dependency trees about syntax and semantics affects our

word order freedom measures, it is important to ensure that dependency trees across differ-

ent corpora convey the same information. Certain annotation styles might allow unordered

local subtrees to convey more information in one language than in another. To ensure

comparability, we should use those annotation styles which are most consistent across lan-

guages regarding how much information they give about words in local subtrees, even if

this means choosing annotation schemes which are less informative overall. We give ex-

amples below.

In many cases, dependency annotation schemes where function words are heads provide

more information about syntactic and semantic relations, so such annotation schemes lead

to lower estimates of word order freedom. For example, consider the ordering of German

verbal adjuncts. The usual order is time adjuncts followed by place adjuncts. Time is often

expressed by a bare noun such as gestern “yesterday”, while place is often expressed with

an adpositional phrase.

We will consider how our measures will behave for these constructions given function-

word-head dependencies, and given content-head dependencies. Given function-word-head

dependencies as in (8a), these two adjuncts will appear with relations nmod and adpmod

in the local subtree rooted by the verb tanzte; their order will be highly predictable given

these relation types inasmuch as time adjuncts are usually expressed as bare nouns and

place adjuncts are usually expressed as adpositional phrases. On the other hand, given

content-head dependencies as in (8b), the adjuncts will appear in the local subtree as nmod

and nmod, and their order will appear free.
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(8a)

Ich tanzte gestern in der Stadt
I danced yesterday in the city

nsubj
nmod

adpmod

pobj
det

(8b)

Ich tanzte gestern in der Stadt
I danced yesterday in the city

nsubj
nmod

nmod

case
det

However, function-word-head dependencies do not provide the same amount of infor-

mation from language to language, because languages differ in how often they use adpo-

sitions as opposed to case marking. In the German example, function-word-head depen-

dencies allowed us to distinguish time adjuncts from place adjuncts because place adjuncts

usually appear as adpositional phrases while time adjuncts often appear as noun phrases.

But in a language which uses case-marked noun phrases for such adjuncts, such as Finnish,

the function-word-head dependencies would not provide this information. Therefore, even

if (say) Finnish and German had the same degree of freedom in their ordering of place

adjuncts and time adjuncts, we would estimate more word order freedom in Finnish and

less in German. However, using content-head dependencies, we get the same amount of

information in both languages. Therefore, we prefer content-head dependencies for our

measures.

Following similar reasoning, we decide to use only the universal POS tags and relation

types in our corpora, and not finer-grained language-specific tags.

Using content-head dependencies while conditioning only on local subtrees overesti-

mates word order freedom compared to function-word-head dependencies. At first glance,

the content-head dependency annotation seems inappropriate for a typological study, be-

cause it clashes with standard linguistic analyses where function words such as adposi-

tions and complementizers (and, in some analyses, even determiners (Abney, 1987)) are
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heads, rather than dependents. However, content-head dependencies provide more consis-

tent measures across languages. Therefore we present results from our measures applied to

content-head dependencies.

2.3.6 Summary of parameters of entropy measures

We have discussed a number of parameters which go into the construction of a conditional

entropy measure of word order freedom. They are:

1. Annotation style: function words as heads or content words as heads.

2. Whether we measure entropy of linearizations of local subtrees (Relation Order En-

tropy) or of simple dependencies (Head Direction Entropy).

3. What information we include in the conditioning variable: relation types, head and

dependent POS, head and dependent wordforms, etc.

4. Whether to measure entropy over all dependents, or only over some subset of interest,

such as subjects or objects.

The decisions for these parameters are dictated by balancing data sparsity and linguistic

interpretability. We have argued that we should use content-head dependencies, and never

include wordforms or lemmas in the conditioning variables. Furthermore, we have argued

that it is generally better to include part-of-speech information in the conditioning variable,

but that this may have to be relaxed to cope with data sparsity. The decisions about whether

to condition on local subtrees or on simple dependencies, and whether to restrict attention

to a particular subset of dependencies, depends on the particular question of interest.

2.3.7 Entropy measures as upper bounds on word order freedom

We initially defined an ideal measure, the entropy of word orders given full unordered

dependency trees. We argued that we would have to back away from this measure by

looking only at the conditional entropy of orders of local subtrees, and furthermore that we

should only condition on the parts of speech and relation types in the local subtree. Here

we argue that these steps away from the ideal measure mean that the resulting measures

can only be interpreted as upper bounds on word order freedom.
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With each step away from the ideal measure, we also move the interpretation of the

measures away from the idealized notion of word order freedom. With each kind of infor-

mation we remove from the independent variable, we allow instances where the word order

of a phrase might in fact be fully deterministic given that missing information, but where

we will erroneously measure high word order freedom. For example, in German, the order

of verbal adjuncts is usually time before place. However, in a dependency treebank, these

relations are all nmod. By considering only the ordering of dependents with respect to their

relation types and parts of speech, we miss the extent to which these dependents do have a

deterministic order determined by their semantics. Thus, we tend to overestimate true word

order freedom.

On the other hand, the conditional entropy approach do not in principle underestimate

word order freedom as we have defined it. The conditioning information present in a depen-

dency tree represents only semantic and syntactic relations, and we are explicitly interested

in word order variability beyond what can be explained by these factors. Therefore, our

word order freedom measures constitute upper bounds on the true word order freedom in a

language.

Underestimation can arise due to data sparsity issues and bias issues in entropy estima-

tors. For this reason, it is important to ensure that our measures are stable with respect to

sample size, lest our upper bound become a lower bound on an upper bound.

The tightness of the upper bound on word order freedom depends on the informativity

of the relation types and parts of speech included in a measure. For example, if we use a

system of relation types which subdivides nmod relations into categories like nmod:tmod

for time phrases, then we would not overestimate the word order freedom of German verbal

adjuncts. As another example, to achieve a tighter bound for a limited aspect of word order

freedom at the cost of empirical coverage, we might restrict ourselves to relation types such

as nsubj and dobj, which are highly informative about their meanings.
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2.4 Applying the measures

Here we give the results of applying some of the measures discussed in Section 2.3 to

dependency corpora. We use the dependency corpora of the HamleDT 2.0 (Zeman et al.,

2012; Rosa et al., 2014) and Universal Dependencies 1.0 (Nivre et al., 2015). All punctu-

ation and dependencies with relation type punct are removed. We only examine sentences

with a single root. We exclude corpora with less than 1000 such sentences. Annotation was

normalized to content-head format when necessary. Combined this gives us dependency

corpora of 34 languages in a fairly standardized format.

In order to evaluate the stability of our measures with respect to sample size, we mea-

sure all entropies using the bootstrap estimator of DeDeo et al. (2013). We report the mean

results from applying our measures to subcorpora of 1000 sentences for each corpus. We

also report results from applying measures to the full corpus, so that the difference be-

tween the full corpus and the subcorpora can be compared, and the effect of data sparsity

evaluated.

2.4.1 Head Direction Entropy

Head direction entropy, defined and motivated in Section 2.3.3, is the conditional entropy

of whether a head is to the right or left of a dependent, conditioned on relation type and

part of speech of head and dependent. This measure can reflect either consistency in head

direction conditioned on relation type, or consistency in head direction overall. Results

from this measure are shown in Figure 2-2. As can be seen, the measure gives similar

results when applied to subcorpora as when applied to full corpora, indicating that this is

measure is not unduly affected by differences in sample size.

We find considerable variability in word order freedom with respect to head direction.

In languages such as Korean, Telugu, Irish, and English, we find that head direction is

nearly deterministic. On the other hand, in Slavic languages and in Latin and Ancient

Greek we find great variability. The fact that entropy measures on subcorpora of 1000

sentences do not diverge greatly from entropy measures on full corpora indicates that this

measure is stable with respect to sample size.
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Figure 2-2: Head direction entropy in 34 languages. The bar represents the average mag-
nitude of head direction entropy estimated from subcorpora of 1000 sentences; the red dot
represents head direction entropy estimated from the whole corpus.
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We find a potential relationship between predominant head direction and word order

freedom in head direction. Figure 2-2 is coded according to whether languages have more

than 50% head-final dependencies or not. The results suggest that languages which have

highly predictable head direction might tend to be mostly head-final languages.

The results here also have bearing on appropriate generative models for grammar induc-

tion. Common generative models, such as DMV, use separate multinomial models for left

and right dependents of a head. Our results suggest that for some languages there should

be some sharing between these distributions.

2.4.2 Relation Order Entropy

Relation order entropy (Section 2.3.2) is the conditional entropy of the order of words in a

local subtree, conditioned on the tree structure, relation types, and parts of speech. Figure

2-3 shows relation order entropy for our corpora. As can be seen, this measure is highly

sensitive to sample size: for corpora with a medium sample size, such as English (16535

sentences), there is a moderate difference between the results from subcorpora and the

results from the full corpus. For other languages with comparable size, such as Spanish

(15906 sentences), there is a larger difference. In the case of languages with small corpora

such as Bengali (1114 sentences), their true relation order entropy is almost certainly higher

than measured.

While relation order entropy is the most easily interpretable and general measure of

word order freedom, it does not seem to be workable given current corpora and methods.

In further experiments, we found that removing POS tags from the conditioning variable

does not reduce the instability of this measure.

2.4.3 Relation Order Entropy of subjects and objects

We can alleviate the data sparsity issues of relation order entropy by restricting our atten-

tion to a few relations of interest. For example, the position of subject and object in the

main clause has long been of interest to typologists (Greenberg, 1963), (cf. (Dryer, 1992)).

In Figure 2-4 we present relation order entropy of subject and object for local subtrees con-
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Figure 2-3: Relation order entropy in 34 languages. The bar represents the average mag-
nitude of relation order entropy estimated from subcorpora of 1000 sentences; the red dot
represents relation order entropy estimated from the whole corpus.
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Figure 2-4: Relation order entropy for subject and object in 34 languages. Language names
are annotated with corpus size in number of sentences. Bars are colored depending on the
nominative-accusative case marking system type for each language. “Full” means fully
present case marking in at least one paradigm. “dom” means Differential Object Marking.

taining relations of type nsubj and dobj (obj in the case of HamleDT corpora), conditioned

on the parts of speech for these dependents.

The languages Figure 2-4 are colored according to their nominative-accusative2 case

marking on nouns. We consider a language to have full case marking if it makes a consis-

tent morphological distinction between subject and object in at least one paradigm. If the

distinction is only present conditional on animacy or definiteness, we mark the language as

DOM for Differential Object Marking (Aissen, 2003).

The figure reveals a relationship between morphology and this particular aspect of word

order freedom. Languages with relation order entropy above .625 all have relevant case

marking, so it seems word order freedom in this domain implies the presence of case mark-

ing. However, case marking does not imply rigid word order; several languages in the

2Or ergative-absolutive in the case of Basque and the Hindi past tense.
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sample have rigid word order while still having case marking. Our result is a quantitative

sharpening of the pattern claimed in Kiparsky (1997).

Interestingly, many of the exceptional languages—those with case marking and rigid

word order—are languages with verb-final or verb-initial orders. In our sample, Persian,

Hindi, and Turkish are case-marking verb-final languages where we measure low levels

of freedom in the order of subject and object. Modern Standard Arabic is (partly) verb-

initial and case-marking (although case marking is rarely pronounced or explicitly written

in modern Arabic). This finding is in line with recent work (Gibson et al., 2013; Futrell

et al., 2015a) which has suggested that verb-final and verb-initial orders without case mark-

ing do not allow robust communication in a noisy channel, and so should be dispreferred.

2.5 Conclusion

We have presented a set of interrelated methodological and linguistic issues that arise as

part of quantifying word order freedom in dependency corpora. We have shown that condi-

tional entropy measures can be used to get reliable estimates of variability in head direction

and in ordering relations for certain restricted relation types. We have argued that such

measures constitute upper bounds on word order freedom. Further, we have demonstrated

a simple relationship between morphological case marking and word order freedom in the

domain of subjects and objects, providing to our knowledge the first large-scale quantitative

validation of the old intuition that languages with free word order must have case marking.
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Chapter 3

Large-scale Evidence for Dependency

Length Minimization
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3.1 Introduction

Finding explanations for the observed variation in human languages is the primary goal

of linguistics, and promises to shed light on the nature of human cognition.1 One partic-

ularly attractive set of explanations is functional in nature, holding that language univer-

sals are grounded in the known properties of human information processing (Haspelmath,

2008; Jaeger and Tily, 2011). The idea is that grammars of languages have evolved so that

language users can communicate using sentences that are relatively easy to produce and

comprehend. Within the space of functional explanations, a promising hypothesis is de-

pendency length minimization (DLM). The aim of this paper is to provide corpus evidence

from over 40 languages for DLM as a universal pressure affecting both grammar and usage.

Section 3.2 covers results that were previously published in Futrell et al. (2015b), though it

is largely rewritten. Sections 3.3 and 3.4 are new material except for Section 3.3.1 which

was published in Futrell and Gibson (2015).

3.1.1 Background

This study is about dependency length: the distances between linguistic heads and de-

pendents. The notions of head and dependent can be defined on top of most syntactic

formalisms. Nearly all theories of syntax include some notion of headedness, the idea

that the behavior of a constituent can be understood primarily with reference to one dis-

tinguished word, the head (Bloomfield, 1933; Tesnière, 1959; Hays, 1964; Bresnan, 1982;

Hudson, 1990b; Pollard and Sag, 1987; Mel’čuk, 1988; Corbett et al., 1993). For example,

the syntactic behavior of a noun phrase is determined primarily by the head noun in the

phrase. Headedness in syntax is also known as endocentricity. A dependent is a word

that modifies a head, and a dependency is the relationship between a head and a dependent.

While most constituents appear to be endocentric, not all syntactic formalisms posit a

head for all phrases. In these formalisms, some constructions forming constituents are exo-

centric, having no head. For example, it is notoriously difficult to assign a head to a phrase

1Code for replicating the results in this section can be found online at http://github.com/
Futrell/cliqs.

88



such as Bob and Mary (Temperley, 2005; Popel et al., 2013), with different dependency

formalisms choosing different means (Tesnière, 1959; Mel’čuk, 1988), and some introduc-

ing elements of phrase structure formalisms especially for thus purpose Hudson (1990a).

In formalisms such as Minimalism, all phrases have heads, but these heads may be silent

elements (Adger, 2003). Thus while the notions of head and dependent exist in most for-

malisms, they are not always present or straightforward. Nevertheless, most phrases are

uncontroversially endocentric.

Taking the notion of endocentricity to it slogical conclusion, dependency grammar

posits that syntax can be fully described solely in terms of relationships among heads, with-

out a further notion of constituent or other higher-order groupings of words (Tesnière, 1959;

Hays, 1964; Hudson, 1990b; Mel’čuk, 1988; Sleator and Temperley, 1991). In dependency

grammar, the correct syntactic analysis takes the form of a tree or directed graph linking

heads to their dependents. If all phrases are endocentric, then constituency grammars and

dependency grammars can be freely converted one to the other. But if endocentricity is not

universal, then it is likely that dependency formalisms will miss some syntactic constraints

that can be expressed in constituency grammars.

In this work, while we use a dependency formalism, we do not wish to claim that

dependency grammar is the only correct description of syntax, or that a dependency tree

encapsulates all the syntactic information that there is to know about a sentence. We only

wish to claim that dependency trees represent an important and large subset of that infor-

mation. We describe syntax in terms of dependency trees here for two reasons: simplicity

and convenience. With regard to simplicity, dependency trees are simple to reason about,

and to formulate algorithms over, while providing a decent description of syntax. With

regard to convenience, large-scale corpora are available with dependency annotation, be-

cause it is easier to perform this annotation in a consistent way across languages than to

use a constituency annotation (Nivre, 2005).

Examples of dependency trees are given in Figure 3-1. The verb throw in Sentence C

is the head of two nouns that modify it, John—its subject—and trash—its object. Subject

and object relations are kinds of dependency relations.

Another way to think about dependency is to note that heads and dependents are words
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John threw out the trash

1 1

3

1

Sentence A: Total dependency length = 6

John threw the trash out

1
2

1

3

Sentence B: Total dependency length = 7

John threw out the old trash sitting in the kitchen

1 1

4

2
1 1 1

2
1

Sentence C: Total dependency length = 14

John threw the old trash sitting in the kitchen out

1

8

3

2
1 1 1

2
1

Sentence D: Total dependency length = 20

1

Figure 3-1: Four sentences along with their dependency representations. The number over
each arc represents the length of the dependency in words. The total dependency length is
given below each sentence. Sentences A and B have the same semantics, and either word
order is acceptable in English; English speakers typically do not find one more natural than
the other. Sentences C and D also both have the same semantics, but English speakers
typically find C more natural than D.
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which must be linked together in order to understand a sentence, to a first approximation.

For example, in order to correctly understand Sentence C in Figure 3-1, a comprehender

must determine that a relationship of adjectival modification exists between the words old

and trash, and not between, say, the words old and kitchen. In typical dependency analyses,

objects of prepositions (him in for him) depend on their prepositions, articles depend on the

nouns they modify, and so on2.

The dependency length minimization (DLM) hypothesis is that language users prefer

word orders which minimize dependency length. The hypothesis makes two broad predic-

tions. First, when the grammar of a language provides multiple ways to express an idea,

language users will prefer the expression with the shortest dependency length. Second,

grammars should facilitate the production of short dependencies by not enforcing word

orders with long dependencies (Rijkhoff, 1990; Hawkins, 1990).

Explanations for why language users would prefer short dependencies are various, but

they all involve the idea that short dependencies are easier or more efficient to produce

and comprehend than long dependencies (Hawkins, 1994; Gibson, 1998). The difficulty of

long dependencies emerges naturally in many models of human language processing. For

example, in a left-corner parser or generator, dependency length corresponds to a timespan

over which a head or dependent must be held in a memory store (Abney and Johnson,

1991; Gibson, 1991; Resnik, 1992); since storing items in memory may be difficult or

error-prone, short dependencies would be easier and more efficient to produce and parse

according to this model. In support of this idea, comprehension and production difficulty

have been observed at the sites of long dependencies (Gibson, 1998; Grodner and Gibson,

2005; Demberg and Keller, 2008; Shain et al., 2016) (cf. Gennari and MacDonald, 2008).

In terms of the framework from the introduction, if dependencies represent instances

of context-dependence in semantic interpretation, then they are undesirable under memory

constraints for reasons discussed in Section 1.5.5 above.

If language users are motivated by avoiding difficulty, then they should avoid long de-

pendencies. Furthermore, if languages have evolved to support easy communication, then

2Most aspects of dependency analysis are generally agreed upon, although the analysis of certain relations
has been in dispute, primarily those relations involving function words such as prepositions, determiners, and
conjunctions.
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they should not enforce word orders that create long dependencies. The DLM hypothe-

sis thus provides a link between language structure and efficiency through the idea that

speakers and languages find ways to express meaning while avoiding structures which are

difficult to produce and comprehend.

3.1.2 Four predictions of Dependency Length Minimization

Over the last quarter century, researchers have proposed DLM-based explanations of some

of the most pervasive properties of word order in languages. We can see the word order in

a sentence as a particular linearization of a dependency graph, where a linearization is an

arrangement of the words of the dependency graph in a certain linear order. For instance,

Sentences A and B in Figure 3-1 are two linearizations of the same graph.

The predictions of DLM as a theory of linearization are potentially complex. We must

consider, for a dependency tree, what is the linearization of the tree that minimizes depen-

dency length (Harper, 1964; Iordanskii, 1974; Chung, 1984). However, four generalizations

about minimal dependency length linearizations have emerged which can guide predictions

about word order:

1. Projectivity. In a minimal dependency length linearization, when dependency arcs

are drawn above a sentence, the lines rarely cross (Ferrer i Cancho, 2006). An exam-

ple is shown in Figure 3-2.

2. Head direction consistency. In low-arity dependency trees, consistency in head

direction should be preferred. This prediction is motivated by examples in Figure 3-

3.

3. Ordered nesting. When a head has multiple dependents, they should be arranged

in order of decreasing length before a head, and increasing length after a head. The

preference for sentence C over sentence D in Figure 3-1 is an example of this princi-

ple.

4. Mixed branching. In high-arity trees, where one dependent is much shorter than the

another, the short dependent should be on the opposite side of the head from the long

92



in nova fert animus mūtātas dīcere formas corpora
1

3

1

2
4

7 6

[in [nova[mūtātas[formas corpora]]]]]]fert[animus [dīcere

1
1

11 1

2

1

Figure 3-2: On average, projective linearizations have shorter dependency length than non-
projective ones. This example shows a line from Ovid in its original word order, compared
with a projective linearization of the same tree. Dependency length for the projective lin-
earization is substantially shorter.

one Gildea and Temperley (2007); Temperley (2007, 2008).

The prediction that linearizations are projective is borne out pervasively across lan-

guages, to the extent that projectivity has often been incorporated as an explicit constraint

on dependency representations (Gaifman, 1965; Mel’čuk, 1988). Nevertheless, there are

compelling examples where dependencies seem to cross (Bresnan et al., 1982; Joshi, 1990;

Kuhlmann and Nivre, 2006; Chen-Main and Joshi, 2010). Ferrer i Cancho (2006) argues

that this ubiquitous property of languages arises from DLM, because orders that minimize

dependency length have a small number of crossing dependencies on average.

Also, the second of these generalizations can explain a pervasive word order univer-

sal. Greenberg (1963) found striking correlations between different ordering constraints in

languages, such that languages tend to be consistent in whether heads come before depen-
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A B C D E

1 1 1 1

E D A B C

1 1 1

3

Figure 3-3: An example of how DLM prefers linearizations with consistent head direction
for low-arity trees. Dependency length (number of words from head to dependent) is drawn
over each arc. The first linearization has longer sum dependency length than the second.

dents or vice versa (Lehmann, 1973; Vennemann, 1974; Radford, 1997). This pattern bears

out the head direction consistency prediction Hawkins (1994). Furthermore, exceptions to

it are typically for single-word phrases, thus bearing out the mixed branching prediction

(Dryer, 1992; Temperley, 2007).

Minimal dependency length has also been widely assumed as a reliable generalization

in the field of natural language processing. For example, most state-of-the-art models for

natural language grammar induction incorporate a bias toward positing short dependencies,

and their performance is greatly improved by this assumption (Klein and Manning, 2004;

Smith and Eisner, 2006; Noji et al., 2016). The influential grammar induction model of

Klein and Manning (2004) only achieved results above the random baseline after incorpo-

rating an assumption of minimal dependency length. Seminal parsing algorithms also in-

corporate this assumption (Sleator and Temperley, 1991; Collins, 2003; Eisner and Smith,

2005).

3.1.3 Evidence for Dependency Length Minimization

While DLM can explain high-level syntactic generalizations about languages, it has not

yet been shown conclusively to be the correct explanation. Other independently-motivated

explanations exist for many of the linguistic properties attributed to DLM. For example,

head direction consistency could be motivated by simplicity in grammmars, and projectiv-

ity could be motivated by time complexity in parsing. Furthermore, the argument for DLM

as a pressure in usage is limited to a few languages, mostly English. If it turns out that there

is not a universal usage preference for sentences with short dependencies, then that would
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weaken the case that DLM is the correct explanation of grammatical universals.

With regard to the DLM predictions about grammar, of the four predictions of DLM,

consistent head direction and projectivity have the most validation. In addition, Hawkins

(2014) has argued that crosslinguistic grammars also show the preference for ordered nest-

ing. On the usage side, evidence for all four of the DLM predictions as production pref-

erences has been provided in detailed corpus studies that investigate these predictions ex-

plicitly. Such studies exist for English, German, and Romance languages (Hawkins, 1994;

Wasow, 2002; Temperley, 2007; Gulordava and Merlo, 2015b). Tily (2010) also shows that

dependency length becomes more minimized over time in historical corpora of English. In

addition, Yamashita and Chang (2001) gives experimental evidence for a nested ordering

(long-before-short order) preference in Japanese usage.

In addition to corpus studies that explicitly test the four predictions of DLM, a number

of corpus studies have attempted to show very general evidence for DLM in grammar

and/or usage by comparing observed dependency length to random baselines, representing

a hypothetical state of language unaffected by DLM. These approaches have the advantage

of being extensible in principle to any language for which a suitable corpus exists, without

requiring in-depth construction-by-construction analysis.x These studies have come in two

types: those that compare observed dependency length to dependency length in random

trees, and those that compare to dependency length in random reorderings of observed

trees. We will call these two approaches random tree and random order approaches.

Random tree approaches include Liu (2008) and Ferrer i Cancho and Liu (2014). In

these approaches, observed dependency trees are compared to random dependency trees

generated using various algorithms, such as Prüfer codes (Prüfer, 1918). In these ap-

proaches the dependency length in a sentence such as Sentence A of Figure 3-1 is com-

pared to dependency length in random trees of the same length, as shown in Figure 3-4.

Using this approach, Liu (2008) finds that dependency length in real trees of 20 languages

is shorter than dependency length in random trees. Subsequent work has focused on finding

random tree generation algorithms which produce dependency length distributions similar

to natural language, as a way of explaining these distributions (Lu et al., 2016).

The comparison to random trees tells us that dependency length minimization exists in
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A B C D E

2
1

2
3

Total dependency length = 8

A B C D E

2

4
3

2

Total dependency length = 11

A B C D E

1

3
2

1

Total dependency length = 7

Figure 3-4: Some random trees based on the sentence in Figure 3-1 according to random
tree baseline used in Liu (2008).

a very general sense, but not that it has an effect on word orders. The result is compatible

with many mechanisms to reduce dependency length. For example, language users might

structure discourse (splitting ideas into multiple sentences), drop optional syntactic ele-

ments such as pronouns, or choose favorable word orders. A speaker has many degrees of

freedom in choosing what sentences to use, and could be using these to reduce dependency

length without DLM affecting word order at all.

The other strand of large-scale corpus work on DLM compares to random order base-

lines. In these baselines, the observed unordered dependency tree structures are held con-

stant, and the word order is allowed to vary according to constraints under study. The result

tells us the extent to which DLM affects word order, in addition to how it can affect tree

structure and content expressed. Both the content expressed in a sentence and word order

preferences contribute to the dependency length of the sentence. Comparing to random tree

baselines, we see that dependency length is shorter than what we would expect if both of

these factors are allowed to vary. Comparing to random order baselines, we are holding

tree structure—a proxy for content expressed in a sentence—fixed, and letting order vary.

This approach allows us to isolate the effect of DLM on word order, and give evidence for

DLM as a pressure affecting word order specifically.

96



In the random order approach, most prominently, Gildea and Temperley (2007, 2010)

compare observed dependency length to random projective reorderings of trees, answering

the question of whether the observed dependency length in real sentences can be explained

by projectivity alone. They find that dependency length is shorter than expected from the

random projective baseline in English and German, and the result is replicated in Park and

Levy (2009). Yet while they find a statistically significant DLM effect in both languages,

the authors find that DLM is much weaker in German. In suggestive related work, Noji

and Miyao (2014) show that memory usage in a specific parser is minimzed for corpora of

18 languages when compared to random reorderings, but they do not test the question of

dependency length minimization directly. Overall, as large-scale evidence for DLM effects

on word order goes, the results are mixed: English shows optimization, German only barely

so.

3.1.4 Aims of this work

In this paper, we provide large-scale corpus evidence that DLM is in fact a universal pres-

sure affecting word order in both grammar and usage across languages. In Section 3.2, we

show that dependency length in corpora of dozens of languages is shorter than what we

would expect from independently-motivated constraints for projectivity, consistent head

direction, and word order fixedness as a function of grammatical relations. This result es-

tablishes that DLM explains a strict superset of the word order phenomena that these other

constraints can explain. In Section 3.3, we argue that DLM affects both grammar and usage

in these languages. To make this argument, we induce probabilistic grammars that take a

dependency tree in a language and give the probability distribution over licit linearizations

of that tree in the language. We then show that observed dependency lengths in sentences

are shorter than random grammatical reorderings of those sentences, establishing a usage

preference for short dependencies beyond what is encoded by grammar. Furthermore, we

show that the random grammatical reorderings of sentences themselves have lower depen-

dency length than the reorderings according to constraints such as projectivity. This result

establishes that word order in grammars are also shaped by DLM. Finally, in Section 3.4,
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we discuss observed variation in dependency length across languages. While all languages

in the current sample have dependency length shorter than baselines, they vary significantly

in the extent of minimization. We discuss some linguistic properties that appear to condi-

tion this variation, and speculate on how this variation can shed light on constraints other

than DLM that shape natural languages.

3.2 Comparison with independently motivated baselines

Here we address the question of whether the observed dependency length in corpora of

many languages can be accounted for by independently-motivated constraints for projec-

tivity, fixed word order, and consistent head direction. If dependency length can be fully

accounted for by these independent factors, then that result would diminish the evidence

for DLM as an explanation of word order universals. On the other hand, if dependency

length is shorter than expected from these constraints, then the word order phenomena they

account for is only a subset of what DLM can explain. This result would strengthen the

argument for DLM as a causal force affecting languages. The results of this section can

be taken equally to mean DLM affects grammar and usage; we do not distinguish between

these two here.

To address our question, we use recently-available dependency-parsed corpora of many

languages (McDonald et al., 2013; Zeman et al., 2014; Nivre et al., 2015). We obtained

hand-parsed or hand-corrected corpora of 37 languages, comprising 10 language families.

36 of the corpora follow widely recognized standards for dependency analysis (de Marneffe

et al., 2014; Nivre et al., 2015); the remaining corpus (Mandarin Chinese) uses its own

system which is nonetheless similar to the standards. The texts in the corpora are for the

most part written prose from newspapers, novels, and blogs. Exceptions are the corpora of

Latin and Ancient Greek, which include a great deal of poetry, and the corpus of Japanese,

which consists of spoken dialogue.

In addition to the random baselines, we present an optimal baseline for the minimum

possible dependency length in a projective linearization for each sentence, following the

method of Gildea and Temperley (2007). This allows us to evaluate the extent to which
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different languages minimize their dependency lengths compared to what is possible. We

do not expect observed dependency lengths to be completely minimized, since there are

other factors influencing grammars and language usage which might come into conflict

with DLM.

3.2.1 Methods

Data

We use the dependency trees of the HamleDT 2.0, Google Universal Treebank 2.0, and Uni-

versal Dependencies 1.0 corpora (McDonald et al., 2013; Zeman et al., 2014; Nivre et al.,

2015); these are projects which have aimed to harmonize details of dependency analysis

between dependency corpora. In addition we include a corpus of Mandarin, the Chinese

Dependency Treebank (Che et al., 2012). We normalize the corpora so that prepositional

objects depend on their prepositions (where the original corpus has a case relation) and

verbs depend on their complementizers (where the original corpus has a mark relation).

For conjunctions, we use Stanford style. We also experimented with corpora in the original

content-head format of HamleDT and Universal Dependencies; the pattern of results and

their significance was the same. These results are shown in Appendix A.

Measuring dependency length

We calculate the length of a single dependency arc as the number of words between a head

and a dependent, including the dependent, as in Figure 3-1. For sentences, we calculate the

overall dependency length by summing the lengths of all dependency arcs. We do not count

any nodes representing punctuation or “root” nodes, nor arcs between them; sentences that

are not singly rooted after removal punctuation are excluded.

Fixed Word Order Random Baseline

Fixed word order random linearizations are generated according to the following procedure

per sentence. Assign each relation type a random weight in [−1, 1]. Starting at the root

node, collect the head word and its dependents and order them by their weight, with the
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head receiving weight 0. Then repeat the process for each dependent, keeping the same

weights. This creates consistency in word order with respect to relation types.

This linearization scheme can capture many aspects of fixed order in languages, but

cannot capture all of them; for example, linearization order in German depends on whether

a verb is in a subordinate clause or not. The fixed linearization scheme is also inaccurate

in that it produces entirely deterministic orders. In contrast, many languages permit the

speaker a great deal of freedom in choosing word order. However, creating a linearization

model that can handle all possible syntactic phenomena is beyond the scope of this paper.

Generalized Additive Models

For the figures, we present fits from Generalized Additive Models predicting dependency

length from sentence length using cubic splines as a basis function. This provides a line

which is relatively close to the data for visualization.

Regression Models

For hypothesis testing and comparison of effect sizes, we use regression models fit to data

from each language independently. For these regressions, we only consider sentences with

length < 100 words. For each sentence 𝑠 in a corpus, we have 𝑁 + 1 datapoints: 1 for

the observed dependency length of the sentence, and 𝑁 = 100 for the dependency lengths

of the random linearizations of the sentence’s dependency tree. We fit a mixed-effects

regression model (Gelman and Hill, 2007) with the following equation, with coefficients 𝛽

representing fixed effects and coefficients 𝑆 representing random effects by sentence:

𝑦𝑖 = 𝛽0 + 𝑆0 + 𝛽1𝑙
2
𝑠 + (𝛽2 + 𝑆2)𝑟𝑖 + 𝛽3𝑟𝑖𝑙

2
𝑠 + 𝜖𝑖 (3.1)

where 𝑦𝑖 is the estimated total dependency length of datapoint 𝑖, 𝛽0 is the intercept, 𝑙2𝑠

is the squared length of sentence 𝑠 in words, 𝑟𝑖 is an indicator variable with value 1 if

datapoint 𝑖 is a random linearization and 0 if it is an observed linearization, and 𝑚𝑖 is

an indicator variable with value 1 if datapoint 𝑖 is a minimal linearization and 0 if it is

an observer linearization. We use 𝑙2𝑠 rather than 𝑙𝑠 because we found that a model using
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squared sentence length provides a better fit to the data for 33/37 languages, as measured

by AIC and BIC; the pattern and significance of the results are the same for a model using

plain sentence length rather than squared sentence length. The coefficient 𝛽3 determines the

extent to which dependency length of observed sentences grows more slowly with sentence

length than dependency length of randomly linearized sentences. This growth rate is the

variable of interest for DLM; summary measures which are not a function of length fall

prey to inaccuracy due to mixing dependencies of different lengths (Ferrer i Cancho and

Liu, 2014). For significance testing comparing the real dependencies and random baselines,

we performed a likelihood ratio test comparing models with and without 𝛽3. We fit the

model using the lme4 package in R (Bates et al., 2015).

3.2.2 Results

Free Word Order Baseline Our first baseline is fully random projective linearizations of

dependency trees. Random projective linearizations are generated according to the follow-

ing procedure, from Gildea and Temperley (2007), a method similar to one developed by

Hawkins (1998). Starting at the root node of a dependency tree, collect the head word and

its dependents and order them randomly. Then repeat the process for each dependent. For

each sentence in our corpora, we compare real dependency lengths to dependency lengths

from 100 random linearizations produced using this algorithm. Note that the 100 random

linearization all have the same underlying dependency structure as the original sentence,

just with a potentially different linear order. Under this procedure, the random lineariza-

tions do not obey any particular word order rules: there is no consistency in whether sub-

jects precede or follow verbs, for example. In that sense, these baselines may most closely

resemble a free word order language as opposed to a language like English, in which the

order of words in sentences are relatively fixed.

Figure 3-5 shows observed and random dependency lengths for sentences of length 1–

50. As the figure shows, all languages have average dependency lengths shorter than the

random baseline, especially for longer sentences. To test the significance of the effect,

for each language, we fit regression models predicting dependency length as a function of

101



sentence length. The models show a significant effect where the dependency length of real

sentences grows more slowly than the dependency length of baseline sentences (𝑝 < 0.0001

for each language).

Figure 3-6 shows histograms of observed and random dependency lengths for sentences

of length 12, the shortest sentence length to show a significant effect in all languages (𝑝 <

0.01 for Latin, 𝑝 < 0.001 for Telugu, and 𝑝 < 0.0001 for all others, by Stouffer’s method).

In languages for which we have sufficient data, there is a significant DLM effect for all

longer dependency lengths.

Fixed Word Order Baseline The first baseline ignores a major common property of lan-

guages: that word order is typically fixed for certain dependency types. For example, in

English, the order of certain dependents of the verb is mostly fixed: the subject of the verb

almost always comes before it, and the object of a verb almost always comes after. We

capture this aspect of language by introducing a new baseline. In this baseline, the relative

ordering of the dependents of a head is fixed given the relation types of the dependencies

(subject, object, prepositional object, etc.). For each sentence, we choose a random order-

ing of dependency types, and linearize the sentence consistently according to that order.

We perform this procedure 100 times to generate 100 random linearizations per sentence.

Figure 3-7 shows observed dependency lengths compared to the random fixed-order

baselines. The results are similar to the comparison with the free-word-order baselines in

that all languages have dependencies shorter than chance, especially for longer sentences.

We find that this random baseline is more conservative than the free-word-order baseline in

that the average dependency lengths of the fixed word order random baselines are shorter

than those of the free word order random baselines (with significance 𝑝 < 0.0001 by a

𝑡-test in each language). For this baseline, the DLM effect as measured in the regression

model is significant at 𝑝 < 0.0001 in all languages except Telugu, a small corpus lacking

long sentences, where 𝑝 = 0.15.
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Figure 3-5: Random Free Word Order baseline dependency lengths, observed depen-
dency lengths, and optimal dependency lengths for sentences of length 1–50. The blue line
shows observed dependency length, the red line shows average dependency length for the
random Free Word Order baseline, and the green line shows average dependency length
for the optimal baseline. The density of observed dependency lengths is shown in black.
The lines in this figure are fit using a generalized additive model. We also give the slopes
of dependency length as a function of squared sentence length, as estimated from a mixed-
effects regression model. rand is the slope of the random baseline. obs is the slope of
the observed dependency lengths. opt is the slope of the optimal baseline. Due to varying
sizes of the corpora, some languages (such as Telugu) do not have attested sentences at all
sentence lengths.
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Figure 3-6: Histograms of observed dependency lengths and Free Word Order random
baseline dependency lengths for sentences of length 12. m_rand is the mean of the free
word order random baseline dependency lengths; m_obs is the mean of observed depen-
dency lengths. We show 𝑝 values from Stouffer’s 𝑍-transform test comparing observed
dependency lengths to the dependency lengths of the corresponding random linearizations.
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Figure 3-7: Real dependency lengths as a function of sentence length (blue), compared to
the Fixed Word Order Random baseline (red). GAM fits are shown. rand and obs are
the slopes for random baseline and observed dependency length as a function of squared
sentence length, as in Figure 3-5.
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3.2.3 Consistent Head Direction Baseline

There is the possibility that our findings actually reflect independently-motivated consis-

tency in head order rather than DLM per se. Here we test this idea by comparing languages

to random and optimal baselines where head direction is fixed for all relation types. In this

case, the only way that dependency length can be minimized is by choosing an optimal

ordering of the dependents of a single head; this is accomplished by ordering constituents

from short to long in the case of a head-initial language, or from long to short in the case

of a head-final language.

Figure 3-8 shows real dependency lengths compared to the consistent-head-direction

baselines. We find that all languages have shorter dependencies than we would expect by

chance given consistent head direction. The difference between real and random slopes

is significant at 𝑝 < 0.001 for all languages. The baseline is especially interesting in the

case of the overwhelmingly head-final languages in our sample, such as Japanese, Korean,

Turkish, Telugu, Tamil, and Hindi. For these languages, which are similar to the baselines

in the consistency of their head direction, the fact that they have dependency lengths shorter

than the random baseline indicates that they accomplish dependency length minimization

through long-before-short order.

3.2.4 Fixed Head Position Baseline

To what extent is DLM accomplished by choosing an optimal position of the head relative

to its dependents, and to what extent is it accomplished by choosing an optimal ordering of

the dependents? To address this question, we compare real dependency lengths to random

and optimal baselines where the position of the head and the direction of each dependent

with respect to the head is fixed at the observed values. For example, given an observed

head 𝐻 with left dependents 𝐴, 𝐵, 𝐶, and right dependents 𝐷, 𝐸, 𝐹 , we consider random

orderings such as [𝐶,𝐴,𝐵,𝐻,𝐸, 𝐹,𝐷], [𝐴,𝐶,𝐵,𝐻,𝐷, 𝐹,𝐸], etc., where 𝐴, 𝐵, 𝐶 and 𝐷,

𝐸, 𝐹 are shuffled but maintain their direction with respect to the head.

Figure 3-9 shows real dependency lengths compared to the random and optimal fixed-

head-position baselines. We find that all languages have dependency lengths shorter than

106



rand = 0.14
obs = 0.10
opt = 0.07

rand = 0.07
obs = 0.04
opt = 0.03

rand = 0.16
obs = 0.10
opt = 0.09

rand = 0.18
obs = 0.14
opt = 0.11

rand = 0.11
obs = 0.07
opt = 0.06

rand = 0.10
obs = 0.05
opt = 0.04

rand = 0.13
obs = 0.09
opt = 0.07

rand = 0.09
obs = 0.06
opt = 0.05

rand = 0.11
obs = 0.07
opt = 0.06

rand = 0.11
obs = 0.06
opt = 0.05

rand = 0.07
obs = 0.08
opt = 0.05

rand = 0.11
obs = 0.06
opt = 0.05

rand = 0.17
obs = 0.11
opt = 0.10

rand = 0.11
obs = 0.07
opt = 0.05

rand = 0.10
obs = 0.05
opt = 0.04

rand = 0.10
obs = 0.08
opt = 0.05

rand = 0.07
obs = 0.05
opt = 0.04

rand = 0.11
obs = 0.07
opt = 0.05

rand = 0.12
obs = 0.08
opt = 0.06

rand = 0.09
obs = 0.05
opt = 0.05

rand = 0.09
obs = 0.05
opt = 0.04

rand = 0.09
obs = 0.05
opt = 0.04

rand = 0.11
obs = 0.09
opt = 0.07

rand = 0.11
obs = 0.09
opt = 0.07

rand = 0.13
obs = 0.10
opt = 0.07

rand = 0.09
obs = 0.05
opt = 0.04

rand = 0.10
obs = 0.07
opt = 0.05

rand = 0.09
obs = 0.05
opt = 0.04

rand = 0.12
obs = 0.07
opt = 0.07

rand = 0.11
obs = 0.07
opt = 0.06

rand = 0.11
obs = 0.07
opt = 0.05

rand = 0.13
obs = 0.07
opt = 0.06

rand = 0.09
obs = 0.05
opt = 0.04

rand = 0.12
obs = 0.07
opt = 0.06

rand = 0.12
obs = 0.08
opt = 0.06

rand = 0.22
obs = 0.18
opt = 0.16

rand = 0.14
obs = 0.12
opt = 0.08

Ancient Greek Arabic Basque Bengali Bulgarian Catalan Chinese

Croatian Czech Danish Dutch English Estonian Finnish

French German Hebrew Hindi Hungarian Indonesian Irish

Italian Japanese Korean Latin Modern Greek Persian Portuguese

Romanian Russian Slovak Slovenian Spanish Swedish Tamil

Telugu Turkish

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0 10 20 30 40 50 0 10 20 30 40 50
Sentence length

D
ep

en
de

nc
y 

le
ng

th

Free Head−Consistent Random Baseline

Observed

Free Head−Consistent Optimal Baseline

Figure 3-8: Real dependency lengths as a function of sentence length (blue), compared
to the Consistent Head Direction Free Word Order Random baseline (red), and the
Consistent Head Direction Free Word Order Optimal baseline (green). GAM fits are
shown. rand, obs, and opt are the slopes for random, observed, and optimal dependency
length as a function of squared sentence length, as in Figure 3 in the main text.
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Figure 3-9: Real dependency lengths as a function of sentence length (blue), compared
to the Head-Fixed Free Word Order Random baseline (red) and the Head-Fixed Free
Word Order Optimal baseline (green). GAM fits are shown. rand, obs, and opt are
the slopes for random, observed, and optimal dependency length as a function of squared
sentence length, as in Figure 3 in the main text.

this baseline. The difference between real and random slopes is significant at 𝑝 < 0.001

for all languages. The finding suggests that given a fixed head position, the ordering of

dependents of the head is optimized across all languages, i.e. there is long-before-short

order before heads and short-before-long order after heads.

3.2.5 Discussion

While there has previously been convincing behavioral and computational evidence for

the avoidance of long dependencies, the evidence presented here is the strongest large-

scale cross-linguistic support for the dependency length minimization as a universal phe-

nomenon, across languages and language families.

Figure 3-5 also reveals that, while observed dependency lengths are always shorter

than the random baselines, they are also longer than the minimal baselines (though some
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languages such as Indonesian come quite close). In part, this is due to the unrealistic nature

of the optimal baseline. In particular, that baseline does not have any consistency in word

order3.

In general, we believe dependency length should not be fully minimized because of

other factors and desiderata influencing languages which may conflict with DLM. For ex-

ample, linearizations should allow the underlying dependency structure to be recovered

incrementally, in order to allow incremental understanding of utterances. In a sequence of

two words 𝐴 and 𝐵, when the comprehender receives 𝐵, it would be desirable to be able

to determine immediately and correctly whether 𝐴 is the head of 𝐵, 𝐵 is the head of 𝐴,

or 𝐴 and 𝐵 are both dependents of some as-yet-unheard word. If the order of dependents

around a head is determined only by minimizing dependency length, then there is no guar-

antee that word orders will facilitate correct incremental inference. More generally, it has

been argued that linearizations should allow the comprehender to quickly identify the syn-

tactic and semantic properties of each word (see Hawkins (2014) for detailed discussion of

the interaction of this principle with DLM). The interactions of DLM with these and other

desiderata for languages are the subject of ongoing research.

The results presented here also show great variance in the effect size of DLM across

languages. For example, the head-final languages such as Japanese, Korean, and Turkish

show much less minimization than more head-initial languages such as Italian, Indonesian,

and Irish, which are apparently highly optimized. In concordance with previous work, we

find that German is among the languages with the longest dependency length. This variance

is discussed more thoroughly in Section 3.4.

This work has shown that the preference for short dependencies is a widespread phe-

nomenon that not confined to the limited languages and constructions previously studied.

Therefore, it lends support to DLM-based explanations for language universals. Inasmuch

as DLM can be attributed to minimizing the effort involved in language production and

comprehension, this work joins previous work showing how aspects of natural language

can be explained by considerations of efficiency (Zipf, 1949; Jaeger, 2006; Piantadosi et al.,

3See Gildea and Temperley (2010) for attempts to develop approximately optimal baselines which address
this issue.
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Figure 3-10: Schematic for how grammar and usage relate to linearizations. Grammar
selects a set of licit linearizations from the logically possible ones; usage selects one lin-
earization from the grammatically licit ones.

2011; Fedzechkina et al., 2012; Kemp and Regier, 2012; Hawkins, 2014).

3.3 Grammar and usage

The results above showed that dependency length in corpora is robustly shorter than we

would expect from independently motivated general constraints alone. However, the ob-

served minimization could be accomplished by two different mechanisms: it could be that

grammars are optimized so that (when expressing common meanings) dependency length

is minimal, or it could be that language users simply have a production preference for short

dependencies (Rajkumar et al., 2016), without DLM affecting grammars per say.

Figure 3-10 shows how both grammar and usage can result in an observed DLM prefer-

ence in word order. Among all the logically possible word orders for a tree with a particular

meaning, the grammar of a language selects a set (or a probability distribution) of permitted

orders. Then from that set, the language user selects one order to use. These two selections

are two places where DLM can have an effect. For example, if the grammar only permits

harmonic word orders, then the average utterance will come out with lower dependency

length when compared with a grammar that enforces antiharmonic word orders (different

branching directions for all dependency types). On the usage side, the grammar may permit

either harmonic or antiharmonic orders, and the language user chooses the harmonic ones.

In terms of causal attribution, grammar and usage cannot be separated with certainty.

Even if we observe complete consistency in word order per dependency tree, this consis-

tency could logically be attributed to usage preferences. Nevertheless, it is possible to try to
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estimate what grammar looks like from a corpus—the space of how trees can be linearized

in general—and determine how that relates to the observed linearization of any particular

tree.

The goal of this section is to develop probabilistic models of word order in grammar

and use them to argue that DLM affects both grammar and usage preferences. The logic is

as follows. We will take observed dependency trees and compare their dependency length

to random reorderings according to the probabilistic model of the grammar. This work

is essentially an attempt to automate the approach of Rajkumar et al. (2016), who com-

pare dependency length in real utterances to dependency length in alternative grammatical

utterances generated by hand. If the observed sentences have shorter dependency length

than random grammatically possible reorerings, then this is evidence that language users

are choosing particular utterances to minimize dependency length. Also, if the distribution

of grammatical reorderings has lower dependency length than the random baselines from

Section 3.2, then that is evidence that the grammar itself is affected by DLM.

In what follows, I will first describe the method for developing probabilistic models

of word order conditional on dependency trees (Section 3.3.1). The methods and issues

here closely parallel those discussed in Chapter 2.4 Then I show results of comparing real

dependency length to these random grammatical reorderings (Section 3.3.2).

3.3.1 Generative models for dependency tree linearization

We explore generative models for producing linearizations of unordered labeled syntactic

dependency trees. This specific task has attracted attention in recent years (Filippova and

Strube, 2009; He et al., 2009; Belz et al., 2011; Bohnet et al., 2012; Zhang, 2013) because

it forms a useful part of a natural language generation pipeline, especially in machine trans-

lation (Chang and Toutanova, 2007) and summarization (Barzilay and McKeown, 2005).

Closely related tasks are generation of sentences given CCG parses (White and Rajkumar,

2012), bags of words (Liu et al., 2015), and semantic graphs (Braune et al., 2014).

4We use these dependency models because they allow us to closely control the information that goes into
linearization: off-the-shelf systems often include many opaque features and may built in DLM as a preference
covertly.
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Figure 3-11: Example unordered dependency tree. Possible linearizations include (1) This
story comes from the AP and (2) From the AP comes this story. Order 2 is the original order
in the corpus, but order 1 is much more likely under our models.

Here we focus narrowly on testing probabilistic generative models for dependency tree

linearization. In contrast, the approach in most previous work is to apply a variety of scor-

ing functions to trees and linearizations and search for an optimally-scoring tree among

some set. The probabilistic linearization models we investigate are derived from genera-

tive models for dependency trees (Eisner, 1996), as most commonly used in unsupervised

grammar induction (Klein and Manning, 2004; Gelling et al., 2012). Generative depen-

dency models have typically been evaluated in a parsing task (Eisner, 1997). Here, we are

interested in the inverse task: inferring a distribution over linear orders given unordered

dependency trees.

This is the first work to consider generative dependency models from the perspective

of word ordering. The results can potentially shed light on how ordering constraints are

best represented in such models. In addition, the use of probabilistic models means that

we can easily define well-motivated normalized probability distributions over orders of

dependency trees. These distributions are useful for answering scientific questions about

crosslinguistic word order in quantitative linguistics, where obtaining robust estimates has

proven challenging due to data sparsity (Futrell et al., 2015c).

We investigate head-outward projective generative dependency models. In these mod-

els, an ordered dependency tree is generated by the following kind of procedure. Given a

head node, we use some generative process 𝐺 to generate a depth-1 subtree rooted in that
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head node. Then we apply the procedure recursively to each of the dependent nodes. By

applying the procedure starting at a ROOT node, we generate a dependency tree. For ex-

ample, to generate the dependency tree in Figure 3-11 from the node comes down, we take

the head comes and generate the subtree

comes

story AP

nsubj nmod

, then we take the head story and

generate

story

this

det

, and so on. In this work, we experiment with different specific generative

processes 𝐺 which generate a local subtree conditioned on a head.

Model types

Here we describe some possible generative processes 𝐺 which generate subtrees condi-

tioned on a head. These models contain progressively more information about ordering

relations among sister dependents.

A common starting point for 𝐺 is Eisner Model C (Eisner, 1996). In this model, de-

pendents on one side of the head are generated by repeatedly sampling from a categorical

distribution until a special stop-symbol is generated. The model only captures the propen-

sity of dependents to appear on the left or right of the head, and does not capture any order

constraints between sister dependents on one side of the head.

We consider a generalization of Eisner Model C which we call Dependent N-gram

models. In a Dependent N-gram model, we generate dependents on each side the head by

sampling a sequence of dependents from an N-gram model. Each dependent is generated

conditional on the 𝑁−1 previously generated dependents from the head outwards. We have

two separate N-gram sequence distributions for left and right dependents. Eisner Model C

can be seen as a Dependent N-gram model with 𝑁 = 1.

We also consider a model which can capture many more ordering relations among sister

dependents: given a head ℎ, sample a subtree whose head is ℎ from a Categorical distri-

bution over subtrees. We call this the Observed Orders model because in practice we are

simply sampling one of the observed orders from the training data. This generative process

has the capacity to capture the most ordering relations between sister dependents.
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Distributions over permutations of dependents

We have discussed generative models for ordered dependency trees. Here we discuss how

to use them to make generative models for word orders conditional on unordered depen-

dency trees.

Suppose we have a generative process 𝐺 for dependency trees which takes a head ℎ

and generates a sequence of dependents w𝑙 to the left of ℎ and a sequence of dependents

w𝑟 to the right of ℎ. Let w denote the pair (w𝑙,w𝑟), which we call the configuration

of dependents. To get the probability of some w given an unordered subtree 𝑢, we want

to calculate the probability of w given that 𝐺 has generated the particular multiset W of

dependents corresponding to 𝑢. To do this, we calculate:

𝑝(w|W) =
𝑝(w,W)

𝑝(W)

=
𝑝(w)

𝑍
,

(3.2)

where

𝑍 =
∑︁
w′∈𝒲

𝑝(w′) (3.3)

and𝒲 is the set of all possible configurations (w𝑙,w𝑟) compatible with multiset W. That

is,𝒲 is the set of pairs of permutations of multisets W𝑙 and W𝑟 for all possible partitions

of W into W𝑙 and W𝑟. The generative dependency model gives us the probability 𝑝(w).

It remains to calculate the normalizing constant 𝑍, the sum of probabilities of possible

configurations. For the Observed Orders model, 𝑍 is the sum of probabilities of subtrees

with the same dependents as subtree 𝑢. For the Dependent N-gram models of order 𝑁 , we

calculate 𝑍 using a dynamic programming algorithm, presented in Algorithm 1 as memo-

ized recursive functions. When 𝑁 = 1 (Eisner Model C), 𝑍 is more simply:

𝑍emc = 𝑝𝐿(stop)𝑝𝑅(stop)
∑︁

(W𝑙,W𝑟)∈PARTS(W)

|W𝑙|!|W𝑟|!

∏︁
𝑤∈W𝑙

𝑝𝐿(𝑤)
∏︁

𝑤∈W𝑟

𝑝𝑅(𝑤),
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where PARTS(W) is the set of all partitions of multiset W into two multisets W𝑙 and W𝑟,

𝑝𝐿 is the probability mass function for a dependent to the left of the head, 𝑝𝑅 is the function

for a dependent to the right, and stop is a special symbol in the support of 𝑝𝐿 and 𝑝𝑅 which

indicates that generation of dependents should halt. The probability mass functions may be

conditional on the head ℎ. These methods for calculating 𝑍 make it possible to transform

a generative dependency model into a model of dependency tree ordering conditional on

local subtree structure.

Algorithm 1 Compute the sum of probabilities of all configurations of dependents W
under a Dependent N-gram model with two component N-gram models of order 𝑁 : 𝑝𝑅 for
sequences to the right of the head and 𝑝𝐿 for sequences to the left.
memoized function RIGHT_NORM(r, c)

if |r| = 0 then
return 𝑝𝑅(stop | c)

end if
𝑍 ← 0
for 𝑖 = 1 : |r| do

r′ ← elements of r except the 𝑖th
c′ ← append 𝑟𝑖 to c then truncate to length 𝑁 − 1
𝑍 ← 𝑍 + 𝑝𝑅(𝑟𝑖|c)× RIGHT_NORM(r′, c′)

end for
return 𝑍

end memoized function
memoized function LEFT_NORM(r, c)

𝑍 ← 𝑝𝐿(stop | c)× RIGHT_NORM([start], r)
for 𝑖 = 1 : |r| do

r′ ← elements of r except the 𝑖th
c′ ← append 𝑟𝑖 to c then truncate to length 𝑁 − 1
𝑍 ← 𝑍 + 𝑝𝐿(𝑟𝑖|c)× LEFT_NORM(r′, c′)

end for
return 𝑍

end memoized function
Result is LEFT_NORM(W, [start])

Labelling

The previous section discussed the question of the structure of the generative process for de-

pendency trees. Here we discuss an orthogonal modeling question, which we call labelling:

what information about the labels on dependency tree nodes and edges should be included

in our models. Dependency tree nodes are labeled with wordforms, lemmas, and parts-of-

115



speech (POS) tags; and dependency tree edges are labeled with relation types. A model

might generate orders of dependents conditioned on all of these labels, or a subset of them.

Decisions can be conditioned on the head of a phrase; when so, they can be conditioned

on the wordform, POS, etc. For example, a generative dependnecy model might generate

(relation type, dependent POS tag) tuples conditioned on the POS tag of the head of the

phrase. When we use such a model for dependency linearization, we would say the model’s

labelling is relation type, dependent POS, and head POS. In this study, we avoid including

wordforms or lemmas in the labelling, to avoid data sparsity issues.

Model estimation and smoothing

In order to alleviate data sparsity in fitting our models, we adopt two smoothing methods

from the language modelling literature.

All categorical distributions are estimated using add-𝑘 smoothing where 𝑘 = 0.01. For

the Dependent N-gram models, this means adding 𝑘 pseudocounts for each possible depen-

dent in each context. For the Observed Orders model, this means adding 𝑘 pseudocounts

for each possible permutation of the head and its dependents.

We also experiment with combining our models into mixture distributions. This can be

viewed as a kind of back-off smoothing (Katz, 1987), where the Observed Orders model is

the model with the most context, and Dependent N-grams and Eisner Model C are backoff

distributions with successively less context. Similarly, models with less information in

the labelling can serve as backoff distributions for models with more information in the

labelling. For example, a model which is conditioned on the POS of the head can be

backed off to a model which does not condition on the head at all. We find optimal mixture

weights using the Baum-Welch algorithm tuned on a held-out development set.

Evaluation

Here we empirically evaluate some options for model type and model labelling as described

above. We are interested in how many of the possible orders of a sentence our model can

generate (recall), and in how many of our generated orders really are acceptable (preci-

sion). As a recall-like measure, we quantify the probability of the word orders of held-out
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test sentences. Low probabilities assigned to held-out sentences indicate that there are

possible orders which our model is missing. As a precision-like measure, we get human

acceptability ratings for sentence reorderings generated by our model.

We carry out our evaluations using the dependency corpora of the Universal Dependen-

cies project (v1.1) (Agić et al., 2015), with the train/dev/test splits provided in that dataset.

We remove nodes and edges dealing with punctuation. Due to space constraints, we only

present results from 11 languages here.

Test-Set Probability Here we calculate average probabilities of word orders per sentence

in the test set. This number can be interpreted as the (negative) average amount of infor-

mation contained in the word order of a sentence beyond information about dependency

relations.

The results for selected languages are shown in Table 3.1. The biggest gains come

from using Dependent N-gram models with 𝑁 > 1, and from backing off the model

labelling. The Observed Orders model does poorly on its own, likely due to data spar-

sity; its performance is much improved when backing off from conditioning on the head.

Eisner Model C (n1) also performs poorly, likely because it cannot represent any ordering

constraints among sister dependents. The fact it helps to back off to distributions not condi-

tioned on the head suggests that there are commonalities among distributions of dependents

of different heads, which could be exploited in further generative dependency models.

Human Evaluation We collected human ratings for sentence reorderings sampled from

the English models from 54 native American English speakers on Amazon Mechanical

Turk. We randomly selected a set of 90 sentences from the test set of the English Universal

Dependencies corpus. We generated a reordering of each sentence according to each of

12 model configurations in Table 3.1. Each participant saw an original sentence and a

reordering of it, and was asked to rate how natural each version of the sentence sounded,

on a scale of 1 to 5. The order of presentation of the original and reordered forms was

randomized, so that participants were not aware of which form was the original and which

was a reordering. Each participant rated 56 sentence pairs. Participants were also asked
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Labelling Model Acceptability Same Meaning

H
D

R

oo 2.92 0.58
n1 2.06 0.44
n2 3.42 0.78
n3 3.48 0.85

n123 3.56 0.79
oo+n123 3.45 0.75

H
D

R
+R

oo 3.11 0.72
n1 2.11 0.49
n2 3.32 0.80
n3 3.52 0.77

n123 3.31 0.76
oo+n123 3.43 0.80

Table 3.2: Mean acceptability rating out of 5, and proportion of reordered sentences with
the same meaning as the original, for English models. Labels as in Table 3.1.

whether the two sentences in a pair meant the same thing, with “can’t tell” as a possible

answer. This part of the evaluation also helps answer the scientific question of how well

dependency trees with relation types encode a meaning invariant to word order.

Table 3.2 shows average human acceptability ratings for reorderings, and the propor-

tion of sentence pairs judged to mean the same thing. The original sentences have an

average acceptability rating of 4.48/5. The very best performing models are those which

do not back off to a distribution not conditioned on the head. However, in the case of

the Observed Orders and other sparse models, we see consistent improvement from this

backoff.

Figure 3-12 shows the acceptability ratings (out of 5) plotted against test set probability.

We see that the models which yield poor test set probability also have poor acceptability

ratings.

Comparison with other systems Previous work has focused on the ability to correctly

reconstruct the word order of an observed dependency tree. Our goal is to explicitly model

a distribution over possible orders, rather than to recover a single correct order, because

many orders are often possible, and the particulator order that a dependency tree originally

appeared in might not be the most natural. For example, our models typically reorder

the sentence “From the AP comes this story” (in Figure 3-11) as “This story comes from
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Figure 3-12: Comparison of test set probability (Table 3.1) and acceptability ratings (Ta-
ble 3.2) for English across models. A least-squares linear regression line is shown. Labels
as in Table 3.1.

the AP”; the second order is arguably more natural, though the first is idiomatic for this

particular phrase. So we do not believe that BLEU scores and other metrics of similarity to

a “correct” ordering are particularly relevant for our task.

Previous work uses BLEU scores (Papineni et al., 2002) and human ratings to evaluate

generation of word orders. To provide some comparability with previous work, we report

BLEU scores on the 2011 Shared Task data here. The systems reported in Belz et al. (2011)

achieve BLEU scores ranging from 23 to 89 for English; subsequent work achieves BLEU

scores of 91.6 on the same data (Bohnet et al., 2012). Drawing the highest-probability

orderings from our models, we achieve a top BLEU score of 57.7 using the model con-

figuration hdr/oo. Curiously, hdr/oo is typically the worst model configuration in the test

set probability evaluation (Section 3.3.1). The BLEU performance is in the middle range

of the Shared Task systems. The human evaluation of our models is more optimistic: the

best score for Meaning Similarity in the Shared Task was 84/100 (Bohnet et al., 2011),

while sentences ordered according to our models were judged to have the same meaning as
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the original in 85% of cases (Table 3.2), though these figures are based on different data.

These comparisons suggest that these generative models do not provide state-of-the-art

performance, but do capture some of the same information as previous models.

Discussion Overall, the most effective models are the Dependent N-gram models. The

naive approach to modeling order relations among sister dependents, as embodied in the

Observed Orders model, does not generalize well. The result suggests that models like the

Dependent N-gram model might be effective as generative dependency models.

3.3.2 Dependency length in grammatical baselines

Here I will compare dependency length with three random baselines generated using the

methods described above. The first is the random grammatical baseline that simply orders

the immediate dependents of a head uniformly at random from among the observed orders,

as defined only by dependency relation types (the licit baseline). This baseline is included

for those who do not believe in probabilistic grammar; it also has the largest variance

of any of the baselines. The second is the random baseline that scored highest on the

“same meaning” evaluation for English (the same meaning baseline). The third is the

random baseline that scored highest on perplexity for all languages (the best perplexity

baseline). I will compare these random reorderings to the real observed dependency length

of sentences, and to the free projective baseline from Section 3.2.

Linguistic interpretation of baselines

Before launching into the results, some discussion is in order on the specific linguistic

interpretation of the random baselines.

The main constraint in the reordering models of Section 3.3.1 (and the word order

freedom models in Chapter 2) was that order is only computed related to the immediate de-

pendents of a head. This is done in order to alleviate data sparsity in model estimation, but

it puts limits on what ordering constraints can be represented by the model. In particular, it

means that ordering constraints that involve heads and their grandchildren, or any other re-

lationship going beyond direct head-dependent relationships and sibling relationships, are

121



not represented. We also assume linearizations are projective.

As such, the conservative interpretation of the results in this section is that we find

dependency length minimization beyond what would be expected from only (1) projectivity

and (2) the ordering constraints among heads and immediate dependents. The constraint

that order can only be constrained among immediate dependents of a head, and that word

order is projective, corresponds to the assumption that language follows a context-free

grammar. The results show conservatively that whatever constraints exist beyond what can

be expressed in a context-free formalism, they serve to lower dependency length beyond

what would be expected from projective dependency-local constraints alone. Nevertheless,

because we believe a majority of word order constraints can be represented in a context-

free framework, we will interpret the observed minimization of dependency length beyond

the grammatical baselines as (noisy) evidence for DLM in usage.

Another issue that arises is that the estimates of grammatical reorderings can themselves

be affected by usage preferences. If people have strong preferences for DLM in usage,

this will be reflected in all their utterances, and our estimates of grammatical orders are

calcualted from those utterances. Perhaps some orders are grammatically possible, but

people never say them because of their bad dependency length properties; we would miss

these orders in our baselines.

Our grammatical baselines really reflect the expected behavior at the level of the phrase.

We believe this provides a useful estimate of grammatical constraints, but for those who do

not take this as indicative of grammatical constraints, our results still show that people min-

imize dependency length in usage beyond what would be expected based on their behavior

at the level of single phrases.

Results

Figure 3-13 shows real dependency length compared to the random baselines mentioned.

Because the lines are all very close, Figure 3-14 shows the same figure zoomed in to sen-

tence lengths between 15 and 30, so that the relative ordering of the different baselines is

clear.

We see that the various grammatical baselines all produce linearizations with very sim-
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Figure 3-13: Dependency length as a function of sentence length, as estimated using cubic
splies as in Section 3.2.1.
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Figure 3-14: Dependency length as a function of sentence length for sentence of length 15
to 30, as estimated using cubic splies as in Section 3.2.1.
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ilar dependency length. I will not attempt to draw any contrast among these baselines.

Comparing the projective baseline, the random baselines, and the observed dependency

length, we see that the projective baseline has the longest dependency length, followed

by the random baselines, followed by the observed dependency length. We analyzed the

results statistically using the same regression methods described in Section 3.2.1. For all

languages, the dependency length growth rate for all the baselines is greater than for the

observed sentences at 𝑝 < 0.001. Also, for all languages, the linearizations according to the

licit baseline have lower dependency length growth rate than linearizations according to the

projective baseline at 𝑝 < 0.001 for all languages, suggesting that grammatical restrictions

reduce dependency length.

The results show that grammatical orders are shorter than fully random orders, and that

observed orders are shorter than grammatical orders. Thus, as a broad interpretation, we

have evidence that both grammar and usage are affected by DLM. The most narrow inter-

pretation is that people’s expected ordering behavior at the level of the phrase minimizes

dependency length, and that their behavior beyond what is described at the level of the

phrase serves to further minimize dependency length.

3.4 Variation in dependency length

In this section, I discuss some of the variation between languages observed in all the depen-

dency length results. While all languages have dependency length shorter than the random

baselines presented, they show variance in the extent to which this is true.

Here I discuss some linguistic factors that appear to correlate with the extent of DLM.

I show that languages that are more head-final have longer dependencies; languages with

more word order freedom have longer dependencies; and languages with more complex

morphology have longer dependencies. These results are not expected from the motivations

for DLM described in Section 3.1. They were not expected, and represent explananda for

any future theory of quantitative syntax.
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Figure 3-15: Dependency length compared to proportion of head-final dependencies for
sentences of length 10, 15, 20.

𝑁 Pearson’s 𝑟 Spearman’s 𝜌
10 .45** .60***
15 .51*** .64***
20 .49*** .53***

Table 3.3: Pearson and Spearman correlation coefficients across languages of mean depen-
dency length with proportion of head-final dependencies, for sentences of length 𝑁 . * =
significant at 𝑝 < .05, ** = significant at 𝑝 < .01, *** = significant at 𝑝 < .001.

3.4.1 Head-finality

We find that languages with a larger proportion of head final dependencies tend to have

longer dependencies. Figure 3-15 shows observed average dependency length at sentence

lengths 10, 15, and 20 compared with the proportion of head-final dependencies at that

sentence length. For example, we see that Japanese and Korean are nearly entirely head-

final, while Arabic is largely head-initial. The more head-final languages have significantly

longer dependencies; the correlations between dependency length and proportion of head-

final dependencies are shown in Table 3.3.

There also appears to be evidence for stronger DLM in head-initial contexts than head-
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Figure 3-16: Constituent weight for two dependents to the right of a head, for heads with
exactly two right dependents, as a proportion of total constituent weight.

final contexts within languages. In head-initial contexts, DLM is accomplished by ordering

dependent constituents from short to long. The short-before-long preference is demon-

strated in Figure 3-16, which shows the average weight (number of words) in the two

phrases to the right of a head, for heads with exactly two dependents to the right, nor-

malized by the total number of words in each context. It shows a clear preference for

short constituents before long constituents. Figure 3-17 shows the same result for three

constituents after the head.

Turning to head-final contexts, we should expect a long-before-short preference. Fig-

ure 3-18 shows the average weight of two dependents before a head. Figure 3-19 shows

the result for three dependents. Here again, we often (but not universally) see a long-

before-short preference. But the magnitude of the preference is much weaker than the

short-before-long preference after heads.

One possible explanation for the apparent tolerance of longer dependencies before

heads than after heads could be an interaction of DLM preferences with given-before-new

word ordering preferences (Halliday, 1967; Birner and Ward, 2006). Given-before-new
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Figure 3-17: Constituent weight for three dependents to the right of a head, for heads with
exactly three right dependents, as a proportion of total constituent weight.
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exactly two left dependents, as a proportion of total constituent weight.

127



ar bg cs cu da de

el en es et eu fa

fi fr ga got grc he

hi hr hu id it ja

la nl no pl pt ro

sl sv ta

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

−3 −2 −1 −3 −2 −1 −3 −2 −1
Position

W
ei

gh
t

Figure 3-19: Constituent weight for three dependents to the left of a head, for heads with
exactly three left dependents, as a proportion of total constituent weight.

preferences force words with more concrete, known referents, such as nouns, earlier in

a sentence, thus favoring SOV word order (Gibson et al., 2013). There is also evidence

that when a dependent is given, dependency locality is less important for predicting its

placement (Xu and Liu, 2015). Other explanations in terms of incremental parsing may be

possible.

Another explanation could have to do with morphology. Head final languages typi-

cally have richer morphology than head initial languages (Dryer, 2002). Morphology (case

and/or agreement) provides informative cues about what the head of each marked word is.

If we think that dependency locality effect are in part driven by inaccuracy in parsing (as

argued in Vasishth et al. (2017)), then such morphology would alleviate dependency local-

ity effects. Indeed, Ros et al. (2015) find weaker DLM preferences in morphologically rich

languages. Thus head-final languages may get away with having longer dependencies than

head-initial languages.
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Figure 3-20: Dependency length compared to Branching Direction Entropy conditional on
parts of speech (see Section 2.3.3) for sentences of length 10, 15, 20.

𝑁 Pearson’s 𝑟 Spearman’s 𝜌
10 .38* .41**
15 .33* .42**
20 .64*** .58***

Table 3.4: Pearson and Spearman correlation coefficients across languages of mean depen-
dency length with Branching Direction Entropy, for sentences of length 𝑁 . * = significant
at 𝑝 < .05, ** = significant at 𝑝 < .01, *** = significant at 𝑝 < .001.

3.4.2 Word order freedom

We find that languages with more word order freedom have longer dependency length.

Figure 3-20 shows the correlation of mean dependency length and the “Branching Direction

Entropy” measure from Section 2.3.3, conditional on parts of speech. Correlations between

branching direction entropy and dependency length are shown in Table 3.4.

A similar result was found in Gulordava and Merlo (2015a) for Latin and Ancient

Greek. In historical dependency corpora of those languages, increasing word order rigid-

ness over the centuries is associated with decreasing dependency length. Tily (2010) also

finds a decreasing dependency length over time in English, which coincides with a loss of
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word order freedom.

At first glance, this result is disturbing from the perspective of a claimed universal

preference for DLM. If languages have more word order freedom, then it seems they should

use that freedom in order to make their dependencies even shorter, rather than using it to

make them longer. However, when we consider that languages with more free word order

also often have informative morphology, we see a possible motivation for this result. As

discussed above for head-final languages, there are theoretical and empirical reasons to

believe that morphological richness should correlate with less pressure for DLM.

3.4.3 Morphological richness

Here we directly test the idea that more morphologically rich languages have less pressure

for DLM and thus longer dependencies. We measure morphological richness using an

information-theoretic measure 𝐶 which gives the information content of the distribution

over wordforms 𝑊 beyond the information content of the distribution over their lemmas

𝐿:

𝐶 = 𝐻(𝑊 |𝐿)

= 𝐻(𝑊 )− 𝐼(𝑊 ;𝐿)

= 𝐻(𝑊 )−𝐻(𝐿).

This measure is closely related with other proposed measures of morphological complexity

(see Bentz et al. (2016) for a review). For example, the measure of “normalized frequency

difference” (NFD) (Bentz et al., 2017) can be seen as a nonparametric estimate of 𝐶.

The information theoretic measure tells us directly how much information is present in

morphology, but it is difficult to estimate for a number of reasons. The entropy estimation

required is difficult, especially since we are operating words and lemmas, meaning we

require large amounts of data for the estimates to converge (Bentz and Alikaniotis, 2016).

It also requires lemma annotations, which introduces issues of how to define lemmas, and

whether this might be done differently across corpora and languages.5 As a result, although

5For example, lemmas in the UD corpus for Hindi are largely identical to wordforms, resulting in Hindi
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Figure 3-21: Dependency length compared to morphological information content (see text)
for sentences of length 10, 15, 20.

this measure is theoretically well grounded, as an empirical measure it should be taken with

a grain of salt.

Figure 3-21 shows the correlation of morphological information content with depen-

dency length for sentence lengths 10, 15, and 20; statistics are given in Table 3.5. The

entropies are calculated by the Pitman-Yor Mixture method of Archer et al. (2014).6 As

expected—though with the caveats above—we find that languages with more morphologi-

cal information content have longer dependencies. This result supports the idea that mor-

phology lessons DLM pressures by weakening dependency locality effects. The weakening

of locality effects can happen if dependency locality is in part driven by inaccuracy in mem-

ory retrieval (Vasishth et al., 2017), while morphology provides cues that make memory

retrieval more accurate.

having an incorrectly low estimate of morphological complexity.
6See Archer et al. (2013) for justification of the use of this estimator for what is essentially a mutual

information estimation problem.
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𝑁 Pearson’s 𝑟 Spearman’s 𝜌
10 .43* .42**
15 .45* .47**
20 .49** .47*

Table 3.5: Pearson and Spearman correlation coefficients across languages of mean de-
pendency length with morphological information content, for sentences of length 𝑁 . * =
significant at 𝑝 < .05, ** = significant at 𝑝 < .01, *** = significant at 𝑝 < .001.

3.5 Conclusion

I have presented evidence that DLM is a universal pressure affecting word order in both

grammar and usage in corpora of over 40 languages, and shown a number of unexpected

results bearing on the variance in dependency length among languages. In addition to

making this scientific point, these results show the utility of the quantitative, information-

theoretic approach to syntax, as many of the methods and measure from Chapter 2 proved

useful here.

The approach and results here open the way for future work testing the quantitative

dependency length properties of usage in more detail. For example, we may find that

dependency length minimization is more operative within some constructions than others

(Rajkumar et al., 2016), and seek explanations for this variance. The same approach of

comparing real orders with random baselines can also be used to show other pressures

affecting word orders (Gildea and Jaeger, 2015).
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Chapter 4

Noisy-Context Surprisal as a Human

Sentence Processing Cost Model
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4.1 Introduction

Models of human sentence processing difficulty can be divided into two kinds, expectation-

based and memory-based.1 Expectation-based models predict the processing difficulty

of a word from the word’s surprisal given previous material in the sentence (Hale, 2001;

Levy, 2008a). These models have good coverage: they can account for effects of syntactic

construction frequency and resolution of ambiguity on incremental processing difficulty.

Memory-based models, on the other hand, explain difficulty resulting from working mem-

ory limitations during incremental parsing (Gibson, 1998; Lewis and Vasishth, 2005); a

major prediction of these models is locality effects, where processing a word is difficult

when it is far from other words with which it must be syntactically integrated. Expectation-

based models do not intrinsically capture this difficulty.

Integrating these two approaches at a high level has proven challenging. A major hurdle

is that the theories are typically stated at different levels of analysis: expectation-based the-

ories are computational-level theories (Marr, 1982) specifying what computational problem

the human sentence processing system is solving—the problem of how update one’s belief

about a sentence given a new word—without specifying implementation details. Memory-

based theories such as Lewis and Vasishth (2005) are for the most part based in mechanistic

algorithmic-level theories describing the actions of a specific incremental parser.

Previous theories that capture both surprisal and locality effects have typically done

so by augmenting parsing models with a special prediction-verification operation to cap-

ture surprisal effects (Demberg and Keller, 2009; Demberg et al., 2013), or by combining

surprisal and memory-based cost derived from a parsing model as separate factors in a lin-

ear model (Shain et al., 2016). These models capture surprisal and locality effects at the

same time, but they do not clearly capture phenomena involving the interaction of mem-

ory and probabilistic expectations such as language-dependent structural forgetting (see

Section 4.3).

Here we develop a computational-level model capturing both memory and expectation

effects from a single set of principles, without reference to a specific parsing algorithm. In

1Code for replicating the results in this section can be found online at http://github.com/
Futrell/nc-surprisal-eacl.
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our model, the processing cost of a word is a function of its surprisal given a noisy represen-

tation of previous context (Section 4.2). We show that the model can reproduce structural

forgetting effects, including the difference between English and German (Section 4.3), a

phenomenon not previously captured by memory-based or expectation-based models in

isolation. We also give a derivation of the existence of locality effects in the model; these

effects were previously accounted for only in mechanistic memory-based models (Sec-

tion 4.4). The derivation yields a generalization of classic locality effects which we call

information locality: sentences are predicted to be easier to process when words with

high mutual information are close. We give corpus-based evidence that words in syntactic

dependencies have high mutual information, meaning that classical dependency locality

effects can be seen as a subset of information locality effects.

4.2 Noisy-Context Surprisal

In surprisal theory, the processing cost of a word is asserted to be proportional to extent to

which one must change one’s beliefs given that word (Hale, 2001; Smith and Levy, 2013).

So the cost of a word is (up to proportionality):

𝐶surprisal(𝑤𝑖|𝑤1:𝑖−1) = − log 𝑝𝐿(𝑤𝑖|𝑤1:𝑖−1), (4.1)

where 𝑝𝐿(·|·) is the conditional probability of a word in context in a probabilistic language

𝐿.

Standard surprisal assumes that the comprehender has perfect access to a representation

of 𝑤𝑖’s full context, including the words preceding it in the sentence (𝑤1:𝑖−1) and also extra-

sentential context (which we leave implicit). But given that human working memory is

limited, the assumption of perfect access is unrealistic. We propose that processing cost at

a word is better modeled as the cost of belief updates given a noisy representation of the

previous input. The probability of a word given a noisy context is modeled as the noisy

channel probability of the word, assuming that people do noisy channel inference on their

context representation (Levy, 2008b; Gibson et al., 2013). Given this model, the expected
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processing cost of a word is its expected surprisal over the possible noisy representations

of its context.

The noisy-context surprisal processing cost function is thus:2

𝐶(𝑤𝑖|𝑤1:𝑖−1) = E
𝑉 |𝑤1:𝑖−1

[︀
− log 𝑝NC

𝐿 (𝑤𝑖|𝑉 )
]︀

(4.2)

= −
∑︁
𝑉

𝑝𝑁(𝑉 |𝑤1:𝑖−1) log 𝑝
NC
𝐿 (𝑤𝑖|𝑉 ) (4.3)

where 𝑉 is the noisy representation of the previous material 𝑤1:𝑖−1, the noise distribution

𝑝𝑁 characterizes how memory of previous material may be corrupted, and 𝑝NC
𝐿 (·|·) is the

noisy-channel probability of a word given a noisy context, computed via marginalization:

𝑝NC
𝐿 (𝑤𝑖|𝑉 ) =

∑︁
𝑤1:𝑖−1

𝑝𝐿(𝑤𝑖|𝑤1:𝑖−1)𝑝
NC(𝑤1:𝑖−1|𝑉 )

with 𝑝NC(𝑤1:𝑖−1|𝑉 ) computed via Bayes Rule:

𝑝NC(𝑤1:𝑖−1|𝑉 ) ∝ 𝑝𝑁(𝑉 |𝑤1:𝑖−1)𝑝𝐿(𝑤1:𝑖−1).

Note here that 𝑤𝑖’s cost is computed using its true identity but a noisy representation of the

context: from the incremental perspective, 𝑤𝑖 is observed now, but context is stored and

retrieved in a potentially noisy storage medium. This asymmetry between noise levels for

proximal versus distal input differs from the noisy-channel surprisal model of Levy (2011),

and is crucial to the derivation of information locality we present in Section 4.4.

Here we use two types of noise distributions for 𝑝𝑁 : erasure noise and deletion noise.

In erasure noise, a symbol in the context is probabilistically erased and replaced with a

special symbol E with probability 𝑒. In deletion noise, a symbol is erased from the se-

quence completely, leaving no trace. Given deletion noise, a comprehender does not know

how many symbols were in the original context; with erasure noise, the comprehender

knows exactly which symbols were affected by noise. In both cases, we assume that the

application or non-application of noise is probabilistically independent among elements in

2Neglecting the implicit proportionality term in Equation 4.1.
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the context. We use these concrete noise distributions for convenience, but we believe our

results should generalize to larger classes of noise distributions.

4.3 Structural forgetting effects

Here we show that noisy-context surprisal as a processing cost model can reproduce effects

that were not previously well-explained by either expectation-based or memory-based the-

ories. In particular, we take up the puzzle of structural forgetting effects, where compre-

henders seem to forget structural elements of a sentence prefix when predicting the rest of

the sentence. The result is that some ungrammatical sentences have lower processing cost

and higher acceptability than some complex grammatical sentences: with doubly nested

relative clauses, for instance, subjects rate ungrammatical sentence (1) as more accept-

able than sentence (2), forgetting about the VP predicted by the second noun (Gibson and

Thomas, 1999).

(1) *The apartment1 that the maid2 who the cleaning service3 had3 sent over was1 well-

decorated.

(2) The apartment1 that the maid2 who the cleaning service3 had3 sent over was2 clean-

ing every week was1 well-decorated.

Vasishth et al. (2010) show this same effect in reading times at the last verb: in English

native speakers are more surprised to encounter a third VP than not to. However, this

effect is language-specific: the same authors find that in German, native speakers are more

surprised when a third VP is missing than when it is present. Frank et al. (2016) show

further that native speakers do not show the effect in Dutch, but Dutch-native L2 speakers

of English do show the effect in English. The result shows that the memory resources taxed

by these structures are themselves meaningfully shaped by the distributional statistics of the

language.

The verb forgetting effect is a challenge for both expectation-based and memory-based

models. Pure expectation-based models cannot reproduce the effect: they have no mecha-

nism for forgetting an established VP prediction and thus they assign small or zero proba-

bility to ungrammatical sentences. On the other hand, memory-based models will have to
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Rule Probability
S→ NP V 1
NP→ N 1−𝑚
NP→ N RC 𝑚𝑟
NP→ N PP 𝑚(1− 𝑟)
PP→ P NP 1
RC→ C V NP 𝑠
RC→ C NP V 1− 𝑠

Table 4.1: Toy grammar used to demonstrate verb forgetting. Nouns are postmodified with
probability 𝑚; a postmodifier is a relative clause with probability 𝑟, and a relative clause is
V-initial with probability 𝑠. For practical reasons we bound nonterminal rewrites of NP at
2.

account for why the same structures are forgotten in English but not in German. Here we

show that noisy-context surprisal provides the first purely computational-level account for

the language-dependent verb forgetting effect. The essential mechanism is that when verb-

final nested structures are more probable in a language, then they will be better preserved

in a noisy memory representation.

4.3.1 Model of verb forgetting

Table 4.1 presents a toy probabilistic context-free grammar for the constructions involved

in verb forgetting. The grammar generates strings over the alphabet of N (noun), V (verb),

C (complementizer), P (preposition). We apply deletion noise with by-symbol deletion

probability 𝑑. So for example, given a prefix NCNCNVV, the prefix can be corrupted

to NCNNVV with probability proportional to 𝑑, representing one deletion. In that case

a noisy-channel comprehender might incorrectly infer that the original prefix was in fact

NCNPNVV, and thus fail to predict a third verb.

To illustrate that noisy surprisal can account for language-dependent verb forgetting,

we show in Figure 4-1 the differences between noisy surprisal values for grammatical (V)

and ungrammatical (end-of-sentence) continuations of prefixes NCNCNVV under param-

eter settings reflecting the difference between English and German, and compare these

differences with self-paced reading times observed after the final verb by Vasishth et al.

(2010). Noisy surprisal qualitatively reproduces language-dependent verb forgetting: in
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Figure 4-1: Differences in reaction times for ungrammatical continuations minus grammat-
ical continuations, compared to noisy surprisal differences. RT data comes from self-paced
reading experiments in Vasishth et al. (2010) in the post-VP region. The noisy surprisal
predictions are produced with 𝑑 = .2, 𝑚 = .5, 𝑟 = .5 fixed, and 𝑠 = .8 for English and
𝑠 = 0 for German.

English the ungrammatical continuation is higher surprisal, but in German the grammatical

continuation is higher surprisal. The English–German difference in the model is entirely

accounted for by the parameter 𝑠, which determines the proportion of relative clauses that

are verb-initial. In English, most relative clauses are subject-extracted and those are verb-

initial, so for English 𝑠 ≈ .8 (Roland et al., 2007). German, in contrast, has 𝑠 ≈ 0, since

its relative clauses are obligatorily verb-final. When verb-final relative clauses have higher

prior probability, a doubly-nested RC prefix NCNCVV is more likely to be preserved by a

rational noisy-channel comprehender.

The results of Figure 4-1 do not speak, however, to the generality of the model’s pre-

dictions regarding verb forgetting. To explore this matter, we partition the model’s four-

dimensional parameter space into regions distinguishing whether noisy-context surprisal is

lower for (G) grammatical continuations or (U) ungrammatical continuations for (1) singly-

embedded NCNV and (2) doubly-embedded NCNCNVV contexts. Figure 4-2 shows this

partition for a range of 𝑟, 𝑠, 𝑚, and 𝑑. In the blue region, grammatical continuations are

lower-cost than ungrammatical continuations for both singly and doubly embedded con-
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Figure 4-2: Regions of different model behavior with respect to parameters 𝑟, 𝑠, 𝑚, and 𝑑
(see Table 4.1). Blue: G1G2; red: U1U2; green: G1U2 (see text).

texts, as in German (G1G2); in the red region, the ungrammatical continuation is lower-cost

for both contexts (U1U2). In the green region, the grammatical continuation is lower cost

for single embedding, but higher cost for double embedding, as in English (G1U2). No

combination of parameter values instantiates U1G2 (for either the depicted or other possi-

ble values of 𝑚 and 𝑑). Thus both the English and German behavioral patterns are quite

generally predicted by the model. Furthermore, each language’s statistics place it in a re-

gion of parameter space plausibly corresponding to its behavioral pattern: the English-type

forgetting effect is predicted mostly for high 𝑠, the German-type for low 𝑠.

The only previous formalized account of language-specific verb forgetting, Frank et al.

(2016), showed that Simple Recurrent Networks (SRNs) trained on English and Dutch

data partly reproduce the verb forgetting effect in the surprisals they assign to the final

verb. Our model provides an explanation of the SRN’s behavior, in that it shows how and

why this behavior results from any model that predicts words given a lossily compressed

representation of previous words. We do not intend it as a competing model to the SRN for

this purpose: rather, we propose that noisy-context surprisal is a useful tool for reasoning

about the behavior of SRNs at a high level of generalization.
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4.4 Information Locality

Here we show how, given an appropriate noise distribution, noisy surprisal gives rise to

locality effects. Standard locality effects are related to syntactic dependencies: the claim

is that processing is difficult when the parser must make a syntactic connection with an

element that has been in memory for a long time. In Section 4.4.1, we derive a more general

prediction: that processing is difficult when any elements with high mutual information are

far from one another. The effect arises under noisy surprisal because context elements

that would have been helpful for predicting a word might have been forgotten. We call

this principle information locality. In Section 4.4.3, we argue that words in syntactic

dependencies have higher mutual information than other word pairs, which leads to a view

of dependency locality effects as a special case of information locality effects.

4.4.1 Derivation of information locality

Viewing processing cost as a function of word order, noisy surprisal gives rise to the gener-

alization that cost is minimized when elements with high mutual information are close. We

show this by decomposing the noisy surprisal cost of a word into many terms of higher-

order mutual information with the context, then showing that applying a certain kind of

erasure noise to the context causes these terms to be downweighted based on their distance

to the word. Thus the best word order puts the words that have high mutual information

with a word close to that word.

Noise Distribution

Noisy surprisal gives rise to information locality under a family of noise distributions which

we call progressive erasure noise, which is any noise function that erases discrete el-

ements of a sequence with increasing probability the earlier those elements are in the se-

quence. Formally, in progressive erasure noise, the 𝑖th element in a sequence 𝑋 with length

|𝑋| is erased with probability proportional to some monotonically increasing function of

how far left that element is in the sequence: 𝑓(|𝑋| − 𝑖). As a concrete example of progres-

sive erasure noise, consider an exponential decay function, such that the probability that an
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element 𝑖 in 𝑋 remains unerased is (1 − 𝑒)|𝑋|−𝑖 for some probability 𝑒. This exponential

decay function corresponds to a noise model where the context sequence is hit with erasure

noise successively as each word is processed. Any progressive erasure noise distribution

suffices for the derivation here to go through.

Decomposing Surprisal Cost

In noisy surprisal theory, the cost of a word 𝑤𝑖 in context 𝑤1:𝑖−1 is:

𝐶(𝑤𝑖|𝑤1:𝑖−1) = E
𝑉 |𝑤1:𝑖−1

[− log 𝑝(𝑤𝑖|𝑉 )]

= E
𝑉 |𝑤1:𝑖−1

[ℎ(𝑤𝑖)− pmi(𝑤𝑖;𝑉 )]

= ℎ(𝑤𝑖)− E
𝑉 |𝑤1:𝑖−1

[pmi(𝑤𝑖;𝑉 )] , (4.4)

where ℎ(·) is surprisal (here unconditional, equivalent to log inverse-frequency) and pmi(·; ·)

is pointwise mutual information between two values under a joint distribution:

pmi(𝑥; 𝑦) = ℎ(𝑥) + ℎ(𝑦)− ℎ(𝑥, 𝑦). (4.5)

Essentially, each word has an inherent cost determined by its log inverse probability, miti-

gated to the extent that it is predictable from context (pmi(𝑤𝑖;𝑤1:𝑖−1)).

Now define the interaction information between a sequence of 𝑚 values {𝑎} drawn

from a sequence of 𝑚 random variables {𝛼} (McGill, 1955; Bell, 2003) as:3

𝑖(𝑎1; ...; 𝑎𝑚) =
𝑚∑︁

𝑛=1

∑︁
𝐼∈(1:𝑚𝑛 )

(−1)𝑚−𝑛−1ℎ(𝑎𝐼1 , ..., 𝑎𝐼𝑛),

where the notation
(︀
1:𝑚
𝑛

)︀
means all cardinality-𝑛 subsets of the set of integers 1 through

𝑚. The equation amounts to alternately adding and subtracting the joint surprisals of all

subsets of values. For 𝑚 = 2, expanding the equation reveals that mutual information is a

3Higher-order information terms are typically defined using a different sign convention and referred to as
coinformation or multivariate mutual information (Bell, 2003). For even orders, interaction information
is equal to coinformation. For odd orders, interaction information is equal to negative coinformation. We
adopt our particular sign convention to make the generalization of information locality easier to express.
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special case of interaction information.

Supposing that the noisy representation of context 𝑉 is the result of running the veridi-

cal context 𝑤1:𝑖−1 through progressive erasure noise, we can see 𝑉 as a sequence of values

𝑣1:𝑖−1, where each 𝑣𝑖 is equal to either 𝑤𝑖 or the erasure symbol E. Rewriting pmi(𝑤𝑖;𝑉 )

as pmi(𝑤𝑖; 𝑣1:𝑖−1), we can decompose it into interaction informations as follows:

pmi(𝑤𝑖; 𝑣1:𝑖−1) =
𝑖−1∑︁
𝑛=1

∑︁
𝐼∈(1:𝑖−1

𝑛 )

𝑖(𝑤𝑖; 𝑣𝐼1 ; ...; 𝑣𝐼𝑛), (4.6)

The equation expresses a sum of interaction informations between the current word 𝑤𝑖 and

all subsets of the context values.4

4To see that Equation 4.6 is true, first note that we can express joint surprisal in terms of interaction
information:

ℎ(𝑎1, ..., 𝑎𝑚) = −
𝑚∑︁

𝑛=1

∑︁
𝐼∈(1:𝑚𝑛 )

𝑖(𝑎𝐼1 ; ...; 𝑎𝐼𝑛).

Now consider the pmi of a value 𝑎𝑖 with a sequence 𝑎1:𝑖−1. Using the decomposition of joint surprisal to
expand the definition of pmi in Equation 4.5, we get:

pmi(𝑎𝑖; 𝑎1:𝑖−1) = ℎ(𝑎𝑖) + ℎ(𝑎1:𝑖−1)− ℎ(𝑎𝑖, 𝑎1:𝑖−1)

= ℎ(𝑎𝑖) + ℎ(𝑎1:𝑖−1)− ℎ(𝑎1:𝑖)

= ℎ(𝑎𝑖)−
𝑖−1∑︁
𝑛=1

∑︁
𝐼∈(1:𝑖−1

𝑛 )

𝑖(𝑎𝐼1 ; ...; 𝑎𝐼𝑛)

+

𝑖∑︁
𝑛=1

∑︁
𝐼∈(1:𝑖𝑛 )

𝑖(𝑎𝐼1 ; ...; 𝑎𝐼𝑛).

In the final expression, all the terms that do not contain 𝑎𝑖 cancel out, leaving:

pmi(𝑎𝑖; 𝑎1:𝑖−1) = ℎ(𝑎𝑖) +

𝑖−1∑︁
𝑛=0

∑︁
𝐼∈(1:𝑖−1

𝑛 )

𝑖(𝑎𝑖; 𝑎𝐼1 ; ...; 𝑎𝐼𝑛)

= ℎ(𝑎𝑖) +

𝑖−1∑︁
𝑛=1

∑︁
𝐼∈(1:𝑖−1

𝑛 )

𝑖(𝑎𝑖; 𝑎𝐼1 ; ...; 𝑎𝐼𝑛)− ℎ(𝑎𝑖)

=

𝑖−1∑︁
𝑛=1

∑︁
𝐼∈(1:𝑖−1

𝑛 )

𝑖(𝑎𝑖; 𝑎𝐼1 ; ...; 𝑎𝐼𝑛),

which gives Equation 4.6 when applied to 𝑤𝑖 and 𝑣1:𝑖−1.
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Now combining Equations 4.4 and 4.6, we get:

𝐶(𝑤𝑖|𝑤1:𝑖−1) = ℎ(𝑤𝑖)−

E
𝑣|𝑤1:𝑖−1

⎡⎢⎣ 𝑖−1∑︁
𝑛=1

∑︁
𝐼∈(1:𝑖−1

𝑛 )

𝑖(𝑤𝑖; 𝑣𝐼1 ; ...; 𝑣𝐼𝑛)

⎤⎥⎦

= ℎ(𝑤𝑖)−
𝑖−1∑︁
𝑛=1

∑︁
𝐼∈(1:𝑖−1

𝑛 )

∑︁
𝑣

𝑝𝑁(𝑣|𝑤𝑖:𝑖−1)𝑖(𝑤𝑖; 𝑣𝐼1 ; ...; 𝑣𝐼𝑛).

Now if any element of an interaction information term is E, then that whole interaction

information term is equal to 0. This happens because the probability that an element is

erased is independent of the identity of other elements in the sequence, and thus E has no

interaction information with any subset of those elements. That is, 𝑖(𝑤𝑖; 𝑣𝐼1 ; ...; 𝑣𝐼𝑛) = 0

unless 𝑣𝐼𝑗 = 𝑤𝐼𝑗 for all 𝑗. This allows us to write:

𝐶(𝑤𝑖|𝑤1:𝑖−1) = ℎ(𝑤𝑖)−
𝑖−1∑︁
𝑛=1

∑︁
𝐼∈(1:𝑖−1

𝑛 )

𝑖(𝑤𝑖;𝑤𝐼1 ; ...;𝑤𝐼𝑛)
∑︁

𝑚∈{0,1}𝑖−1

𝑝𝑁(𝑚)𝑚𝐼

where the variable 𝑚 ranges over bit-masks of length 𝑖 − 1, and 𝑚𝐼 is equal to 1 when

all indices 𝐼 in 𝑚 are equal to 1, and 0 otherwise. Now
∑︀

𝑚∈{0,1}𝑖−1 𝑝𝑁(𝑚)𝑚𝐼 is the total

probability that all of a set of indices 𝐼 survives erasure. Thus, informally:

𝐶(𝑤𝑖|𝑤1:𝑖−1) = ℎ(𝑤𝑖)−
𝑖−1∑︁
𝑛=1

∑︁
𝐼∈(1:𝑖−1

𝑛 )

𝑝𝑁(𝐼 survives)𝑖(𝑤𝑖;𝑤𝐼1 ; ...;𝑤𝐼𝑛). (4.7)

That is, the cost of a word is its inherent cost minus its interaction informations with con-

text, which are weighted by the probability that all elements of those interactions survive

erasure.

Under progressive erasure noise, the probability that a subset of variables is erased in-
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creases the farther left those variables are in the context. Therefore, Equation 4.7 expresses

information locality: context elements which are predictive of 𝑤𝑖 will only get to mitigate

the cost of processing 𝑤𝑖 if they are close to it. The surprisal-mitigating effect of a context

element on a word 𝑤𝑖 decreases as that element gets farther from 𝑤𝑖.

4.4.2 Noisy-context surprisal and dependency locality

Memory-based models of sentence processing account for apparent dependency locality

effects, which is processing cost apparently arising from two words linked in a syntac-

tic dependency appearing far from one another (Gibson, 1998). Dependency length has

been proposed as a rough measure of comprehension and production difficulty, and studied

as a predictor of reaction times (Grodner and Gibson, 2005; Demberg and Keller, 2008;

Mitchell et al., 2010; Shain et al., 2016), and also as a theory of production preferences and

linguistic typology, under the assumption that people prefer to produce sentences with short

dependencies (dependency length minimization) (Hawkins, 1994; Gildea and Temperley,

2010; Futrell et al., 2015b; Rajkumar et al., 2016).

Dependency locality follows from information locality if words linked in a syntac-

tic dependency have particularly high mutual information. To see this, consider only the

lowest-order interaction information terms in Equation 4.7, truncating the summation over

𝑛 at 1. We can write

𝐶(𝑤𝑖|𝑤1:𝑖−1) = ℎ(𝑤𝑖)−
𝑖−1∑︁
𝑗=1

𝑓(𝑖− 𝑗)pmi(𝑤𝑖;𝑤𝑗) +𝑅,

where 𝑅 collects all the interaction information terms of order greater than 2, and 𝑓(𝑑) is the

monotonically decreasing survival probability of a 𝑑-back word, described in Section 4.4.1.

The effects of 𝑅 are bounded because higher-order mutual information terms are more

penalized by erasure noise than lower-order terms, simply because large sets of context

items are more likely to experience at least one erasure.

If the effects of 𝑅 are negligible, then the cost of a whole utterance 𝑤 as a function of
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word order is determined only by pairwise information locality:

𝐶(𝑤) ≈
|𝑤|∑︁
𝑖=1

ℎ(𝑤𝑖)−
|𝑤|∑︁
𝑖=2

𝑖−1∑︁
𝑗=1

𝑓(𝑖− 𝑗)pmi(𝑤𝑖;𝑤𝑗).

If words linked in a dependency have higher mutual information than words that are

not, then the processing cost as a function of word order is a monotonically increasing

function of dependency length. Under this assumption, for which we provide evidence be-

low, dependency locality effects can be seen as a special case of information locality effects.

As a theory of production preferences or typology, processing cost as a monotonically in-

creasing function of dependency length suffices to derive some of the major predictions of

dependency length minimization (Ferrer i Cancho, 2015).

4.4.3 Mutual information and syntactic dependency

We have shown that noisy-context surprisal derives information locality, and argued that

dependency locality can be seen as a special case of information locality. However, deriving

dependency locality requires a crucial assumption that words linked in a dependency have

higher mutual information than those words that are not. Here I provide empirical evidence

that this is true. For a more theoretical perspective, see Section 5.2.

To test this assumption, we calculated mutual information between wordforms in var-

ious dependency relations in the Google Syntactic 𝑛-gram corpus (Goldberg and Orwant,

2013). We compared the mutual information of content words in a direct dependency

relationship to content words in grandparent–grandchild and sister–sister dependency rela-

tionships. Mutual information was estimated using maximum likelihood estimation from

frequencies, treating the corpus as samples from a distribution over (head, dependent) pairs.

In order to exclude nonlinguistic forms, we only included wordforms if they were among

the top 10000 most frequent wordforms in the corpus. The direct head–dependent frequen-

cies were calculated from the same corpus as the grandparent-grandchild frequencies, so

that all mutual information estimates are affected by the same frequency cutoff. The re-

sults are shown in Table 4.2: direct head–dependent pairs indeed have the highest mutual
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Relation MI (bits)
Head–dependent 1.79

Grandparent–dependent 1.34
Sister–sister 1.19

Table 4.2: Mutual information over wordforms in different dependency relations in the
Syntactic 𝑛-gram corpus. The pairwise comparison of head–dependent and grandparent–
dependent MI is significant at 𝑝 < 0.005 by Monte Carlo permutation tests over 𝑛-grams
with 500 samples. The comparison of head–dependent and sister–sister MI is not signifi-
cant.

information.

To test the crosslinguistic validity of this generalization about syntactic dependency and

mutual information, we calculated mutual information between the distributions over POS

tags for dependency pairs of 43 languages in the Universal Dependencies corpus (Nivre

et al., 2016). For this calculation, we used mutual information over POS tags rather than

wordforms to avoid data sparsity issues. The results are shown in Figure 4-3. Again,

we find that mutual information is highest for direct head–dependency pairs, and falls off

for more distant relations. These results show that two words in a syntactic dependency

relationship are more predictive of each other than two words in some other kinds of rela-

tionship.

We also compared the mutual information of word pairs in and out of dependency

relationships while controlling for distance. This test has a dual purpose. First, it allows

us to control for distance when claiming that words in dependency relationships have high

mutual information. Second, it allows us to test a simple prediction of information locality

as applied to language production: that words with high mutual information should be close

together. For pairs of words (𝑤𝑖, 𝑤𝑖+𝑘), we calculated the pmi values among POS tags of

the words. Figure 4-4 shows the average pmi of all words at each distance compared with

the average pmi of the subset of words in a direct dependency relationship at that distance.

In all languages, we find that words in a dependency relationship have higher pmi than the

baseline, especially at close distances. Furthermore, we find that words at close distances

tend to have higher pmi, regardless of whether they are in a dependency relationship.
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Figure 4-3: Mutual information over POS tags for dependency relations in the Universal
Dependencies 1.4 corpus, for languages with over 500 sentences. All pairwise MI com-
parisons are significant at 𝑝 < 0.005 by Monte Carlo permutation tests over dependency
observations with 500 samples.
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Figure 4-4: Average pointwise mutual information over POS tags for word pairs with 𝑘
words intervening, for all words (baseline) and for words in a direct dependency relation-
ship. Asterisks mark distances where the difference between the baseline and words in a
dependency relationship is significant at 𝑝 < 0.005 by Monte Carlo permutation tests over
word pair observations with 500 samples.
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4.4.4 Discussion

Information locality can be seen as a decay in the effectiveness of contextual cues for

predicting words. Precisely such a decay in cue effectiveness was found to be effective for

predicting entropy distributions across sentences in Qian and Jaeger (2012), although that

work did not distinguish between an inherent, noise-based decay in cue effectiveness or

optimized placement of cues.

The result of Gildea and Jaeger (2015), which shows that word orders in languages are

optimized to minimize trigram surprisal of words, can be taken to show maximization of

information locality under the noise distribution where context is truncated deterministi-

cally at length 2. Whereas Gildea and Jaeger (2015) treat dependency length minimization

and trigram surprisal minimization as separate factors, under the view in this paper these

two phenomena emerge as two aspects of information locality. In general, the mutual infor-

mation of linguistic elements has been found to decrease with distance (Li, 1989; Lin and

Tegmark, 2016), although this claim has only been tested for letters, not for larger linguistic

units such as morphemes. The fact that linguistic units that are close typically have high

mutual information could result from optimization of word order for information locality.

The idea that syntactically dependent words have high mutual information is also ubiq-

uitously implicit in probabilistic models of language and in practical NLP models (e.g.,

Collins, 2003). For example, it is implied by head-outward generative models (Lafferty

et al., 1992; Eisner, 1996, 1997; Klein and Manning, 2004), the first successful mod-

els for grammar induction. Mutual information has been used directly for unsupervised

discovery of syntactic dependencies (Yuret, 1998) and evaluation of dependency parses

(de Paiva Alves, 1996), as well as commonly for collocation detection (Church and Hanks,

1990). In addition to providing evidence for a crucial assumption in the derivation of in-

formation locality, our results also give evidence backing up the theoretical validity of such

models and methods.

The derivation of information locality given here assumed progressive erasure noise for

concreteness, but we believe it should be possible to derive this generalization for a large

family of noise distributions.
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4.5 Further applications

The idea of information locality as a factor influencing languages has many possible appli-

cations. The basic prediction is that linguistic elements that predict each other should be

close. I believe this can predict and explain many interesting word order phenomena.

Adjective order One particularly intriguing universal of word ordering across languages

is the relative closeness of adjectives to nouns (Hetzron, 1978; Dixon, 1982; Sproat and

Shih, 1991). When multiple adjective modify a noun in English, they come in a fairly rigid

order determined by semantic class, for example big blue box is a much more common and

natural-seeming order than blue big box. In languages where adjectives follow nouns, the

same ordering constraints appear in reverse.

Information locality predicts that adjectives that have high pmi with nouns should be

close to those nouns. Thus if adjective orders can be explained in terms of mutual in-

formation, then adjective ordering constraints emerge as one instance of the very general

constraint of information locality. This idea suggests it would be fruitful to test pmi as a

predictor of relative orderings of adjective and nouns in corpora and ratings studies. It may

also be possible to connect pmi at a theoretical level with concepts that have been claimed

to predict adjective ordering, such as subjectivity (Scontras et al., 2017) and inherentness

(Ziff, 1960).

Arguments and adjuncts Adjuncts are typically placed farther from their heads than

arguments. They also seem to be less subject to dependency locality effects in processing:

Shain et al. (2016) find that a dependency locality theory which does not factor in distance

to adjuncts does better at predicting reading times than a theory that includes distances to

adjuncts. If adjuncts have lower pmi with their heads than arguments, then information

locality would explain the fact that they are often placed farther from their heads than

arguments. In support of this idea, high mutual information has been taken as a signal for

unsupervised discovery of argument relationships in NLP work (Church and Hanks, 1990;

Aldezabal et al., 2002; Abend and Rappoport, 2010).
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Word order change If information locality is a pressure affecting languages, then we

should see in historical corpora that a set of words that have high pmi at one date appear

closer together at a later date. It would be possible to test this straightforwardly, e.g. in the

Google Books corpus. More generally, information locality provides a mathematical theory

of word order change in grammaticalization (Hopper and Traugott, 2003). It predicts that

when linguistic elements start to covary (indicating that they have a new meaning), they

should become closer to each other.

Such a process appears to have happened, for example, the formation of the English

going to future tense. As going to came to be a future tense marker, the words stopped

admitting an adverb between them. In modern English, going quickly to see you means

that a literal going event is taking place; going to. We can see the words going and to

as becoming more and more tightly bound to each other by information locality as they

covaried more and more statistically.

4.6 Conclusion

We have introduced a computational-level model of incremental sentence processing diffi-

culty based on the principle that comprehenders have uncertainty about the previous input

and act rationally on that uncertainty. Noisy-context surprisal accounts for key effects pre-

dicted by expectation-based and memory-based models, in addition to providing the first

computational-level explanation of language-specific structural forgetting, which involves

subtle interactions between memory and probabilistic expectations. Noisy-context sur-

prisal also leads to a general principle of information locality offering a new interpretation

of syntactic locality effects, and leading to broader and potentially different predictions

than purely memory-based models.

Here we have used qualitative arguments and have used different specific noise distri-

butions to make different points. Our aim has been to argue for the theoretical viability of

noisy-context surprisal, without committing the theory to a particular noise distribution. We

believe our predictions will be derivable under very general classes of noise distributions,

and we plan to pursue these more general derivations in future work.
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A more psychologically accurate model will likely use a more nuanced noise distri-

bution than the simple decay functions in this paper, which do not capture the subtleties

of human memory. Many studies of the effects of memory on linguistic processing have

emphasized the importance of similarity-based interference, where memory retrieval ap-

pears to be inaccurate in that it confuses multiple similar context items (Gordon et al., 2001,

2006). These effects could be modelled in our framework via a noise model that swaps the

positions of words based on their similarity. Also, simple decay functions to not capture

memory retrieval effects of the kind described in Anderson and Schooler (1991), where

different items in a sequence have different propensities to be forgotten, in accordance with

rational allocation of resources for retrieval.

Seen as a noise distribution, this memory model implies that the erasure probability of

a word is a function of the word’s identity, and not only the word’s position in the sequence

as in Section 4.4.1. Including such noise distributions in the noisy-context surprisal model

could provide a rich set of predictions to test the model more extensively.
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Chapter 5

Conclusion
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This work has argued that we can explain syntactic patterns in languages in terms of

communicative efficiency under processing constraints. The basic prediction is that, as-

suming that human language processing is incremental and memory-constrained, we expect

locality constraints on words that depend on each other for meaning (dependency locality),

or words that predict each other (information locality).

This approach motivated a quantitative study of syntax using information theoretic tools

in Chapter 2. In Chapter 3, I showed large-scale crosslinguistic evidence for dependency

locality, and in Chapter 4, I derived the more general theory of information locality from a

model of incremental processing with noisy context representations.

To conclude, I will expand on some theoretical ideas left hanging from the content

chapters, and also offer further speculations on applications of these locality ideas.

5.1 Typological predictions from surprisal alone?

In general, in this thesis I am interested in processing theories that make predictions about

word order, and I have shown in Chapter 3 that the predictions of dependency locality the-

ory are very successful in this regard. Given that the two known major sources of process-

ing difficulty in comprehension are surprisal and dependency locality, it makes sense to ask

whether minimizing surprisal makes useful predictions about word order. In this section,

I will argue that surprisal makes no interesting predictions about word order.1 However,

minimizing noisy-context surprisal, while fixing the amount of information about meaning

to be transmitted, does result in new predictions.

Unlike the idea of minimizing dependency length, the idea of minimizing surprisal in

order to obtain processing efficiency runs into basic philosophical problems. With depen-

dency length, it is possible to have languages with higher or lower dependency lengths

conveying the same amount of information. With surprisal, because bits of surprisal are an

upper bound on bits of meaning conveyed, all reductions of the total surprisal of a sentence

imply that less information might be conveyed. In the limit, naïve surprisal minimization

leads to a trivial language that only contains one sentence, which has probability 1 and

1For similar argumentation, see Section 2.8.3 of Levy (2005).
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surprisal 0. Clearly such a language runs afoul of another desideratum for language: in ad-

dition to being easy to process it must be able to convey information. Holding the amount

of meaningful information expressed constant, no surprisal minimization is possible except

the reduction of free variation (see Section 1.4.3).

Furthermore, I will show below that in an important sense, all possible word order

systems convey the same amount of information.

The expected processing cost associated with a language 𝐿 is generally the expected

cost of its sentences:

𝐶lang(𝐿) =
∑︁
𝑠∈𝐿

𝑝𝐿(𝑠)𝐶sent(𝑠).

In surprisal theory, the processing cost of a word in a sentence is the information content

of the word given preceding context:

𝐶word(𝑤𝑖|𝑤1:𝑖−1) = − log 𝑝𝐿(𝑤𝑖|𝑤1:𝑖−1).

Since surprisal is linear, the processing cost of a sentence is the sum of costs of the words,

which ends up being equal to the surprisal of the sentence as a whole:

𝐶sent(𝑠) =

|𝑠|∑︁
𝑖=1

− log 𝑝𝐿(𝑤𝑖|𝑤1:𝑖−1)

= − log

|𝑠|∏︁
𝑖=1

𝑝𝐿(𝑤𝑖|𝑤1:𝑖−1)

= − log 𝑝𝐿(𝑠).

So the cost of a language under surprisal is just the entropy of the language:

𝐶lang(𝐿) = −
∑︁
𝑠∈𝐿

𝑝𝐿(𝑠) log 𝑝𝐿(𝑠)

= 𝐻(𝐿).

It follows that the expected processing cost of the language in surprisal theory is not af-

fected by any word order transformation which preserves the overall information content
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of a language. If a language has deterministic unambiguous word order rules conditional

on meaning, then any set of deterministic unambiguous word order rules for this language

will have the same total information content. Thus for fixed meanings, all languages which

are one-to-one mappings of meaning to form will have the same expected surprisal cost. In

general, for a given level of information content 𝑎 and uncertainty 𝑏 about word order given

meaning, all transformations which preserve 𝑎 and 𝑏 have the same expected surprisal cost.

Thus surprisal minimization tells us nothing about the utility of word order for expressing

meanings, beyond that extraneous variation should be minimized.

It is possible that minimization of variance in surprisal, or minimization of some non-

linear function of surprisal, would still result in interesting word order predictions. Such

predictions have been pursued in Maurits et al. (2010).

It is worth comparing this result with work such as Gildea and Jaeger (2015), which

has argued that word orders minimize surprisal cost. In that work, surprisal cost is defined

using an 𝑛-gram model, which does not give probabilities for words conditional on the full

prefix before those words. The limited conditioning information for each word means that

𝑛-gram surprisal values do not correspond to sentence probabilities. I would argue that 𝑛-

gram surprisal is actually a form of noisy-context surprisal, where the context is truncated

at 𝑛−1 words. From this perspective, we see that minimizing 𝑛-gram surprisal corresponds

to a form of information locality, in that putting minimizing 𝑛-gram surprisal means putting

words that predict other words within a window of 𝑛− 1 of each other.

5.2 Dependencies and mutual information

Connecting dependency locality theory to information locality theory required the assump-

tion, empirically verified in Section 4.4.3, that dependency pairs have the highest mutual

information compared to other pairs of words. I will call this the HDMI hypothesis: that

heads and dependents have high mutual information. Here I discuss some theoretical issues

raised by the HDMI hypothesis, and sketch some general reasons why we might expect it

to be true.
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5.2.1 HDMI from head-outward generative models

First I will argue that the HDMI hypothesis follows from a language being well-described

by head-outward generative dependency models. I will argue that under a head-outward

model, the true parse of a corpus has higher head-dependent mutual information than any

other parse of the corpus.

Suppose we have a corpus of sentences 𝐿 and a parse 𝑡, which is an arrangement of the

words in sentences into dependency tree structures. The probability of the corpus under a

head-outward model is (Eisner, 1996, 1997):

𝑝(𝐿|𝑀, 𝑡) =
∏︁
𝑠∈𝐿

∏︁
𝑤∈𝑠

𝑝𝑀(𝑤|𝑡(𝑠, 𝑤))

=
∏︁

(ℎ,𝑑)∈𝐿𝑡

𝑝𝑀(𝑑|ℎ), (5.1)

where 𝑀 is a conditional distribution giving the probability of a dependent wordform given

a head wordform, 𝑡 : 𝑆 × 𝑊 → 𝑊 is a mapping from a word to its head word within

a sentence, and 𝐿𝑡 is a reduction of the corpus 𝐿 into a series of head–dependent pairs

according to 𝑡.

Now let’s think about the mutual information between heads and dependents in the cor-

pus 𝐿 with parse 𝑡. Let 𝐼(𝐻𝑡;𝐷) represent the mutual information between dependents 𝐷

and heads 𝐻𝑡 as identified by the parse 𝑡. Under the head-outward model, each value of 𝐷

was generated directly conditional on the corresponding value in 𝐻𝑡. The data processing

inequality (Cover and Thomas, 2006) holds that for any joint distribution (𝐴,𝐵) where 𝐵

is generated directly from 𝐴, and for all functions 𝑓 , 𝐼(𝐴;𝐵) ≤ 𝐼(𝑓(𝐴);𝐵). For any parse

𝑡′ of 𝐿, we can see it as defining a mutual information 𝐼(𝐻𝑡′ ;𝐷) = 𝐼(𝑓(𝐻𝑡);𝐷), where 𝑓

is a function that replaces a head in parse 𝑡 with its corresponding head in parse 𝑡′. Thus by

the data processing inequality, 𝐼(𝐻𝑡′ ;𝐷) ≤ 𝐼(𝐻𝑡;𝐷).

This argument shows that under head-outward models, heads and dependents represent

the word pairs (forming a tree over words in sentences) that maximize mutual information.

Thus the HDMI property follows generally from these models.
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Relation to PCFGs

The HDMI hypothesis is deeply connected to head-outward generative models as descrip-

tions of linguistic distributions. If we have good reason to suspect language does follow

such a distribution, then we should expect the HDMI hypothesis to be true. Here I address

the question of how head-outward generative models relate to other common probability

models for language data.

Head-outward generative models are a subset of probabilistic grammars where rewrite

probabilities are multiplied to get the probability of a derivation. The most prominent kind

of probabilistic grammar in this sense is the ubiquitous probabilistic context-free grammar

(PCFG) (Suppes, 1970; Sankoff, 1971). In head-outward generative dependency models,

each dependency arc in a sentence is conditionally independent of the rest of the sentence

given its head. More generally, a sentence is considered to be built out of many parts con-

sisting of dependency arcs and words, and the probability of a sentence is the product of the

probabilities of those parts. In this way, head-outward generative dependency models are

similar to probabilistic context-free grammars, and in fact can be reduced to them (Johnson,

2007).

5.2.2 Why should sentence probabilities factor nicely?

Here I discuss the relationship between language at is described with a grammatical for-

malism and language as a probability distribution over sentences that we might observe in a

corpus. It is commonly assumed that the distribution over strings in a context-free language

is given by a PCFG, but I wish to problematize that assumption (see also Kornai (2011) for

further problematization).

We can see a dependency parse (or a CFG parse) as encoding a sequence of rules that

are applied to derive a sentence. The set of rules provides a description of the set of strings

in a language. But when we think of a language as a tool for expressing meanings, it is

not immediately obvious that the probabilistic distribution over strings in such a language

would be well described by a model where the probabilities of the rules are simply multi-

plied together, as in head-outward dependency models and PCFGs.
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A dependency grammar or a context-free grammar only describes the support of the

probability distribution over sentences. In principle there could be all kinds of covariance

among rules, which would mean that rule applications are not independent in probability.

Thus the probability of a sentence would not be the simple product of the probabilities of

the rules that generate it.

To see this, consider a context-free language 𝐿 containing all the sentences of English

which admit a context-free description, and suppose that the derivations of these sentences

exist in a one-to-one mapping with meanings. Then the probability of encountering a sen-

tence with derivation 𝑑 expressing meaning 𝑚 is the probability that a speaker wants to

express 𝑚. The probability distribution over 𝑚 is unconstrained in this construction.

As an example of how unconstrained 𝑚 can lead to non-PCFG distributions over con-

text free stringsets, consider the language 𝐿 spoken by speakers in a desert, where the

distribution over 𝑚 in their environment is such that they say I want water with very high

probability and all other sentences with nominal probability. The sentence I want water can

have the same derivation as in a description of English, with multiple rules producing the

subject NP, the matrix VP, and so on, as in the grammar in the first column of Table 5.1. Yet

all the probability mass is on one sentence, and not on the other sentences that share rules

with it. I am essentially describing a spike-and-slab distribution over context-free deriva-

tions, with the spike on the derivation of I want water and the slab on all other derivations.

This example is meant to show just how much the probability distribution over context-free

sentences can vary as a function of 𝑚.

To flesh this example out more, suppose we have fixed the context-free description of

the language 𝐿 (the rule column in Table 5.1), such that the derivation of any sentence is

fixed. For example, the sentence I want water, which by construction has abnormally high

probability, has a derivation with the application of multiple rules, just as in a description

of English. If we take this fixed grammar and assign probabilities to the rules (choosing

the probability column in Table 5.1, but keeping the rule column fixed), it becomes imme-

diately obvious that it is not possible to reproduce the distribution over sentences where

I want water has high probability and everything else has uniformly low probability, be-

cause the probability of the derivation of I want water is the product of the probability of
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Rule Probability
1 S→ NP VP 𝑝1
2 NP→ PRP 𝑝2
3 NP→ DT NN 𝑝3
4 NP→ NN 𝑝4
5 VP→ VB 𝑝5
6 VP→ VB NP 𝑝6
7 PRP→ I 𝑝7
8 VB→ want 𝑝8
9 NN→ water 𝑝9
... ... ...

Table 5.1: Non-exhaustive (P)CFG for example language 𝐿.

its rules 𝑝1𝑝2𝑝7𝑝6𝑝8𝑝4𝑝9, and if these probabilities are high then they will also give higher

probability to sentences which are partially similar to I want water such as I want food. It is

thus very unclear that the fact that a language is well-described by a particular context-free

grammar implies that its sentences follow a PCFG distribution with those rules, or even

that they factorize in any way with respect to the grammar rules.

In the same way that a CFG description of a language does not imply that it should

follow a PCFG distribution, it does not follow immediately that a dependency grammar de-

scription of a language implies that it should follow a head-outward generative distribution.

In general, the question is why rule applications appear to be probabilistically independent

in the language as a distribution.

5.2.3 Coding Factorization Conjecture

I do not have an answer for why sentence probabilities appear to be well-modelled as

products of rule probabilities. But I would like to advance a conjecture which I call the

Coding Factorization Conjecture, which is that if an efficient code for a meaning distri-

bution 𝑀 works by successively applying rewrite rules, then the rules should correspond

to dimensions of meaning such that the rule application probabilities are maximally inde-

pendent of each other in the language as a distribution. That is, the rules should represent a

factorization of 𝑀 : a set of independence assumptions about 𝑀 , or equivalently a repre-

sentation of 𝑀 as a set of maximally independent random variables, as might be encoded
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in a Bayes net. If this conjecture is true, then the link between syntactic dependency and

mutual information—and between context-free languages and PCFG p-languages—could

be established through communicative efficiency.

5.3 Context-independence and context-dependence

One overall impression that comes out of this work is that languages should avoid context-

dependence, or at least that when context-dependence exists, it should be among utterance

elements that are close. By context-dependence I mean that any form of dependency

exists between a word and the context it appears in: context-dependence is when either the

probability or the interpretation of a linguistic element depends on the context it appears in.

The result demonstrated in Section 1.5.5 shows that context-dependence of interpretation

results in low utility languages under processing constraints, and Chapter 4 shows that

statistical dependence of words on their contexts results in increased processing cost. The

basic intuition is just that context-dependence is harmful when speakers and listeners can’t

remember context. Here I discuss implications of that idea.

5.3.1 Why is language context-dependent?

The question arises of why natural languages do seem to have so much context-dependence,

although they still have far less than what is theoretically possible or what is desirable in

certain digital codes (see Section 1.3.5).

Here I will sketch a proposals for why context-dependence exists in natural language,

based on nonstationarity of the meaning distribution 𝑀 .

If we assume 𝑀 is nonstationary, then context-dependence arises because 𝑀 has shifted

away from a state that allowed a certain context-independent code to exist. Suppose ℒ is

a context-independent code for 𝑀 , meaning that the probability and interpretation of each

word is independent of its context. Such a code represents a factorization of 𝑀 , because

the independent components of 𝐿 correspond to independent components of some param-

eterization of 𝑀 . But if 𝑀 changes in such a way that those independence assumptions

are no longer valid, then the components of the resulting 𝐿 will no longer be independent
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in the language as a distribution. If the process by which ℒ adapts to 𝑀 is slow, then no

language may achieve full context-independence.

This idea leads to a prediction that we might expect more long-range context-dependence

in languages spoken in environments that are changing quickly. It is possible that mor-

phological complexity corresponds to a lack of long-range context-dependence, because it

makes words more self-contained in their distribution and interpretation; in that case, the

observed higher morphological complexity of languages spoken by small societes (Lupyan

and Dale, 2010) might result from a more stationary meaning distribution in those societies.

Some parts of language structures change more quickly than others (Dediu and Cysouw,

2013); this may be the result of these structures corresponding to more or less stationary

parts of the meaning distribution. See also Baronchelli et al. (2013) for similar ideas.

5.3.2 Duality of patterning

A distinctive property of natural language is duality of patterning, the fact that phonemes

which bear no consistent relationship to meaning2 combine into morphemes, which carry

more or less transparent meanings (Hockett, 1959). That is, within a morpheme, the in-

terpretation of a phoneme is maximally context-dependent; the interpretation of a whole

morpheme itself, on the other hand, is highly context-independent. Previous work in evo-

lutionary linguistics (Nowak and Krakauer, 1999; Tria et al., 2012; Spike et al., 2016) has

shown that duality of patterning can emerge in part as a mechanism for robust communi-

cation in noise, because it is easier to discriminate between collections of a small number

of symbols than to discrimate between many unrelated symbols. What information locality

adds is that it provides a new reason for morphemes to consist of contiguous sequences of

phonemes, and the reason that larger and larger linguistic units show less and less internal

contiguity.

2See the literature on phonaesthemes for exceptions (Bergen, 2004).
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5.3.3 Endocentricity

A distinctive property of natural language syntax, and a fact which I have relied on exten-

sively in this work, is that the combinatorial and compositional properties of utterances can

be well-described in terms of head–dependent relationships among words. This is the same

as saying that the behavior of a phrase is largely determined by a distinguished element in

it, its head. The fact that syntax operates over heads (for the most part) is the principle of

endocentricity (see Section 3.1 for more details).

Information locality can provide a partial explanation for endocentricity. Endocentricity

basically means that the context-dependence of a word is mostly concentrated on exactly

one other word. That is, the probability and interpretation of a word depends primarily

on exactly one other word, and the rest of the words are irrelevant. When this is true in

a language, let us call it a 1-endocentric language. Let’s compare language where every

word is dependent on exactly one other word to a language where every word is dependent

on exactly 2 other words: call this a 2-endocentric language. Now if incremental memory

constraints affect comprehension and production, then I claim the 1-endocentric language

is better than the 2-endocentric language. This follows given erasure noise affecting context

representations. On average, any set of 2 words is more likely to suffer erasure of at least

one element than any set of 1 words. In a 2-endocentric language, a context-dependent

word has a greater risk of incorrect interpretation because one of the crucial context words

was forgotten.

Taken to its natural conclusion, this argument actually shows that languages should

be 0-endocentric: i.e. every part of the utterance should be context-independent. The

arguments in Section 5.3.1 might explain why this ideal has not been reached, and it might

explain why some languages and constructions go beyond 1-endocentricity.3

3Another important property of endocentricity is that linguistic heads and dependents typically form a
tree structure. In part, this is a definitional matter: those sequences of words whose head–dependent relations
form trees are called sentences.
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5.4 Incremental sequence samplers

In this section I will discuss an alternative derivation of the idea of information locality

from incremental planning algorithms for generating sequences.

In the framework I have argued for, the fundamental mechanism by which processing

factors influence languages is that language comprehension and production are done rel-

ative to approximations of a language reflecting information processing constraints (Sec-

tion 1.5). I make this more concrete by claiming that when speakers and listeners are

processing language incrementally, they are doing so using approximate samplers for the

language (Section 5.4.1). Then I discuss possible approximate sampling algorithms for

distributions over sequences, which are constrained by incrementality (Sections 5.4.2 and

5.4.3). I show conditions under which these incremental sampling algorithms favor se-

quence distributions that have information locality (Section 5.4.4). Finally I discuss con-

nections with recent advances in deep reinforcement learning (Section 5.4.5).

5.4.1 Samplers

The difference between the language as an agent knows it and the language as an agent

applies it is the same as the distinction between a distribution and a sampler. A sampler

for a distribution is an algorithm which generates samples from the distribution. Some dis-

tributions that are easy to characterize may be hard to generate samples from, and some

distributions that are easy to sample from may be hard to calculate analytically, due to

intractable normalizing constants (MacKay, 2003). Crucially, a sampler may be approxi-

mate; in fact, approximate samplers are often necessary in order to use certain distributions

in practical applications (Neal, 1993). Approximate samplers often contain representations

of the distribution they are attempting to sample from, even if they cannot produce samples

from it precisely.

In the context of this thesis, I am proposing to model language as it is used in a com-

munity of agents. The agents may know a language perfectly, but they must implement

samplers to generate and encode actual samples from the language. These samplers may

contain errors or operate under heavy resource constraints, hence introducing unavoidable
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approximation error.

The task of a speaker is to take a known language ℒ—a distribution over utterances

given a meaning—and generate samples from it. If she does so using an approximate

sampler, then that sampler actually generates from some other distribution, which is ℒ𝑠.

Similarly, the task of a listener is to take a known language ℒ and infer the meanings that

were intended under it. Assuming that the listener does this inference using Bayes rule, the

various expectations that must be computed may be done by Monte Carlo approximation,

drawing samples using an approximate sampler that actually generates from the approxi-

mating distribution ℒ𝑙.

5.4.2 Incremental samplers for sequences

A language as a code ℒ generates sequences of symbols. We think human language pro-

cessing is highly incremental, so in a sampling framework, we should think about samplers

that generate sequences by taking a context representation 𝑐 and figuring out what word 𝑤

to generate next. I call this kind of sampler an incremental sequence sampler.

In this section, I discuss consequences of thinking of human language performance in

terms of incremental sequence samplers. The discussion results in a new perspective on in-

formation locality, and suggests some practical algorithms for natural language processing.

Let us consider incremental sequence samplers for distributions over 𝑊 *. An incre-

mental sequence sampler consists of two subsidiary samplers 𝑑 and 𝑒. 𝑑 implements a

probabilistic decoding function 𝑑 : 𝐶 → 𝑊 which produces an element of 𝑊 conditional

on a context 𝑐 ∈ 𝐶. 𝑒 implements a probabilistic encoding function 𝑒 : 𝑊 × 𝐶 → 𝐶

which incorporates a word 𝑤 into a context representation 𝑐 ∈ 𝐶, producing a new context

representation 𝑐′ ∈ 𝐶. The decoding function chooses what symbol to produce next, and

the encoding function chooses how to represent what has been produced so far. Given these

two parameters, the sampler produces a sequence w ∈ 𝑊 * by taking a context 𝑐, generat-

ing a word 𝑤 = 𝑑(𝑐), and then generating a new context 𝑐′ = 𝑒(𝑤, 𝑐). This process repeats

recursively until the end-of-sequence symbol is generated. This algorithm is summarized

in Algorithm 2. Thus the sampler produces w with probability:
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Algorithm 2 Algorithm to generate a sequence given an incremental sequence sampler
parameterized by probabilistic functions 𝑒 and 𝑑. 𝜖 is the empty sequence.
function GENERATEFROM(c)

𝑤 ← 𝑑(𝑐)
if 𝑤 = # then

return 𝜖
else

𝑐′ ← 𝑒(𝑤, 𝑐)
return 𝑤 · GENERATEFROM(𝑐′)

end if
Result is GENERATEFROM(#).

𝑝𝑒𝑑(w) = 𝑝𝑒𝑑(w|#),where

𝑝𝑒𝑑(w|𝑐) = 𝑝𝑑(𝑤1|𝑐)×

⎧⎪⎨⎪⎩
1 if 𝑤1 = #

E
𝑐′∼𝑒(𝑤1,𝑐)

[︀
𝑝𝑒𝑑(𝑤2:|w||𝑐′)

]︀
otherwise.

Now consider a sampler meant to produce samples from a probability distribution over

sequences W. Such a sampler should choose 𝑒 and 𝑑 to minimize KL divergence from the

sampler distribution to the target distribution:

argmin
𝑒,𝑑

𝐷KL(𝑝
𝑒
𝑑 → 𝑝W), (5.2)

where 𝑝𝑒𝑑 is the probability distribution over sequences generated by the sampler. A sampler

that minimizes Equation 5.2 is an autoencoder for W.

I have described a sampling algorithm that is an autoencoder for sequences. But the

speaker and listener are really interested in finding the best representation of linguistic se-

quences for the purpose of encoding and decoding meaning. It is not immediately obvious

that the best strategy for this goal is to find the representation that is best for autoencoding

these sequences. However, I argue here that learning a representation that can autoen-

code sequences means that we maximize an upper bound on how much information about

meaning is present in the representation of the sequences. We saw previously that for the

listener’s utility (Section 1.5), learning to autoencode sequences has the effect of pushing

up a lower bound on utility (Equation 1.22). In general, if an autoencoder’s context repre-

sentation 𝑐 contains represents 𝑘 bits of information about w, then it can encode at most
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𝑘 bits of information contained in w about any additional variable 𝑀 . Therefore, when

we want to make a representation of meaning in linguistic sequences, it is justifiable to

train a representation to autoencode those linguistic sequences, because this representation

maximizes an upper bound on informativity about meaning.

5.4.3 Planning for incremental sequence samplers

In this section, I will show how to describe an incremental sequence sampler as a planning

algorithm. In the next section, I will use the concepts built up here to show two condi-

tions under which incremental sequence samplers favor sequence distributions that have

information locality.

An incremental sequence sampler is parameterized by a probabilistic decoding function

𝑑 : 𝐶 → 𝑊 and an encoding function 𝑒 : 𝑊 × 𝐶 → 𝐶. If we want the function 𝑑

to produce a valid continuation of a sequence given an encoded context 𝑐, then 𝑑 must

solve a planning problem (Lashley, 1951; MacDonald, 2013). Similarly, if we want 𝑒 to

produce a context representation that enables the correct completion of a sequence, and

if 𝑒 is resource-constrained, then 𝑒 must solve a planning problem in order to know what

context information is worth keeping (the “memory for what is to come”, Rosenbaum et al.

2007).

Here I characterize 𝑑 and 𝑒 as planning algorithms that maximize a 𝑄-function (Sutton

and Barto, 1998).

Suppose that when the encoder 𝑒 is faced with a context 𝑐 and a word 𝑤, it can deploy

a number of different encoding actions 𝑎 ∈ 𝐴, 𝑎 : 𝑊 × 𝐶 → 𝐶. For example, the set of

encoding actions may consist of an action 𝑎keep(𝑤, 𝑐) = 𝑐 · 𝑤 which concatenates 𝑤 onto

𝑐, or 𝑎drop(𝑤, 𝑐) = 𝑐, which forgets the word 𝑤. For optimal planning, the encoder should

choose the next action according to the policy:

𝜋𝑒(𝑤, 𝑐) = argmax
𝑎∈𝐴

𝑄𝑒(𝑎, 𝑤, 𝑐, 𝑐)

𝑄𝑒(𝑎, 𝑤, 𝑐, 𝑐) = E
𝑤′|𝑐,𝑤

[︂
𝑈(𝑤′, 𝑎(𝑤, 𝑐)) + 𝛾max

𝑎′∈𝐴
𝑄𝑒(𝑎

′, 𝑤′, 𝑐 · 𝑤, 𝑎(𝑤, 𝑐))
]︂
, (5.3)
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where 0 ≤ 𝛾 ≤ 1 is a future-discount parameter, 𝑈(𝑤, 𝑐) is the utility of a word in a

context, 𝑐 represents the context as it currently is, and 𝑐 represents the planner’s projection

of how the context will look in the future after taking certain actions.

If we use the utility function 𝑈(𝑤, 𝑐) = −ℎ(𝑤|𝑐), then the policy 𝜋𝑒 is an autoencoder.

To see this, expand Equation 5.3 as follows:

𝑄𝑒(𝑎, 𝑤, 𝑐, 𝑐) = E
𝑤′|𝑐,𝑤

[︂
𝑈(𝑤′, 𝑎(𝑤, 𝑐)) + 𝛾max

𝑎′∈𝐴
𝑄𝑒(𝑎

′, 𝑤′, 𝑐 · 𝑤, 𝑎(𝑤, 𝑐))
]︂

(5.3)

= E
𝑤′|𝑐,𝑤

[−ℎ(𝑤′|𝑎(𝑤, 𝑐))] + 𝛾 E
𝑤′|𝑐,𝑤

[︂
max
𝑎′∈𝐴

𝑄𝑒(𝑎
′, 𝑤, 𝑐 · 𝑤, 𝑎(𝑤, 𝑐))

]︂
= −𝐻(𝑊 ′|𝑎(𝑤, 𝑐)→ 𝑊 ′|𝑐, 𝑤) + 𝛾 E

𝑤′|𝑐,𝑤

[︂
max
𝑎′∈𝐴

𝑄𝑒(𝑎
′, 𝑤, 𝑐 · 𝑤, 𝑎(𝑤, 𝑐))

]︂
= −𝐻(𝑊 ′|𝑎(𝑤, 𝑐)→ 𝑊 ′|𝑐, 𝑤)

+ 𝛾 E
𝑤′|𝑐,𝑤

[︂
max
𝑎′∈𝐴
−𝐻(𝑊 ′′|𝑎′(𝑤′, 𝑎(𝑤, 𝑐))→ 𝑊 ′′|𝑐, 𝑤, 𝑤′)

]︂
+ ...

Thus maximizing 𝑄𝑒 corresponds to minimizing cross-entropy with expected future words,

and the resulting sequence has minimal cross entropy from the sequence it is meant to

approximate.

A decoder that aims to approximate w should follow the following policy to generate

words:

𝜋𝑑(𝑐) = argmax
𝑤∈𝑊

𝑄𝑑(𝑤, 𝑐)

𝑄𝑑(𝑤, 𝑐) = E
𝑐′|𝑐,𝑤

[︂
𝑈(𝑤, 𝑐′) + 𝛾 max

𝑤′∈𝑊
𝑄𝑑(𝑤

′, 𝑐′)

]︂
,

that is, it chooses the next word such that the resulting context representation will maximize

some utility. This utility might reflect the speaker’s intended meaning, for example.

The 𝑄 function for 𝑒 included an expectation over 𝑤′|𝑐, 𝑤 (that is, over the next word

given the current word and context), and the 𝑄 function for 𝑑 included an expectation over

𝑐′|𝑐, 𝑤 (that is, the next context given the current word and context). How are these ex-

pectations calculated? One option is that the encoder 𝑒 could use a decoder 𝑑 to sample

𝑤′|𝑐, 𝑤, and 𝑑 could use an encoder 𝑒 to sample 𝑐′|𝑐, 𝑤. This recursion implies that produc-
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ing language requires interleaving plans for simulated producers and comprehenders, and

is reminiscent of Rational Speech Acts models (Frank and Goodman, 2012). Such inter-

leaving of plans is dealt with in a 𝑄-function framework in Kleiman-Weiner et al. (2016).

I leave it for future work to determine the details of this.

5.4.4 Information locality from planning

I will show that distributions over sequences that have information locality are easier to

autoencode according to the encoding function 𝑒 as defined above. Incremental sequence

samplers favor sequence distributions characterized by information locality under two dif-

ferent conditions. The first condition is when there is future-discounting in the planning

algorithm (i.e., 𝛾 < 1). The second condition is when there is storage cost associated with

keeping information in memory. These considerations provide an alternative motivation

for information locality as a constraint on languages.

Supposing the set of encoding actions is 𝐴 = {𝑎keep, 𝑎drop}, let us consider the expected

utility for 𝑎drop on the next word 𝑤′. It is:

E
𝑤′|𝑐,𝑤

[−ℎ(𝑤′|𝑎drop(𝑤, 𝑐))] = −𝐻(𝑊 ′|𝑐→ 𝑊 ′|𝑐, 𝑤)

= −𝐻(𝑊 ′|𝑐, 𝑤)−𝐷KL(𝑊
′|𝑐→ 𝑊 ′|𝑐, 𝑤)

= −𝐻(𝑊 ′|𝑐, 𝑤)− E
𝑤′∼𝑊 ′|𝑐,𝑤

[pmi(𝑤;𝑤′|𝑐)] .

Expanding the recursive function 𝑄𝑒, and dropping the entropy terms which are irrelevant

for the optimization problem, we see the utility of dropping 𝑤 is upper bounded by:

− E
𝑤′∼𝑊 ′|𝑐,𝑤

[︂
pmi(𝑤;𝑤′|𝑐)− 𝛾 E

𝑤′′∼𝑊 ′′|𝑐,𝑤,𝑤′
[pmi(𝑤;𝑤′′|𝑐)− ...]

]︂
,

where the upper bound comes from assuming we select 𝑎keep for all future actions. That is,

the importance of keeping 𝑤 in memory is its expected pmi with future words, decreasing

in importance according to the future discount. If there is some additional cost to keeping

𝑤 in memory, and keeping 𝑤 in memory will only pay off far in the future, then this system

based on future-discounted reward might incorrectly drop 𝑤. On the other hand, if 𝑤 will
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𝑊1 𝑊2 𝑊3

a c a
a d a
b c b
b d b

Table 5.2: Language 𝐿 used to demonstrate that information locality arises from planning
with memory storage costs. The words 𝑊1 and 𝑊2 have long-range dependence; the word
𝑊2 is noise.

pay off soon—if the words that it has high mutual information with are close—then the

system is less likely to make a mistake.

A similar result can be derived with 𝛾 = 1 simply by assuming storage cost for 𝑤

that continues for the whole time 𝑤 is kept represented in the context representation 𝑐.

If it is necessary to store 𝑤 for a long time and this long-term storage is costly, then the

planner might decide to drop it because the payoff down the line is not large enough. When

sequences have information locality, this is less of a problem.

I will use an example to demonstrate the derivation of information locality from plan-

ning with memory storage cost. I will show that when there is storage cost, a planning

autoencoder might choose not to remember critical contexts, which results in it not mod-

elling the probability distribution over strings correctly. Consider a probabilistic language

𝐿 defined in Table 5.2, where each string has uniform probability. The language consists

of fixed-length strings of three words, where the first and third words are correlated, and

the intervening second word is noise. Suppose that the set of possible encoding actions

is 𝐴 = {𝑎keep, 𝑎drop}, and that we are currently viewing the first word 𝑊1 and deciding

whether to keep it or drop it as part of the context representation. Given word 𝑤1 with a

representation of previous context 𝑐, and setting 𝛾 = 1 so there is no future discount, the

𝑄-function we want to maximize is:

𝑄(𝑎1, 𝑤1, 𝑐) = E
𝑤2|𝑤1,𝑐

[︂
𝑈(𝑤2, 𝑎1(𝑤1, 𝑐)) + max

𝑎2
𝑄(𝑎2, 𝑤2, 𝑐 · 𝑤1, 𝑎1(𝑤1, 𝑐))

]︂
.

Let us assume a utility function 𝑈(𝑤, 𝑐) = −ℎ(𝑤|𝑐)−𝐶(𝑐), where 𝐶(𝑐) is the storage cost

for a context representation. For example, the storage cost function could be the length in
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words of a context represented as a string of words. Then the 𝑄-function comes out to:

𝑄(𝑎1, 𝑤1, 𝑐) = E
𝑤2|𝑤1,𝑐

[︂
−ℎ(𝑤2|𝑎1(𝑤1, 𝑐))− 𝐶(𝑎1(𝑤1, 𝑐)) + max

𝑎2
𝑄(𝑎2, 𝑤2, 𝑐 · 𝑤1, 𝑎1(𝑤1, 𝑐))

]︂

= − E
𝑤2|𝑤1,𝑐

[ℎ(𝑤2|𝑎1(𝑤1, 𝑐))]− 𝐶(𝑎1(𝑤1, 𝑐)) (5.4)

+ E
𝑤2|𝑤1,𝑐

[︂
max
𝑎2

E
𝑤3|𝑐,𝑤1,𝑤2

[−ℎ(𝑤3|𝑎2(𝑤2, 𝑎1(𝑤1, 𝑐)))]− 𝐶(𝑎2(𝑤2, 𝑎1(𝑤1, 𝑐)))

]︂
.

Now there is no utility in remembering 𝑊2, because it is noise uncorrelated with any other

word, but there may be cost associated with it. So we can assume that the maximization

inside Equation 5.4 always selects 𝑎drop. Thus 𝑎2(𝑤2, 𝑎1(𝑤1, 𝑐)) = 𝑎1(𝑤1, 𝑐), so we can

write:

𝑄(𝑎1, 𝑤1, 𝑐) = − E
𝑤2|𝑤1,𝑐

[ℎ(𝑤2|𝑎1(𝑤1, 𝑐))]− 𝐶(𝑎1(𝑤1, 𝑐))

+ E
𝑤3|𝑤1,𝑐

[−ℎ(𝑤3|𝑎1(𝑤1, 𝑐))]− 𝐶(𝑎1(𝑤1, 𝑐))

= −𝐻(𝑊2|𝑎1(𝑤1, 𝑐)→ 𝑊2|𝑤1, 𝑐)− 𝐶(𝑎1(𝑤1, 𝑐))

−𝐻(𝑊3|𝑎1(𝑤1, 𝑐)→ 𝑊3|𝑤1)− 𝐶(𝑎1(𝑤1, 𝑐))

= −𝐻(𝑊2|𝑎1(𝑤1, 𝑐)→ 𝑊2|𝑤1, 𝑐)−𝐻(𝑊3|𝑎1(𝑤1, 𝑐)→ 𝑊3|𝑤1)− 2𝐶(𝑎1(𝑤1, 𝑐)).

Now let’s consider the relative advantage of 𝑎keep over 𝑎drop. We will also assume the initial

context 𝑐 is the empty string 𝜖, representing the fact that there is no relevant context to

consider before the first word. Thus 𝑐 is not informative about any word. We consider the

difference in 𝑄 values for the two actions:

𝑄(𝑎keep, 𝑤1)−𝑄(𝑎drop, 𝑤1) = −𝐻(𝑊2|𝑤1 → 𝑊2|𝑤1)− 2𝐶(𝑐 · 𝑤1)−𝐻(𝑊3|𝑤1 → 𝑊3|𝑤1)

+𝐻(𝑊2 → 𝑊2|𝑤1) + 2𝐶(𝑐) +𝐻(𝑊3 → 𝑊3|𝑤1)
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= −𝐻(𝑊2|𝑤1)− 2𝐶(𝑐 · 𝑤1)−𝐻(𝑊3|𝑤1) +𝐻(𝑊2 → 𝑊2|𝑤1) + 2𝐶(𝑐) +𝐻(𝑊3 → 𝑊3|𝑤1)

= −𝐻(𝑊2)− 2𝐶(𝑐 · 𝑤1)−𝐻(𝑊3|𝑤1) +𝐻(𝑊2) + 2𝐶(𝑐) +𝐻(𝑊3 → 𝑊3|𝑤1)

= −2𝐶(𝑐 · 𝑤1)−𝐻(𝑊3|𝑤1) + 2𝐶(𝑐) +𝐻(𝑊3|𝑤1) +𝐷KL(𝑊3|∅→ 𝑊3|𝑤1)

= −2𝐶(𝑐 · 𝑤1) + 2𝐶(𝑐) +𝐷KL(𝑊3 → 𝑊3|𝑤1)

= E
𝑤3|𝑤1

[pmi(𝑤1;𝑤3)]⏟  ⏞  
in favor of 𝑎keep

− 2(𝐶(𝑐 · 𝑤1)− 𝐶(𝑐))⏟  ⏞  
in favor of 𝑎drop

.

If the cost differential for keeping 𝑤1 in memory (2(𝐶(𝑐 ·𝑤1)−𝐶(𝑐))) exceeds the reward

E𝑤3|𝑤1 [pmi(𝑤1;𝑤3)], then the optimal planner will drop 𝑤1 from memory, and will thus

not accurately model the probability distribution over strings. Then given the context ac,

it will predict a and b with equal probability, because it did not store a representation of

the first word a in memory. Thus it will generate sequences that differ from the target

distribution over sequences.

If we generalize the example, we can see that it shows how sequences with information

locality are more easily encoded by these planning autoencoders. In the language of Ta-

ble 5.2, one word of noise intervened between the critical words 𝑊1 and 𝑊3. Now consider

if 𝑑 words of uncorrelated noise intervene between 𝑊1 and 𝑊𝑑+1 which is a copy of 𝑊1.

Then the difference in utilities between storing 𝑊1 (𝑎keep) and dropping 𝑊1 (𝑎drop) is:

𝑄(𝑎keep, 𝑤1)−𝑄(𝑎drop, 𝑤1) = E
𝑤𝑑+1|𝑤1

[pmi(𝑤1;𝑤𝑑+1)]− (𝑑+ 1)(𝐶(𝑐 · 𝑤1)− 𝐶(𝑐)).

Thus as the distance between the relevant words 𝑊1 and 𝑊𝑑+1 grows, the optimal planning

autoencoder is more likely to erroneously drop 𝑊1 from its context representation, and thus

not model the probability distribution over sequences accurately.

The example above shows how probabilistic languages with information locality can be

more accurately represented by planning autoencoders. It shows how information locality

in human languages can be considered to follow from planning constraints, inasmuch as

we think the planning involved in human language processing (both comprehension and

production) is done incrementally with constrained memory.
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5.4.5 Connection to deep reinforcement learning

In recent years, deep neural networks have gotten very promising results when used in the

framework of 𝑄-functions (Mnih et al., 2016; Silver et al., 2016). In these setups, a neural

network is trained to approximate the 𝑄 function based on simulated outcomes, and the

approximated 𝑄 values form the basis of an action policy. In fact, something very close to

the planning framework I sketched above has been proposed in the neural network literature

for modeling sequential data. Yu et al. (2017) is one example; they use concatenation for

the encoding function, and the decoding function is approximated using deep 𝑄-learning

to implement an objective very similar to the autoencoder described above. Guo (2015) is

similar. Inasmuch as information locality, apparently a major feature of natural language

syntax, falls out of such a framework, the results here suggest that this planning framework

may be very well suited for modelling natural language sequences, because the framework

has a realistic inductive bias.

Advances in deep learning have also come from taking a game theoretic approach in or-

der to let multiple neural networks train each other. For example, Goodfellow et al. (2014)

introduce Generative Adversarial Networks, a setup for unsupervised learning where one

neural network (the generator) tries to mimic data from some distribution, and another neu-

ral network (the discriminator) tries to discriminate real samples from samples from the

generator. The interleaving-plans aspect of the autoencoder for sequences described here

suggests that another kind of game theoretic approach might be useful for language. We

might imagine 𝑑 and 𝑒 from Section 5.4.3 as two neural networks that cooperate in order to

successfully encode sequences.

Recent work has shown that neural network agents that use reinforcement learning can

cooperate to develop a language with some natural language like properties (Mordatch and

Abbeel, 2017). If these networks use the kinds of planning algorithms described above

to produce and understand sequences, then I suggest they might develop syntax that looks

very similar to that in natural languages.
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5.5 Conclusion

I have argued that we can see natural languages as optimizing a utility function that is

affected by information processing constraints. When these information processing con-

straints are constraints on memory in incremental processing, then we get out that natural

languages should follow locality constraints: information locality and, as a special case,

dependency locality.

Much empirical and theoretical work remains to be done to verify the ideas in this

thesis. Nevertheless, the intuitions underlying them are straightforward and I believe they

could have considerable explanatory potential.

This work should not be seen in conflict with the fields it is adjacent to. For example,

I do not wish to present the utility function from Section 1.5 as an alternative to com-

mon models of language evolution; rather it is intended as a rough high-level description

of the objective that these models are implicitly maximizing. Similarly, the noisy-context

surprisal account of structural forgetting should not be taken as an alternative to neural

network-based accounts (Frank et al., 2016), but rather as a highly generalized description

of what neural networks are doing (prediction based on lossily compressed context). My

hope is that the framework described here is a useful tool for reasoning about communica-

tion under information processing constraints, and that information locality can provide an

external explanation for syntactic phenomena in these terms.

I also hope the ideas and empirical measures developed here give traction on under-

standing natural language in applied settings. Along these lines, Gulordava and Merlo

(2016) have applied the measures of dependency length from Chapter 3 and word order

freedom from Chapter 2 in order to study the behavior of dependency parsers. Also, the

derivation of information locality effects from incremental comprehension (Section 1.5.5)

and planning (Section 5.4.4) suggests that highly incremental models might have inductive

biases which are useful for natural language tasks.
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Appendix A

Dependency Length under Different

Dependency Annotation Schemes
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The results in Chapter 3 show that dependency length as measured in dependency cor-

pora is shorter than various random baselines. The question arises of whether these results

might be dependent on the particular dependency annotation scheme used Most of the

corpora used in that section originally come in a format where content words are heads

of function words, for example in a prepositional phrase such as in the house, the word

in is considered a dependent of the word house. This annotation style is called content-

head dependencies. The results from Chapter 3 were calculated by automatically trans-

forming the corpora to function-head format, where the word in is the head of house

in the phrase in the house. For more details, see Section 3.2.1. The code for perform-

ing the translation from content-head to function-head dependencies is available online

at http://github.com/Futrell/cliqs. For detailed discussion of the effects of

content-head vs. function-head dependencies for crosslinguistic comparability, see Sec-

tion 2.3.5.

In this appendix, I present the results from Section 3.2 comparing content-head and

function-head dependencies. Here I show results based on the Universal Dependencies 2.0

corpora, which were not available when the work in Chapter 3 was originally conducted.

This expands the number of languages to 50.

Figures A-1 through A-4 show results using the original content-head dependencies

for the random projective baseline, the random fixed-order baseline, the random head-

consistent baseline, and the random head-fixed baseline, respectively (see Section 3.2 for

definitions). Figures A-5 through A-8 show results using automatically derived function-

head dependencies. The choice of annotation style does not affect the overall pattern of

results.
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Figure A-1: Random vs. observed dependency lengths compared to the free projective
baseline, with content-head dependencies.
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Figure A-2: Random vs. observed dependency lengths compared to the fixed projective
baseline, with content-head dependencies.
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Figure A-3: Random vs. observed dependency lengths compared to the free head-
consistent projective baseline, with content-head dependencies.
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Figure A-4: Random vs. observed dependency lengths compared to the free head-fixed
projective baseline, with content-head dependencies.
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Figure A-5: Random vs. observed dependency lengths compared to the free projective
baseline, with function-head dependencies.

185



Uyghur Vietnamese

Slovak Slovenian Spanish Swedish Tamil Turkish Ukrainian Urdu

Modern Greek Norwegian (B) Persian Polish Portuguese Romanian Russian Sanskrit

Italian Japanese Kazakh Korean Latin Latvian Lithuanian Mandarin

Galician German Gothic Hebrew Hindi Hungarian Indonesian Irish

Croatian Czech Danish Dutch English Estonian Finnish French

Ancient Greek Arabic Basque Belarusian Bulgarian Catalan Church Slavonic Coptic

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

Sentence length

D
ep

en
de

nc
y 

le
ng

th

Fixed Random Baseline

Observed

Figure A-6: Random vs. observed dependency lengths compared to the fixed projective
baseline, with function-head dependencies.
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Figure A-7: Random vs. observed dependency lengths compared to the free head-
consistent projective baseline, with function-head dependencies.
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Figure A-8: Random vs. observed dependency lengths compared to the free head-fixed
projective baseline, with function-head dependencies.
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Agić, Ž., Aranzabe, M. J., Atutxa, A., Bosco, C., Choi, J., de Marneffe, M.-C., Dozat, T.,
Farkas, R., Foster, J., Ginter, F., Goenaga, I., Gojenola, K., Goldberg, Y., Hajič, J., Jo-
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