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An Information-Theoretic Account of
Semantic Interference in Word
Production

Richard Futrell *

Department of Language Science, University of Californidrvine, Irvine, CA, United States

| present a computational-level model of semantic interfence effects in online word
production within a rate—distortion framework. | considea bounded-rational agent trying
to produce words. The agent's action policy is determined bymaximizing accuracy in
production subject to computational constraints. These conputational constraints are
formalized using mutual information. | show that semanticisnilarity-based interference
among words falls out naturally from this setup, and | presdna series of simulations
showing that the model captures some of the key empirical paérns observed in Stroop
and Picture—Word Interference paradigms, including comp@sons to human data from
previous experiments.
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1. INTRODUCTION

In cognitive science and related eldspunded rationality is the idea that our cognitive systems
are designed to take actions that are approximately optimaggilat only limited computational
resources are available for calculating the optimal act®mpn, 1955, 1972; Kahneman, 2003;
Howes et al., 2009; Lewis et al., 2014; Gershman et al., 2edBr and Gri ths, 2019. The idea
is appealing because it maintains the mathematical preciditreories based on rationality, while
avoiding the paradoxes and empirical shortcomings that cawra tlaiming that human beings act
in ways that are entirely rational. There has been receetast in formalizing bounded rationality
within the mathematical framework of rate—distortion thga(Berger, 1971; Cover and Thomas,
2006 with applications to cognitive scienc&i(ns, 2016, 2018; Zaslavsky et al., 2018; Gershman,
2020).

In this paper, | apply rate—distortion theory to derive a modelafline word production.
The goal is to model the di culty of online word production, aseasured using psychometric
dependent variables, such as reaction time and rates andpatiéerrors. The main contribution
of this paper is to show that rate—distortion theory geneficaredicts the well-documented
semantic interference e ectghat a subject experiences when trying to produce a target word
the presence of a semantically related distractor. For exartt@eStroop task famously exhibits
interference Gtroop, 193k given a stimulus, such as the woBlLUE printed in red ink, and an
instruction to name the color of the ink, it is hard to produceetl” because of interference from
the similar word “blue.” A similar kind of interference is @ent in the Picture—Word Interference
task, where a drawing must be named in the presence of a supesagdptistractor wordl{upker,
1979; Starreveld and La Heij, 2)1Beyond the basic interference e ect, | show that rate-edtgtn
theory predicts a number of key phenomena observed in suclstask
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2. BACKGROUND: RATE-DISTORTION weights are further speci ed. Below, we will see how we can do
THEORY OF CONTROL this in a principled way using tools from information theory.
2.1. Bounded Rationality 2.2. Rate—Distortion Theory

Ultimately, our cognitive systems implement aation policy:  Rate-distortion theory is the mathematical theory of lossy
a function from sensory inputs to motor outputs. For example,communication and compression, a sub eld of information
an animal might see another animal and decide among a latge sieory. It provides mathematical tools to answer questioks: li

of possible actions, including attacking, approaching, arhimgs  if | want to transmit a picture of a zebra to you, and | do not
eeing, etc. In general, we can conceive of an action policy asave the capacity to send it to you perfectly, how can | encode
a stochastic function mapping stat&s(including perceptual, the image such that your received picture looks approximately

physiological, and memory information) to motor actioAs like what | sent? This problem involves two constraints: (1) my
capacity to transmit information (calledate), and (2) a measure
g:S! A of how much your received picture di ers from my picture (this

measure is calledistortion). Rate—distortion theory describes
We can also think of the policy asmobability distributionon  the problem of nding a data encoding which minimizes the
actions given states, whegjs) denotes the probability of taking  distortion subject to a constraint on the rate.
actionain states. The link between rate—distortion theory and bounded ratibn
A bounded-rational action policyis a policy that chooses an action policies was not immediately clear, although the oggi
action to maximize some measure of reward, or equivalenthypaper on rate—distortion theory did note a connection with
to minimize the cost of theconsequenced taking a certain control theory Ghannon, 1959. 350). The key insight that
action in the world, subject to a constraint on the computatid  has enabled researchers to link these two theories is thet ra
resources used in nding and implementing this action. These&distortion theory can be applied to constrain the perception—
resources include factors, such as time—in many circunt&®n action loop. The idea is to treat an action policy as a
it may be more important to act quickly than to take the time communication channel from sensory input to motor output.
to compute the best action—as well as physiological resgurcethen the action cosb in Equation (1) is the distortion, and the
such as the energy required to perform computations. Formallyjsomputation cosC in Equation (1) is the rate. This connection
letting D(s a) represent theaction cost or the cost of the was introduced rst in the economics literature t8ims (2003,
consequences of taking acti@nin states and lettingC(sa) 2005, 2010under the nameational inattention : the idea being
denote thecomputation costrequired to compute the actioa  that an agent might decide not to attend to certain infornoati
given states, then the overall cost for a policycan be written as  because the computational resources required to sustain tha
D 1 E attention are not worth the investment. The idea was then @itk
L(q) D D(sa)C =C(sa) , (1) up in the robotics, cybernetics, machine learning, and psiady
literature (van Dijk et al., 2009; Tishby and Polani, 2011; Rubin
o __etal., 2012; Ortega and Braun, 2013; Genewein et al., 2018; S
where denotes an average over the joint probab|I|ty2016’ 2018; Gershman and Bhui, 20&iong others).
distribution on states and actions given those staig(ajs), In the rate—distortion theory of control (RDC), a bounded-
and * is a scalar value which indicates how much a unit ofaional action policy is derived by minimizing the followgn
computation costC should be weighed against a unit of action control objective:
costD. The scalar can also be viewed as a parameter giving
the amount of resources available for computation: higiheans
that the agent is willing to perform a lot of computation in onde
to minimize the action cosb.
The expressioh (q) in (1) is called thecontrol objective, and ~ WhereD(s a) is the distortion or action cost for taking acticain
a bounded optimal action policy is derived by minimizingit; ~ States andI[S: A] denotes thenutual information between the
random variableSrepresenting the state amdrepresenting the

D E ,
L(9 D D(sa) C =I[S:A], )

Obounded rationalD arg n(}im— (), action policy:
* +
where the minimization is over the set of all possible policies. I[S:A] D Iog@ ,
The bounded-rational policy reduces to the fully rational pgli q@)

in the case when computation costs have negligible importanc
i.e,2 1 0inEquation (1).

Without further specications, the theory of bounded
rationality goes no farther than the formalization abovev&si

: . : : q(@) D

a set of cost functions, the bounded rational action policy
is derived as the solution to a multi-objective minimizatio
problem involving those cost functions. The theory only make The substantive claim of the RDC is that computation costs
precise predictions when the cost functions and their retativ should be modeled as the mutual information between statds an

fuhere the probabilityg(a) is the marginal probability of taking
actionaunder the policyg, averaging over all states:

P(9a(&9)-

S
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actionsl[S: A]. This quantity can be interpreted as the amountwith its own channel, with its own information-based penalty
of information that must be extracted froi§in order to specify Multiple input channels can be modeled by adding further
A (Sims, 20038 or as the information throughput of a controller weighted mutual information terms to Equation (2) (for exple,
implementing the policyg(ajs) (Fan, 201} | will argue below seevan Dijk and Polani, 2011, 2013; Genewein et al., RAh5
that this is a natural measure of computation cost, and that ifact, we will see that our model of Picture-Word Interference
subsumes many other measures. requires at least two input channels: a top-down goal signalean

I summarize four converging motivations for the use of thebottom-up perceptual signal.
mutual information between states and actiohs: A] (and . L
related measures, such as relative entropy) as a measureZf. Solutions to the RDC Objective
computation cost. | provide pointers into the literature foreh The policies admitted under the rate—distortion theory ofitl
full forms of these arguments. See algmon et al. (201%ection ~have a common mathematical form. The minima of Equation (2)

4) for a comprehensive discussion and review. obey the following equations:
1. Computation time. The mutual information re ects the . 1
search timetaken to nd the actionA given stateS by a q(@9) D @q(a) exd  D(sa)g )
rejection sampling algorithm. When the mutual information % .
I[S: A] is lower, the correct action can be found using fewer q@D  pea@Es
samples frong(a) (Braun and Ortega, 2018ection 2).
2. Algorithmic complexity. The mutual information re ects Z(9D qg@exg D(sag
how many bits of information an agent must store to a

remember the policy, or how many bits of information an ) ) ) )
agent needs to observe to learn the policy. This argumedYOte that the Equation (3) do not specify a policy uniquely. The

is presented in a PAC-Bayes framework Bybin et al. equation_sz_ire called s_elf-consi_st_ent, meaning that:ﬁajys),q(a)_,
(2012) who also show that action policies with a mutual and Z(9) jointly constitute a minimum of t_he coptrol objective
information penalty are less prone to over tting to their 8S long as they satisfy the three equations simultaneously. In
immediate environment. general, multiple solutions can exist. A numerical solution to

3. Free energyThe RDC objective in Equation (1) is technically € equations can be found by starting with a random value of
afree energyfunctional Ortega and Braun, 20),3bringing a(aj9), then evaluating the equations iteratively until a xed pbin

the theory in line with neuroscientic theories of brain iSreached. . _ .
function formulated in terms of minimizing free energy One generalization that we can deduce immediately from this

(Friston, 201, system of equations is that RDC policies favor re-use of common
4. Congruence with empirically-observed laws of behavior. actions. We can see this because the fagtay in Equation (3)
Information-theoretic models of cognitive control have Will be high for actions that are taken frequently acrosstalies.
proposed that the time taken to initiate an action should bel herefore, these actions will be preferred, sometimes in die
proportional to the amount of information required to specify the action that would be more appropriate in a particular state
that action Fan, 201 We can derive well-validated empirical  Intuitively, the factorg(a) represents a *habit™ a propensity to
laws of behavior under this assumption. For example, Hick’éke a certain action regardless of the present context Oijk
Law is the observation that the time taken to decide among &1d Polani, 2013; Wood and Rtnger, 2016; Gershman )2020

set of action®\ is directly proportional to the logarithm of the 2 4. Link to Behavioral Measures

number of possible actions I¢gj (Hick, 1952; Hyman, 1953 . L . .
The RDC computation cos{S: A] reduces to logAj, yielding Thg .RDC describes the.derlva_tlon of bounded-rgtlpnal action
olicies, but does not immediately make predictions about

Hick's Law, in the case where (1) an agent is deciding amon@] N . .
a set of actions\, (2) the default policyy(a) is uninformative e timing of these actions nor other behaworal_ and neural
about which action to take, and (3) the state-dependent policgwe_n_Olent measures that are commonl_y deplc_)ye_d in the st_udy of
g(ajs) speci es the desired action deterministically. ) ognm\_/e control and language product!on. A linking hypqslma
is required from the mathematical poliay(ajs) to predictions
In summary, there is a convergence among a number dofibout dependent measures, such as reaction time, the usual
previous intuitive notions of computation cost, all of which measure of di culty in word production studies.
point toward I[S: A] as a reasonable measure. In addition to There are a number of perspectives in the psychological
these theoretical arguments, a growing neuroscienceatitez literature on the relationship between reaction times (Riisd
has linked information measures, such fS: A] to brain activity  information-theoretic measures of complexityzgming, 1968,
in the prefrontal cortex Koechlin and Summer eld, 2007; Fan, 2003; Luce, 2003; Ortega and Braun, 2013; Fan, 2014; Zéalon et
2019. 2019; Lynn et al., 2030The simplest possible hypothesis is that
The form of the RDC objective in Equation (2) is only the the time required to initiate an action is linearly proportiahto
simplest member of a family of possible control objectives. Inhe amount of computation that needs to be done to select the
reality, a cognitive agent must integrate information franany  action. For exampleésan (2014 tonceptualizes cognitive control
di erent inputs and produce motor output on many dierent as the means by which uncertainty about the output action is
actuators. Each input and each motor output can be associatedduced at a constant rate in terms of bits per millisecond. |
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adopt this linking hypothesis here, with a modi cationtoaecct measured using mutual information. This trade-o might be
for the fact that the computation required to select an actionmplemented in terms of spreading activation in networks with
breaks into multiple parts, which | call computation cost andconstrained topology, production rules, etc. Neverthelissill
decision cost: be interesting to see where the predictions of more mechianist
theories diverge from those of the more abstract RDC.

To sum up this section, | have presented the rate—distortion
theory of control (RDC) as a model of bounded-rational action
the control objective in Equation (2), the avgyage coppotati ES:T?;VH \llv\g:g E:i;igic?nnsvv:ligﬁ 2I>I<Ch?gict)2 ;;:2;:’6:?0(1;3' to model

] ) . _ o@is _ _ , rty o the_model
cost is the mutual information[S:A] D log==2" . For  which has not previously been explored. In particular, | willsho
a particular actiona in state s the cost is the pointwise that similarity-based interference e ects, which are conmio
mutual information |og‘1(ajs) . This notion of computation cost Wword production as well as other aspects of cognition, arise as a

(@) . .
combinesZénon et al. (201% notions of “perceptual cost” 9eneric prediction of RDC models.

and “automatic cost.” For human behavioral work relatingsth
notion of computation cost to computation time, séetega 3. INTERFERENCE IN THE
and Stocker (2016JndSchach et al. (2018) RATE-DISTORTION THEORY OF CONTROL
2. Decision cost A policy g(ajs) is a probability distribution on
actions, but in any given state, an agent must take a single this section | will demonstrate the basic mechanism by which
action. Decision cost is the cost associated with selectir®DC predicts similarity-based interference e ects.
a single actiona from a distribution q(aj9); it represents
a decision that still needs to be made (perhaps randomly$.1. The Empirical Phenomena
after considering state information. | take decision casbe  The term similarity-based interference encompasses a large
equal to the KL divergence fronajs) to a delta distribution number of phenomena in human perception, action, and

1. Computation cost The computation required to produce the
action policy q(ajs). This is equal to the cost term in the
control objectiveL that generates(ajs). For example, given

specifying a single acticen : memory. It refers to the idea that percepts, actions, or mensorie
* + are confused for each other when they are “similar” accaydn
D @D | aa some metric Ehepard, 1997 that is, when they share features
Y ECE) 9 q(aj9 or associated cues. Furthermore, there may be increasattiat
. in identifying a percept, retrieving information from memory
D logq(ajs), (Jager et al., 20),7or initiating in action (Stroop, 193p in

where a5 is a Kronecker delta function (equal to 1 when the presence of Some “similar” distractor._ Qapturing S‘m“&” .
a D a and 0 otherwise). Thus, decision cost comes out to bgased interference is a key goal of cognitive models, inetudi

the surprisal (negative log probability) of the actiangiven those b.ased on cue-pased retrieva_l, spreading acti_vat'mh, a
the statesunder the action policy. production rules (Vatkins and Watkins, 1975; Ratcli, 1978;

Anderson and Lebiere, 1998; Roelofs, 3003
It stands to reason that both computation cost and decision
cost make contributions to dependent measures, such aseeact 3.2. RDC Account
time, although perhaps not according to a simple function. listh Similarity-based interference arises generically in RDC aod
work | will present computation and decision cost in terms dgbi  because the action cofd(sa) naturally de nes a similarity
of information, and where appropriate | will discuss their pogsib metric among actions, an insight used Byms (2018)in his
translation into observable dependent measures. model of generalization in absolute identi cation tasks. The
There have been other, more complex proposals about the linfainction D(s a) gives the cost of taking actiomin states. Two
between RDC policies and observable measures, such asmeactations are similar when they have similar cost, that is, vthere
time. For exampleQrtega and Braun (2019, 10-11 link RDC s low cost for failing to distinguish them. Accordingly, warc
policies to drift—di usion models of choice behavioBfgacz de ne a distance metric between two actions. In statetas be
etal., 200% While 1 do not pursue these other linking hypothesesthe action with minimal cost, an@dy be any other action. The
here, they could provide di erent perspectives or more precisstate-dependent distance metric among actions can be deased
predictions in future work. a function

2.5. Level of Analysis d(asag) D D(sag) D(say).

RDC as applied to word production is a computational-level o _ ) o
theory in Marr's Sensd\ﬂarrl 19831 meaning that |t attempts to ThIS d|Stance metrIJCWI” play the I‘O|e Of the dIStOI’tIOI‘] metric in
model the problem that is being solved in language productionfate—distortion theory.

Because it is stated at this level of abstraction, it is noessarily
in conict with existing more mechanistic models of word 1The functiond(as, ag) is technically a pre-metric. It satis ed(a,a) D 0 for all

. . L . actionsa, and it is always non-negative. It is non-negative becay&ede ned as
prOdUCtlon' RDC states S|mply that the cognitive cost of takahe action with minimal cost in state The function is only a pre-metric, not a

certain actions is determined by a trade-o of minimizing ) metric, because it is not generally symmetrical. Thatl(ss, a5) 6Dd(ag, as)
action cost while also minimizing information-processingsts, in general.
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Now that we have a distance metric among actions, we can sé@e curve is illustrated inFigure 1 The important part of
that interference e ects arise even in the simplest formolatwf  Equation (6) is the second term in the denominator, which
the RDC. Suppose the control system is attempting to solve thepresents the e ect of interference between the target actio
following problem: in a stats (for example, seeing a picture of ag and the distractor actioray. As this interference term gets
an apple), there is a single unique target acgrorresponding larger, the probability of the target actigfags) gets smaller. This
to that state (for example, saying the word “apple”). The agernterference term is large when (1) the distractor actegnis a
is attempting to generate the right target action in statén  priori likely, and (2) the distractor actiony is close to the target
this setting, RDC predicts generally that the probability taay  actionas.
two actions (e.g., words) and ag are confused will increase as  An agent with a control objective as in Equation (4) will
they get closer in the distance metd¢as, aj)—thus predicting therefore show similarity-based interference in termsrodes in

similarity-based interference among competitors. the action taken. This interference also manifests in decisast
More formally, let the control objective be for actionag:
D E - .
1
L(QD d(asa) C ~I[S:A]. 4) Decision cosD logq(ag9)
plog 1¢ X et d(asag
This equation expresses that the agent will try to minimize the a(as)

average distqnce between the _selected a(aiand the ta}rget visualized in Figure 1 This function decreases a¥(as,ag)
action a, subject to a computation cost of units per bit of increases. The computation cost, on the other hand, decreases
information from the statesS used to specify action&. Then \yhen d(as aq) decreases, re ecting the main mechanism by
following the logic in Equation (3), the bounded-rationallpy  \yhich similarity-based interference arises in this modetraall
has the form distancesl(as, ag), the policy achieves lower computation cost at
1 the expense of decreased accuracy in the action selected.
q(as D EQ(a) exd  d(as a)g ®) Applying this logic to word production, we predict
% ) interference e ects among semantically similar production
@D p(9q@s) targets when both are likely actions given the agents
state. Consider a state where a person sees a picture of an
Z(9 D g@exd d(as,a)g apple, and the words “apple” and “pear” are both a priori
a likely for some reason. This corresponds to target action
as D say “apple” and distractor actiormg D say “pear”
with q(as) and g(ag) both high, and d(as,ag) low. A
bounded-rational agent will erroneously say “pear” in this
state more often than if the distractor were something less
similar, such asag D say “car” ; furthermore, the action
as D say “apple” can only be produced at higher decision
cost due to the presence of the distractor. The reason is thabhwh

This policy exhibits exponentially-decaying interfereneets as
a function of the distanceél(as,a). To see this, lets simplify the
setting, considering a scenario where there are only twoibpless
actions given a state the target actioras and a single distractor
ag. Plugging in to Equation (5), we nd that the probability oféh
target actiorgs in statesis given by a logistic curée

_ 1 the distractor is “car,” the relevant distancel(gs, ag) d(as, aq),
q(ags) D e : (6) leading to a lower probability of confusion in the action pglic
1C qag & d(asaa)g This example embodies the core logic of the RDC account
of interference. Below, | will demonstrate this logic in a mor
2The probability of the target actiog(ags) is calculated as follows: thoroughly worked out model of the Stroop/Picture—~Word
oag9 D q(as) exd  d(as as)g Interference Task including ts to human behavioral datdnat
q(@exg  d(as,ag)g Ca(ag) exft  d(as,ag)g simulation will require a more involved control model, buteh
D 0(as) expfOg underlying cause of similarity-based interference rersathe
q(as) expf0g Co(ag) ext  d(as aq)g same as in this example.
b o(as)
e C oot a2 4. MODEL OF PICTURE-WORD
ERTE P INTERFERENCE
This is an instance of the general logistic curve Here, | show that RDC can capture some of the major
f() D 1 characteristics of semantic interference in the PicturesiV
1Cexg kix xo)g Interference task.
with slope parametée D and initial conditionxg D 2 log %22) . More generally,

@)’
given a set of distractoig 6Dgs, the probability of the correct actioas is 4.1. Phenomena

1 Picture-Word Interference (PWI) is one of the most well-
dad9 b —p ) o dEea)y studied phenomena in language production and cognitive
2468s o(a) 889 control (Schriefers et al., 1990; Damian and Martin, 1999; Burki
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FIGURE 1 | Interference between a target actioras and a distractor ag as a function of the distanced(as, ag), for varying values of resource parameter and the a
priori probabilityq(as). (Top left) The probabilityq(asjs) of taking the appropriate actionag in state s. (Top right) The decision cost logq(asjs), which is high whenag
and ag have low semantic distance.(Bottom) The computation cost Iog%%l

et al.,, 202)) The task evokes similarity-based interference irreaction times are somewhere between the neutral and séenant

picture naming by superimposing a text word over an image, andonditions. “Semantic interference” in the PWI task refershis

asking a subject to name the imageipker, 1979 Examples are additional slowdown and increased probability of error fbiet

shown in Figure 2 The Stroop taskis closely relatedStroop, semantic condition relative to the unrelated condition.

1935; MacLeod, 1991; van Maanen et al., 2009; Starreveldeand Many PWI and Stroop experiments include only a neutral or

Heij, 2017: in this task, a word, such &_UE s presented inred an unrelated condition, rather than all four of these coimtiis,

ink, and subjects are asked to name the color of the ink. which has resulted in some variance in terms of the size of the
The hallmark PWI e ect is that subjects are slower to nameeported interference e ect\lacLeod, 1991 The neutral and

the image in the presence of a superimposed word which ignrelated conditions are referred to together as theseline

semantically categorically related to the image (Hegnantic conditions, and the semantic and unrelated conditions are

condition in Figure 2), as compared to their reaction times when referred to together as thiecongruent conditions.

the superimposed text is a neutral string, suchXa&XXX(the

neutral condition in Figure 2). Furthermore, reaction times are 4.2. Related Work

fastest when the superimposed word is the same as the nameB¥cause of its empirical robustness and (apparent) conceptual

the image (thecongruent condition), and if the superimposed simplicity, PWI and Stroop tasks have been the target of

text is a semantically unrelated word (tbarelated condition), many computational cognitive models throughout the past
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~ N ~ ~ G\A
S/

FIGURE 3 | Schematic of an action policy where the behavioral goab and
the perceptual stateS jointly determine the output actionA.

FIGURE 2 | Conditions of a Picture—Word Interference experiment. Froteft to
right: the congruent , neutral , semantic , and unrelated conditions (see text).

bottom-up and top-down signals and must decide on an action.
. . . While this model is based on a noisy channel, rather than
three dgcades, apd sgb]ect to intense cqntrover5|es abeut Yate—distortion theory, it is fundamentally similar to theodel
mechanlsm that gives rise t(.) the ob;erved mtgrference e ect presented here because it involves rational action underitiog
The main controversy in the literature is over whether onstraints modeled using information theory.
PWI e ects are driven by a competitive process during IexicaF
selection, where multiple responses are competing for priorityy 3 RDC Account

resulting in slowdownRoelofs, 1992; Levelt et al., 1999; DamiarA full model of PWI requires a more complex setup than the

and_ Bowers, 2003; Belke et al., 2005; Ak_)del Rahman a@ﬁ'nple interference example above. In particular, whereas the
Melinger, 2009 or by the need to exclude the distractor from aNjnterference model given by Equation (4) involved a policy

articulatory bu er (for exampleMahon et al., 2007 The most 4 gitional only on an input state, a full model of PWI require
extensively documented and tested model of PWI is WEAVER+4 policy conditional ontwo inputs: a perceptual state and a

(Roelofs, 1992, 2003; Levelt et al., 9% model of word top-down behavioral goal.

production based on production rules and spreading activation "1, model PWI. letG be a random variable representing a
where similarity-based interference emerges due to coripeti speakers top-down goals, i.e., whether the goal is to name a

in lexical selection. _ picture/color or to read a word. That i$S is a random variable

In contr(_ast to eX|st|_ng computatlor_lal _models, the _RDCtaking values in the séhame, read g LetSbe a random variable
account of mterference in word prqdl_Jctlon isa ComDUtat'onal'representing a speakers perceptual state—that is, the particul
level model which works by specifying only the problem that,rq and picture that the speaker is looking at. A speaker then
is being solved by the cognitive system, without making any,hjements a bounded-rational production policy on actions
commltmenFs to algorl_thmlc-level d(_etallsl\/léarr, 1982). The given goals and perceptual stagésig, §), subject to information-
theory and its assumptions are speci ed completely by (1) thg, ,essing costs. The structure of the model is showFigare 3
control objective, whlgh is the mgthematlcal statement fud t As the output action is jointly determined by the behavioral
problem that the cognitive system is trying to solve, and () t goal G and the perceptual statg the total mutual information

linking function from cognitive cost_s to_observables, sastRT.  ponveen the inputs to the policy and the output action is given by
As we will see, the control objective that reproduces PWl o t5rmula

e ects speci es only that there is some computational bottlgne
involved in integrating information from bottom-up senspr q(ajg,9
input and top-down behavioral goals—whether this bottleneck q(a)
happens in lexical selection, articulation, etc. is unspetithe
computational bottleneck might arise more mechanisticdlie ~ This quantity gives the total amount of information in the
to dynamics of spreading activation, competing productioresyl behavioral goaG and perceptual stat8that the policy uses in
etc. The question of whether the interference e ect arisesbse  Order to specify the actiod. The simplest RDC policy would
of competition or response exclusion does not arise at thisllevSimply take Equation (7) as the computation cost. However, it
of abstraction. turns out that in order to model the PWI task, we need to
| am aware of two previous information-theoretic mode|saSSign di erent levels of cost to information Coming from ttveo
of the Stroop taskZénon et al. (2019)present a model of SourcesGandS o
information-processing costs in the Stroop task which preglic _ N order to do so, we must rst break the quantity in
that performing an unusual goal (i.e., naming a picture rathef=3uation (7) down into two parts, re ecting the contributioms

than reading a word) results in increased di culty. Their rdel 5andG. Using the chain rule for mutual informatiorfover and

. L Thomas, 2006. 24, Theorem 2.5.2), we can write:
does not use bounded-optimal policies and does not account ® )

I[G,S:A] D log

()

for semantic interference. Als@hristie (2019)models the RT [G,S: D [S:
response distribution for congruent, semantic, and neuttrials |_{zﬂ l_%zﬂ
ina Stroop task using an information-theoretic model in whi information transmitted fromG and Sto specifyA  information from S
con icting control signals are superposed and must be decoded C |[G'ZAJ§ ,

at high cost. This model involves a policy which receivesynois information from G conditional onS
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with the conditional mutual information I[G: AjY] de ned as TABLE 1 | Default parameters of the simulation of the Stroop task.
* +

. Parameter Value Meaning
. .9
I[G:AIS D log 2399
Q(a] S) Pname 0.1 A priori probability of the
behavioral goal being to name,
The conditional mutual information gives the amount of rather than read.
information contributed byG aboutA in the presence of and N« 82 Number of different words in

: . . : ibl .
beyond what is contributed balone. Now, following previous possible perceptual states

work (van Dijk and Polani, 2013; Genewein et al., 20%e can No
de ne a family of computation costs by taking a weighted sum of
the information from the two sources:

32 Number of different pictures in
possible perceptual states.

4 Information processing
resources (see Equation 9).

ComputationcosD I[S:A]C.1 /[I[G:AjY, (8) Seetextfordiscussion.

where 2 [0, 1] represents the relative cost of using information

from Sas opposed to information fronG conditional onS In  should read the word or name the picture. Each word
order to model PWI, it turns out that the minimal information and each picture is associated with a single appropriate
penalty required in the control objective is on the mutualtarget action.

information I[G: Aj§—the amount of information that must be More formally, the behavioral goal is a random variale
“transmitted” from the behavioral gods to specify the actio®  that can take one of two valueg, 2 fname,read g with

in the context of the perceptual stag So in the computation the probability of the goal beingame equal to a parameter
cost for the PWI simulations, | set D 0 in Equation (8). The Pname D 1—10, the same value used iAénon et al. (2019)
substantive hypothesis here is that there is negligible favst This low probability is meant to re ect the fact that when
using information from the perceptual staalone, but high cost one sees some text, the relevant behavioral goal is usually to
for using information from the behavioral goé in the context read the text, not name the object it is displayed or written

of the perceptual staig on, especially when reading a card or a computer screen in
De ning computation cost in this way, the speakersa lab environment. As we will see, this low probability will
production policy is a minimum of the control objective: end up driving the asymmetry between reading and naming in
D E the model.
L(q D d@&a C 1, [G:AjS, 9) The perceptual state is represented by the random vari@ble

and takes values ipairsof discrete objecthw, pi, representing a

state where an agent is seeing warduperimposed on picturp.
wherea? indicates the correct action to be taken in statwith The number of possible words ié, and the number of possible
goalg, andd:A  A! R(®)isasemantic distance measure onpjctures isNp; in all the simulations below, | XNy, D Np D 32
production actionsA, as de ned in section 3.2. The minima of and assume a uniform distribution on the possible states. The

the control objective in Equation (9) have the form: output actions are represented by a random variableaking
1 one of Ng D 32 dierent values. Each gog and states is

q(ajg,9 D q(aj9) expf d(ag, a)g (10) associated with a target actia&de ned as follows: given the goal
)%(g, 9 g D read and the states D hw, pi, the target action isv; given

q(aj9 D p(gisalaig, 9 the goalg D name, the target action ip. The distance metric

among output actionsl: A A ! R will be de ned below,
either as an idealized metric or as a metric derived from word
embeddings/{likolov et al., 2013 when we move to modeling
experimental data.

Below, | will rst analyze the policy in Equation (10) and show  The last parameter we need to specify an RDC policy is the
that it demonstrates semantic interference under reastmabscalar , which gives the computational resources (inverse cost)
default parameter settings in a simulation of the PWI taskd an available for information processing in the model. With dlese
then that it can capture some of the major qualitative empiricaParameters in hand, we can compute the RDC policy from the
patterns observed in PWI studies when we vary the parameters 6pntrol objective in Equation (9). Simulation parameter ar

Z(g9D q@9exgd d(ad ag

a

the simulation. summarized inTable 1
] ) As a more concrete example, suppose the go&l name,
4.4. Simulation Setup and the perceptual state is the pkapple ,pear i, representing

I model the basic PWI task with the following setup. Anthe word “apple” superimposed on a picture of a pear. Because
agent has access to a behavioral goal and a perceptilaé goal isy D name, the target actiorad is to say “pear.” If
state, and produces an output action in response to theséhe agent takes this action, then the distortion is zero, bsea
The perceptual state consists of a picture and a writtem(pear ,pear ) D 0. On the other hand, if the agent takes the
word. The behavioral goal species whether the agenéaction of saying “apple,” then the distortiond§pear ,apple ),
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which may be small, since these are semantically relatedsvo
that share many features. Because this distortion is low, an PN O

agent may be attracted toward saying “apple,” which has higher O

distortion than “pear,” but has lower computation cost beaaiis 6 ®

does not require attending to the costly behavioral goaéthe ®

probability of producing the correct word “pear” will be low and o P distance
the decision cost for the correct word “pear” will be high. ® 5

Given a statéw, pi and a goag, we can de ne one part of the
state as the “target” and another as the “distractor.” WigeD [
name, the target i and the distractor isv. Wheng D read ,
the target isv and the distractor i®. In each state, there will be a ® o o
certain semantic distance between the target and distrazztied 2 ® L4 ® o
the distractor distance If a, represents the action associated L d P
with w and ap, is the action associated with then wheng D
name, the distractor distance id(ap, aw); wheng D read , the Y ® L4
distractor distance id(aw, ap).

The major conditions of PWI experiments are the congruent
semantic, neutral, and unrelated conditions (de ned:iigure 2) FIGURE 4 | Example of an idealized semantic metric of words as used for
So far, we have the ability to model three of these: the ca@1@ru | basic simulations. Thirty-two words are placed randomly i two-dimensional
condition corresponds to the case where the distractor dista | bounded Euclidean space of size 7 7. A target word is indicated in red. The
is0 (i.e., the target actions are identical across gaaléD ap), remaining points are colored according to their distance &ém the target word.
the semantic condition corresponds to the case where distrac
distance is low; and the unrelated condition means the dittir
distance is high. I will return to the neutral condition b&lo

o
o
([
[
o = N W &

2 4 6

computation cost recovers the model of Stroop interferenoenf
Zénon et al. (2019)
This most basic simulation already captures several qtigkta

4.5. Results patterns from the empirical literature (as listed Byacleod,
4.5.1. Basic Results: Idealized Semantic Distance 199)). First, we recover the fact that naming is generally slower
Metric than reading Cattell, 188} as indicated by the uniformly higher

First | present simulation results showing the existence ofomputation costfor naming. Second, we recover the existeince
semantic interference e ects given an idealized semanticime facilitation in the congruent condition, re ected in loweedision
among words. This metric is generated randomly by placingostand lower computation cost when distractor distance is.zero
Nw D 32 words uniformly at random in bounded 2-dimensional Third, we recover the existence of interference in the seinan
space of size 7 7. An example such space is showrFigure 4  condition relative to the congruent condition and the unred
An RDC policy was computed for picture naming and word condition, as re ected in the decision cost. Fourth, integiece
reading given this space, considering all possible pairings ekists for the naming task but is negligible in the readingtas
words as pictures and as names. Fifth, the interference e ect is gradienK(ein, 1964: when the
In Figure 5, 1 show the decision cost and the computation costdistractor is more semantically similar to the target, there is
based on the simulation in this space, as a function of digtrac more interference; this is re ected in the decision cost foe th
distance. We see a few basic patterns: naming condition.
. - . The semantic gradient deserves a bit more discussion.
There IS no_deC|S|on costand low com_putatlon cost when th@I'here has been controversy in the literature on Picture—tor
dlstra}gtor.dlstancgj D 0, corresponding to the congruent Interference about whether a semantic gradient really exis
condmon n experiments. . . . opposed to a categorical e ect for distractors that are in theesam
_Semantlc |nFerfe_rence exists in the decision _cost. Thgategory as the target(itson and Damian, 2014: Birki et al.,
mterfer(_ence |s_r_1|gh for close words _(corresp_ondmg to th(:202(). In the RDC model, there is a semantic gradient observable
semantic cqndmon), and falls o rap!dly at distant words in the decision cost, but it falls o very rapidly from distangeo
(corresponding to the unrelated condition). distance 2, and distance 2 shows only barely more interéeren

?/svgggli;?t?legoal isy D read, interference of any kind than distance 3. Therefore the theory predicts that a sernanti

In the simulation, computation cost comes out to be_ _ . . _ .
essentially a constant function of the goal, except when the//hen distractor distance is 0, computation cost comes out to nezty. This
may seems surprising, but follows from the fact that computation cosé e

Z_ppropnage E:.Ctll(()ns glver; th;. two gozl_s coincide ((:IStraCto he pointwise conditional pointwise mutual information | ajgé)s),which is zero
Istance ) n fact, as the distractor distance gets alhyE, when the actiora is already fully speci ed by the perceptual stateuch that the

computation cost turns out to approximate the surprisalpenavioral goafj adds no new information. It should be noted that computation
of the goal given the state logp(gis). In doing so, the costzero does notimply a prediction of RT zero—see section 4.5.5.
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Computation cost Decision cost
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goal — name — read
FIGURE 5 | Simulated costs in Picture—Word Interference task, as a furion of semantic distance between target and distractor.

gradient does exist, but it is highly concentrated, and rhigh  have more similar prior probabilities, and the resulting RDC
hard to detect in experiments. predictions would look more like the dotted linesigure 6.
Above, | have shown that RDC can capture the basics of

semantic interference in PWI tasks in a simulation with siepl 4 5 5 Empirically-Derived Semantic Distance Metric

and reasonable default parameter settings. Next, | will show h ¢ ro5its above showed basic qualitative e ects in aniizhl
we can recover more of the empirical patterns by varying thgemantic space. Now I turn to results based on an empirically-
parameters of the simulation and the model. derived semantic space, leading to a quantitative comparison
to human reaction times. The use of an empirically-derived
4.5.2. Reverse Stroop semantic space brings two advantages over the idealized space
The reverse Stroop e ectrefers to a reversal in the di erence above: (1) it allows for a comparison with experimental data
between naming and reading in a PWI/Stroop task. Usuallyon real words, and (2) it shows that the predicted interfeeenc
interference happens in the naming task and not in the reading ects arise given a realistic geometry for the semantic spade
task. However, after a great deal of experience with naming ia realistic distribution of words in it.

incongruent trials, two things happen: the interference e ect In the last decade, the eld of natural language processing
naming shrinks, and subjects begin to show an interferermete has devoted a great deal of attention to deriving represemtst
in reading as well as namin&{roop, 1935; MacLeod, 1991 of words as points (calleembeddings in high-dimensional

While early work hypothesized that the reverse Stroop e ecspace, such that the distances among embeddings re ect sEman
is caused by practice and task familiaritytioop, 193) later relationships among words\Mikolov et al., 2013; Pennington
work has shown that reverse Stroop e ects are more likelyt al., 201}l These representations di er in their details, but they
related to the di culty of task switching between naming and are all derived by an optimization process whose goal is toereat
reading Q@llport and Wylie, 2000; Roelofs, 2021In terms embeddings such that theontextof a word can be predicted
of simulation parameters, it seems sensible to identify ®ver accurately from its embedding=pldberg and Levy, 20)4in
Stroop manipulations with an increase in the parameigime,  keeping with the old linguistic intuition that the meaning of a
re ecting increased relevance of the naming goal, perhaps dueord is related to its distribution with respect to other ward
to recency. (Harris, 1954; Firth, 1997 The result is that the “distance”

Figure 6shows computation and decision costs under varyingpetween two wordsA and B re ects the di erence between
Pname in the idealized semantic distance metric. As this valughe typical contexts foA and B. As such, these distributional
increases, a reverse Stroop e ect emerges: the readingdgsisb embeddings provide a distance metric which ts with the RDC
to show interference in both costs. Meanwhile, the interieee  framework, which holds that two actions are similar if theséow
associated with naming is predicted to decrease. cost for failing to distinguish them. In particular, the endzing

Beyond the Reverse Stroop e ect, the simulations herdistance between words re ects how badly one would mis-predict
demonstrate the general e ects of varying the simulatiorthe context of one word when it is mistaken for another.
parameterphame. Such results could be used, for example, when There have been previous attempts to model semantic
modeling picture—picture interference e ects, where particifsa interference e ects in Stroop and PWI using embedding spaces,
are confronted with two pictures and must name only a certairsuch as thesed¢ Marchis et al., 2013; Hutson and Damian,
one (for exampleGlaser and Glaser, 1989n that case, the 2014. The embedding spaces can broadly distinguish between
behavioral goals associated with each of the two pictureddvousemantically close words compared against unrelated words,
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FIGURE 6 | Computation and decision cost for PWI under varying valuesf@name. A reverse Stroop effect emerges in the decision cost undette reading goal.

although they do not seem to be able to make reliable item- In Figure 7, | show theoretical computation cost and decision
level predictions within semantically close wordsu(son and  cost by distractor distance for the word pairs listedRwelofs
Damian, 2011 and Pial (2017)Red dots indicate word pairs in the “semantic”
Here, | adopt the English fastText embedding space derived lmondition; green dots indicate word pairs in the “unrelated”
Facebook as a semantic distance metric among words. In worlcondition; and blue dots indicate identical words. Preditt
using these embeddings, the distance between embeddeg$ cognitive cost is lowest for identical words. For “unreldtadd
vis usually quanti ed agosine distance “semantic” words, there is high computation cost. For “sen@int
words, there is also high decision cost.
- The simulation using an empirically-derived semantic
a2V 2 distance metric shows the same qualitative patterns as the
simulation using an idealized metric. Furthermore, we des t
the semantic distances largely correspond (although impiyjec
with the designation of items as “semantic” vs. “unrelated.”

deod) D1 —

where indicates a dot product anfilujj > indicates arL, norm.
In order to produce distances in the interval [D,), | apply a logit
transform to the cosine distange

| use the set of 32 words from the Picture—Word Interference )

experiment presented ifRoelofs and Piai (2017)The items 4.5.4. Neutral vs. Unrelated_ Trials . .

from this experiment consist of picture—word pairings whictear 1€ PWItaskhas a fourth major condition: theutralcondition,
either semantically close (“semantic’) or semanticallyelated Where a picture is presented along some kind of neutral
(‘unrelated’). Here, | show that RDC with the fastText orthographic stimulus that WOU!d _not reasonably be re_a_d out
embedding space predicts higher cognitive cost for the seimant©Ud: such asxxXXXX Here, | will incorporate this condition
pairings as opposed to the unrelated word pairings, and alsht® the simulation and show that we immediately recover
lower cost when the word and the picture to be named ardhree emplrlcally-'attested. patterns: (1) there is fqglh!nunthe
identicaP. Except for the semantic distance metric, all othefcOngruent condition relative to the neutral condition, (2)ere

parameters of the simulation are the same as above. is mtt_el_rference in the un_related c_o_ndl_tlon_ relative to theu’ural
condition, and (3) the size of facilitation is small relatito the

“4Available for download at https://fasttext.cc/docs/en/pretealrvectors.html size of interference(acLeod, 1991

5The logit-transformed distance metric between two word embeddingsdv is Recall that in the basic simulation, the a priori probability

that the behavioral goal ig D name rather thang D read is

1—10. I model the neutral condition by adding into the simulation

a set of stateS,euras With neutral text distractors, such that

p(g D namejseutra) D 1—90 for all neutral states. This models the

. X . . . .

logit(x) D log 7— scenario where a subject se@&XXXsuperimposed on an image.
The idea is that given such a state, a subject would only expect

6These words were originally in Dutch; | translate them into Englistonder ~ t0 actually read the stimulus (saying “eks eks eks eks (-i%sﬁj
to get their distances. In preliminary experiments, | also tried usimg Dutch
fastText vectors, and using the English GloVe vectBrsnington et al., 20)4
| use the English fastText vectors because | found that theyt netiably assign  among the embedding spaces are: English fastText vs. English GIAVD.77;
lower distances to the “semantic” word pairings compared to the “utedlavord English fastText vs. Dutch fastTextD 0.59; English GloVE vs. Dutch fastText
pairings in the experimental items. Rank-order correlations of sermatistances D 0.54.

d(u,v) D logit %C %dcos(u,v) ,

with the logit function de ned as
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FIGURE 7 | Computation and decision costs for word pairs from the itemsf Roelofs and Piai (2017)using fastText as the semantic distance metric.

FIGURE 8 | Simulated costs by PWI task condition based on materials frm Roelofs and Piai (2017 and fastText word embeddings.

the time. Outside of a state with a neutral distractRsuwa, the  di erence between neutral and congruent conditions) is dmal

probability of naming is stil%. relative to the interference e ect (the di erence between tral
Figure 8shows the simulated decision and computation costand semantic/unrelated conditions).
for four experimental conditions based on the items fréfnelofs The model robustly recovers the existence of facilitation

and Piai (2017)congruent (the case where the distadc® 0), and interference. The relative magnitude of facilitationda
semantic, unrelated, and neutral (simulated as the caseewhednterference depends on a model parameter: the probability
S D Seutra)- The three empirical patterns are captured heregp(g D namejs D sweura)’- Therefore, it is therefore possible
by the computation cost. The neutral condition has drastjcal to make a prediction: the facilitation e ect should get larger
reduced computation cost relative to the semantic and uteela under any manipulation that makes the orthographic stringhie t
conditions, indicating facilitation. Also, the computati@ost is

slightly less in the congruent case relative to the neutsslec 7The default values fqu(gis) have not been tuned to tthe human data, but were
indicating facilitation. Also, the size of the facilitati@ect (the  selected a priori and kept constant throughout all simulations.
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neutral condition more and more like something that someoneestimates to decision cost alore D 120 msb D 0,c D 85
would reasonably read. In fact, there is already some evilan ms/bit)?. The reasonable qualitative match suggests that both
this direction in the literature: pseudowords, which presintya computation and decision cost are re ected in thecomponent

fall somewhere betweelXXXXand a real word in terms of of the RT distribution, while only decision cost is re ected in
p(g D namejg), cause less interference than real words in thehe component. It is striking that the component seems to

Stroop task Klein, 1969. re ect only decision cost, suggesting that decision costde&u
] an index of a distinct kind of cognitive cost. This result idiime
4.5.5. Fit to Human RT Data with the pattern reported byRoelofs and Piai (2017) shows

Here | relate the simulated computation and decision costs t@ ¢ontrast among neutral, unrelated, and semantic condtjon

empirical human RT data. To do so, we need a more Speci Ghile shows a contrast only between the semantic condition

linking function from computation and decision costto RT.  and the others (see al§zaltritti et al., 2015; San José et al., 2021
| propose that RT can be predicted from a linear combination Summing up, the overall empirical pattern is that computation

of computation and decision cost. That is, the predicted RT in &ost captures basic interference e ects in RT, while decision

condition is given from cognitive costs by a transformation cost captures the additional RT slowdown associated with
semantically close distractors. The RT componente ects
RTD aCbXCcy, both computation and decision cost, while the additional RT

. . . . component re ects only decision cost.
where X is computation cost,Y is decision cost, and, b,

and c are non-negative scalars. This linking function supposes
that computation cost and decision cost are each associatedg. Discussion

with some xed rate of information processing, given byand ¢ js striking that the framework laid out here can succebigfu
¢, respectively, in terms of milliseconds per bit. The scaar yggel many aspects of PWI, despite being developed nearly
represents a constant RT delay across conditions (in the hadde entirely for purposes other than cognitive modeling. Rate—
Zenon et al., 201,his constant cost corresponds to perceptualjistortion theory was developed purely as an abstract thebry o
information processing). . . _ lossy communication, and its application to control problems
Figure 9 shows a comparison of empirical mean RTs in @has primarily been conned to the computer science and
PWI task, drawn fronRoelofs and Piai (201,/¢ompared against gpotics literature.
simulated RTs, wite D 730 ms,b D 30 ms/bit, andc D Furthermore, RDC captures the major empirical patterns of
140 ms/bif. This mixture gives a good qualitative t to the he picture~Word Interference task with few free parameters
human data. The degrees of freedom in the speci cation of the model are
The relationship of information-processing costs to RT may(1) the distribution over goals and states, (2) the inforinat
not be so simple, however. In particular, RT distributions appeaprocessing resource parameters used to de ne the control
to follow what is called an Ex-Gaussian distributiorz(cli , objective (the scalar, which was set to a constant value in
1979; Luce, 1986; Balota et al., J0@h Ex-Gaussian random )|’ simulations reported above), and (3) the similarity nietr
variable is the sum of a Gaussian random variable with mean among actions. All of these degrees of freedom correspond
and an Exponential random variable with rate The resulting {4 quantities that can be independently estimated, at least i
distribution is skewed positive when compared with a GaUSSiaBrinciple. The distribution over goals and states is set by the
distribution. Interestingly, it has been suggested tha thand frequency of goals and states in a person's everyday experienc
parameters of the Ex-Gaussian distribution re ect di erent o information-processing cost parameters are set by studies
aspects of cognitive processing in the PWI task4thcote et al., cognitive di culty; and the similarity metric among actigis
1991; Mewhort et al., 1992; Spieler et al., 2000; Piai et all, 20 getermined by the relative cost of the consequences of carfusi
2012; Roelofs, 2012; Scaltritti et al., 2015; San José 624)., 2 one action for another. The result is a parsimonious modet tha

Here | present an analysis comparing computation andcaptures several patterns naturally.
decision costs to the full Ex-Gaussian analysis of experiahent

PWI data, including congruent, semantic, neutral, and uared
conditions, performed byroelofs and Piai (201.7)n Figure 10

I show their estimates of the parameter compared with a
combination of computation cost and decision cost§ 615 ms,
b D 25 ms/bit,c D 65 ms/bit). InFigure 11, | compare their

5. GENERAL DISCUSSION

I have shown that the rate—distortion theory of control can
naturally account for similarity-based interference in geal,
8All of the scaling factors presented in this section were deriveibgr regression _and that it oers a strong mOdel_ of PICtuF?—WOI‘d/StI’OOp
on the empirical means, followed by rounding. From the linear regressiore  iNterference e ects. Now | turn to the interpretation of the rdel

optimal models before rounding are and how it relates to word production more generally.
mean RT 737C 28 Computation cosC 139 Decision cost
615C 25 Computation cosC 65 Decision cost 9The decision to map computation cost toand , and decision cost to alone,
123C 2 Computation cosC 87 Decision cost. was takempost-hobased on regressions on the empirical RTs.
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FIGURE 9 | Empirical mean RTs for PWI conditions fronRRoelofs and Piai (2017)compared with model predictions (see text). Error bars sho 95% con dence
intervals of the mean in the empirical data.

FIGURE 10 | Empirically estimated parameter of Ex-Gaussian RT distribution for PWI conditienfrom Roelofs and Piai (2017)compared with model predictions
(see text).

5.1. Interpretation of Computation and a single action given a probabilistic policy. As a summary,
Decision Cost semantic similarity-based interference emerged in thesiec

I used two notions of cost: computation cost and decision cos€ost, while computation cost predicted general interference
where computation cost is the cost term that is contained i@ th and di culty for the less-probable goal in context (naming as
control objective, and decision cost is the surprisal ofcglg  opposed to reading).
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FIGURE 11 | Empirically estimated parameter of Ex-Gaussian RT distribution for PWI conditianfrom Roelofs and Piai (2017)compared with model predictions
( D120C 85 Decision cost).

| proposed that computation cost and decision cost mapNVEAVER++ simulation of PWI inSan José et al. (2024tates
linearly to RT. The reason for this proposal was simplicitythat if the behavioral goal is to name a picture, and a writtemav
However, it may be that other linking functions provide a lggtt is present, then activation relating to the written word istked
connection betweeq(ajg, s and empirically observable responseo . Similar logic is instantiated by the RDC policy. Consideeth
times, for example by linking RDC components to componentsequilibrium probability (following Equation 10) to produce the
of drift—di usion models (Bogacz et al., 2006; Ortega and Braunwritten word a,, when the behavioral goal gsD name:
2013. I leave the exploration of this possibility to future work.

5.2. Relation to Algorithmic-Level Models d(Bajg D name,s) /- qawjs exp d(@, an)g
As a computational-level theory, RDC speci es only the problem
being solved by our cognitive system, and does not make slaimvherea, is the action corresponding to naming the picture. The
about algorithmic or implementational details. It should be rstfactor g(awjs) will be relatively large, because the prior is that
hoped, then, that existing successful algorithmic models\Wf P the behavioral goal is usually to read, not to name. This large
can be seen as implementing the core parts of the RDC accountalue corresponds to activation for the written word. Howeve
In this connection, the recent extension of WEAVER++ bythis large value will be squashed by the exponentially smaleval
San José et al. (2044 pspecially interesting, as it adds an elemendf the second factor exp d(ap, aw)g (unlessa, and ay, are
of periodically lapsing attention to the behavioral goal iderto  close), resulting in an ultimately low probability to nameeth
explain the Ex-Gaussian distribution of RTs in PWI experingent written word. This corresponds to blocking of activation.
Similarly, the RDC model of picture—word interference criigia The RDC model presented here shows how similarity-
works by positing a cost associated with extracting infoiorat based interference can arise from a very generically-de ned
from the behavioral goal in the presence of the perceptuatomputational bottleneck. It achieves this generality with
state. Essentially, the RDC agent can only access the bedlavigacri cing quantitative precision. Nevertheless, it is hkéhat
goal through a channel with limited bandwidth. This limited many aspects of PWI and similarity-based interference more
bandwidth equates to a kind of inattention: because the aigemenerally might only be explainable within more algorithmicla
has limited resources with which to attend to the channelilt  mechanistic frameworks. For example, a great deal of work on
often not attend. Indeed, RDC was initially introduced as adglo PWI has dealt with stimulus-onset asynchrony (SOA) e ects,
of “rational inattention” in economics with this reasonirf§ims, where the distractor word or the picture do not appear at the
2003, 2005, 20)0 same time. These e ects are naturally captured in spreading-
Similarly, the production rules and spreading activationactivation models that describe the evolution of activatwith
dynamics of WEAVER++ can be seen as implementing RDCiime. It is less clear how such time-based e ects would be
like behavior. For example, one production rule used in thecaptured within a purely computational-level account, which
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2000, 2001; Mahon et al., 2007; Piai et al., 2.0Ahile empirical
picture remains complexg(rki et al., 202)) these results have
often been taken to re ect dynamics during di erent stages of
word production. While the simple RDC model presented here
does not predict these facilitation e ects, a more articutate
model might: for example, a model with a non-zero penalty on

] ) ) perceptual state information, or a hierarchical poli€enewein
FIGURE 12 | Schematic of a policy where the behavioraG and the perceptual R L
state S determine two actionsA; and A, to be performed by different e_t a_l" 2015; .Zenon etal, 2()1§Fhe _answer may also lie in the
actuators. linking function from the RDC policy to observables, such as
RT: if computation cost is sometimes the dominant determinan
of reaction times, rather than decision cost, théigure 5
suggests that we would expect semantic facilitation rathant
interference. | leave the investigation of these possgislito
future work.

simply models thefunction that is computed by cognitive
systems, and ndtowit is computed.

5.3. Further Word Production Phenomena: 5.4. Conclusion

Facilitation This work has extended the reach of information-theoretic
I'intend to advance RDC, or an extension of it, as a model ofnodels of language processing. Although information-théore
word prOdUCtion in genel’al. | have presented its applica’[ion tq"nodels have seen broad success in the Study of |anguage
interference in PWI and Stroop paradigms because these dire We:omprehension flale, 2001; Moscoso del Prado Martin et al.,
known and challenging phenomena to model. However, there argoo4; Levy, 2008; Hale et al., 2018; Futrell et al.,)24rad the
many other language production phenomena on which an RDGmergence of linguistic structur&gslavsky et al., 2018; Hahn
model has yet to be tested, inCIUding several that arisenvitie et a|.’ 202)) they have not yet seen much app”cation to |anguage
PWI paradigm. One such set of phenomena is facilitation, bottyroduction. This work has taken the rst steps toward remedyin
phonological and semantic. this gap using the rate—distortion theory of control.

The PWI task exhibits phonological facilitation, meaning  Furthermore, the apparent inability to capture similarity
that naming time is sped up when the distractor word isrelations among stimuli has been a major barrier for the admpt
phonologicallgimilar to the target word{leyer and Schriefers, of information-theoretic models in cognitive scienc¢eite, 2003,
199). In the simple simulations presented here, the RDC doep. 185). This work shows that rate—distortion theory alloves u

not predict this kind of facilitation. However, it can wheneh o overcome this di culty and model some of the most salient
control objective is speci ed in more detail, as | sketch belo similarity-based e ects in psychology.

Imagine that the goal of the policy is not to output a single
atomic output action, but rather to output a large number of QOPEN PRACTICES STATEMENT
actions. For example, one can imagine that the policy must
output instructions to a large number of actuators. This kioid All data and code for reproducing the results in this
policy is illustrated inFigure 12 Equivalently, the output of the paper can be found online at http://github.com/langprocgroup/
policy is a vector D [a1,ap,:::,an] of actions to be performed wordprodmodel.
by n di erent actuators.

Given this kind of policy, we can de ne a “phonological” DATA AVAILABILITY STATEMENT
similarity metric among actionsy and a; in terms of how
many elements overlap betweananday. For each overlapping The original contributions presented in the study are inabad
element, we will have a facilitation e ect, and for each non-in the article/supplementary material, further inquiries cha
overlapping element, we will have an interference e ect. Thelirected to the corresponding author/s.
result is overall facilitation when the target action andeth

distractor have more overlapping elements. AUTHOR CONTRIBUTIONS
There are other extensions of RDC and other mechanisms

that could give rise to facilitation e ects, for example medtage  RF conceived the research, conducted the research, and wrote
hierarchical policies where the output of one policy becomes ththe paper.
input to another. Such families of more elaborate RDC policies
have been explored in simulations Benewein et al. (2015) ACKNOWLEDGMENTS

Facilitation has also been reported in PWI settings for darta
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words will cause facilitation or interference, often deglwith  feedback, and Michael Hahn, Noga Zaslavsky, Seth Frey, Greg
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