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An Information-Theoretic Account of
Semantic Interference in Word
Production
Richard Futrell *

Department of Language Science, University of California,Irvine, Irvine, CA, United States

I present a computational-level model of semantic interference effects in online word
production within a rate–distortion framework. I considera bounded-rational agent trying
to produce words. The agent's action policy is determined bymaximizing accuracy in
production subject to computational constraints. These computational constraints are
formalized using mutual information. I show that semantic similarity-based interference
among words falls out naturally from this setup, and I present a series of simulations
showing that the model captures some of the key empirical patterns observed in Stroop
and Picture–Word Interference paradigms, including comparisons to human data from
previous experiments.

Keywords: language production, information theory, bounded rationality, semantic interference effect, Stroop,
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1. INTRODUCTION

In cognitive science and related �elds,bounded rationality is the idea that our cognitive systems
are designed to take actions that are approximately optimal, given that only limited computational
resources are available for calculating the optimal action (Simon, 1955, 1972; Kahneman, 2003;
Howes et al., 2009; Lewis et al., 2014; Gershman et al., 2015;Lieder and Gri�ths, 2019). The idea
is appealing because it maintains the mathematical precision of theories based on rationality, while
avoiding the paradoxes and empirical shortcomings that come from claiming that human beings act
in ways that are entirely rational. There has been recent interest in formalizing bounded rationality
within the mathematical framework of rate–distortion theory (Berger, 1971; Cover and Thomas,
2006) with applications to cognitive science (Sims, 2016, 2018; Zaslavsky et al., 2018; Gershman,
2020).

In this paper, I apply rate–distortion theory to derive a model ofonline word production.
The goal is to model the di�culty of online word production, asmeasured using psychometric
dependent variables, such as reaction time and rates and patterns of errors. The main contribution
of this paper is to show that rate–distortion theory generically predicts the well-documented
semantic interference e�ectsthat a subject experiences when trying to produce a target wordin
the presence of a semantically related distractor. For example, the Stroop task famously exhibits
interference (Stroop, 1935): given a stimulus, such as the wordBLUE printed in red ink, and an
instruction to name the color of the ink, it is hard to produce “red” because of interference from
the similar word “blue.” A similar kind of interference is present in the Picture–Word Interference
task, where a drawing must be named in the presence of a superimposed distractor word (Lupker,
1979; Starreveld and La Heij, 2017). Beyond the basic interference e�ect, I show that rate–distortion
theory predicts a number of key phenomena observed in such tasks.
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2. BACKGROUND: RATE–DISTORTION
THEORY OF CONTROL

2.1. Bounded Rationality
Ultimately, our cognitive systems implement anaction policy:
a function from sensory inputs to motor outputs. For example,
an animal might see another animal and decide among a large set
of possible actions, including attacking, approaching, ambushing,
�eeing, etc. In general, we can conceive of an action policy as
a stochastic function mapping statesS (including perceptual,
physiological, and memory information) to motor actionsA:

q : S! A.

We can also think of the policy as aprobability distributionon
actions given states, whereq(ajs) denotes the probability of taking
actiona in states.

A bounded-rational action policyis a policy that chooses an
action to maximize some measure of reward, or equivalently,
to minimize the cost of theconsequencesof taking a certain
action in the world, subject to a constraint on the computational
resources used in �nding and implementing this action. These
resources include factors, such as time—in many circumstances,
it may be more important to act quickly than to take the time
to compute the best action—as well as physiological resources,
such as the energy required to perform computations. Formally,
letting D(s,a) represent theaction cost or the cost of the
consequences of taking actiona in states, and lettingC(s,a)
denote thecomputation cost required to compute the actiona
given states, then the overall cost for a policyq can be written as

L (q) D
D
D(s,a) C

1


C(s,a)
E
, (1)

where



�
�

denotes an average over the joint probability
distribution on states and actions given those statesp(s)q(ajs),
and 1

 is a scalar value which indicates how much a unit of
computation costC should be weighed against a unit of action
costD. The scalar can also be viewed as a parameter giving
the amount of resources available for computation: high means
that the agent is willing to perform a lot of computation in order
to minimize the action costD.

The expressionL (q) in (1) is called thecontrol objective, and
a bounded optimal action policy is derived by minimizing it:

qbounded rationalD arg min
q

L (q),

where the minimization is over the set of all possible policies.
The bounded-rational policy reduces to the fully rational policy
in the case when computation costs have negligible importance,
i.e., 1

 ! 0 in Equation (1).
Without further speci�cations, the theory of bounded

rationality goes no farther than the formalization above. Given
a set of cost functions, the bounded rational action policy
is derived as the solution to a multi-objective minimization
problem involving those cost functions. The theory only makes
precise predictions when the cost functions and their relative

weights are further speci�ed. Below, we will see how we can do
this in a principled way using tools from information theory.

2.2. Rate–Distortion Theory
Rate-distortion theory is the mathematical theory of lossy
communication and compression, a sub�eld of information
theory. It provides mathematical tools to answer questions like:
if I want to transmit a picture of a zebra to you, and I do not
have the capacity to send it to you perfectly, how can I encode
the image such that your received picture looks approximately
like what I sent? This problem involves two constraints: (1) my
capacity to transmit information (calledrate), and (2) a measure
of how much your received picture di�ers from my picture (this
measure is calleddistortion ). Rate–distortion theory describes
the problem of �nding a data encoding which minimizes the
distortion subject to a constraint on the rate.

The link between rate–distortion theory and bounded rational
action policies was not immediately clear, although the original
paper on rate–distortion theory did note a connection with
control theory (Shannon, 1959,p. 350). The key insight that
has enabled researchers to link these two theories is that rate–
distortion theory can be applied to constrain the perception–
action loop. The idea is to treat an action policy as a
communication channel from sensory input to motor output.
Then the action costD in Equation (1) is the distortion, and the
computation costC in Equation (1) is the rate. This connection
was introduced �rst in the economics literature bySims (2003,
2005, 2010)under the namerational inattention : the idea being
that an agent might decide not to attend to certain information
because the computational resources required to sustain that
attention are not worth the investment. The idea was then picked
up in the robotics, cybernetics, machine learning, and psychology
literature (van Dijk et al., 2009; Tishby and Polani, 2011; Rubin
et al., 2012; Ortega and Braun, 2013; Genewein et al., 2015; Sims,
2016, 2018; Gershman and Bhui, 2020,among others).

In the rate–distortion theory of control (RDC), a bounded-
rational action policy is derived by minimizing the following
control objective:

L (q) D
D
D(s,a)

E
C

1


I [S: A], (2)

whereD(s,a) is the distortion or action cost for taking actiona in
states, andI[S: A] denotes themutual information between the
random variablesSrepresenting the state andA representing the
action policy:

I [S: A] D

*

log
q(ajs)
q(a)

+

,

where the probabilityq(a) is the marginal probability of taking
actiona under the policyq, averaging over all states:

q(a) D
X

s

p(s)q(ajs).

The substantive claim of the RDC is that computation costs
should be modeled as the mutual information between states and
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actionsI [S: A]. This quantity can be interpreted as the amount
of information that must be extracted fromSin order to specify
A (Sims, 2003), or as the information throughput of a controller
implementing the policyq(ajs) (Fan, 2014). I will argue below
that this is a natural measure of computation cost, and that it
subsumes many other measures.

I summarize four converging motivations for the use of the
mutual information between states and actionsI [S: A] (and
related measures, such as relative entropy) as a measure of
computation cost. I provide pointers into the literature for the
full forms of these arguments. See alsoZénon et al. (2019,section
4) for a comprehensive discussion and review.

1. Computation time. The mutual information re�ects the
search timetaken to �nd the action A given stateS by a
rejection sampling algorithm. When the mutual information
I [S: A] is lower, the correct action can be found using fewer
samples fromq(a) (Braun and Ortega, 2014,section 2).

2. Algorithmic complexity. The mutual information re�ects
how many bits of information an agent must store to
remember the policy, or how many bits of information an
agent needs to observe to learn the policy. This argument
is presented in a PAC-Bayes framework byRubin et al.
(2012), who also show that action policies with a mutual
information penalty are less prone to over�tting to their
immediate environment.

3. Free energy.The RDC objective in Equation (1) is technically
a free energyfunctional (Ortega and Braun, 2013), bringing
the theory in line with neuroscienti�c theories of brain
function formulated in terms of minimizing free energy
(Friston, 2010).

4. Congruence with empirically-observed laws of behavior.
Information-theoretic models of cognitive control have
proposed that the time taken to initiate an action should be
proportional to the amount of information required to specify
that action (Fan, 2014). We can derive well-validated empirical
laws of behavior under this assumption. For example, Hick's
Law is the observation that the time taken to decide among a
set of actionsA is directly proportional to the logarithm of the
number of possible actions logjAj (Hick, 1952; Hyman, 1953).
The RDC computation costI [S: A] reduces to logjAj, yielding
Hick's Law, in the case where (1) an agent is deciding among
a set of actionsA, (2) the default policyq(a) is uninformative
about which action to take, and (3) the state-dependent policy
q(ajs) speci�es the desired action deterministically.

In summary, there is a convergence among a number of
previous intuitive notions of computation cost, all of which
point toward I [S: A] as a reasonable measure. In addition to
these theoretical arguments, a growing neuroscience literature
has linked information measures, such asI[S: A] to brain activity
in the prefrontal cortex (Koechlin and Summer�eld, 2007; Fan,
2014).

The form of the RDC objective in Equation (2) is only the
simplest member of a family of possible control objectives. In
reality, a cognitive agent must integrate information frommany
di�erent inputs and produce motor output on many di�erent
actuators. Each input and each motor output can be associated

with its own channel, with its own information-based penalty.
Multiple input channels can be modeled by adding further
weighted mutual information terms to Equation (2) (for example,
seevan Dijk and Polani, 2011, 2013; Genewein et al., 2015). In
fact, we will see that our model of Picture–Word Interference
requires at least two input channels: a top-down goal signal and a
bottom-up perceptual signal.

2.3. Solutions to the RDC Objective
The policies admitted under the rate–distortion theory of control
have a common mathematical form. The minima of Equation (2)
obey the following equations:

q(ajs) D
1

Z(s)
q(a) expf�  D(s,a)g (3)

q(a) D
X

s

p(s)q(ajs)

Z(s) D
X

a

q(a) expf�  D(s,a)g.

Note that the Equation (3) do not specify a policy uniquely. The
equations are called self-consistent, meaning that anyq(ajs), q(a),
and Z(s) jointly constitute a minimum of the control objective
as long as they satisfy the three equations simultaneously. In
general, multiple solutions can exist. A numerical solution to
the equations can be found by starting with a random value of
q(ajs), then evaluating the equations iteratively until a �xed point
is reached.

One generalization that we can deduce immediately from this
system of equations is that RDC policies favor re-use of common
actions. We can see this because the factorq(a) in Equation (3)
will be high for actions that are taken frequently across all states.
Therefore, these actions will be preferred, sometimes in lieu of
the action that would be more appropriate in a particular state
s. Intuitively, the factorq(a) represents a “habit”: a propensity to
take a certain action regardless of the present context (van Dijk
and Polani, 2013; Wood and Rünger, 2016; Gershman, 2020).

2.4. Link to Behavioral Measures
The RDC describes the derivation of bounded-rational action
policies, but does not immediately make predictions about
the timing of these actions nor other behavioral and neural
dependent measures that are commonly deployed in the study of
cognitive control and language production. A linking hypothesis
is required from the mathematical policyq(ajs) to predictions
about dependent measures, such as reaction time, the usual
measure of di�culty in word production studies.

There are a number of perspectives in the psychological
literature on the relationship between reaction times (RTs) and
information-theoretic measures of complexity (Laming, 1968,
2003; Luce, 2003; Ortega and Braun, 2013; Fan, 2014; Zénon etal.,
2019; Lynn et al., 2020). The simplest possible hypothesis is that
the time required to initiate an action is linearly proportional to
the amount of computation that needs to be done to select the
action. For example,Fan (2014)conceptualizes cognitive control
as the means by which uncertainty about the output action is
reduced at a constant rate in terms of bits per millisecond. I
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adopt this linking hypothesis here, with a modi�cation to account
for the fact that the computation required to select an action
breaks into multiple parts, which I call computation cost and
decision cost:

1. Computation cost. The computation required to produce the
action policy q(ajs). This is equal to the cost term in the
control objectiveL that generatesq(ajs). For example, given
the control objective in Equation (2), the average computation

cost is the mutual informationI [S: A] D
D
log q(ajs)

q(a)

E
. For

a particular actiona in state s, the cost is the pointwise
mutual information logq(ajs)

q(a) . This notion of computation cost
combinesZénon et al. (2019)'s notions of “perceptual cost”
and “automatic cost.” For human behavioral work relating this
notion of computation cost to computation time, seeOrtega
and Stocker (2016)andSchach et al. (2018).

2. Decision cost. A policyq(ajs) is a probability distribution on
actions, but in any given state, an agent must take a single
action. Decision cost is the cost associated with selecting
a single actiona� from a distribution q(ajs); it represents
a decision that still needs to be made (perhaps randomly)
after considering state information. I take decision cost to be
equal to the KL divergence fromq(ajs) to a delta distribution
specifying a single actiona� :

DKL[� aa� jj q(ajs)] D

*

log
� aa�

q(ajs)

+

D � logq(a� js),

where � aa� is a Kronecker delta function (equal to 1 when
a D a� and 0 otherwise). Thus, decision cost comes out to be
the surprisal (negative log probability) of the actiona� given
the statesunder the action policy.

It stands to reason that both computation cost and decision
cost make contributions to dependent measures, such as reaction
time, although perhaps not according to a simple function. In this
work I will present computation and decision cost in terms of bits
of information, and where appropriate I will discuss their possible
translation into observable dependent measures.

There have been other, more complex proposals about the link
between RDC policies and observable measures, such as reaction
time. For example,Ortega and Braun (2013,p. 10–11) link RDC
policies to drift–di�usion models of choice behavior (Bogacz
et al., 2006). While I do not pursue these other linking hypotheses
here, they could provide di�erent perspectives or more precise
predictions in future work.

2.5. Level of Analysis
RDC as applied to word production is a computational-level
theory in Marr's sense (Marr, 1982), meaning that it attempts to
model the problem that is being solved in language production.
Because it is stated at this level of abstraction, it is not necessarily
in con�ict with existing more mechanistic models of word
production. RDC states simply that the cognitive cost of taking
certain actions is determined by a trade-o� of minimizing
action cost while also minimizing information-processing costs,

measured using mutual information. This trade-o� might be
implemented in terms of spreading activation in networks with
constrained topology, production rules, etc. Nevertheless,it will
be interesting to see where the predictions of more mechanistic
theories diverge from those of the more abstract RDC.

To sum up this section, I have presented the rate–distortion
theory of control (RDC) as a model of bounded-rational action.
Below, I will present a new application of this model to model
human word production, which exhibits a property of the model
which has not previously been explored. In particular, I will show
that similarity-based interference e�ects, which are common in
word production as well as other aspects of cognition, arise as a
generic prediction of RDC models.

3. INTERFERENCE IN THE
RATE–DISTORTION THEORY OF CONTROL

In this section I will demonstrate the basic mechanism by which
RDC predicts similarity-based interference e�ects.

3.1. The Empirical Phenomena
The term similarity-based interferenceencompasses a large
number of phenomena in human perception, action, and
memory. It refers to the idea that percepts, actions, or memories
are confused for each other when they are “similar” according to
some metric (Shepard, 1987), that is, when they share features
or associated cues. Furthermore, there may be increased latency
in identifying a percept, retrieving information from memory
(Jäger et al., 2017), or initiating in action (Stroop, 1935) in
the presence of some “similar” distractor. Capturing similarity-
based interference is a key goal of cognitive models, including
those based on cue-based retrieval, spreading activation, and
production rules (Watkins and Watkins, 1975; Ratcli�, 1978;
Anderson and Lebiere, 1998; Roelofs, 2003).

3.2. RDC Account
Similarity-based interference arises generically in RDC models
because the action costD(s,a) naturally de�nes a similarity
metric among actions, an insight used bySims (2018)in his
model of generalization in absolute identi�cation tasks. The
function D(s,a) gives the cost of taking actiona in states. Two
actions are similar when they have similar cost, that is, whenthere
is low cost for failing to distinguish them. Accordingly, we can
de�ne a distance metric between two actions. In states, let as be
the action with minimal cost, andad be any other action. The
state-dependent distance metric among actions can be de�nedas
a function

d(as,ad) D D(s,ad) � D(s,as).

This distance metric1 will play the role of the distortion metric in
rate–distortion theory.

1The functiond(as,ad) is technically a pre-metric. It satis�esd(a,a) D 0 for all
actionsa, and it is always non-negative. It is non-negative becauseas is de�ned as
the action with minimal cost in states. The function is only a pre-metric, not a
full metric, because it is not generally symmetrical. That is,d(as,ad) 6Dd(ad,as)
in general.
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Now that we have a distance metric among actions, we can see
that interference e�ects arise even in the simplest formulation of
the RDC. Suppose the control system is attempting to solve the
following problem: in a states (for example, seeing a picture of
an apple), there is a single unique target actionas corresponding
to that state (for example, saying the word “apple”). The agent
is attempting to generate the right target action in states. In
this setting, RDC predicts generally that the probability thatany
two actions (e.g., words)as andad are confused will increase as
they get closer in the distance metricd(as,ad)—thus predicting
similarity-based interference among competitors.

More formally, let the control objective be

L (q) D
D
d(as,a)

E
C

1


I [S: A]. (4)

This equation expresses that the agent will try to minimize the
average distance between the selected actiona and the target
action as, subject to a computation cost of1 units per bit of
information from the statesS used to specify actionsA. Then
following the logic in Equation (3), the bounded-rational policy
has the form

q(ajs) D
1

Z(s)
q(a) expf�  d(as,a)g (5)

q(a) D
X

s

p(s)q(ajs)

Z(s) D
X

a

q(a) expf�  d(as,a)g.

This policy exhibits exponentially-decaying interference e�ects as
a function of the distanced(as,a). To see this, let's simplify the
setting, considering a scenario where there are only two possible
actions given a states: the target actionas and a single distractor
ad. Plugging in to Equation (5), we �nd that the probability of the
target actionas in statesis given by a logistic curve2:

q(asjs) D
1

1 C q(ad)
q(as)

expf�  d(as,ad)g
. (6)

2The probability of the target actionq(asjs) is calculated as follows:

q(asjs) D
q(as) expf�  d(as,as)g

q(a) expf�  d(as,ad)g Cq(ad) expf�  d(as,ad)g

D
q(as) expf0g

q(as) expf0g Cq(ad) expf�  d(as,ad)g

D
q(as)

q(as) C q(ad) expf�  d(as,ad)g

D
1

1 C q(ad)
q(as)

expf�  d(as,ad)g
.

This is an instance of the general logistic curve

f (x) D
1

1 C expf� k(x � x0)g

with slope parameterk D  and initial conditionx0 D 1
 log q(ad)

q(as)
. More generally,

given a set of distractorsad 6Das, the probability of the correct actionas is

q(asjs) D
1

1 C
P

ad6Das

q(ad)
q(as)

expf�  d(ad,as)g
.

The curve is illustrated inFigure 1. The important part of
Equation (6) is the second term in the denominator, which
represents the e�ect of interference between the target action
as and the distractor actionad. As this interference term gets
larger, the probability of the target actionq(asjs) gets smaller. This
interference term is large when (1) the distractor actionad is a
priori likely, and (2) the distractor actionad is close to the target
actionas.

An agent with a control objective as in Equation (4) will
therefore show similarity-based interference in terms of errors in
the action taken. This interference also manifests in decision cost
for actionas:

Decision costD � logq(asjs)

D log
�
1 C

q(ad)
q(as)

expf�  d(as,ad)g
�
,

visualized in Figure 1. This function decreases asd(as,ad)
increases. The computation cost, on the other hand, decreases
when d(as,ad) decreases, re�ecting the main mechanism by
which similarity-based interference arises in this model: at small
distancesd(as,ad), the policy achieves lower computation cost at
the expense of decreased accuracy in the action selected.

Applying this logic to word production, we predict
interference e�ects among semantically similar production
targets when both are likely actions given the agent's
state. Consider a state where a person sees a picture of an
apple, and the words “apple” and “pear” are both a priori
likely for some reason. This corresponds to target action
as D say “apple” and distractor actionad D say “pear” ,
with q(as) and q(ad) both high, and d(as,ad) low. A
bounded-rational agent will erroneously say “pear” in this
state more often than if the distractor were something less
similar, such asa0

d D say “car” ; furthermore, the action
as D say “apple” can only be produced at higher decision
cost due to the presence of the distractor. The reason is that when
the distractor is “car,” the relevant distance isd(as,a0

d) � d(as,ad),
leading to a lower probability of confusion in the action policy.

This example embodies the core logic of the RDC account
of interference. Below, I will demonstrate this logic in a more
thoroughly worked out model of the Stroop/Picture–Word
Interference Task including �ts to human behavioral data. That
simulation will require a more involved control model, but the
underlying cause of similarity-based interference remains the
same as in this example.

4. MODEL OF PICTURE–WORD
INTERFERENCE

Here, I show that RDC can capture some of the major
characteristics of semantic interference in the Picture–Word
Interference task.

4.1. Phenomena
Picture–Word Interference (PWI) is one of the most well-
studied phenomena in language production and cognitive
control (Schriefers et al., 1990; Damian and Martin, 1999; Bürki

Frontiers in Psychology | www.frontiersin.org 5 May 2021 | Volume 12 | Article 672408

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Futrell Information-Theoretic Account of Interference

FIGURE 1 | Interference between a target actionas and a distractor ad as a function of the distanced(as, ad), for varying values of resource parameter and the a
priori probabilityq(as). (Top left) The probabilityq(asjs) of taking the appropriate actionas in state s. (Top right) The decision cost� logq(asjs), which is high whenas

and ad have low semantic distance.(Bottom) The computation cost log q(as js)
q(as) .

et al., 2020). The task evokes similarity-based interference in
picture naming by superimposing a text word over an image, and
asking a subject to name the image (Lupker, 1979). Examples are
shown in Figure 2. The Stroop task is closely related (Stroop,
1935; MacLeod, 1991; van Maanen et al., 2009; Starreveld andLa
Heij, 2017): in this task, a word, such asBLUEis presented in red
ink, and subjects are asked to name the color of the ink.

The hallmark PWI e�ect is that subjects are slower to name
the image in the presence of a superimposed word which is
semantically categorically related to the image (thesemantic
condition in Figure 2), as compared to their reaction times when
the superimposed text is a neutral string, such asXXXXX(the
neutral condition in Figure 2). Furthermore, reaction times are
fastest when the superimposed word is the same as the name of
the image (thecongruent condition), and if the superimposed
text is a semantically unrelated word (theunrelated condition),

reaction times are somewhere between the neutral and semantic
conditions. “Semantic interference” in the PWI task refersto this
additional slowdown and increased probability of error for the
semantic condition relative to the unrelated condition.

Many PWI and Stroop experiments include only a neutral or
an unrelated condition, rather than all four of these conditions,
which has resulted in some variance in terms of the size of the
reported interference e�ect (MacLeod, 1991). The neutral and
unrelated conditions are referred to together as thebaseline
conditions, and the semantic and unrelated conditions are
referred to together as theincongruent conditions.

4.2. Related Work
Because of its empirical robustness and (apparent) conceptual
simplicity, PWI and Stroop tasks have been the target of
many computational cognitive models throughout the past
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FIGURE 2 | Conditions of a Picture–Word Interference experiment. Fromleft to
right: the congruent , neutral , semantic , and unrelated conditions (see text).

three decades, and subject to intense controversies about the
mechanism that gives rise to the observed interference e�ect.

The main controversy in the literature is over whether
PWI e�ects are driven by a competitive process during lexical
selection, where multiple responses are competing for priority,
resulting in slowdown (Roelofs, 1992; Levelt et al., 1999; Damian
and Bowers, 2003; Belke et al., 2005; Abdel Rahman and
Melinger, 2009) or by the need to exclude the distractor from an
articulatory bu�er (for example,Mahon et al., 2007). The most
extensively documented and tested model of PWI is WEAVER++
(Roelofs, 1992, 2003; Levelt et al., 1999), a model of word
production based on production rules and spreading activation
where similarity-based interference emerges due to competition
in lexical selection.

In contrast to existing computational models, the RDC
account of interference in word production is a computational-
level model which works by specifying only the problem that
is being solved by the cognitive system, without making any
commitments to algorithmic-level details (Marr, 1982). The
theory and its assumptions are speci�ed completely by (1) the
control objective, which is the mathematical statement of the
problem that the cognitive system is trying to solve, and (2) the
linking function from cognitive costs to observables, suchas RT.

As we will see, the control objective that reproduces PWI
e�ects speci�es only that there is some computational bottleneck
involved in integrating information from bottom-up sensory
input and top-down behavioral goals—whether this bottleneck
happens in lexical selection, articulation, etc. is unspeci�ed. The
computational bottleneck might arise more mechanisticallydue
to dynamics of spreading activation, competing production rules,
etc. The question of whether the interference e�ect arises because
of competition or response exclusion does not arise at this level
of abstraction.

I am aware of two previous information-theoretic models
of the Stroop task.Zénon et al. (2019)present a model of
information-processing costs in the Stroop task which predicts
that performing an unusual goal (i.e., naming a picture rather
than reading a word) results in increased di�culty. Their model
does not use bounded-optimal policies and does not account
for semantic interference. Also,Christie (2019)models the RT
response distribution for congruent, semantic, and neutraltrials
in a Stroop task using an information-theoretic model in which
con�icting control signals are superposed and must be decoded
at high cost. This model involves a policy which receives noisy

FIGURE 3 | Schematic of an action policy where the behavioral goalG and
the perceptual stateS jointly determine the output actionA.

bottom-up and top-down signals and must decide on an action.
While this model is based on a noisy channel, rather than
rate–distortion theory, it is fundamentally similar to themodel
presented here because it involves rational action under cognitive
constraints modeled using information theory.

4.3. RDC Account
A full model of PWI requires a more complex setup than the
simple interference example above. In particular, whereas the
interference model given by Equation (4) involved a policy
conditional only on an input state, a full model of PWI requires
a policy conditional ontwo inputs: a perceptual state and a
top-down behavioral goal.

To model PWI, letG be a random variable representing a
speaker's top-down goals, i.e., whether the goal is to name a
picture/color or to read a word. That is,G is a random variable
taking values in the setfname,read g. LetSbe a random variable
representing a speaker's perceptual state—that is, the particular
word and picture that the speaker is looking at. A speaker then
implements a bounded-rational production policy on actions
given goals and perceptual statesq(ajg,s), subject to information-
processing costs. The structure of the model is shown inFigure 3.

As the output action is jointly determined by the behavioral
goalG and the perceptual stateS, the total mutual information
between the inputs to the policy and the output action is given by
the formula

I [G,S: A] D
�
log

q(ajg,s)
q(a)

�
. (7)

This quantity gives the total amount of information in the
behavioral goalG and perceptual stateSthat the policy uses in
order to specify the actionA. The simplest RDC policy would
simply take Equation (7) as the computation cost. However, it
turns out that in order to model the PWI task, we need to
assign di�erent levels of cost to information coming from thetwo
sources,GandS.

In order to do so, we must �rst break the quantity in
Equation (7) down into two parts, re�ecting the contributionsof
SandG. Using the chain rule for mutual information (Cover and
Thomas, 2006,p. 24, Theorem 2.5.2), we can write:

I [G,S: A]
| {z }

information transmitted fromGandSto specifyA

D I[S: A]
| {z }

information from S

C I[G: AjS]
| {z }

information from Gconditional onS

,
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with theconditional mutual information I [G: AjS] de�ned as

I[G: AjS] D

*

log
q(ajg,s)
q(ajs)

+

.

The conditional mutual information gives the amount of
information contributed byG aboutA in the presence ofS, and
beyond what is contributed bySalone. Now, following previous
work (van Dijk and Polani, 2013; Genewein et al., 2015), we can
de�ne a family of computation costs by taking a weighted sum of
the information from the two sources:

Computation costD � I [S: A] C .1 � � / I [G: AjS], (8)

where� 2 [0, 1] represents the relative cost of using information
from Sas opposed to information fromG conditional onS. In
order to model PWI, it turns out that the minimal information
penalty required in the control objective is on the mutual
information I [G: AjS]—the amount of information that must be
“transmitted” from the behavioral goalG to specify the actionA
in the context of the perceptual stateS. So in the computation
cost for the PWI simulations, I set� D 0 in Equation (8). The
substantive hypothesis here is that there is negligible costfor
using information from the perceptual stateSalone, but high cost
for using information from the behavioral goalG in the context
of the perceptual stateS.

De�ning computation cost in this way, the speaker's
production policy is a minimum of the control objective:

L (q) D
D
d(ag

s,a)
E

C
1


I [G: AjS], (9)

whereag
s indicates the correct action to be taken in states with

goalg, andd : A � A ! R(C) is a semantic distance measure on
production actionsA, as de�ned in section 3.2. The minima of
the control objective in Equation (9) have the form:

q(ajg,s) D
1

Z(g,s)
q(ajs) expf�  d(ag

s,a)g (10)

q(ajs) D
X

g

p(gjs)q(ajg,s)

Z(g,s) D
X

a

q(ajs) expf�  d(ag
s,a)g.

Below, I will �rst analyze the policy in Equation (10) and show
that it demonstrates semantic interference under reasonable
default parameter settings in a simulation of the PWI task, and
then that it can capture some of the major qualitative empirical
patterns observed in PWI studies when we vary the parameters of
the simulation.

4.4. Simulation Setup
I model the basic PWI task with the following setup. An
agent has access to a behavioral goal and a perceptual
state, and produces an output action in response to these.
The perceptual state consists of a picture and a written
word. The behavioral goal speci�es whether the agent

TABLE 1 | Default parameters of the simulation of the Stroop task.

Parameter Value Meaning

pname 0.1 A priori probability of the
behavioral goal being to name,
rather than read.

Nw 32 Number of different words in
possible perceptual states.

Np 32 Number of different pictures in
possible perceptual states.

 4 Information processing
resources (see Equation 9).

See text for discussion.

should read the word or name the picture. Each word
and each picture is associated with a single appropriate
target action.

More formally, the behavioral goal is a random variableG
that can take one of two values,g 2 f name,read g, with
the probability of the goal beingname equal to a parameter
pname D 1

10, the same value used inZénon et al. (2019).
This low probability is meant to re�ect the fact that when
one sees some text, the relevant behavioral goal is usually to
read the text, not name the object it is displayed or written
on, especially when reading a card or a computer screen in
a lab environment. As we will see, this low probability will
end up driving the asymmetry between reading and naming in
the model.

The perceptual state is represented by the random variableS
and takes values inpairsof discrete objectshw,pi , representing a
state where an agent is seeing wordw superimposed on picturep.
The number of possible words isNw and the number of possible
pictures isNp; in all the simulations below, I �xNw D Np D 32
and assume a uniform distribution on the possible states. The
output actions are represented by a random variableA taking
one of Na D 32 di�erent values. Each goalg and states is
associated with a target actionag

s de�ned as follows: given the goal
g D read and the states D hw,pi , the target action isw; given
the goalg D name, the target action isp. The distance metric
among output actionsd : A � A ! R(C) will be de�ned below,
either as an idealized metric or as a metric derived from word
embeddings (Mikolov et al., 2013), when we move to modeling
experimental data.

The last parameter we need to specify an RDC policy is the
scalar , which gives the computational resources (inverse cost)
available for information processing in the model. With all these
parameters in hand, we can compute the RDC policy from the
control objective in Equation (9). Simulation parameters are
summarized inTable 1.

As a more concrete example, suppose the goalg D name,
and the perceptual state is the pairhapple ,pear i , representing
the word “apple” superimposed on a picture of a pear. Because
the goal isg D name, the target actionag

s is to say “pear.” If
the agent takes this action, then the distortion is zero, because
d(pear ,pear ) D 0. On the other hand, if the agent takes the
action of saying “apple,” then the distortion isd(pear ,apple ),
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which may be small, since these are semantically related words
that share many features. Because this distortion is low, an
agent may be attracted toward saying “apple,” which has higher
distortion than “pear,” but has lower computation cost because it
does not require attending to the costly behavioral goal. Then the
probability of producing the correct word “pear” will be low and
the decision cost for the correct word “pear” will be high.

Given a statehw,pi and a goalg, we can de�ne one part of the
state as the “target” and another as the “distractor.” Wheng D
name, the target isp and the distractor isw. Wheng D read ,
the target isw and the distractor isp. In each state, there will be a
certain semantic distance between the target and distractor, called
the distractor distance. If aw represents the action associated
with w and ap is the action associated withp, then wheng D
name, the distractor distance isd(ap,aw); wheng D read , the
distractor distance isd(aw,ap).

The major conditions of PWI experiments are the congruent,
semantic, neutral, and unrelated conditions (de�ned inFigure 2).
So far, we have the ability to model three of these: the congruent
condition corresponds to the case where the distractor distance
is 0 (i.e., the target actions are identical across goals:aw D ap);
the semantic condition corresponds to the case where distractor
distance is low; and the unrelated condition means the distractor
distance is high. I will return to the neutral condition below.

4.5. Results
4.5.1. Basic Results: Idealized Semantic Distance
Metric
First I present simulation results showing the existence of
semantic interference e�ects given an idealized semantic metric
among words. This metric is generated randomly by placing
Nw D 32 words uniformly at random in bounded 2-dimensional
space of size 7� 7. An example such space is shown inFigure 4.
An RDC policy was computed for picture naming and word
reading given this space, considering all possible pairings of
words as pictures and as names.

In Figure 5, I show the decision cost and the computation cost
based on the simulation in this space, as a function of distractor
distance. We see a few basic patterns:

� There is no decision cost and low computation cost when the
distractor distanced D 0, corresponding to the congruent
condition in experiments.

� Semantic interference exists in the decision cost. The
interference is high for close words (corresponding to the
semantic condition), and falls o� rapidly at distant words
(corresponding to the unrelated condition).

� When the goal isg D read , interference of any kind
is negligible.

In the simulation, computation cost comes out to be
essentially a constant function of the goal, except when the
appropriate actions given the two goals coincide (distractor
distance 0). In fact, as the distractor distance gets large,the
computation cost turns out to approximate the surprisal
of the goal given the state� logp(gjs). In doing so, the

FIGURE 4 | Example of an idealized semantic metric of words as used for
basic simulations. Thirty-two words are placed randomly ina two-dimensional
bounded Euclidean space of size 7� 7. A target word is indicated in red. The
remaining points are colored according to their distance from the target word.

computation cost recovers the model of Stroop interference from
Zénon et al. (2019)3.

This most basic simulation already captures several qualitative
patterns from the empirical literature (as listed byMacLeod,
1991). First, we recover the fact that naming is generally slower
than reading (Cattell, 1886), as indicated by the uniformly higher
computation cost for naming. Second, we recover the existenceof
facilitation in the congruent condition, re�ected in lower decision
cost and lower computation cost when distractor distance is zero.
Third, we recover the existence of interference in the semantic
condition relative to the congruent condition and the unrelated
condition, as re�ected in the decision cost. Fourth, interference
exists for the naming task but is negligible in the reading task.
Fifth, the interference e�ect is gradient (Klein, 1964): when the
distractor is more semantically similar to the target, there is
more interference; this is re�ected in the decision cost for the
naming condition.

The semantic gradient deserves a bit more discussion.
There has been controversy in the literature on Picture–Word
Interference about whether a semantic gradient really exists, as
opposed to a categorical e�ect for distractors that are in the same
category as the target (Hutson and Damian, 2014; Bürki et al.,
2020). In the RDC model, there is a semantic gradient observable
in the decision cost, but it falls o� very rapidly from distance1 to
distance 2, and distance 2 shows only barely more interference
than distance 3. Therefore the theory predicts that a semantic

3When distractor distance is 0, computation cost comes out to nearlyzero. This
may seems surprising, but follows from the fact that computation cost here is

the pointwise conditional pointwise mutual information logq(ajg,s)
q(ajs) , which is zero

when the actiona is already fully speci�ed by the perceptual states, such that the
behavioral goalg adds no new information. It should be noted that computation
cost zero does not imply a prediction of RT zero—see section 4.5.5.
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FIGURE 5 | Simulated costs in Picture–Word Interference task, as a function of semantic distance between target and distractor.

gradient does exist, but it is highly concentrated, and might be
hard to detect in experiments.

Above, I have shown that RDC can capture the basics of
semantic interference in PWI tasks in a simulation with simple
and reasonable default parameter settings. Next, I will show how
we can recover more of the empirical patterns by varying the
parameters of the simulation and the model.

4.5.2. Reverse Stroop
The reverse Stroop e�ectrefers to a reversal in the di�erence
between naming and reading in a PWI/Stroop task. Usually,
interference happens in the naming task and not in the reading
task. However, after a great deal of experience with naming in
incongruent trials, two things happen: the interference e�ectin
naming shrinks, and subjects begin to show an interference e�ect
in reading as well as naming (Stroop, 1935; MacLeod, 1991).

While early work hypothesized that the reverse Stroop e�ect
is caused by practice and task familiarity (Stroop, 1935), later
work has shown that reverse Stroop e�ects are more likely
related to the di�culty of task switching between naming and
reading (Allport and Wylie, 2000; Roelofs, 2021). In terms
of simulation parameters, it seems sensible to identify reverse
Stroop manipulations with an increase in the parameterpname,
re�ecting increased relevance of the naming goal, perhaps due
to recency.

Figure 6shows computation and decision costs under varying
pname in the idealized semantic distance metric. As this value
increases, a reverse Stroop e�ect emerges: the reading task begins
to show interference in both costs. Meanwhile, the interference
associated with naming is predicted to decrease.

Beyond the Reverse Stroop e�ect, the simulations here
demonstrate the general e�ects of varying the simulation
parameterpname. Such results could be used, for example, when
modeling picture–picture interference e�ects, where participants
are confronted with two pictures and must name only a certain
one (for example,Glaser and Glaser, 1989). In that case, the
behavioral goals associated with each of the two pictures would

have more similar prior probabilities, and the resulting RDC
predictions would look more like the dotted lines inFigure 6.

4.5.3. Empirically-Derived Semantic Distance Metric
The results above showed basic qualitative e�ects in an idealized
semantic space. Now I turn to results based on an empirically-
derived semantic space, leading to a quantitative comparison
to human reaction times. The use of an empirically-derived
semantic space brings two advantages over the idealized space
above: (1) it allows for a comparison with experimental data
on real words, and (2) it shows that the predicted interference
e�ects arise given a realistic geometry for the semantic spaceand
a realistic distribution of words in it.

In the last decade, the �eld of natural language processing
has devoted a great deal of attention to deriving representations
of words as points (calledembeddings) in high-dimensional
space, such that the distances among embeddings re�ect semantic
relationships among words (Mikolov et al., 2013; Pennington
et al., 2014). These representations di�er in their details, but they
are all derived by an optimization process whose goal is to create
embeddings such that thecontextof a word can be predicted
accurately from its embedding (Goldberg and Levy, 2014), in
keeping with the old linguistic intuition that the meaning of a
word is related to its distribution with respect to other words
(Harris, 1954; Firth, 1957). The result is that the “distance”
between two wordsA and B re�ects the di�erence between
the typical contexts forA and B. As such, these distributional
embeddings provide a distance metric which �ts with the RDC
framework, which holds that two actions are similar if thereis low
cost for failing to distinguish them. In particular, the embedding
distance between words re�ects how badly one would mis-predict
the context of one word when it is mistaken for another.

There have been previous attempts to model semantic
interference e�ects in Stroop and PWI using embedding spaces,
such as these (de Marchis et al., 2013; Hutson and Damian,
2014). The embedding spaces can broadly distinguish between
semantically close words compared against unrelated words,
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FIGURE 6 | Computation and decision cost for PWI under varying values of pname. A reverse Stroop effect emerges in the decision cost under the reading goal.

although they do not seem to be able to make reliable item-
level predictions within semantically close words (Hutson and
Damian, 2014).

Here, I adopt the English fastText embedding space derived by
Facebook4 as a semantic distance metric among words. In work
using these embeddings, the distance between embeddingsu and
v is usually quanti�ed ascosine distance:

dcos(u,v) D 1 �
u � v

jj ujj 2jj vjj 2
,

where� indicates a dot product andjjujj 2 indicates anL2 norm.
In order to produce distances in the interval [0,1 ), I apply a logit
transform to the cosine distance5.
I use the set of 32 words from the Picture–Word Interference
experiment presented inRoelofs and Piai (2017). The items
from this experiment consist of picture–word pairings which are
either semantically close (“semantic”) or semantically unrelated
(“unrelated”). Here, I show that RDC with the fastText
embedding space predicts higher cognitive cost for the semantic
pairings as opposed to the unrelated word pairings, and also
lower cost when the word and the picture to be named are
identical6. Except for the semantic distance metric, all other
parameters of the simulation are the same as above.

4Available for download at https://fasttext.cc/docs/en/pretrained-vectors.html
5The logit-transformed distance metric between two word embeddingsu andv is

d(u,v) D logit
�

1
2

C
1
2

dcos(u,v)
�

,

with the logit function de�ned as

logit(x) D log
�

x
1 � x

�
.

6These words were originally in Dutch; I translate them into English inorder
to get their distances. In preliminary experiments, I also tried using the Dutch
fastText vectors, and using the English GloVe vectors (Pennington et al., 2014).
I use the English fastText vectors because I found that they most reliably assign
lower distances to the “semantic” word pairings compared to the “unrelated” word
pairings in the experimental items. Rank-order correlations of semantic distances

In Figure 7, I show theoretical computation cost and decision
cost by distractor distance for the word pairs listed inRoelofs
and Piai (2017). Red dots indicate word pairs in the “semantic”
condition; green dots indicate word pairs in the “unrelated”
condition; and blue dots indicate identical words. Predicted
cognitive cost is lowest for identical words. For “unrelated” and
“semantic” words, there is high computation cost. For “semantic”
words, there is also high decision cost.

The simulation using an empirically-derived semantic
distance metric shows the same qualitative patterns as the
simulation using an idealized metric. Furthermore, we see that
the semantic distances largely correspond (although imperfectly)
with the designation of items as “semantic” vs. “unrelated.”

4.5.4. Neutral vs. Unrelated Trials
The PWI task has a fourth major condition: theneutralcondition,
where a picture is presented along some kind of neutral
orthographic stimulus that would not reasonably be read out
loud, such asXXXXX. Here, I will incorporate this condition
into the simulation and show that we immediately recover
three empirically-attested patterns: (1) there is facilitation in the
congruent condition relative to the neutral condition, (2)there
is interference in the unrelated condition relative to the neutral
condition, and (3) the size of facilitation is small relative to the
size of interference (MacLeod, 1991).

Recall that in the basic simulation, the a priori probability
that the behavioral goal isg D name rather thang D read is
1
10. I model the neutral condition by adding into the simulation
a set of statessneutral with neutral text distractors, such that
p(g D namejsneutral) D 9

10 for all neutral states. This models the
scenario where a subject seesXXXXXsuperimposed on an image.
The idea is that given such a state, a subject would only expect
to actually read the stimulus (saying “eks eks eks eks eks”)1

10 of

among the embedding spaces are: English fastText vs. English GloVE� D 0.77;
English fastText vs. Dutch fastText� D 0.59; English GloVE vs. Dutch fastText
� D 0.54.
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FIGURE 7 | Computation and decision costs for word pairs from the itemsof Roelofs and Piai (2017), using fastText as the semantic distance metric.

FIGURE 8 | Simulated costs by PWI task condition based on materials from Roelofs and Piai (2017)and fastText word embeddings.

the time. Outside of a state with a neutral distractorsneutral, the
probability of naming is still110.

Figure 8shows the simulated decision and computation costs
for four experimental conditions based on the items fromRoelofs
and Piai (2017): congruent (the case where the distanced D 0),
semantic, unrelated, and neutral (simulated as the case where
s D sneutral). The three empirical patterns are captured here
by the computation cost. The neutral condition has drastically
reduced computation cost relative to the semantic and unrelated
conditions, indicating facilitation. Also, the computation cost is
slightly less in the congruent case relative to the neutral case,
indicating facilitation. Also, the size of the facilitatione�ect (the

di�erence between neutral and congruent conditions) is small
relative to the interference e�ect (the di�erence between neutral
and semantic/unrelated conditions).

The model robustly recovers the existence of facilitation
and interference. The relative magnitude of facilitation and
interference depends on a model parameter: the probability
p(g D namejs D sneutral)7. Therefore, it is therefore possible
to make a prediction: the facilitation e�ect should get larger
under any manipulation that makes the orthographic string in the

7The default values forp(gjs) have not been tuned to �t the human data, but were
selected a priori and kept constant throughout all simulations.
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neutral condition more and more like something that someone
would reasonably read. In fact, there is already some evidence in
this direction in the literature: pseudowords, which presumably
fall somewhere betweenXXXXXand a real word in terms of
p(g D namejs), cause less interference than real words in the
Stroop task (Klein, 1964).

4.5.5. Fit to Human RT Data
Here I relate the simulated computation and decision costs to
empirical human RT data. To do so, we need a more speci�c
linking function from computation and decision cost to RT.

I propose that RT can be predicted from a linear combination
of computation and decision cost. That is, the predicted RT in a
condition is given from cognitive costs by a transformation:

RT D a C bX C cY,

where X is computation cost,Y is decision cost, anda, b,
and c are non-negative scalars. This linking function supposes
that computation cost and decision cost are each associated
with some �xed rate of information processing, given byb and
c, respectively, in terms of milliseconds per bit. The scalara
represents a constant RT delay across conditions (in the model of
Zénon et al., 2019, this constant cost corresponds to perceptual
information processing).

Figure 9 shows a comparison of empirical mean RTs in a
PWI task, drawn fromRoelofs and Piai (2017), compared against
simulated RTs, witha D 730 ms,b D 30 ms/bit, andc D
140 ms/bit8. This mixture gives a good qualitative �t to the
human data.

The relationship of information-processing costs to RT may
not be so simple, however. In particular, RT distributions appear
to follow what is called an Ex-Gaussian distribution (Ratcli�,
1979; Luce, 1986; Balota et al., 2008). An Ex-Gaussian random
variable is the sum of a Gaussian random variable with mean�
and an Exponential random variable with rate� . The resulting
distribution is skewed positive when compared with a Gaussian
distribution. Interestingly, it has been suggested that the � and
� parameters of the Ex-Gaussian distribution re�ect di�erent
aspects of cognitive processing in the PWI task (Heathcote et al.,
1991; Mewhort et al., 1992; Spieler et al., 2000; Piai et al., 2011,
2012; Roelofs, 2012; Scaltritti et al., 2015; San José et al., 2021).

Here I present an analysis comparing computation and
decision costs to the full Ex-Gaussian analysis of experimental
PWI data, including congruent, semantic, neutral, and unrelated
conditions, performed byRoelofs and Piai (2017). In Figure 10,
I show their estimates of the� parameter compared with a
combination of computation cost and decision cost (a D 615 ms,
b D 25 ms/bit,c D 65 ms/bit). InFigure 11, I compare their�

8All of the scaling factors presented in this section were derived bylinear regression
on the empirical means, followed by rounding. From the linear regressions, the
optimal models before rounding are

mean RT� 737C 28� Computation costC 139� Decision cost

� � 615C 25� Computation costC 65� Decision cost

� � 123C 2 � Computation costC 87� Decision cost.

estimates to decision cost alone (a D 120 ms,b D 0, c D 85
ms/bit)9. The reasonable qualitative match suggests that both
computation and decision cost are re�ected in the� component
of the RT distribution, while only decision cost is re�ected in
the � component. It is striking that the� component seems to
re�ect only decision cost, suggesting that decision cost is indeed
an index of a distinct kind of cognitive cost. This result is inline
with the pattern reported byRoelofs and Piai (2017): � shows
a contrast among neutral, unrelated, and semantic conditions,
while � shows a contrast only between the semantic condition
and the others (see alsoScaltritti et al., 2015; San José et al., 2021).

Summing up, the overall empirical pattern is that computation
cost captures basic interference e�ects in RT, while decision
cost captures the additional RT slowdown associated with
semantically close distractors. The RT component� re�ects
both computation and decision cost, while the additional RT
component� re�ects only decision cost.

4.6. Discussion
It is striking that the framework laid out here can successfully
model many aspects of PWI, despite being developed nearly
entirely for purposes other than cognitive modeling. Rate–
distortion theory was developed purely as an abstract theory of
lossy communication, and its application to control problems
has primarily been con�ned to the computer science and
robotics literature.

Furthermore, RDC captures the major empirical patterns of
the Picture–Word Interference task with few free parameters.
The degrees of freedom in the speci�cation of the model are
(1) the distribution over goals and states, (2) the information-
processing resource parameters used to de�ne the control
objective (the scalar , which was set to a constant value in
all simulations reported above), and (3) the similarity metric
among actions. All of these degrees of freedom correspond
to quantities that can be independently estimated, at least in
principle. The distribution over goals and states is set by the
frequency of goals and states in a person's everyday experience;
the information-processing cost parameters are set by studiesof
cognitive di�culty; and the similarity metric among actions is
determined by the relative cost of the consequences of confusing
one action for another. The result is a parsimonious model that
captures several patterns naturally.

5. GENERAL DISCUSSION

I have shown that the rate–distortion theory of control can
naturally account for similarity-based interference in general,
and that it o�ers a strong model of Picture–Word/Stroop
interference e�ects. Now I turn to the interpretation of the model
and how it relates to word production more generally.

9The decision to map computation cost to� and � , and decision cost to� alone,
was takenpost-hocbased on regressions on the empirical RTs.
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FIGURE 9 | Empirical mean RTs for PWI conditions fromRoelofs and Piai (2017), compared with model predictions (see text). Error bars show 95% con�dence
intervals of the mean in the empirical data.

FIGURE 10 | Empirically estimated� parameter of Ex-Gaussian RT distribution for PWI conditions from Roelofs and Piai (2017), compared with model predictions
(see text).

5.1. Interpretation of Computation and
Decision Cost
I used two notions of cost: computation cost and decision cost,
where computation cost is the cost term that is contained in the
control objective, and decision cost is the surprisal of selecting

a single action given a probabilistic policy. As a summary,
semantic similarity-based interference emerged in the decision
cost, while computation cost predicted general interference
and di�culty for the less-probable goal in context (naming as
opposed to reading).
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FIGURE 11 | Empirically estimated� parameter of Ex-Gaussian RT distribution for PWI conditions from Roelofs and Piai (2017), compared with model predictions
(� D 120 C 85 � Decision cost).

I proposed that computation cost and decision cost map
linearly to RT. The reason for this proposal was simplicity.
However, it may be that other linking functions provide a better
connection betweenq(ajg,s) and empirically observable response
times, for example by linking RDC components to components
of drift–di�usion models (Bogacz et al., 2006; Ortega and Braun,
2013). I leave the exploration of this possibility to future work.

5.2. Relation to Algorithmic-Level Models
As a computational-level theory, RDC speci�es only the problem
being solved by our cognitive system, and does not make claims
about algorithmic or implementational details. It should be
hoped, then, that existing successful algorithmic models of PWI
can be seen as implementing the core parts of the RDC account.

In this connection, the recent extension of WEAVER++ by
San José et al. (2021)is especially interesting, as it adds an element
of periodically lapsing attention to the behavioral goal in order to
explain the Ex-Gaussian distribution of RTs in PWI experiments.
Similarly, the RDC model of picture–word interference crucially
works by positing a cost associated with extracting information
from the behavioral goal in the presence of the perceptual
state. Essentially, the RDC agent can only access the behavioral
goal through a channel with limited bandwidth. This limited
bandwidth equates to a kind of inattention: because the agent
has limited resources with which to attend to the channel, itwill
often not attend. Indeed, RDC was initially introduced as a model
of “rational inattention” in economics with this reasoning(Sims,
2003, 2005, 2010).

Similarly, the production rules and spreading activation
dynamics of WEAVER++ can be seen as implementing RDC-
like behavior. For example, one production rule used in the

WEAVER++ simulation of PWI inSan José et al. (2021)states
that if the behavioral goal is to name a picture, and a written word
is present, then activation relating to the written word is blocked
o�. Similar logic is instantiated by the RDC policy. Consider the
equilibrium probability (following Equation 10) to produce the
written wordaw when the behavioral goal isg D name:

q(awjg D name,s) / q(awjs) expf�  d(ap,aw)g,

whereap is the action corresponding to naming the picture. The
�rst factor q(awjs) will be relatively large, because the prior is that
the behavioral goal is usually to read, not to name. This large
value corresponds to activation for the written word. However,
this large value will be squashed by the exponentially small value
of the second factor expf�  d(ap,aw)g (unlessap and aw are
close), resulting in an ultimately low probability to name the
written word. This corresponds to blocking of activation.

The RDC model presented here shows how similarity-
based interference can arise from a very generically-de�ned
computational bottleneck. It achieves this generality without
sacri�cing quantitative precision. Nevertheless, it is likely that
many aspects of PWI and similarity-based interference more
generally might only be explainable within more algorithmic and
mechanistic frameworks. For example, a great deal of work on
PWI has dealt with stimulus-onset asynchrony (SOA) e�ects,
where the distractor word or the picture do not appear at the
same time. These e�ects are naturally captured in spreading-
activation models that describe the evolution of activationwith
time. It is less clear how such time-based e�ects would be
captured within a purely computational-level account, which
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FIGURE 12 | Schematic of a policy where the behavioralG and the perceptual
state S determine two actionsA1 and A2 to be performed by different
actuators.

simply models thefunction that is computed by cognitive
systems, and nothowit is computed.

5.3. Further Word Production Phenomena:
Facilitation
I intend to advance RDC, or an extension of it, as a model of
word production in general. I have presented its application to
interference in PWI and Stroop paradigms because these are well-
known and challenging phenomena to model. However, there are
many other language production phenomena on which an RDC
model has yet to be tested, including several that arise within the
PWI paradigm. One such set of phenomena is facilitation, both
phonological and semantic.

The PWI task exhibits phonological facilitation, meaning
that naming time is sped up when the distractor word is
phonologicallysimilar to the target word (Meyer and Schriefers,
1991). In the simple simulations presented here, the RDC does
not predict this kind of facilitation. However, it can when the
control objective is speci�ed in more detail, as I sketch below.

Imagine that the goal of the policy is not to output a single
atomic output action, but rather to output a large number of
actions. For example, one can imagine that the policy must
output instructions to a large number of actuators. This kindof
policy is illustrated inFigure 12. Equivalently, the output of the
policy is a vectora D [a1,a2, : : : ,an] of actions to be performed
byn di�erent actuators.

Given this kind of policy, we can de�ne a “phonological”
similarity metric among actionsa1 and a2 in terms of how
many elements overlap betweena1 anda2. For each overlapping
element, we will have a facilitation e�ect, and for each non-
overlapping element, we will have an interference e�ect. The
result is overall facilitation when the target action and the
distractor have more overlapping elements.

There are other extensions of RDC and other mechanisms
that could give rise to facilitation e�ects, for example multi-stage
hierarchical policies where the output of one policy becomes the
input to another. Such families of more elaborate RDC policies
have been explored in simulations byGenewein et al. (2015).

Facilitation has also been reported in PWI settings for certain
semantically similar words, and a great deal of e�ort has gone
into experimentally characterizing when semantically similar
words will cause facilitation or interference, often dealing with
whether a given target word is in the “response set” for the
experiment (e.g.,Roelofs, 1992, 2003; Caramazza and Costa,

2000, 2001; Mahon et al., 2007; Piai et al., 2012). While empirical
picture remains complex (Bürki et al., 2020), these results have
often been taken to re�ect dynamics during di�erent stages of
word production. While the simple RDC model presented here
does not predict these facilitation e�ects, a more articulated
model might: for example, a model with a non-zero penalty on
perceptual state information, or a hierarchical policy (Genewein
et al., 2015; Zénon et al., 2019). The answer may also lie in the
linking function from the RDC policy to observables, such as
RT: if computation cost is sometimes the dominant determinant
of reaction times, rather than decision cost, thenFigure 5
suggests that we would expect semantic facilitation rather than
interference. I leave the investigation of these possibilities to
future work.

5.4. Conclusion
This work has extended the reach of information-theoretic
models of language processing. Although information-theoretic
models have seen broad success in the study of language
comprehension (Hale, 2001; Moscoso del Prado Martín et al.,
2004; Levy, 2008; Hale et al., 2018; Futrell et al., 2020) and the
emergence of linguistic structure (Zaslavsky et al., 2018; Hahn
et al., 2020), they have not yet seen much application to language
production. This work has taken the �rst steps toward remedying
this gap using the rate–distortion theory of control.

Furthermore, the apparent inability to capture similarity
relations among stimuli has been a major barrier for the adoption
of information-theoretic models in cognitive science (Luce, 2003,
p. 185). This work shows that rate–distortion theory allows us
to overcome this di�culty and model some of the most salient
similarity-based e�ects in psychology.
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